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Abstract. We define a distance metric between partitions of a graph using machinery from
optimal transport. Our metric is built from a linear assignment problem that matches partition
components, with assignment cost proportional to transport distance over graph edges. We show
that our distance can be computed using a single linear program without precomputing pairwise
assignment costs and derive several theoretical properties of the metric. Finally, we provide experiments
demonstrating these properties empirically, specifically focusing on the metric's value for new problems
in ensemble-based analysis of political districting plans.
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1. Introduction. Several mathematical and computational problems involve
collections of graph partitions with fixed numbers of components. Example application
scenarios include tracking and clustering of evolving communities in a network, as well
as analysis of political redistricting plan ensembles---an application we will study in
detail below. Because specifying a single partition requires a label for every vertex,
however, it can be difficult to visualize and navigate such a collection. Additionally,
because the number of possible partitions typically exponentiates in the size of the
underlying graph, collections of partitions usually are extremely large.

Enriching the set of partitions with a geometric structure helps understand the vast
space of partitions. A distance allows us to quantify similarity or difference between
two partitions and provides insight into the structure of the space of partitions as a
whole. For instance, a large family of partitions might be close in a given metric to
elements in a smaller family; in this case, we can efficiently infer information about
the larger collection from a representative subsample. More broadly, a distance can
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GEOMETRY OF GRAPH PARTITIONS VIA OPTIMAL TRANSPORT A3341

evaluate whether a sample spreads over the space of partitions or concentrates in
a smaller region. A metric also yields a visualization tool: Given a finite family of
partitions, one may compute pairwise distances and use them with an embedding
algorithm to create a two-/three-dimensional Euclidean visualization.

Motivated by these challenges, we present a distance on the space of graph parti-
tions motivated by optimal transport. Our model uses transport to measure pairwise
relationships between the components of two partitions, a linear assignment problem
then extracts the minimum cost (perfect) matching between partition components. Our
formulation is a hierarchical transport problem that is invariant to the ordering of the
individual components and sensitive to geometry, in contrast to simpler overlap-based
measures, e.g., those based on Kullback--Leibler divergence or total variation. We
derive theoretical properties of our distance and provide an extension to unbalanced
problems where the components are weighted unequally.

Our target application is in political redistricting, where we can use these tools to
compare districting plans for some geographic region. In ensemble-based approaches to
districting plan analysis, a collection of feasible districts is generated computationally
as a baseline for evaluating a proposed plan; the baseline samples achievable properties
for plans given the political geography of a state. An issue in current ensemble-based
redistricting pipelines is that the only two options for visualizing and navigating the
ensemble are (1) showing a few randomly selected example plans or (2) plotting the
empirical distribution of the values of a given measure, such as the number of districts
won by a political party or district perimeter, over the ensemble. The first option shows
an exceptionally small subset of ensembles that can number in the millions, while the
second is an indirect means of understanding the relationships between plans. Here,
we show that our transport metric---coupled with embeddings like multidimensional
scaling---provides a third alternative, giving a direct and intuitive means of visualizing
an entire ensemble. Our experiments confirm the value of this approach on both
synthetic and real-world datasets.

Outline. In section 2, we comment on relevant literature, including that from
optimal transport and ensemble-based redistricting. Next, section 3 reviews terms and
notation. Section 4 introduces optimal transport and the Wasserstein metric, including
the Kantorovich and Beckmann problems. In section 5 and section 6, we introduce
our distance metric between partitions and prove basic properties. In section 7, we
compare our metric to existing alternatives. Finally, section 8 demonstrates the metric
on simulated and real geographic data, and section 9 summarizes our work, including
open problems and avenues for future research.

2. Related work.
Optimal transport. Optimal transport (OT) is a field of mathematics and computer

science dating back at least to the late eighteenth century when Monge posed the
problem of determining the most efficient way of transporting a distribution of a
given material from one configuration to another [31], a problem whose understanding
was limited until over a century later, when Kantorovich reformulated it as a linear
program [24]. Beyond this concrete problem lies the broader problem of determining
optimal rearrangements (or matchings) between distributions, a problem that arises in
many fields. Accordingly, OT-based methods are used today in economics, probability,
statistics, machine learning, fluid mechanics, computer graphics, and other fields.
The interested reader can find thorough discussion of these domain-applications
in [19, 34, 36, 39].

In this paper, we view each component of a graph partition as a kind of distribution
by assigning a mass to each vertex in that component. We can then view a graph
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A3342 ABRISHAMI ET AL.

partition as a collection of these distributions and measure distances between different
graph partitions by using OT methods on the constituent distributions. This departs
from the context where OT was initially developed (matching probability measures),
but more recent work has considered similar instances like partial transport [5] and
matching measures with unequal mass [18]. The latter is an example of unbalanced
OT, a popular topic in modern theoretical/applied transport [9, 10, 26]. This being
said, we are unaware of work using OT methods to measure the similarity between
two different partitions of a graph.

Spurred by applications in machine learning, computer vision, and other disciplines,
several algorithms have been developed for approximate OT and derived quantities;
see [34] for a survey. Particularly relevant to our work is transport over graphs
with shortest-path distance as the cost, known as minimum-cost flow without edge
capacities [1] and---in OT---as the 1-Wasserstein distance or Beckmann problem [3, 35].
See [17] for a survey of computational methods for this problem.

Geometry of partitions. Several works imbue the set of partitions with a metric
and study the resulting geometry. In geometric analysis, specifically the study of
partitions of minimal perimeter, Leonardi and Tamanini introduced a metric on the
space of (measurable) partitions of subsets of Euclidean space [25]. Their metric is
based on symmetric differences, producing a complete and separable metric space.
In the discrete setting, there has been more extensive research on the geometry of
set-theoretic partitions. This includes examining the complexity of comparing two
partitions [12, