
50

Fundamental Limits of Volume-based Network DoS Attacks
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Volume-based network denial-of-service (DoS) attacks refer to a class of cyber attacks where an adversary
seeks to block user traffic from service by sending adversarial traffic that reduces the available user capacity. In
this paper, we explore the fundamental limits of volume-based network DoS attacks by studying theminimum
required rate of adversarial traffic and investigating optimal attack strategies. We start our analysis with
single-hop networks where user traffic is routed to servers following the Join-the-Shortest-Queue (JSQ) rule.
Given the service rates of servers and arrival rates of user traffic, we first characterize the feasibility region of
the attack and show that the attack is feasible if and only if the rate of the adversarial traffic lies in the region.
We then design an attack strategy that is (i). optimal: it guarantees the success of the attack whenever the
adversarial traffic rate lies in the feasibility region and (ii). oblivious: it does not rely on knowledge of service
rates or user traffic rates. Finally, we extend our results on the feasibility region of the attack and the optimal
attack strategy to multi-hop networks that employ Back-pressure (Max-Weight) routing. At a higher level,
this paper addresses a class of dual problems of stochastic network stability, i.e., how to optimally de-stabilize
a network.
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1 INTRODUCTION
1.1 Background and Motivation
Network denial-of-service (DoS) attacks, where an adversary seeks to make some network re-
source unavailable to its intended users, is one of the most serious security threats to the Internet.
It often results in downtime of web services, cloud computing facilities, DNS services, etc., causing
huge financial loss to institutions [1]. While some network DoS attacks exploit the vulnerabilities
of protocols, the predominant type of attacks are volume-based, such as TCP SYN Flood, UDP
Flood and DNS Flood [2]. They work by flooding the network with adversary traffic and blocking
the service to normal users [2]. Such adversary traffic can be generated distributively from botnets
and is difficult to distinguish from normal user traffic [4], which makes volume-based DoS attacks
difficult to defend against. Due to the significance and prevalence of volume-based network DoS
attacks, there have been a flurry of works focusing on their detection and mitigation [3, 5, 6].
However, a theoretical understanding of the limits of such attacks is still lacking, i.e., how much
resources does the adversary need for mounting a successful volume-based network DoS
attack and what is the optimal attack strategy?
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Understanding the above questions is of great importance to the design and protection of net-
worked systems. It would provide us with valuable insights regarding the robustness of the net-
work, as the resource requirements for the adversary define the safety margin of the system. Fur-
thermore, the structure of the optimal attack strategy sheds light on the design of practical detec-
tion and mitigation methods.

In this paper, we explore the fundamental limits of volume-based network DoS attacks. Tak-
ing a network flow and queueing perspective, we translate the scenario of network DoS attacks
to one where the adversary injects traffic and seeks to de-stabilize the network by overflowing
network queues. As we will show, such perspective closely mirrors volume-based DoS attacks in
real life and enables us to conveniently inherit the modeling and analysis tools from the network
flow and queueing literature. That being said, two features of our problem make it elude tradi-
tional frameworks in the existing literature. First, a network under attack often operates outside
its stability region, requiring tools for analyzing networks in overload conditions. This renders the
results from stochastic/adversarial queueing theory [7–9] and stochastic/adversarial network opti-
mization [19, 20] inapplicable. Second, networked systems often employ dynamic load-balancing
or scheduling mechanism (e.g., Join the Shortest Queue and Max-Weight) [11, 12, 18] which have
a great impact on the optimal attack strategy. However, this aspect has been largely overlooked by
previous network attack-defense frameworks such as network interdiction, which studies the prob-
lem of minimizing the max-flow of a capacitated network by removing network links [13, 15] or
sending adversarial traffic flows [14]; and network security games, which adopt a game-theoretic
perspective and focus on equilibrium analysis [16] and security mechanism design [17]. A notable
exception is the paper by Paschos and Tassiulas [21] that also inspired our work, which studied
the sustainability of networks with static routing under volume-based DoS attack.

1.2 Contribution
We start our analysis with a server farm which can be modeled as a single-hop network. The
network has a general bipartite topology, where one side consists of traffic dispatchers (of user and
adversary traffic) and the other side consists of servers with jobs queued at each server waiting for
service. User traffic arrives at each user dispatcher and is sent to the servers following the Join-the-
Shortest-Queue (JSQ) rule. Adversary traffic is sent by adversary dispatchers to the servers under
some adversarial injection policy. The servers are not able to distinguish user and adversary traffic
and employ the FCFS service discipline.The goal of the adversary is to block user traffic from being
served, i.e., to cause user traffic in one or more queues to grow to infinity. We say that an attack
is feasible if there exists an injection strategy for the adversary to achieve its goal (see Section
2 for rigorous definitions). Our model can represent web-servers where the queues correspond
to service request buffers, the user dispatchers correspond to load-balancers and the adversary
dispatchers correspond to initiators of the attack. Our model can thus be seen to capture many
DoS attack scenarios such as TCP SYN Flood and DNS Flood [2]. Under this model, we obtain the
following main results:

(1) We give a necessary and sufficient condition on the user traffic rates, adversary traffic rates
and servers’ service rates for the feasibility of network DoS attack, which can be interpreted
as the resource requirement for mounting a successful attack.

(2) We design an optimal adversarial injection policy that achieves the goal of the network DoS
attack whenever the feasibility condition is met. Our policy is oblivious, in the sense that
it does not require knowledge of network statistics, including user traffic rates, adversary
traffic rates and service rates.
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(3) We generalize our results to multi-hop networks that employs the back-pressure routing
policy [18]. We extend the feasibility condition and the optimal adversarial injection policy
to the multi-hop scenario.

Our methodology also forms a general recipe for solving the problem of optimal de-stabilization
of stochastic networks, which can be considered as a dual problem of stochastic network stability
[10].

Our work is closely related to [21], where Paschos and Tassiulas defined the guaranteed user
throughput region of networks under DoS attack with fixed adversary traffic rates. In contrast, we
present a dual result, the minimum resource requirement for the attack to be feasible under fixed
user traffic rates. They also considered the case where user traffic is routed following the JSQ rule
and proposed a heuristic adversarial injection policy that they conjectured to be optimal, while
the policy we propose is provably optimal (See Section 5 for a more detailed discussion).

The rest of the paper is organized as follows. In Section 2, we formally present our model and
problem formulation. We then introduce the feasibility region in Section 3. We summarize several
key properties of the Join-the-Shortest-Queue policy in Section 4, which will be instrumental in
analyzing the optimal adversarial injection policy we propose.We introduce the policy in Section 5,
and evaluate the injection policy by simulations in Section 6. Section 7 is devoted to generalization
to multi-hop networks. We conclude the paper in Section 8.

2 MODEL AND PROBLEM FORMULATION
In this section, we formally present our system model for single-hop networks, which captures
server farms as a major application.Themodel for multi-hop networks will be presented in Section
7. The notations that we use throughout the paper are summarized in Table 1.

2.1 Network Model
As our single-hop network model mainly mirrors server farms, we will use single-hop network
and server farm interchangeably. Consider a single-hop network with a set of parallel servers
(sinks) and a set of traffic dispatchers (sources). The dispatchers are divided into two disjoint sub-
sets: user traffic dispatchers that route user traffic to servers, and adversary traffic dispatchers,
controlled by the adversary, that send adversary traffic to servers to block the user traffic. We use
S = {s1, . . . , sN } to denote the set of servers, U = {u1, . . . ,uL} to denote the set of user traffic
dispatchers and V = {v1, . . . ,vM } to denote the set of adversary traffic dispatchers. A generic
server, a generic user traffic dispatcher and a generic adversary traffic dispatcher are denoted by
sn or n, ul or l , vm or m, respectively. Let Sul ⊆ S be the set of servers that user dispatcher ul
is connected to, and Svm ⊆ S be the set of servers that adversary dispatcher vm is connected to.
Each dispatcher can only route jobs/packets to the servers to which it is connected. Finally, for
consistency, we will refer to the “jobs” sent by dispatchers as packets and assume that all packets
have the same length, which corresponds to jobs of equal size. Extension to varying packet lengths
is straightforward.

2.2 Queueing Dynamics
We consider a discrete-time system with time t starting from 0. Each server has a infinite-size
queue that buffers the packets, with Qn(t) representing the length of the queue of server sn at
time t . The offered service of server n at time t is denoted by bn(t). The servers do not distinguish
user and adversary traffic and employ the First-Come-First-Serve (FCFS) service discipline1. In
each time slot, λul (t) packets arrive at user dispatcher ul , which routes the packets to the servers
1Our results hold under all common service disciplines except priority based service with user traffic having the priority.
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Table 1. Notations and Definitions

Notation Definition
S, U , V Sets of servers, user dispatchers and adversary dispatchers
N , L, M Numbers of servers, user dispatchers and adversary dispatchers
sn, n; ul , l ; vm,m generic server, user dispatcher and adversary dispatcher
Sul , Svm The set of servers ul (vm ) has connection to
Qn(t) Queue length at server n at time t
bn(t), µn Offered service of server n at time t and its mean
λul (t), λ

l
u User traffic arrival at ul at time t and its mean

λvm(t), λmv Adversary traffic arrival at vm at time t and its mean
C Upper bound of |bn(t) |, |λun (t) |, |λvn (t) |
bun (t), b

v
n (t) Offered service for user (adversary) traffic of server n at time t

aun (t), a
v
n (t) Total user (adversary) packets routed to server n at time t

auln(t), a
v
mn(t) Amount of user (adversary) packets routed from ul (vm) to n at t

Qu
n (t), Q

v
n (t) Amount of user (adversary) packets in Qn at time t

Q (t) Queue length vector at time t
µ, λu , λv Vectors of service rates, user traffic arrival rates

and adversary budget
US ′ Set of user dispatchers that only have connections to servers in S ′

following the “Join-the-Shortest-Queue” (JSQ) policy, that is, at each time slot, each user dispatcher
ul routes all its incoming packets to the server s with the minimum queue length among the
ones to which it is connected (s ∈ argminsn ∈S Qn(t)); Similarly, λvm(t) packets arrive at adversary
dispatcher vm , which routes the packets to servers according to some adversarial injection policy.
We assume that bn(t)’s, λul (t)’s and λvm(t)’s are independent sequences of i.i.d. random variables
with E[bn(t)] = µn ,E[λ

u
l (t)] = λul ,E[λ

v
m(t)] = λvm . We assume that the random variables are

bounded, i.e., there exists C > 0 such that |bn(t)|, |λul (t)|, |λ
v
m(t)| ≤ C . We further define Qu

n (t)
and Qv

n (t) as the number of user packets and adversary packets in Qn at t , respectively. At each
time slot t , we decompose the offered service bn(t) into that offered to user traffic bun (t) and that
offered to adversary traffic bvn (t)with bun (t)+bvn (t) = bn(t). Under the FCFS service discipline, the
breakdown between bun (t) and bvn (t) only depends on the queue composition. We further define
aun(t) as the sum of user traffic arrivals to server n and avn (t) as the counterpart of adversary traffic.
we also write aumn(t) (avln(t)) as the amount traffic that user dispatcherul (adversary dispatchervm )
sends ton at time t . We impose the following ordering on system dynamics for ease of presentation:
in each time slot, first, user dispatchers route their incoming packets to the servers following JSQ;
second, adversary dispatchers route adversary packets to the servers following some adversarial
injection policy; finally, servers serve the packets in the queues. Based on the system dynamics,
we summarize the queue length evolution as follows:

Qu
n (t + 1) = [Qu

n (t) + aun(t) − bun (t)]
+,

Qv
n (t + 1) = [Qv

n (t) + avn (t) − bvn (t)]
+,

Qn(t + 1) = Qv
n (t + 1) +Qu

n (t + 1),

where [a]+ := max{a, 0}. We remind the reader that user traffic and adversary traffic are buffered
in a single queue at each server, and Qu

n ,Q
v
n ’s represent the composition of user and adversary

packets in the single queue rather than two separate queues. We give an illustration of our model
in Figure 1.
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Fig. 1. Illustration of our single-hop network model. User dispatchers are represented by hollow circles. Ad-
versary dispatchers are represented by solid circles. Servers are represented by rectangles. The numerical
values in the graph represent the traffic arrival rates to user/adversary dispatchers and the service rates of
servers.

2.3 Problem Formulation
The adversary dispatchers inject their packets to servers in an effort to prevent user packets from
getting served. A network DoS attack is considered successful if the adversary manages to block
a positive fraction of user traffic from service. Formally, the goal of the adversary is that

For some n ∈ {1, . . . ,N }, lim
t→∞

E[Qu
n (t)]

t
> 0, (1)

which is equivalent to making user traffic in one of the queues mean rate-unstable [10].2 Further-
more, by Little’s law, (1) implies that the mean delay experienced by user traffic grow linearly with
time. We say that the adversary destabilizes user traffic, if it achieves (1). Note that (1) implicitly
relies on the existence of the limit. In this paper, we will assume that the limits limt→∞

Qu
n (t)
t and

limt→∞
Qv
n (t)
t exists almost surely. We make this assumption to simplify the notation and avoid

unnecessary complexity in derivation. This also implicitly restricts the space of adversarial injec-
tion policies to be stationary, i.e., time-invariant. When this assumption does not hold, one can
replace (1) with lim inf and our results will still hold with some minor changes, which will be
explained in Appendix E.1. Under the assumption, we have E[limt→∞

Qu
n (t)
t ] = limt→∞

E[Qu
n (t)]
t ,

which suggests that (1) provides a unified metric for the growth rate of user traffic. (This will be
formally justified in Appendix D.)

In an instance of network DoS attack, µn ’s and λul ’s can be seen as network statistics while
λvm ’s can be viewed as the adversary’s resource budget since it dictates how many packets the
adversary dispatchers can inject to servers. We summarize the statistics and budget into vector
forms as the service vector µ = (µ1, . . . , µN ), user traffic arrival vector λu = (λu1 , . . . , λ

u
L) and

adversary budget vector λv = (λv1 , . . . , λ
v
M ). We will also write the queue lengths in vector form

Q(t) = (Q1(t), . . . ,QN (t)).
2We adopt mean rate-instability instead of weaker criteria such as limt→∞ E[Qu

n (t)] = ∞ because of (i). mean rate-
instability leads to cleaner analysis, and (ii). it captures the loss of user throughput more accurately since if a user queue
satisfies limt→∞ E[Qu

n (t)] = ∞ but not limt→∞
E[Qu

n (t)]
t > 0, then the users only lose a vanishing fraction of throughput.

We further discuss this in Appendix E.2.
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Based on the above preliminaries, we formally define the network DoS attack problem.

Definition 1 (Network DoS Attack Problem). Given a single-hop network, the Network DoS
Attack Problem seeks an adversarial injection policy that destabilizes user traffic, i.e., under the policy
there exists some server n with limt→∞

E[Qu
n (t)]
t > 0. The problem is feasible if such an injection

policy exists.

Example: Consider the network in Figure 1, the network DoS attack problem is feasible. An
injection policy that destabilizes user traffic is as follows:v1 injects all of its traffic to s2.v2 injects
half of its traffic to s2 and the other half to s3. v3 injects all its traffic to s3. Note that if v1 and
v2 both inject all of their traffic to s2, this will cause the queue in s2 to overflow, but will not
destabilize user traffic. The (intuitive) explanation is that, as the user dispatchers are using JSQ,
the user traffic from u2 and u3 will not be sent to s2 (in equilibrium state). Since s3 and s4 have
large enough capacities, there will not be any queue with limt→∞

E[Qu
n (t)]
t > 0.

3 FEASIBILITY REGION
In this section, we develop a necessary and sufficient condition on the network statistics and the
adversary’s budget vector for the network DoS attack to be feasible. For a given network, the con-
dition characterizes the feasibility region of the adversary. We begin by making some preliminary
definitions.

For each subset of servers S ′ ⊆ S , we define US ′ as the user dispatchers that only have connec-
tions to servers in S ′, i.e.,US ′ = {ul | Sul ⊆ S ′}. We further define ∆(S ′) as

∆(S ′) =
∑
sn ∈S ′

µn −
∑

ul ∈US′
λul .

∆(S ′) can be interpreted as the excess service rate of S ′ with respect to the user traffic generated
by US ′ . Finally, for each S ′ ⊆ S , we define the following linear program LP(S ′) whose optimal
value is denoted as val(S ′).

val(S ′) = max
∑
m∈V

∑
n∈S ′

fmn (2)

s.t.
∑
n∈S ′

fmn ≤ λvm , ∀m ∈ V (3)∑
m∈V

fmn ≤ µn , ∀n ∈ S ′ (4)

fmn = 0, if n < Svm
fmn ≥ 0, ∀m ∈ V ,n ∈ S ′.

val(S ′) can be interpreted as the maximum amount of traffic that the adversary dispatchers can
send to S ′ without exceeding the budget constraints (Constraint (3)) or injecting to any server
at a rate larger than its service (Constraint (4)). It will be clear soon that val(S ′) represents the
maximum meaningful capacity reduction that the adversary dispatchers can inflict on S ′, and it
can be achieved by a stationary injection policy given by the solution to LP(S ′). Relating ∆(S ′)
and val(S ′), we define the val-condition, which will play a key role in the characterization of the
feasibility region.

Definition 2 (The val-condition). A subset of servers S ′ ⊆ S satisfies the val-condition if US ′

is non-empty and val(S ′) > ∆(S ′).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 50. Publication date: December 2019.



Fundamental Limits of Volume-based Network DoS Attacks 50:7

8

6

6

8

8

3

3

3

4

2

1S
2S

3S

Fig. 2. Illustration of the val-condition. Consider three subsets of servers S1, S2 and S3 enclosed in dashed
rectangles. val(S1) = 9,val(S2) = 14,val(S3) = 12 and ∆(S1) = 10,∆(S2) = 13,∆(S3) = 9. Thus, S2
and S3 satisfy the val-condition while S1 does not.

We provide an illustration of theval-condition in Figure 2 (with the same network as in Figure
1).

Intuitively, if S ′ satisfies the val-condition, then it is possible for the adversary to make the
residual capacity of S ′ not sufficient to support the incoming user traffic of US ′ , thus successfully
blocking user traffic since the user traffic from US ′ can only go to S ′. It is then natural to con-
sider that the network DoS attack problem is feasible if and only if there exists a subset of user
dispatchers that satisfies the val-condition. We formalize the intuition in the following theorem.

Theorem 1. The network DoS problem is feasible if and only if there exists a subset of servers
S ′ ⊆ S that satisfies the val-condition.

Proof. The proof is divided into two parts. In the first part, we prove the sufficiency of the val-
condition by showing that, if there exists S ′ ⊆ S that satisfies the condition, then the stationary
injection policy induced by LP(S ′) destabilizes user traffic. In the second part, we prove the neces-
sity of the val-condition by starting from any given adversarial injection policy that destabilizes
user traffic and taking time averages, which will lead to establishing that some S ′ satisfies the
val-condition.

We begin the proof by noting that a user traffic dispatcher being connected to an overloaded
server does not imply that the user traffic from that dispatcher is blocked, since the dispatcher may
send the traffic to other servers that it is connected to. However, a positive fraction of user traffic
will be blocked if there is a user traffic dispatcher that is only connected to overloaded servers.
This observation follows directly from the FCFS service discipline and will be used multiple times
throughout the paper. We formally state it as follows.

Observation 1. Consider a user dispatcherul . If on a sample pathω of the system, limt→∞Qn(t)/t >
0 for all n ∈ Sul ,

3 then there exists n ∈ Sul such that limt→∞Qu
n (t)/t > 0.

3In this paper, we often use the same symbol for both random variables and their realizations on sample paths for notational
convenience, e.g. Qn(t) as Qn(t, ω)
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Proof of Sufficiency: If there exists a S ′ ⊆ S such that US ′ is non-empty and val(S ′) > ∆(S ′),
we denote the solution to LP(S ′) as { f ∗}mn . Consider the following randomized injection policy
for adversary: at every time slot, each adversary traffic dispatcher m that has connection to S ′

injects its traffic to servern ∈ S ′ with probability f ∗mn/
∑

n′ f ∗mn′ ; other adversary dispatchers inject
the traffic arbitrarily. We proceed to show that such policy destabilizes user traffic, i.e., under the
injection policy, there exists a server n such that limt→∞

E[Qu
n (t)]
t > 0.

First, examining the servers in S ′, we have∑
n∈S ′ Qn(t)

t
≥

∑
n∈S ′

∑t−1
i=0 an(i) −

∑
n∈S ′

∑t−1
i=0 bn(i)

t

=
∑
n∈S ′

(∑t−1
i=0 a

u
n(i)

t
+

∑t−1
i=0 a

v
n (i)

t
−

∑t−1
i=0 bn(i)

t

)
=

t−1∑
i=0

(∑
n∈S ′ a

u
n(i)

t
+

∑
n∈S ′ a

v
n (i)

t
−

∑
n∈S ′ bn(i)

t

)
Let t go to infinity in the above inequalities. By law of large numbers [10], the limits exist with
probability one. Therefore, on each sample path (except a set of measure zero), we have

lim
t→∞

∑
n∈S ′ Qn(t)

t

≥ lim
t→∞

t−1∑
i=0

(∑
n∈S ′ a

u
n(i)

t
+

∑
n∈S ′ a

v
n (i)

t
−

∑
n∈S ′ bn(i)

t

)
≥

∑
l ∈US′

λul +
∑
m∈V

∑
n∈S ′

f ∗mn −
∑
n∈S ′

µn

=val(S ′) −∆(S ′) > 0, (5)
where the last part of (5) follows from that S ′ satisfies the val-condition. From Inequality (5), we
claim the following, which will lead to the first part of the proof.

Claim 1. With probability 1, there exists n ∈ S ′ such that limt→∞
Qu
n (t)
t > 0.

Proof of Claim 1 (Sketch): On each sample path, by Inequality (5), we show that we can find a
user dispatcherul such that ∀n ∈ Sul , limt→∞

Qn(t)
t > 0. The Claim then follows from Observation

1. See Appendix A.1 for details. □
Now, for each n ∈ S ′, let pn be the probability that limt→∞

Qu
n (t)
t > 0. Claim 1 establishes that∑

n∈S ′ pn ≥ 1. Therefore, it follows that there exists a n ∈ S ′ such that, with probability at least
1/|S ′ |, limt→∞

Qu
n (t)
t > 0, where |S ′ | denotes the cardinality of S ′. For one such n, from a standard

probability result that will be presented below as Lemma 1, we have limt→∞
E[Qu

n (t)]
t > 0.

Lemma 1. A non-negative random variable X has zero expectation if and only if it equals zero
almost surely. If X > 0 with positive probability, then E[X ] > 0. 4

Thus, we have shown that the randomized policy destabilizes user traffic if there exists an U ′

that satisfies the val-condition. Note that the sufficiency of the theorem does not rely on that the
properties of JSQ, and thus holds for any routing policy of user traffic.

Proof of Necessity: Suppose that there exists an injection policy that destabilizes user traf-
fic, then there exists a sample path on which limt→∞

Qu
n (t)
t > 0 for some n. Under one such

4We provide a proof for this lemma in Appendix D for completeness.
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sample path, let S ′ ∈ S be the subset of servers that ended up getting overflowed, i.e., ∀n ∈
S ′, limt→∞

Qn(t)
t > 0 and ∀n < S ′, limt→∞

Qn(t)
t = 0. Since the queues in S ′ grow linearly

with time while the queues in S\S ′ do not, eventually queues in S ′ will be longer than those in
S\S ′. Therefore, for every user dispatcher ul that has connection to servers that are not in S ′ the
time average arrival rates from ul to servers in S ′ are all zero, by the property of JSQ. Formally,
we have

lim
t→∞

∑
n∈S ′

t−1∑
i=0

auln(i)

t
= 0, ∀ul s .t . Sul ∩ (S\S ′) , ∅. (6)

We now claim in the following that S ′ satisfies the val-condition. By establishing the claim, we
prove the necessity part of the theorem.

Claim 2. S ′ satisfies the val-condition.

Proof of Claim 2 (Sketch): Recall that the set of user dispatchers that only have connections to
servers in S ′ is denoted byUS ′ . We first prove thatUS ′ is not empty. For if not, supposeUS ′ is empty,
then by Equation (6), the time average rates from all user dispatchers to S ′ are zero, i.e., the user
dispatchers inject all their traffic to the non-overloaded servers S\S ′, and the adversary would not
be able to destabilize user traffic. We next demonstrate that val(S ′) > ∆(S ′) by taking the time
average traffic rates from adversary dispatchers as a feasible solution to the linear program LP(S ′)
and showing that the feasible solution manifest thatval(S ′) > ∆(S ′). See Appendix A.2 for details.
□

The necessity of val-condition follows directly from Claim 2. □

Based on Theorem 1, we have the following corollary. It states that to check the feasibility of
the network DoS problem, we only need to check the subsets of servers induced by subsets of user
dispatchers.

Corollary 1. The network DoS problem is feasible if and only if there exists a non-empty subset
of user dispatchersU ′ ⊆ U , such that SU ′ =

∪
ul ∈U ′ Sul satisfies the val-condition.

Proof. From the definition ofval function, we have that if there exists a subset of servers S ′ that
satisfies the val-condition, then US ′ satisfies the condition in Corollary 1. Conversely, if U ′ ⊆ U
satisfies the condition in the corollary, then SU ′ ⊆ S satisfies the val-condition by design. □

Remark: An adversarial injection policy is optimal if the adversary destabilizes user traffic un-
der such policy whenever the network DoS attack problem is feasible, i.e., it achieves the feasibility
region. Moreover, it is oblivious if the policy does not rely on knowledge of the network statistics
µ and λu or budget vector λv . The proof of Theorem 1 yields a randomized adversarial injection
policy that is optimal. However, the policy is not oblivious since it involves solving LP ’s which
depend on network statistics. Since in practice the adversary often does not have such knowledge,
we will develop an optimal oblivious policy in Section 5.

4 PROPERTIES OF JSQ
In this section, we introduce several properties of the JSQ routing policy, which lay the foundation
of the adversarial injection policy that we propose in Section 5.Wewill also consider the JSQ policy
where the queue non-negativity is relaxed, i.e., queues evolve under the dynamics Qn(t + 1) =
Qn(t)−bn(t)+an(t). Here, JSQ specifies that the arrivals go to the queue with the smallest value.
We will refer to such evolution as the relaxed dynamics and the original one with non-negativity
constraint as the original dynamics. We note that our results on the relaxed dynamics only serve
as tools for analyzing the policy we proposed, and the analysis of the policy is carried out on the
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50:10 Xinzhe Fu and Eytan Modiano

system with the original dynamics. The results we establish in this section, including ones that
extend results by Shah and Wischik in [22, 23] on overloaded Max-Weight switch networks, and
a sample path-wise coupling bound of JSQ, may be of independent interests.

4.1 Queue Length Behavior Under JSQ
Consider a server farm with set of servers S = {s1, . . . , sN } and set of traffic dispatchers U =
{u1, . . . ,uL} (There is no adversary dispatcher for now). The traffic dispatchers route incoming
traffic to servers following the JSQ rule, with ties broken arbitrarily. Similar to our model, the
service rate of each server sn at every time slot is a random variable, i.i.d across time, with mean
µn , and the arrival at each dispatcher ul is a random variable, i.i.d across time, with mean λl . The
µn ’s determine the throughput region of the network, i.e., the set of λl ’s that are supportable under
some routing policy. It is well known that JSQ is throughput-optimal in the sense that using JSQ,
the server farm can support the incoming traffic as long as λl ’s lie in the throughput region [10].
It is also intuitively understood that when the arrival rates are outside the throughput region,
JSQ achieves graceful degradation such that the queues grow with time in a balanced manner.
Proposition 1 makes this intuition precise.
Consider the following optimization problem P.

min
∑
n

r2n (7)

s.t.
∑
n∈Sul

λln = λl , ∀l ∈ U (8)

rn ≥
∑

l :n∈Sul

λln − µn , ∀n ∈ S (9)

λln = 0, ∀n < Sul (10)
rn , λln ≥ 0, ∀l ,n. (11)

P is a convex optimization problem over both {r }n and {λ}ln . Given a server farm, λln can be
interpreted as traffic rate from dispatcherul to server sn , and rn can be interpreted as queue growth
rate at server n. The optimization problem P seeks a set of allocation of traffic rates {λ}ln that
routes all the incoming traffic to servers while minimizing the sum of squares of queue growth
rates {r }n . We will mostly focus on the {r }n components. Hence, we will often use (r1, . . . , rn) to
denote a solution to P, and since P is strictly convex with respect to rn ’s, it has a unique optimal
solution (over the {r }n components).

Proposition 1. Let r∗ = (r ∗1, . . . , r
∗
n) be the optimal solution to the optimization problem P

associated with the server farm. The queue lengths under JSQ satisfy that for any δ > 0, for all n,

lim
t→∞
P

{ ����Qn(t)

t
− r ∗n

���� < δ

}
= 1.

Proof. As JSQ is a special case of theMax-Weight algorithm on single-hop networks, the propo-
sition follows from the results of two papers by Shah and Wischik [22, 23] and can be found in
Appendix B.1. □

Proposition 1 establishes that under JSQ, the growth rate of queue lengths (over time) converges
to the optimal solution to P in probability. It characterizes the queue length behavior under JSQ in
both under-load and over-load regimes. In the former case, the solution is the zero vector, which
implies that queues do not grow with time; in the latter case, the optimal solution is the “most
balanced” overflow rate that is achievable, and the overflow rate under JSQ converges to that.
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Further, we consider the optimization problemP ′, which is amodified version ofP that removes
the non-negativity constraints on rn and replace constraint (9) with equality:

min
∑
n

r2n

s.t.
∑
n∈Sul

λln = λl , ∀l ∈ U

rn =
∑

l :n∈Sul

λln − µn , ∀n ∈ S

λln = 0, ∀n < Sul
λln ≥ 0, ∀l ,n.

P ′ is also convex and has unique optimal solution. Under the relaxed dynamics, the queue growth
behavior under JSQ corresponds to the optimal solution to P ′.

Proposition 2. Let r̃∗ = (r̃ ∗1, . . . , r̃
∗
n) be the optimal solution to the optimization problem P ′. The

queue lengths under JSQ with the relaxed dynamics satisfy that for any δ > 0, for all n,

lim
t→∞
P

{ ����Qn(t)

t
− r̃ ∗n

���� < δ

}
= 1. (12)

Proof. The proof is the same as Proposition 1. □

By expanding the limit expression (12), we obtain the following corollary.

Corollary 2. Under the relaxed dynamics, ifminn r̃ ∗n > 0, then for all ϵ > 0, there exists aTϵ > 0
such that for all t ≥ Tϵ ,

P

{
∀n, Qn(t) ≥

r̃ ∗nt

2

}
≥ 1 − ϵ .

The same holds for the original dynamics with r ∗.

Proof. Take δ = 1
2 minn r̃ ∗n > 0, by Proposition 2, for all n,

lim
t→∞
P

{
Qn(t)

t
≥ r̃ ∗n

2

}
= 1

Hence, fix a ϵ > 0, for each n, there exists a Tn,ϵ such that for all t ≥ Tn,ϵ ,

P

{
Qn(t)

t
≥ r̃ ∗n

2

}
≥ 1 − ϵ

N
=⇒ P

{
Qn(t)

t
<

r̃ ∗n
2

}
≤ ϵ

N
,

where we recall that N is the number of servers. LetTϵ = maxn Tn,ϵ . By union bound, we have for
all t ≥ Tϵ ,

P

{
∃n, Qn(t)

t
<

r̃ ∗n
2

}
≤ ϵ .

Taking the complement, it follows that

P

{
∀n, Qn(t)

t
≥ r̃ ∗n

2

}
≥ 1 − ϵ .

□

The two optimization problem P and P ′ differ only in the non-negativity constraints of rn ’s.
Our next result shows that their optimal solutions are identical under certain condition. For two
vectors r and r̃ , we write r > r̃ if ∀n, rn > r̃n ; r ≥ r̃ if ∀n, rn ≥ r̃n ; r = r̃ if ∀n, rn = r̃n .
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Proposition 3. Let r ∗ be the optimal solution to P and r̃ ∗ be the optimal solution to P ′. For any
n, if r ∗n > 0, then r ∗n = r̃ ∗n .

Proof. The proof follows from the structure of P and P ′, in particular, that an optimal solution
to P must be feasible to P ′ and that Constraints (9) must be binding for any optimal solution to
P. We defer the details to Appendix B.2. □

4.2 Monotonicity Property of JSQ
We present a sample path-wise bound regarding the queue length vector of JSQ server farm
with the relaxed dynamics. Consider a server farm with servers {s1, . . . , sN } and dispatchers
{u1, . . . ,uL}, where all dispatchers use JSQ routing. The arrivals and services at each time slot
are upper bounded by C . We assume that the queues evolve under the relaxed dynamics (as in
Proposition 2), which means that all the realized services equal the offered services and the queue
lengths can become negative. Consider a sample path of such system. Observe that if we are given
an initial queue length vectorQ(0) = {Q1(0), . . . ,Qn(0)}, sequence of arrivals at user dispatchers
(λu(0),λu(1), . . .)where each λu(t) = (λu1(t), . . . , λ

u
L(t)) specifies the arrivals at time t , sequence

of offered services at servers (b(0),b(1), . . .) where each b(t) = (b1(t), . . . ,bN (t)) specifies the
offered services at time t , and certain tie-breaking rule, then the queue length vector at each fu-
ture time slot can be fully determined. Therefore, consider two JSQ server farms whose traffic
arrivals and services are identical random variables, one has initial queue length vectorQ(0) and
the other has Q̃(0). We can couple the (random) queue length vectors at time slot t of the two sys-
tem in a sample path-wise manner. At each sample path with some common sequences of arrivals
(λu(0),λu(1), . . .) and services (b(0),b(1), . . .), we letQ(t) and Q̃(t) be the (deterministic) queue
length vectors at t starting from Q(0) and Q̃(0), respectively. Since the arrivals and services of
the two systems are identical random variables, the above procedure forms a coupling. In the fol-
lowing proposition, we will establish a sample path-wise relation between the two random queue
length vectors under the aforementioned coupling.

Proposition 4. IfQ(0) ≥ Q̃(0), then at each sample path, for all t and n,

Qn(t) ≥ Q̃n(t) − N1LC,

where N1 = N ! + 1. The result holds for arbitrary tie-breaking rules that the two systems use.

Proof. We defer rigorous proof to Appendix B.3 and gives some intuition here. Suppose that
the system is performing JSQ in a packet-by-packet fashion, i.e., for each packet that arrives at
some dispatcher, the dispatcher sends the packet to the server with the shortest queue (among the
ones that it is connected to) and the queue lengths are updated immediately afterwards. Then, one
can actually show that under certain tie-breaking rule, Qn(t) ≥ Q̃n(t) for all n, t . The argument is
that such relation is invariant through any packet transmission, provided that the ties are broken
appropriately.The additionalN1LC factor in Proposition 4 accounts for different tie-breaking rules,
and that the JSQ in our model is performed in a slot-by-slot, rather than packet-by-packet fashion.

□

5 OPTIMAL OBLIVIOUS ADVERSARY INJECTION POLICY
In this section, we design an optimal oblivious adversarial injection policy that destabilizes user
traffic whenever it is feasible and does not require knowledge of network statistics. From the proof
of Theorem 1, we observe that intuitively an optimal policy should be able to identify a subset of
servers that satisfies the val-condition and appropriately allocate adversary dispatchers’ traffic to
that subset of servers without over-expending its budget on any single server (c.f. constraint (9)).
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For an optimal policy to be oblivious, it needs to achieve the two aforementioned objectives based
solely on queue-length information rather than network statistics. Before introducing such a pol-
icy, we first present an intermediate policy that is optimal but semi-oblivious, in the sense that it
achieves the second objective without relying on network statistics, i.e., given a subset of servers
that satisfies the val-condition, the policy that destabilizes user traffic decides the adversarial in-
jection based on queue length information only. The policy, called “Target-JSQ policy”, brings out
a key idea and paves the way to the optimal oblivious policy.

5.1 Target-JSQ Policy
As its name suggests, the Target-JSQ policy works by identifying a subset of servers that satisfies
the val-condition, and then making all the adversary dispatchers that have connection to that
subset send packets to the servers following JSQ rule. Formally, let S ′ be a subset that satisfies the
val-condition. For all the adversary dispatchers vm such that Svm ∩ S ′ , ∅, at each time slot, vm
send its packets to the servers in Svm ∩ S ′ with the shortest queue. Other adversary dispatchers
send packets arbitrarily (or do not send packets at all). Theorem 2 establishes the optimality of the
Target-JSQ policy.

Theorem 2. Suppose S ′ ⊆ S satisfies theval-condition and all the adversary dispatchers that have
connections to S ′ inject traffic (only) to S ′ according to the JSQ rule, then we have

∃n ∈ S ′, lim
t→∞

E[Qu
n (t)]

t
> 0.

Proof. Let VS ′ be the subset of adversary dispatchers that have connections to S ′, i.e., VS ′ =
{vm | Svm ∩ S ′ , ∅}, and recall that US ′ is defined to be the subset of user dispatchers that only
have connection to S ′, i.e., US ′ = {ul | Sul ⊆ S ′}. Since S ′ satisfies the val-condition, US ′ is non-
empty. IfVS ′ is empty, then∆(U ′) < 0, which means that the total rate of incoming user traffic to
S ′ is greater than the total service rate of S ′. Hence, the theorem vacuously holds.Therefore, we can
assume thatVS ′ is not empty. For simplicity, we consider the case where the adversary dispatchers
inVS ′ inject packets to S ′ according to the JSQ rule, and other adversary dispatchers send nothing
to the servers.The argument applies to the casewhere other adversary dispatchers inject arbitrarily
as well. Now, we study the system formed by user dispatchers U , adversary dispatchers VS ′ and
servers S , with VS ′ only have connections to S ′. Note that the system is a server farm where all
the dispatchers (U ∪ VS ′) employ JSQ routing. Therefore, the queue length growth rates follow
Proposition 1. Let P be the optimization problem in Proposition 1, associated with this system,
and r ∗,λ∗ be an optimal solution to P. We will use λ∗ln and λ∗mn to denote the component in λ∗

that correspond to user dispatcher ul and adversary dispatcher vm , respectively.
For the subset of servers S ′, the total incoming rate of adversary traffic equals

∑
m∈VS′ λ

v
m , which

by definition, is greater than or equal to val(S ′). The total incoming rate of user traffic is at least∑
ul ∈US′ λ

u
l . Since S ′ satisfies the val-condition, we have

∑
m∈VS′ λ

v
m +

∑
ul ∈US′ λ

u
l >

∑
sn ∈S ′ µn .

It follows by summing up constraints (9) of P over all n ∈ S ′ that r ∗ must have at least one
positive entry. Let S̃ ′ be the set of servers in S ′ whose corresponding entry is positive in r ∗, i.e.,
S̃ ′ = {sn ∈ S ′ | r ∗n > 0}. By the above reasoning, S̃ ′ , ∅. We will show in the following claim that
there must exist user dispatcher ul such that Sul ⊆ S̃ ′, which means that the user traffic from ul
can only go to servers in S̃ ′.

Claim 3. There exists user dispatcher ul such that Sul ⊆ S̃ ′.

Proof of Claim 3 (Sketch):We prove the claim by contradiction. If the claim does not hold, then ev-
ery user dispatcher has connection to S\S̃ ′. Combining this with the condition that S ′ satisfies the
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val-condition, we obtain that
∑

n∈S\S̃ ′ r
∗
n > 0, which contradicts the definition of S̃ ′. See Appendix

A.3 for details. □.
Based on Claim 3, invoking Proposition 1 and Corollary 2, we have that for any ϵ > 0, there

exists a Tϵ such that for all t ≥ Tϵ ,

P

{
∀n, Qn(t)

t
≥ r ∗n

2

}
≥ 1 − ϵ .

Hence, with probability at least 1 − ϵ , limt→∞
Qn(t)

t > 0 for all n ∈ S̃ ′. Since there exists user
dispatcher ul with Sul ∈ S̃ ′, by Observation 1, we have with probability at least 1 − ϵ , there exists
n with limt→∞

Qu
n (t)
t > 0. Since there are finitely many servers n and Qu

n (t)
t ’s are non-negative, by

Lemma 1, we have that there exists n ∈ S̃ ′ such that limt→∞
E[Qu

n (t)]
t > 0, which completes the

proof of Theorem 2. □

The proof of Theorem 2 sets the stage for the definition of a Vulnerable Set, which will play an
important role in the analysis of the optimal oblivious policy we propose. A subset S̃ of servers
is a vulnerable set, if (i) S̃ is the (minimal) set of servers that some (non-empty) subset of user
dispatchers are connected to, and (ii) if all the adversary dispatchers that are connected to S̃ injects
traffic to S̃ following the JSQ rule, then all the queues in S̃ grow with time. We formally present
the definition of vulnerable set as follows.

Definition 3 (Vulnerable Set). A subset of servers S̃ is a vulnerable set, if (i) there exists a non-
empty subsetU ′ of user dispatchers such that S̃ =

∪
ul ∈U ′ Sul , and (ii) if all the adversary dispatchers

that have connection to S̃ send packets to S̃ following the JSQ rule, the system will become a JSQ server
farm. Let r ∗ be the solution to the optimization problem P that corresponds to that server farm, then
r ∗n > 0 for all n ∈ S̃ . The collection of all vulnerable subsets is denoted by S0.

The following corollary establishes the existence of vulnerable set for feasible network DoS
attack problem.

Corollary 3. If the network DoS problem is feasible, then there exists a vulnerable set.

Proof. FromTheorem 2, Claim 3 and their proofs, it is straightforward to show that Sul in Claim
3 is a vulnerable set. □

It is easy to see that all vulnerable subsets satisfy the val-condition, but the converse is not
necessarily true. Let S ′ be a set of servers that satisfies theval-condition. S ′ itself may not be a vul-
nerable set, but it contains a vulnerable set as a subset. Recall thatUS ′ denotes the user dispatchers
that are only connected to servers in S ′. S ′ satisfying the val-condition implies that user traffic
from dispatchers in US ′ will be blocked from service if the adversary injects to S ′ following the
JSQ rule. On one hand, S ′ may not satisfy the conditions for vulnerable sets since S ′ may contain
queues that do not grow with time or “redundant” servers in the sense that S ′ may be a strict
super-set of

∪
ul ∈US′ Sul . On the other hand, let ŨS ′ ⊆ US ′ be the set of user traffic dispatchers

whose traffic will be blocked, then
∪

ul ∈ŨS′ Sul , can be verified to be a vulnerable set. We further
illustrate this the following example.

Example: Consider Figure 3, the set S ′ satisfies theval-condition, but it is not a vulnerable set.
First, it is a strict super-set of

∪
ul ∈US′ Sul . Moreover, if the adversary injects to S ′ following the

JSQ rule, not all user traffic from US ′ will be blocked but only the one from ŨS ′ , as the server at
the bottom of the figure will not be overloaded. However, S ′ contains a vulnerable set as subset,
which is

∪
ul ∈ŨS′ Sul (the inner rectangle marked in red).
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Fig. 3. Illustration of vulnerable set. The set S ′ satisfies the val-condition. It contains a vulnerable set (the
inner rectangle marked in red) as subset.

Now, we have discovered an optimal adversarial injection policy that only requires the adver-
sary dispatchers to perform JSQ routing to a vulnerable set of servers. Such JSQ-operation can
automatically allocate the adversary’s budget to servers in some vulnerable set without “wasting”
adversary traffic. To design an optimal oblivious policy, the remaining task is to identify a vulner-
able set without relying on network statistics, which is what we will do in the following section.

5.2 The Min-Zero Policy
In this section, we present the optimal oblivious adversarial injection policy – the Min-Zero policy.
It uses the idea of the Target-JSQ policy and aims to identify a vulnerable set based (only) on queue-
length information.

At each time slot t , the adversary maintains a target subset of user dispatchers and a corre-
sponding target subset of servers, which are denoted by U (t) and S(t), with U (t) ⊆ U , S(t) ⊆ S
and S(t) =

∪
ul ∈U (t) Sul . All the adversary dispatchers that have connections to S(t) send packets

to S(t) in a JSQ fashion, and other adversary dispatchers send packets arbitrarily. Then, after the
servers finished their service during the current slot, the adversary checks if minn∈S(t)Qn(t) = 0
(hence the name, Min-Zero). If so, then in the next slot, the adversary chooseU (t + 1) uniformly
at random from all non-empty subsets of user dispatchers and set S(t +1) accordingly; otherwise,
setU (t+1) := U (t) and S(t+1) := S(t). We formally present the Min-Zero policy inAlgorithm
1.

Obviously, the Min-Zero policy is oblivious. We will next establish its optimality in Theorem
3. Before doing that, we present a key lemma. The lemma is adapted from Theorem 2.1.10 and
Theorem 2.2.7 in [24], which state a sufficient condition for transience of countable-state Markov
Chains.

Lemma 2. Let L be an irreducible countable-state discrete-time Markov Chain with state spaceA.
Let X (t) denote the state of the chain at time t . The chain L is transient, if there exist a non-negative
function (Lyapunov Function) f (α),α ∈ A, a positive integer k , and δ > 0,γ > 0, such that, setting
Aγ = {α : f (α) > γ } , ∅, the following conditions hold:

(1) Let D(X (t)) = f (X (t +k))− f (X (t)). There exists b > 0 such that E[D(X (t)) · 1{D(X (t)) <
b} | X (t) = αi ] ≥ ϵ , for all t , and αi ∈ Aγ , where 1{·} denotes the indicator function.

(2) There exists d > 0 such that f (X (t + 1)) − f (X (t)) < −d almost surely, for all t .
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Algorithm 1 The Min-Zero Policy
Input: Server set S = {s1, . . . , sn}, user dispatcher setU = {u1, . . . ,ul }, adversary dispatcher set

V = {v1, . . . ,vm}
1: Initialize: U (0) := a random non-empty subset ofU

S(0) :=
∪

ul ∈U (0) Sul .
2: for t = 0, 1, 2, . . . do
3: Each adversary dispatchersvm such that Svm∩S(t) , ∅ sends packets to Svm∩S(t) following

the JSQ rule.
4: All other adversary dispatchers send packets arbitrarily.

After the service phase of current time slot t
5: if minn∈S(t)Qn(t) = 0 then
6: U (t + 1) := nonempty subset ofU chosen uniformly at random.
7: S(t + 1) :=

∪
ul ∈U (t+1) Sul

8: else
9: U (t + 1) := U (t), S(t + 1) := S(t).

The lemma can be interpreted as a converse of the Foster-Lyapunov theorem. It states that, if
we can find a Lyapunov function on the state space such that in conditioning on a subset of states,
the Lyapunov function has positive k-slot (truncated) drift, then the Markov Chain is transient.
Now, we are ready to state and prove the optimality of the Min-Zero policy.

Theorem 3. Under the Min-Zero policy, there exists a queue n with limt→∞
E[Qu

n (t)]
t > 0 if the

network DoS attack problem is feasible.

Proof. First, by the execution of the Min-Zero Policy, it is straightforward to see that the evo-
lution of the system follows an irreducible discrete-time countable-state Markov Chain with state
(Q(t), S(t)). Formally, let S = {S ′ | S ′ = ∪

ul ∈U ′ Sul for someU ′ ⊆ U }, i.e., the collection of all
possible target subsets of servers that the Min-Zero might choose. The state space of the Markov
Chain can be written as NN × S, the product set of N -dimensional vectors over natural numbers
and S. We will prove the theorem by invoking Lemma 2 with a suitably constructed Lyapunov
function.

The Lyapunov function we define on the state space is
f (Q(t), S(t)) =1{S(t) ∈ S0, min

n∈S(t)
{Qn(t)} > TC1}·(

min
n∈S(t)

{Qn(t)} −TC1

)
,

withT being a large constant5 that will be specified later andC1 = (M+L)C being an upper bound
on the sum of arrivals/service that a queue can receive. Due to the boundedness of arrivals and
services, we can first easily verify that the Markov Chain satisfies the second condition in Lemma
2. We proceed to show that it also satisfies the first condition, i.e., it has positive expected drift
under certain set. Specifically, we will prove that for some b > 0

E
[
D(Q(t), S(t))1 · {D(Q(t), S(t)) < b} | f (Q(t), S(t)) > 0

]
≥ δ ,

for all t and suitable δ > 0. Note that since f only takes integer value, the above construction cor-
responds to setting k = T , γ = 1/2 (γ can be any positive number less than 1) andAγ accordingly
in Lemma 2.
5Our choice of T will depend on the network size and network statistics, but the Min-Zero policy does not.
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Before presenting the technical proof, we first give some intuition. Notice that the construction
of the Lyapunov function f ensures that it takes positive value only in the states where the ad-
versary is targeting some vulnerable subset (c.f. Definition 3), and will not change its target in the
following T time slots. Conditioning on such states, the T -slot drift is roughly equal to the drift
of the minimum queue length in the target subset S(t). Since S(t) is vulnerable, we can take T to
be suitably large and invoke Proposition 1 to show that the queue lengths in S(t) all grow at a
positive rate over theT time slots. This suggests that the Markov Chain satisfies the first condition
in Lemma 2.

To make the intuition concrete, we first lower bound the drift. Conditioning on any t such that
f (Q(t), S(t)) > 0, without loss of generality and for notational convenience, we assume t = 0.
As f (Q(0), S(0)) > 0, we have minn∈S(0)Qn(0) > TC1. It follows that the adversary’s target will
not change over the next T time slots since the queues in S(0) will remain positive. Therefore,
S(T ) = S(0) ∈ S0. Moreover, the value of f can increase by at mostTC1 over the nextT slots due
to the boundedness of arrivals. Thus, taking b = TC1 + 1, we have

E
[
D(Q(0), S(0))1 · {D(Q(0), S(0)) < b} | f (Q(0), S(0)) > 0

]
=E

[
f ((Q(T ), S(T )) − f ((Q(0), S(0)) | f (Q(0), S(0)) > 0

]
. (13)

Hence, we can directly work with (13). Claim 4 shows that we can lower-bound (13) by (14), which
will be justified in detail in Appendix A.4.

Claim 4.
E

[
f ((Q(T ), S(T )) − f ((Q(0), S(0)) | f (Q(0), S(0)) > 0

]
≥E

[
min

n∈S(0)
{Qn(T )} − min

n∈S(0)
{Qn(0)} | f (Q(0), S(0)) > 0

]
. (14)

We proceed to establish that the RHS of (14) is positive. Let Q∗(0) = minn∈S(0)Qn(0) and
Q̃(0) = (Q∗(0), . . . ,Q∗(0)). Based on this, we define random vector Q̃(t) as the resulting queue
length vector at t under the Min-Zero policy starting from state (Q̃(0), S(0)) at 0. We coupleQ(t)

and Q̃(t) in the same probability space by equaling their corresponding sequences of arrivals (to
the dispatchers) and services on each sample path. We further define Qo(t) as Q̃(t) − Q̃(0). As
Q̃(t) never goes negative in the interval [0,T ], it is clear thatQo(t) has the same distribution as a
random vector that is the result of performing the same sequence of routing actions (as in Q̃(t))
starting from a all-zero queue length vector under the relaxed dynamics for 0 ≤ t ≤ T (i.e., all
the realized services equal the offered services and queue lengths can be negative). By Proposition
4, we have that on each sample path, Qn(t) ≥ Q̃n(t) − N1C1 for all n and t ≤ T . It follows that
Qn(t) ≥ Qo

n(t) +Q∗(0) − N1C1 for all n and t ≤ T .
Observe that for 0 ≤ t ≤ T ,Qo(t) evolves as the queue length vector of a server farm employing

the JSQ routing under the relaxed dynamics. Consider the sub-server farm formed by servers in
S(0), user dispatchers and adversary dispatchers that have connection to S(0). Since S(0) ∈ S0,
i.e., it is a vulnerable set, by Corollary 3, the optimal solution r ∗ of its corresponding optimization
problem P satisfies r ∗ > 0. Then, by Proposition 3, the optimal solution r̃ ∗ to its corresponding
optimization problem P ′ under the relaxed dynamics satisfies r̃ ∗ = r ∗ > 0. Set ϵ = ϵS(0) as

minn∈S(0) r̃ ∗n
2minn∈S(0) r̃ ∗n+4C1

> 0. We invoke Corollary 2, and obtain that ifT > TϵS(0) (defined in Corollary 2),
for all t with TϵS(0) ≤ t ≤ T ,

P

{
∀n ∈ S(0),Qo

n(t) ≥
r̃ ∗nt

2

}
≥ 1 − ϵS(0).
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Now, we setT as maxS(0)∈S0
max{TϵS(0) , 8N1C1

minn∈S(0) r̃ ∗n } and obtain the following claim. The proof of
Claim 5 is presented in Appendix A.5.

Claim 5.

E

[
min

n∈S(0)
{Qn(T )} − min

n∈S(0)
{Qn(0)} | f (Q(0), S(0)) > 0

]
≥ N1C1,

and there exists n with limt→∞
E[Qu

n (t)]
t > 0.

Claim 5 establishes that the Min-Zero policy destabilizes user traffic and concludes the proof of
Theorem 3. □

Remark: (i) SwitchingThreshold: inAlgorithm 1 (line 5), we set the switching threshold as 0. It
is clear from the proof that the policy remains optimal under any other positive constant switching
threshold. Intuitively, the convergence time of the algorithm, i.e., the time it takes the adversary
to identify a vulnerable set and not switch the target further, depends on the threshold. Too high a
threshold would force the adversary to switch prematurely while too low a threshold would make
the adversary switch too infrequently. (ii) Distributed Implementation: Algorithm 1 describes the
Min-Zero policy in a centralized fashion, but the policy can be easily implemented in a distributed
way. In the distributed implementation, each adversary dispatcher maintains its own target subset
of servers, sends traffic to the target set according to the JSQ rule, and switch if the minimum
queue length in the target subset hits zero. The optimality of the distributed implementation can
be shown using a similar method. This feature also makes the Min-Zero policy more attractive in
practice. We will explore the aforementioned two aspects of the policy in the simulations.

Comparison with [21]: Paschos and Tassiulas proposed an alternative (oblivious) adversar-
ial injection policy in [21], Join-the-Longest-Legitimate-Queue (JLLQ), where each adversary dis-
patcher sends packets to the servers whose queue contains the maximum number of user packets.
When the user dispatchers use JSQ routing, they conjecture that JLLQ is optimal. We would like
to point out that we have tried but not been able to prove the optimality of JLLQ. Further, our
Min-Zero policy shares the simplicity and obliviousness of JLLQ, and has an additional advantage
that Min-Zero does not require knowledge of the number user packets in the queues.

5.3 Practical Implications
We provide a discussion on the practical implications of our results from both the DoS attack and
defense points of view.

The Min-Zero policy possesses several nice properties that render it a suitable DoS attack strat-
egy in practice. Its simplicity, obliviousness, and amenity to distributed implementation makes it
easy to deploy. Its optimality implies the cost-effectiveness of the attack, which is particularly im-
portant to resource-constrained adversaries. Finally, since adversary dispatchers also perform JSQ
similarly as user dispatchers, the Min-Zero policy may enable the adversary to evade traditional
statistical DoS attack detection [5].

The feasibility region and the optimal adversarial injection policy are based on the modeling
assumptions that the user dispatchers perform JSQ routing and servers have infinite buffers. How-
ever, our results can still provide insights for practical networked systems that do not employ JSQ
routing. As mentioned in the proof of Theorem 1, the sufficiency of the feasibility region does not
rely on the properties of JSQ and holds for all user routing policy.This, combinedwith the necessity
of the feasibility region when the network employs JSQ routing, suggests that JSQ is in a sense, the
optimal defense strategy against DoS attack. Therefore, the Min-Zero policy and the JSQ routing
can be intuitively interpreted as an equilibrium point of DoS attack and defense. Moreover, since
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many load-balancing strategies proposed in the literature [25, 26] have similar characteristics as
JSQ, the Min-Zero policy may be effective in a wide range of systems. Moreover, the assumption of
infinite buffer is a standard one for mathematical tractability in queueing and stochastic network
control literature [7, 10]. In practical systems with finite buffers, the criteria of queue instability
will translate to buffer overflows. Although the analysis would break in finite-buffer systems, our
results, as with other similar results in the literature, still have practical relevance as manifested
in [27].

As we mentioned above, traditional statistical DoS detection method might not be effective
against theMin-Zero policy due to the similarity of the behaviors of user and adversary dispatchers.
It thus calls for more sophisticated detection methods that take into account the network topology
or apply server-throttling approaches [28].

6 SIMULATIONS
In this section, we evaluate the Min-Zero policy through simulations. We focus on studying how
the parameters of the network and the policy influence the performance of the policy. Specifically,
on the network side, we investigate the effects that network size and network load have on the
convergence time of theMin-Zero policy, respectively; on the policy side, we investigate the impact
of switching threshold and distributed implementation on the convergence time. In the following,
we will first introduce the simulation environment, and then present the simulation results.

6.1 Simulation Setting
Network Structure: We use two sets of network structures. In the first set, for each N (number of
servers) in {100, 150, 200, . . . , 500}, we generate 20 networkswithN servers, ⌊N/4⌋ user dispatch-
ers and ⌈N/10⌉ adversary dispatchers. Each user dispatcher is connected to ⌈N/5⌉ servers, se-
lected uniformly at random.The service rate at each server is a binomial random variable B(µ, 1/2)
with µ uniformly sampled from {20, . . . , 50}. The arrival rate at each user dispatcher is a binomial
random variable B(µ, 1/2)with µ uniformly sampled from {20, . . . , 50}. Each adversary dispatcher
has connections to ⌊N/5⌋ servers and injection rate as a binomial random variable. The connec-
tions and the mean injection rate (budget) are randomly assigned such that the overall network
load ρ (total arrival/total service) of the network equals 0.75.6 In the second set, for each net-
work load ρ in {0.75, 0.80, 0.85, 0.90, 0.95}, we generate 20 networks with 200 servers, 50 user
dispatchers and 20 adversary dispatchers. The service rates and user traffic arrival rates are gen-
erated similarly to the first set, while the connections and budgets of adversary dispatchers are
randomly generated such that the network load equals ρ in expectation.
Variants of Min-Zero policy: In the simulation, we run theMin-Zero policywith switching thresh-

old (0, 5, 10, 20, 50, 100, 200) to evaluate its performance dependence on the threshold. For ease of
presentation, we only show the results of thresholds 0, 10, 50 and 200 in the figures and summarize
the complete results in Tables 2 and 3 of Appendix F. We also run the distributed version of Min-
Zero with threshold 0 (described in the final remark of Section 5) to compare the performance of
centralized and distributed implementations.

Performance Metric:We use the convergence time of the policy as our performance metric.Theo-
retically, the convergence time of the policy is defined as the time when the adversary dispatchers
identify a vulnerable subset and never switch after that. For ease of computation, in centralized
Min-Zero policies, we calculate the convergence time as the time slot that the last “switch” hap-
pens, and in the distributed version, we calculate it as the first time slot such that the number of

6The procedure does not guarantee that the generated instances are feasible. But we found that all the instances we gener-
ated in the simulations were indeed feasible.
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user packets in a queue exceeds 1000. By examining the queue length trajectories in our simu-
lations, we have confirmed that the calculated convergence times in all the instances match the
theoretical definition. Note that the results presented in each setting are averaged over 20 network
instances.

100 150 200 250 300 350 400 450 500
Number of Servers

0

100

200

300

400

500

600

700

C
on

ve
rg

en
ce

 T
im

e

Threshold = 0
Threshold = 10
Threshold = 50
Threshold = 200
Distributed

Fig. 4. Convergence times of variants of Min-Zero on networks with different sizes.
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Fig. 5. Convergence times of variants of Min-Zero on networks with different loads.

6.2 Simulation Results
6.2.1 Network Size. We plot the results on the first set of data (varying network sizes) in Figure
4. A somewhat counter-intuitive observation is that the convergence times of all variants of Min-
Zero decrease with the size of the network. One possible explanation is that among the networks
we generated, the larger ones may have a larger portion of vulnerable subsets, making identifying
a vulnerable subset easier. Another interesting finding is that, the higher the threshold, the more
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sensitive the policy is to the network size. This can be attributed to that in larger networks, the
variance of arrival to servers is larger. Such variance directly affect the switching frequency of
Min-Zero variants with larger threshold, which translates to influence on the convergence time.

6.2.2 Network Load. We plot the results on the second set of data (varying network loads) in
Figure 5. We observe that the policies converge faster on networks with larger load. This is not
surprising as increasing the load generally increases the number of vulnerable subsets, which in
turn speeds up the convergence.

6.2.3 Variants of Min-Zero Policy. From Figures 4 and 5, we see that among the centralized poli-
cies, the convergence speed decreases as the switching threshold increases. This suggest that sim-
ply setting the threshold to zeromay be themost desirable in practice. Furthermore, the distributed
version of Min-Zero converges slower than its centralized counterpart, but the gap becomes small
in large networks.

7 GENERALIZATION TO MULTI-HOP NETWORKS
In this section, we extend our results to multi-hop networks. We first give the model and problem
formulation in the multi-hop setting, and then present the counterparts of our previously obtained
results in this setting. Since many of the proofs are similar to their single-hop counterparts and
the notations are considerably heavier in the multi-hop case, we will only give proof sketches and
focus on the differences from the proofs for single-hop results in Appendix C.

7.1 Model and Problem Formulation
Consider a network represented as a directed graph G(N , E)withN denoting the set of nodes and
E ∈ N × N denoting the set of links. For each node n ∈ N , let Out(n) be its outgoing neighbors,
i.e., Out(n) = {n′ ∈ N , (n,n′) ∈ E}. We assume that the network users send traffic from a single
source s ∈ N to a single destination d ∈ N .7 To avoid unnecessary complexity, we require that
there exists a path in G from each n to d . Additionally, there is a set of adversarial source nodes
{v1, . . . ,vM } such that each node vm in the set has connection to a subset Nvm ⊆ N of network
nodes. Note that in our model, there are links from adversarial source nodes to network nodes, but
no links in the opposite direction.

The system evolves in discrete time. Each network node n ∈ N is associated with a queue, with
Qn(t) denoting the queue length at time t . For each link e = (n,n′) ∈ E, we use be (t) or bnn′(t) to
represent the offered transmission on the link at t , i.e., at most be (t) packets can be sent through e .
At each time slot, λs (t) user packets arrive at source node s , and λvm(t) packets arrive at adversary
source vm , for vm ∈ {v1, . . . ,vM }. Similar to the single-hop case, we assume that {be (t)}, {λs (t)}
and {λvm(t)} to be independent sequences of i.i.d. random variables with bounded support with
E[be (t)] = ce ,E[λs (t)] = λs ,E[λ

v
m(t)] = λvm . Here, we can consider ce ’s as the capacity of the

links, λs as the user traffic rate, and λv = (λv1 , . . . , λ
v
M ) as the adversary budget vector.

The network nodes (including s) employ a local implementation of the back-pressure routing pol-
icy [18, 29], which can also be considered as each node sending packets to its outgoing neighbors
following the JSQ rule. Specifically, at time t , node n sends each of its packet to its outgoing neigh-
bor n′ that satisfies: n′ has the minimum queue length in Out(n), Qn(t) > Qn′(t), and the offered
transmission of the link bnn′(t) has not been depleted (n holds the packets in its queue if no such
n′ exists). The destination node d instantly absorbs all the packets it receives, and thus Qd (t) = 0
for all t . Each adversarial source node injects traffic to the network nodes it has connection to
following a certain adversarial policy. Without loss of generality, we assume that the capacities

7Extension to multiple sources is straightforward by creating super-source nodes.
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Fig. 6. Illustration of the multi-hop network model. v1 and v2 are the adversary sources. The capacities are
labeled beside the links. In this example, the adversary can destabilize user traffic by v1 injecting all of its
traffic to n1 and v2 injecting all of its traffic to n4.

of links from adversarial source nodes to network nodes are unbounded so that the amount of
traffic that adversarial source nodes can inject is only constrained by their budget. Once sent to
network nodes, the adversarial traffic will be merged with user traffic and delivered to d through
the network nodes. Define avmn(t) as the packets injected from adversarial source vm to node n
with

∑
n∈Nvm

avmn(t) = λvm(t), and b̃nn′(t) as the packets sent from n to n′ at t . We can write the
queue length evolution as:

Qn(t + 1) =[Qn(t) +
∑

m:n∈Nvm

avmn(t) + 1n=sλs (t)+∑
n′:n∈Out(n′)

bn′n(t) −
∑

n′∈Out(n)
bnn′(t)]+.

Similar to the single-hop setting, we break down each Qn into user traffic component, Qu
n , and

adversary traffic component,Qv
n . Here, we omit the evolution ofQu

n andQv
m for ease of readability.

Based on the above preliminaries, we define the multihop version of network DoS attack prob-
lem.

Definition 4 (Multi-hop Network DoS Attack Problem). The Multi-hop Network DoS At-
tack problem seeks an adversarial injection policy under which there exists some network node n with
limt→∞

E[Qu
n (t)]
t > 0.

We give an example of the multi-hop network DoS attack problem in Figure 6.

7.2 Feasibility Region
We proceed to present a necessary and sufficient condition for the Multi-hop Network DoS Attack
problem to be feasible. It is based on a generalization of theval-condition. The key to generalizing
the val-condition to multi-hop networks is to find the counterpart of “subset of servers” in the
multi-hop setting and define the functions∆(·) and val(·) accordingly.
Let an s-d cut of the network be a partition (S,N\S) of network nodes such that s ∈ S and

d ∈ N\S, and the capacity of cut (S,N\S) be given by Cap(S) =
∑

n∈S,n′∈N\S,(n,n′)∈E cnn′ .
The notion of cut will serve as the multi-hop counterpart of “subset of servers”. For each s-d cut
(S,N\S), we further define ∆(S) := Cap(S) − λs . We next generalize the val function to s-
d cuts. Intuitively, for an s-d cut (S,N\S), we want val(S) to capture the maximum amount
of traffic that the adversarial source nodes can send through (S,N\S). Formally, for (S,N\S),
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Fig. 7. Illustration of the extended val-condition: Consider the s-d cut (S,N\S) of the network in Figure 6
with S = {s,n1,n4}. The constructed auxiliary flow network GS is shown in the figure. λs = 4,Cap(S) = 9
and val(S) = 6 (see the maximum s ′-d ′ flow is marked in red.). Therefore, the cut satisfies the extended
val-condition.

let VS = {vm | Nvm ∩ S , ∅} be the set of adversary source nodes that are connected to S.
To define val(S), we construct an auxiliary flow network GS(NS, ES) for each S. The node set
NS = N ∪ VS ∪ {s ′,d ′} where s ′ is a pseudo-source node and d ′ is a pseudo-destination node;
The link set ES consists of the links in E, the links fromVS to S, one link from the pseudo-source
s ′ to each node in VS and one link from each node in N\S to the pseudo-destination d ′. The
capacities of links in ES are defined as follows. For link (n,n′) that corresponds to an original
link in E, i.e. (n,n′) ∈ E, its capacity is equal to cnn′ . The capacities of links from the pseudo-
source node to adversary source nodes are equal to the budgets of the adversary sources, i.e., the
capacity of (s ′,vm) is equal to λvm . The capacities of other links fromN\S to d’ are infinity. Based
on such capacitated flow network GS , we define val(S) as the value of the maximum flow from
the pseudo-source to the pseudo-destination.

val(S) := the value of the maximum s ′-d ′ flow in GS,

where the definition of the maximum s ′-d ′ flow is standard [30]. An illustration of the extended
val-condition is given in Figure 7.

Now, we are ready to define the extended val-condition, which leads to establishing the feasi-
bility region of the multi-hop network DoS attack problem.

Definition 5 (Extendedval-condition). An s-d cut (S,N\S) satisfies the extendedval-condition
if val(S) > ∆(S).

Theorem 4. The Multi-hop Network DoS Attack problem is feasible if and only if there exists an
s-d cut that satisfies the extended val-condition.

7.3 The Multi-hop Min-Zero Policy
In this section, we introduce the Multi-hop Min-Zero Policy, which is an optimal oblivious adver-
sarial injection policy for multi-hop networks. Similar to its single-hop counterpart, the Multi-hop
Min-Zero policy maintains a target cut at each time slot. Let (S(t),N\S(t)) be the target cut at
t . All the adversary source nodes that are connected to nodes in S(t) send packets to those nodes
following the JSQ rule. If the minimum queue length of nodes S(t) reaches 0 at t , then the adver-
sary chooses the target at the next time slot uniformly at random from all s-d cuts, otherwise the
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adversary targets the same cut at the next time slot.TheMulti-hopMin-Zero policy is formally pre-
sented in Algorithm 2. We establish the optimality of the Multi-hop Min-Zero policy in Theorem
5.

Theorem 5. Under theMulti-hopMin-Zero policy, there exists a network nodenwith limt→∞
E[Qu

n (t)]
t >

0 if the multi-hop network DoS attack problem is feasible.

Algorithm 2 The Multi-hop Min-Zero Policy
Input: Multi-hop Network G(N , E), adversary source nodes V = {v1, . . . ,vm}
1: Initialize: (S(0),N\S(0)) := a random s-d cut of G.
2: for t = 0, 1, 2, . . . do
3: All adversary source nodes vm such that Nvm ∩ S(t) , ∅ send packets to Nvm ∩ S(t)

following the JSQ rule.
4: All other adversary dispatchers send packets arbitrarily.

After the transmission of current time slot t :
5: if minn∈S(t)Qn(t) = 0 then
6: (S(t + 1),N\S(t + 1)) := an s-d cut chosen uniformly at random.
7: else
8: S(t + 1) := S(t).

8 CONCLUSION
In this paper, we made a first attempt towards understanding the fundamental limits of volume-
based network DoS attack. We characterized the feasibility region of the attack and proposed the
Min-Zero attack policy. The Min-Zero policy is optimal, and oblivious to network statistics, which
make it relevant to practical DoS attack in networked systems such as server farms and sensor
networks.

From a theoretical point of view, this paper proposed a general recipe for a class of dual problems
of stochastic network stability, i.e., how to optimally de-stabilize a network. The first step is to
define an appropriate notion of “bottleneck” of the network. The second is to design an oblivious
policy that identifies a bottleneck through trial and error, the key to which is to intelligently utilize
queue lengths as an indicator of success. An important future work is to extend the recipe to
multi-commodity networks, where the main challenge lies in coming up with a suitable notion of
bottleneck, analogous to subset of servers in server farm or cut in single-commodity multi-hop
networks.
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A PROOF OF CLAIMS
A.1 Proof of Claim 1
We prove the claim by showing that we can find such n on each sample path (except a set of mea-
sure zero). Fixing an arbitrary sample path, by (5), there exists ann1 ∈ S ′ such that limt→∞

Qn1 (t)
t >
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0. If limt→∞
Qu
n1 (t)
t > 0, then we are done. Otherwise, we have that limt→∞

Qv
n1 (t)
t > 0 and

limt→∞
Qu
n1 (t)
t = 0. Since servern1 is overloaded and its service discipline is FCFS, limt→∞

Qu
n1 (t)
t =

0 implies that limt→∞
∑t−1
i=0 a

u
n1 (i)

t = 0. This means that the time-average traffic rate from US ′ to
n1 is zero. Then, we show that there must exist another overloaded server, other than n1. We
consider the subset of servers S ′1 = S ′\{n1}. Note that since

∑
m∈V f ∗mn1

≤ µn1
, we have that∑

m∈V
∑

n∈S ′1 f
∗
mn ≥ val(S ′) − µn1

. It follows that

lim
t→∞

∑
n∈S ′1 Qn(t)

t

≥ lim
t→∞

∑
n∈S ′

(∑t−1
i=0 a

u
n(t)

t
+

∑t−1
i=0 a

v
n (t)

t
−

∑t−1
i=0 bn(t)

t

)
≥

∑
ul ∈US′

λul +
∑
m∈V

∑
n∈S ′1

f ∗mn −
∑
n∈S ′1

µn

≥[val(S ′) − µn ] − [∆(S ′) − µn ]

>0,

where the second inequality follows from limt→∞
∑t−1
i=0 a

u
n1 (i)

t = 0. Therefore, we can repeat the
argument above, that there must exist another n2 ∈ S ′1 such that limt→∞

Qn2 (t)
t > 0, i.e., there

exists an overloaded server in S ′1. And if limt→∞
Qu
n2 (t)
t = 0, then again, it implies that the time-

average traffic rate from US ′ to n2 is also zero. By repeating such argument, we will arrive at one
of the two following situations: (i) we find a queue ni such that limt→∞

Qu
ni (t)
t > 0, and the claim

follows; (ii) we establish that for some ul , limt→∞
Qn(t)

t > 0 for all n ∈ Sul , and prove the claim
by Observation 1. Therefore, with probability 1, there exists some n such that limt→∞Qu

n (t)/t > 0,
which completes the proof of Claim 1. □

A.2 Proof of Claim 2
Having shown thatUS ′ is non-empty, we now proceed to demonstrate that val(S ′) > ∆(S ′). Note
that for every n ∈ S ′, limt→∞Qn(t)/t > 0. It follows that the expected sum arrival rate at server n
must be greater than its service rate. Therefore, for each n ∈ S ′,8

lim
t→∞

(∑t−1
i=0 a

u
n(i)

t
+

∑t−1
i=0 a

v
n (i)

t
−

∑t−1
i=0 bn(i)

t

)
= lim

t→∞

(∑t−1
i=0 a

u
n(i)

t
+

∑t−1
i=0 a

v
n (i)

t

)
− µn > 0. (15)

It follows that for each n ∈ S ′

lim
t→∞

∑t−1
i=0 a

u
n(i)

t
+min

(
lim
t→∞

∑t−1
i=0 a

v
n (i)

t
− µn , 0

)
≥ 0. (16)

Based on this, we define a set of { f }mn as:

fmn = lim
t→∞

∑t−1
i=0 a

v
mn(i)

t
, if lim

t→∞

∑t−1
i=0 a

v
n (i)

t
≤ µn ,

8To avoid unnecessary complexity, we assume that the time average of arrivals exist.Without the assumption, the argument
would still hold by replacing lim with lim inf.
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and otherwise,

fmn =

(
lim
t→∞

∑t−1
i=0 a

v
mn(i)

t
/ lim
t→∞

∑t−1
i=0 a

v
n (i)

t

)
· µn .

It is easy to verify that { f }mn satisfies the constraints of LP(S ′). Furthermore, since US ′ is non-
empty, there exists n ∈ S ′ such that limt→∞

∑t−1
i=0 a

u
n (i)

t > 0. Taking such an n, and combining with
(15), we have

lim
t→∞

∑t−1
i=0 a

u
n(i)

t
+

∑
m∈V

fmn − µn > 0.

It then follows from (16) that∑
n∈S ′

lim
t→∞

∑t−1
i=0 a

u
n(i)

t
+

∑
n∈S ′

∑
m∈V

fmn −
∑
n∈S ′

µn > 0.

Hence, we have

0 <
∑

ul ∈US′
λul −

∑
n∈S ′

µn +
∑
n∈S ′

∑
m∈V

fmn ≤ val(S ′) −∆(S ′),

which implies that S ′ follows the val-condition. □

A.3 Proof of Claim 3
The proof is done by contradiction. Assume that Claim 3 does not hold, i.e., there is no such user
dispatcherul , that is, every user dispatcher has connection to S\S̃ ′. First, we show that the optimal
solution λ∗ must satisfy that

λ∗ln = 0, λ∗mn = 0, ∀n ∈ S̃ ′, and ul ,vm that have connection to S\S̃ ′. (17)

This is true since that if the claim does not hold, we can decrease some positive λ∗ln (or λ∗mn ) by
a small amount δ > 0 and add to λ∗ln′ (or λ∗mn′) with n′ ∈ S\S̃ ′. This will result in that r ∗n > 0

decreases by δ and r ∗n′ = 0 increases by δ , thereby obtaining a r with a smaller value of
∑

n r
2
n ,

which contradicts the optimality of r ∗.
Let ṼS ′ be the subset of adversary dispatchers that only have connections in S̃ ′. Note that ṼS ′ ⊆

VS ′ . By (17), we have λ∗mn = 0 for allm < ṼS ′,n ∈ S̃ ′. Therefore,∑
m∈VS′

∑
n∈S ′\S̃ ′

λ∗mn ≥
∑

m<ṼS′

∑
n∈S ′\S̃ ′

λ∗mn

=
∑

m<ṼS′

∑
n∈S ′

λ∗mn =
∑

m<ṼS′

λvm . (18)

Now, recall the linear program LP(S ′) that definesval(S ′). Let { f ∗}mn be a set of optimal solution
to LP(S ′). We have by the definition of ṼS ′ ,∑

m∈ṼS′

∑
n∈S ′

f ∗mn =
∑

m∈ṼS′

∑
n∈S̃ ′

f ∗mn ≤
∑
n∈S̃ ′

µn . (19)

Furthermore, ∑
m<ṼS′

∑
n∈S ′

f ∗mn ≤
∑

m<ṼS′

λvm ≤
∑

m∈VS′

∑
n∈S ′\S̃ ′

λ∗mn , (20)
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where the first part follows from Constraint (3) of LP(S ′) and the second part follows from (18).
Hence, combining (19) and (20), we have,

val(S ′) −
∑
n∈S̃ ′

µn =
∑

m∈ṼS′

∑
n∈S ′

f ∗mn +
∑

m<ṼS′

∑
n∈S ′

f ∗mn −
∑
n∈S̃ ′

µn

≤
∑

m<ṼS′

∑
n∈S ′

f ∗mn ≤
∑

m∈VS′

∑
n∈S ′\S̃ ′

λ∗mn . (21)

Again, by (17), we have ∑
l ∈U

∑
n∈S ′\S̃ ′

λ∗ln ≥
∑
l ∈US′

∑
n∈S ′\S̃ ′

λ∗ln

=
∑
l ∈US′

∑
n∈S ′

λ∗ln =
∑
l ∈US′

λul . (22)

Then, summing up constraints (9) of P over n ∈ S ′\S̃ ′, we obtain∑
n∈S ′\S̃ ′

r ∗n ≥
∑

n∈S ′\S̃ ′

∑
l :n∈Sul

λ∗ln +
∑

n∈S ′\S̃ ′

∑
m:n∈Svm

λ∗mn −
∑

n∈S ′\S̃ ′
µn (23)

≥
∑
l ∈US′

∑
n∈S ′\S̃ ′

λ∗ln +
∑

m∈VS′

∑
n∈S ′\S̃ ′

λ∗mn −
∑

n∈S ′\S̃ ′
µn (24)

≥
∑
l ∈US′

λul +val(S ′) −
∑
n∈S̃ ′

µn −
∑

n∈S ′\S̃ ′
µn (25)

≥
∑
l ∈US′

λul +val(S ′) −
∑
n∈S ′

µn = val(S ′) −∆(S ′) > 0, (26)

where Inequality (23) follows from rearrangement of the sums, Inequality (24) follows from (22)
and Inequality (25) follows from Inequality (21). Observe that by definition of S̃ ′,

∑
n∈S ′\S̃ ′ r

∗
n = 0,

which contradicts (26). Hence, there exists a ul such that Sul ∈ S̃ ′. This concludes the proof of the
lemma.

A.4 Proof of Claim 4
By the reasoning above, we have

f ((Q(T ), S(T )) − f ((Q(0), S(0))

=1{S(T ) ∈ S0, min
n∈S(T )

{Qn(T )} > TC1} ·
(
min

n∈S(T )
{Qn(T )} −TC1

)
− 1{S(0) ∈ S0, min

n∈S(0)
{Qn(0)} > TC1} ·

(
min

n∈S(0)
{Qn(0)} −TC1

)
=1{ min

n∈S(T )
{Qn(T )} > TC1} ·

(
min

n∈S(T )
{Qn(T )} −TC1

)
−

(
min

n∈S(0)
{Qn(0)} −TC1

)
≥

(
min

n∈S(0)
{Qn(T )} −TC1

)
−

(
min

n∈S(0)
{Qn(0)} −TC1

)
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= min
n∈S(0)

{Qn(T )} − min
n∈S(0)

{Qn(0)}

Hence, we have

E
[
f ((Q(T ), S(T )) − f ((Q(0), S(0)) | f (Q(0), S(0)) > 0

]
≥E

[
min

n∈S(0)
{Qn(T )} − min

n∈S(0)
{Qn(0)} | f (Q(0), S(0)) > 0

]
.

A.5 Proof of Claim 5
For all t ≥ TϵS(0) , we have

P

{
∀n ∈ S(0),

Qo
n(t)

t
≥ r̃ ∗n

2

}
≥ 1 − ϵS(0)

=⇒ P
{
∀n ∈ S(0),Qo

n(t) ≥
r̃ ∗nt

2

}
≥ 1 − ϵS(0)

=⇒ P
{
∀n ∈ S(0), Q̃n(t) ≥

r̃ ∗nt

2
+Q∗(0)

}
≥ 1 − ϵS(0)

=⇒ P
{
∀n ∈ S(0),Qn(t) ≥

r̃ ∗nt

2
+Q∗(0) − N1C1

}
≥ 1 − ϵS(0)

=⇒ P
{
min

n∈S(0)
Qn(t) ≥

r̃ ∗nt

2
+Q∗(0) − N1C1

}
≥ 1 − ϵS(0).

On the other hand, we also have minn∈S(0)Qn(t) ≥ Q∗(0) − C1t with probability 1 because the
queue lengths can decrease by at most C in each time slot. Now, we set the previously mentioned
T as maxS(0)∈S0

max{TϵS(0) , 8N1C1

minn∈S(0) r̃ ∗n }, we have that

E

[
min

n∈S(0)
{Qn(T ) − min

n∈S(0)
{Qn(0)} | f (Q(0), S(0)) > 0

]
≥(1 − ϵS(0)) ·

minn∈S(0) r̃ ∗nT
2

− (1 − ϵS(0))N1C1 − ϵS(0)C1T

≥
minn∈S(0) r̃ ∗nT

4
− N1C1 ≥ N1C1 > 0.

By Lemma 2, this establishes that the Markov Chain is transient. Since the chain is irreducible,
its transience implies that starting from any initial state, each state is visited finitely many times
with probability 1. By the definition of f , the set {(Q, S) | f (Q, S) = 0} is finite. Therefore, we
have, starting from any initial state, f (Q(t), S(t)) = 0 happens finitely often with probability 1.
It follows that, on each sample path (except a set with measure zero), the adversary identifies a
vulnerable subset and never changes the target after a finite time. Since the number of vulnerable
sets |S0 | is finite, there exists a vulnerable set S ′ ∈ S0 such that with probability at least 1

|S0 | , after
a finite time, the adversary keeps injecting traffic to S ′ following the JSQ rule. Invoking Proposition
1, we have that with positive probability,

∀n ∈ S ′, lim
t→∞

Qn(t)

t
> 0,
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It follows from Observation 1 that, ∃n ∈ S ′, limt→∞
Qu
n (t)
t > 0 with positive probability. Therefore,

by Lemma 1, we have,

∃n, lim
t→∞

E
[
Qu
n (t)

]
t

> 0. (27)

Hence the Min-Zero policy destabilizes user traffic.

B PROOF OF PROPOSITIONS
B.1 Proof of Propositions 1, 2 and Their Multi-hop Generalizations
We prove Propositions 1 and 2 by applying the results in [22, 23]. As stating the results involve
heavy additional notations and modeling in [22, 23], we do not present them here rigorously, but
simply describe them at an intuitive level and show how to apply them to prove our propositions.

The relevant results areTheorem 1 in [22] and Corollary 4.4 in [23]. Theorem 1 in [22] considers
the fluid model of switch networks that employ Max-Weight scheduling, which subsume the JSQ
server farm considered in this paper as a special case. It establishes that the fluid model solution
divided by time converges to the optimal solution of certain optimization problem. Projecting this
onto our case, the optimization problem corresponds to P in Proposition 1 and P ′ in Proposition
2 under the alternative dynamics. Corollary 4.4 in [23] shows the convergence of scaled queue
length vector of network (single-hop or multi-hop) under Max-Weight (Back-pressure) routing
to the corresponding fluid model solution. Combining these two results, setting the parameter t
(different with t in our model) in Corollary 4.4 of [23] as 1, it follows that in our model Q(t)/t
converges to the solution to P (or P ′ under the relaxed dynamics) in probability, which concludes
the proof of Propositions 1 and 2.
One can straightforwardly extend Theorem 1 in [22] to the multi-hop network in our model.

Combining again with Corollary 4.4 in [23], it leads to Proposition 5 that we use in extending our
results to multi-hop networks. Consider a directed network G(N , E) evolving in discrete time.The
network G has a single destination node d and multiple sources. The external traffic arrivals and
offered transmission of network links are independent random variables and are i.i.d. across time.
The time average external traffic arrival rate at node n is denoted as λn (λn = 0 if n is not a source),
and the time average offered transmission rate at link (n,n′) ∈ E is denoted as cnn′ . Note that
under our assumptions, the time average rates are equal to the mean of the corresponding random
variables. The network operates under the (local) back-pressure policy introduced in Section 7.
Consider the following optimization problem Pm :

min
∑
n

r2n∑
n′:(n′,n)∈E

fn′,n + rn + λn ≥
∑

n′:(n,n′)∈E
fnn′, ∀n ∈ N\{d}

0 ≤ fnn′ ≤ cnn′, ∀(n,n′) ∈ E
rn ≥ 0, ∀n ∈ N .

It is easy to verify that Pm is a convex optimization problem and thus have a unique optimal
solution. Now, we are ready to present the proposition in the multi-hop setting.

Proposition 5. Let r∗ = (r ∗1, . . . , r
∗
n) be the optimal solution to the optimization problem Pm

associated with the multi-hop network. The queue lengths satisfy that for any δ > 0

lim
t→∞
P

{ ����Qn(t)

t
− r ∗n

���� < δ

}
= 1.
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Note that Proposition 5 is the counterpart of Proposition 1 in the multi-hop setting. One can
easily extend Proposition 2 to the multi-hop setting in almost identical fashion, which we omit
here.

B.2 Proof of Proposition 3
We first show a simplified version of Proposition 3: if r ∗ > 0, then r ∗ = r̃∗, and then extend the
proof to the original proposition. We prove the simplified version by establishing two claims: (i).
Under the condition that r ∗ > 0, if r̃ ∗ ≥ 0, then r ∗ = r̃ ∗ and (ii). If r ∗ > 0, then r̃ ∗ ≥ 0. These two
claims combined yield the simplified version.

We start with the first claim. Observe that if r ∗n > 0 in the optimal solution to P, then the
corresponding constraint (9) must be satisfied with equality, since otherwise we can decrease r ∗n
and obtain a better solution. Therefore, r ∗ must be feasible to P ′. Conversely, if some r̃ ≥ 0 is
feasible to P ′, then it must also be feasible to P. Combining these, we have under the condition
that r ∗ > 0, r̃ ∗ is feasible to P, and if r̃ ∗ ≥ 0, then r ∗ is feasible to P ′. Since both P and P ′ have
unique optimal solution and they have the same objective function, we have r ∗ = r̃∗. We now
proceed to establish the second claim. If there is an n such that r̃ ∗n < 0, we consider a dispatcher
l such that n ∈ Sul . We claim that for all n′ ∈ Sul , r̃ ∗n′ < 0. Since otherwise if there is a n′ ∈ Sul
with r̃ ∗n′ ≥ 0, we can increase λln and decrease λln′ and form a vector r̃ ′ with | |r̃ ′ | |2 < | |r̃ ∗ | |2,
which contradicts the optimality of r̃ ∗. We repeat this argument for other user dispatchers that
have connections to Sul , until we arrive at a subset of servers S ′ that satisfies: (i). r̃ ∗n < 0 for all
n ∈ S ′ and (ii). there does not exist a user dispatcher that has connection to both servers in S ′ and
servers in S\S ′. This implies that in the optimization problem P, it is feasible to have rn = 0 for
all n ∈ S ′ since the constraints for n ∈ S ′ and n ∈ S\S ′ do not interfere with one another. Hence,
by setting the entries in r ∗ that correspond to all n ∈ S ′ to zero, we obtain a better solution to P,
which contradicts the optimality of r ∗. Hence, we prove the second claim, and conclude the proof
of: if r ∗ > 0, then r ∗ = r̃∗.
Now, we extend the proof to Proposition 3. For an arbitrary n such that r ∗n > 0, again, consider

some dispatcher l such that n ∈ Sul . We have r ∗n′ > 0 for all n′ ∈ Sul , since otherwise one can
decrease λln and increase λln′ for some n′ with r ∗n′ ≤ 0 and obtain a better r than r ∗. Repeating this
argument, by a similar reasoning as above, we will arrive at a subset of servers S ′ that satisfies r ∗n >
0 for all n ∈ S ′ and there is no user dispatcher that has connection to both S ′ and S\S ′. Therefore,
we can decompose P into two parts that correspond to S ′ and S\S ′ respectively. Applying the
previously proved simplified version to the part of S ′, we have r ∗n′ = r̃ ∗n′ for all n′ ∈ S ′, which
include the n we start with. Hence, we conclude the proof of the proposition.

B.3 Proof of Proposition 4
Define dn(t) as Q̃n(t)−Qn(t). We have dn(0) ≤ 0 for all n, and if we can show that dn(t) ≤ N1LC ,
then we prove the proposition. We first give three observations regarding dn(t):

(1)
∑

n dn(t) =
∑

n dn(0) ≤ 0 for all t .
(2) Service at server n does not change dn(t).
(3) If dn(t + 1) > dn(t) > 0, then there exists an n′ such that dn′(t) ≥ dn(t).

The three observations are justified as follows. Since in the relaxed dynamics,Qn(t+1) = Qn(t)+
an(t) − bn(t) = Qn(t) +

∑
l aln(t) − bn(t), we have

N∑
n=1

Qn(t) =
N∑

n=1

Qn(0) +
N∑

n=1

L∑
l=1

t−1∑
i=0

aln(i) −
N∑

n=1

t−1∑
i=0

bn(i)
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=
N∑

n=1

Qn(0) +
L∑

l=1

t−1∑
i=0

al (i) −
N∑

n=1

t−1∑
i=0

bn(i) (28)

SinceQ and Q̃ evolve under the same sequence of {a(i)} and {b(i)}, (28) validates the first obser-
vation. The second observation can be seen from the fact that after some service bn(t) for server n
at time t , Qn(t) and Q̃n(t) both decrease by an amount of bn(t). Hence, dn(t) cannot be changed
by services. The third observation can be established as follows: if at t , dn(t) > 0 and dn(t) in-
creases at the next time slot, then there must exist a dispatcher ul (with non-zero arrival at t ) such
that following the JSQ rule, ul sends packets to n under queue length vector is Q̃n(t) but does
not send packets to n under Qn(t). It follows that there exists n′ such that Q̃n′(t) ≥ Q̃n(t) while
Qn′(t) ≤ Qn(t). This implies that dn′(t) = Q̃n′(t) −Qn′(t) ≥ Q̃n(t) −Qn(t) = dn(t).

By Observation (2), we do not need to consider services. Hence, we focus on arrivals to queues
from dispatchers and proceed to prove the proposition. Suppose for the sake of contradiction that
there exists a time t and server n1 such that dn1

(t) > N1LC . We take t1 to be the smallest t that
satisfies the above condition. Since at each time slot, the total arrival to a server is at most LC ,
t1 > N1. Due to the same reason, we have dn(t1 − 1) > (N1 − 1)LC . By definition of t1, we have
dn(t) ≤ N1LC for 0 ≤ t ≤ t1, and in particular, dn1

(t1 − 1) < dn1
(t1). Hence, by observation

(3), there must exist another server n2 such that dn2
(t1 − 1) ≥ dn1

(t1 − 1) > (N1 − 1)LC . Next,
consider the function dn1

(t) + dn2
(t), let t2 be the largest time slot such that 0 ≤ t2 < t1 − 1 and

dn1
(t2 + 1) + dn2

(t2 + 1) > dn1
(t2) + dn2

(t2). Such t2 must exist as dn1
(0) + dn2

(0) ≤ 0 while
dn1

(t1 − 1) + dn2
(t1 − 1) > 2(N1 − 1)LC . Note that since dn1

(t) + dn2
(t) does not increase from

t2 + 1 to t1 − 1, we have for t2 + 1 ≤ t < t1 − 1

dn1
(t) + dn2

(t) > dn1
(t1 − 1) + dn2

(t1 − 1) > 2(N1 − 1)LC .

Combining this with dn(t) ≤ N1LC for n = n1,n2, t ≤ t1, we have dn(t2 + 1) > (N1 − 2)LC and
dn(t2) > (N1 − 3)LC for n = n1,n2. Since dn1

+ dn2
increases at t2, there must exist a dispatcher

such that it sends packets to some n ∈ {n1,n2} (w.l.o.g. n = n1) under Q̃ but does not send packets
to either n1 or n2 underQ . Following similar reasoning as in establishing observation (3), we have
that there exists n3 such that dn3

(t2) ≥ dn1
(t2) > (N1 − 3)LC . Applying the same argument with

the largest time slot t3 (0 ≤ t3 ≤ t2 − 1) at which the function dn1
(t) + dn2

(t) + dn3
(t) increases,

we have for t3 + 1 ≤ t < t2 − 1

dn1
(t) + dn2

(t) + dn3
(t) > dn1

(t2 − 1) + dn2
(t2 − 1) + dn3

(t2 − 1)

> 3(N1 − 3)LC .

And we have dn(t3 + 1) > (3(N1 − 3) − 2N1)LC = (N1 − 9)LC and dn(t3) > (N1 − 10)LC for n =
n1,n2,n3. It follows that there exists anothern4 withdn4

> (N1−10)LC . Repeating such argument,
we will find a time tN such that dn(tN ) > LC for all n, which implies that

∑N
n=1 dn(tN ) > NLC .

This contradicts observation (1). Thus, we conclude the proof.

C PROOF OF THEOREMS FOR MULTI-HOP NETWORKS
C.1 Proof of Theorem 4
(Sketch) Note that under any adversarial injection policy, the network G can be considered as
a network that employs Back-pressure routing with multiple sources and single destination. The
proof follows similar line as that ofTheorem 1, and additionally relies on the following observation
regarding single-commodity back-pressure network, which can be obtained from results in [29].

Observation 2. For each sample path, if limt→∞Qn(t)/t > 0 for some n ∈ N , then for all
n′ ∈ Out(n), the time average traffic rate from n to n′ equals cnn′ .
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We first show the sufficiency of the condition. If some cut (S,N\S) satisfies the extended val-
condition, we consider the randomized adversarial injection policy given by the max-flow that
defines val(S). Then on an arbitrary sample path (except a set of measure zero), there must exist
node n with limt→∞Qn(t)/t > 0. Let S′ be the set of nodes n with limt→∞Qn(t)/t > 0. We claim
that s ∈ S′, and that the adversary destabilizes user traffic directly follows. To justify the claim,
suppose for the sake of contradiction s < S′, then the time average traffic rate from s toS′ must be
zero, and the overflow of S′ is caused solely by adversary traffic. Let S̃ = S′∩S. We have that the
adversary traffic that goes through the cut (S,N\S) does not pass S̃. Let λ̃ be the time average
rate of adversarial traffic that goes from S\S̃ to N\S. By the definition of the val function, we
have that ∑

n∈S\S̃,n′∈N\S

cnn′ − λ̃ − λ ≤ Cap(S) −val(S) − λ < 0, (29)

which leads to a contradiction since (29) implies that there exists node not in S′ whose queue
length also grows linearly with time at some positive rate.

We now proceed to the necessity part. If there exists a policy that destabilizes user traffic, there
exists a sample path at which the user part of some queue grows at positive rate with time. Pick
such a sample path, let S be the set of nodes whose queue length grow with time at positive rate
on the sample path. It is easy to see that (S,N\S) is an s-d cut. We proceed to show that it satisfies
the extended val-condition. Let λv be the total adversarial traffic injection rate under the policy.
Denote ru , rv respectively as the sum of user and adversary parts of queue length growth rates of
nodes inS, and pu ,pv respectively as the total rates of user and adversary traffic that goes through
the cut (S,N\S). Based on the definitions, we have λv = pv + rv and λs = pu + ru . Further by
Observation 2, we have pv + pu = Cap(S). It follows that

val(S) + λs = pu + ru +val(S)
= pu +val(S) −Cap(S) − ru +Cap(S)
≥ pu + pv −Cap(S) + ru +Cap(S)
= ru +Cap(S) > Cap(S).

Hence, (S,N\S) satisfies the extended val-condition and we conclude the proof.

C.2 Proof of Theorem 5
(Sketch) The proof follows the same road-map of that of Theorem 3. First, we establish multi-hop
counterparts of Propositions 1 and 2 in Proposition 5 which will be given in the Appendix B.1.
Following similar ideas and using Proposition 5, we can generalize Theorem 2 and Corollary 3 to
multi-hop networks, that is, if the problem is feasible, then there exists an s-d cut that satisfies
the extendedval-condition and by each adversary source nodevm injecting toNvm ∩S following
the JSQ rule, all the queues in S grow with time, i.e., ∀n ∈ S, limt→∞

E[Qn(t)]
t > 0. Define the set

of all such s-d cuts as vulnerable cuts S0. Next, we again interpret the network dynamics under
the Multi-hop Min-Zero policy as a Markov Chain with state (Q(t),S(t)). We construct the same
Lyapunov function as in the proof of Theorem 3 by choosing an appropriate T :

f (Q(t), S(t)) =1{S(t) ∈ S0, min
n∈S(t)

{Qn(t)} > TC1}·(
min
n∈S(t)

{Qn(t)} −TC1

)
,
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where C1 = (|N | + M)C is an upper bound on the change of queue length at ann node in one
time slot. By a similar coupling bound as Proposition 4, together with Proposition 5, we establish
the positive expected T -slot drift of f conditioned on f ((Q(t),S(t)) > 0. Invoking Lemma 2, we
demonstrate that the Markov chain is transient. Finally, going through the same reasoning as in
Theorem 3, we show that there exists n such that limt→∞

E[Qu
n (t)]
t > 0, which concludes the proof.

D SUPPLEMENTARY PROOFS
In this section, we provide supplementary proofs to several probabilistic arguments in the paper.
The proofs are mostly standard, and are provided here for completeness.

Lemma 3. E[limt→∞
Qn(t)

t ] = limt→∞
E[Qn(t)]

t .The same holds for Qu
n and Qv

n .

Proof. The existence of the left-hand-side is guaranteed by our assumption. Since at each time
slot, the arrival to a queue is bounded, we can find a constant C0 such that Qn(t)/t ≤ C0 for all t .
Hence, by dominated convergence theorem, we have

E

[
lim
t→∞

Qn(t)

t

]
= lim

t→∞
E

[
Qn(t)

t

]
= lim

t→∞
E[Qn(t)]

t
.

□

Lemma 4. (Same as Lemma 1) A non-negative random variable X has zero expectation if and only
if X = 0 with probability 1. Hence, if X > 0 with positive probability, then E[X ] > 0.

Proof. That X = 0 with probability 1 implies E[X ] = 0 is straightforward. We now prove the
only if part. For each N ∈ N+, let EN denote the event {X ≥ 1/N }. Note that {EN } is a sequence
of increasing events. Since X is non-negative, we have E[X ] ≥ 1

N P(EN ). As E[X ] = 0, it follows
that ∀N , P(EN ) = 0. Hence, by continuity of probability, we have

P{X > 0} = P ©­«
∞∪

N=1

EN
ª®¬ = lim

N→∞
P(EN ) = 0.

Therefore, P{X = 0} = 1 and we conclude the proof. □

E NON-STATIONARY ADVERSARIES AND INSTABILITY CRITERION
In this section, we first remove the assumptions that limt→∞

Qu
n (t)
t exists almost surely, which

will allow us to take into account non-stationary adversaries. We then discuss other criteria for
instability and their effect on our results.

E.1 Non-stationary Adversaries

Without the assumption that limt→∞
Qu
n (t)
t exists almost surely, we need to modify the definition

of the goal of the adversary by replacing the limit with lim inf or lim sup. More specifically, the
first alternative is that the adversary destabilizes user traffic if

For some n ∈ {1, . . . ,N }, E

[
lim inf

t→∞
Qu
n (t)

t

]
> 0. (30)

The second alternative is that the adversary destabilizes user traffic if

For some n ∈ {1, . . . ,N }, E

[
lim sup

t→∞

Qu
n (t)

t

]
> 0. (31)

Under definitions (30) and (31), we allow the adversary to use an arbitrary, even non-stationary
policy, as long as it satisfies the budget constraints.
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Under definition (30), all of our results still hold. Theorem 1, the feasibility region of the attack,
can be proved in a similar way with some minor changes. Specifically, the sufficiency part relies
on constructing a stationary randomized policy that achieves the goal defined in (1), which im-
plies (30). The necessity part follows by replacing the limt→∞

Qu
n (t)
t with lim inft→∞

Qu
n (t)
t . Since

allowing for non-stationary policies does not enlarge the feasibility region, the Min-Zero policy is
actually optimal over all policies (stationary and non-stationary).

Under definition (31), which is a weaker criterion than (30) since it is easier to achieve as
lim supt→∞

Q(t)
t ≥ lim inft→∞

Q(t)
t , our results would break if we consider non-stationary ad-

versaries. As mentioned in [21], under this weak criterion, the feasibility region of non-stationary
adversarial injection policies can be much larger than that of stationary policies. Indeed, an ad-
versarial dispatcher can compromise all the servers it has connections to with service rates less
than its budget by injecting packets following an exponentially increasing sequence. We provide
an example in Figure 8, where a policy that injects traffic to servers following an exponentially
increasing sequence trivially achieves the goal of (31). Such policy would not achieve the goal un-
der definitions (30) or (1), which suggests that (31) be a less meaningful definition. Nonetheless,
under (31), our Min-Zero policy is optimal over all stationary policies.

E.2 Choice of Instability Criterion
Definitions (1), (30) and (31) all correspond to the mean rate-instability in queueing theory litera-
ture [10]. An alternative, andweaker criterion is to requireE[limt→∞Qu

n (t)] = ∞ (E[lim inft→∞Qu
n (t)] =

∞ or E[lim supt→∞Qu
n (t)] = ∞ when the limit does not exist).

If we use E[limt→∞Qu
n (t)] = ∞ or E[lim inft→∞Qu

n (t)] = ∞ as the instability criterion, by
the proof of Theorem 1, we can see that the feasibility region of the attack under the alternative
criterion only differs with the original one at the boundary (this holds even for non-stationary
attack policy). Therefore, the original feasibility region is the interior of the new feasibility region.
Depending on the distributions of arrivals and services, the boundary points of the original feasi-
bility region may or may not be included in the new feasibility region, determining which requires
complicated analysis. It follows that the Min-Zero policy is near-optimal as it achieves the interior
of the new feasibility region. Whether it can destabilize user traffic when the budget vector lies on
the boundary depends on the distributions of arrivals and services, and requires more complicated
analysis to determine.

If we use E[lim supt→∞Qu
n (t)] = ∞ as the definition of instability, then similar phenomenon as

in Figure 8 would occur when we allow for non-stationary attack policies. Under this definition,
our Min-Zero policy is near optimal over all stationary adversarial injection policies.

Therefore, we conclude that the two choices of instability criterion do not lead to significantly
different results. Furthermore, the criterion we use in this paper, i.e., (1), has the implication that
by achieving the goal, the adversary causes the users to lose a non-zero fraction of throughput. On
the other hand, E[limt→∞Qu

n (t)] = ∞ does not guarantee this. For example, when Qu(t) = log t ,
E[limt→∞Qu

n (t)] = ∞ while the users only lose a vanishing fraction of throughput.

F SIMULATION RESULTS
In this section, we present simulation results on the convergence times of the Min-Zero policy
with thresholds {0, 5, 10, 20, 50, 100, 200} in Tables 2 and 3. From the results, we can see that the
convergence time generally increases with the threshold.
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Fig. 8. Consider the above server farm with deterministic arrival and service rates. Define a sequence of time
intervals as τ1 = {1}, τ2 = {2, 3}, τ3 = {4, 5, 6, 7}, · · · The adversary uses a non-stationary injection policy
that sends all traffic to server S1 during intervals τ2k and sends all traffic to server S2 during intervals τ2k+1

for k ∈ N. For sufficiently large k , at the end of τ2k , the adversarial traffic backlog in S1 is at least 22k−1,
which takes 22k−3 time slots to drain. In the meantime, the user traffic in the queue of S1 builds up to 22k−3.
It follows that user traffic in Q1 is de-stabilized by the definition (31). Similar argument holds for Qu

2 . This
example can be generalized to one with arbitrary number of parallel servers.

Table 2. Convergence times of variants ofMin-Zero on networks with different loads (rounded to the nearest
integer).

``````````Threshold
Network Size 100 150 200 250 300 350 400 450 500

0 176 143 105 99 92 96 90 89 87
5 226 151 100 99 102 100 93 91 90
10 316 186 107 107 102 103 102 100 100
20 418 199 167 114 117 108 106 102 110
50 682 326 175 134 123 122 120 116 114
100 811 400 223 170 143 140 130 127 124
200 1493 550 423 275 206 171 151 144 141

Table 3. Convergence times of variants ofMin-Zero on networks with different loads (rounded to the nearest
integer).

``````````Threshold
Network Load 0.75 0.80 0.85 0.90 0.95

0 105 67 30 20 17
5 100 74 42 21 22
10 107 104 45 26 22
20 167 141 116 32 24
50 175 171 165 48 37
100 224 197 174 131 102
200 423 361 286 250 223
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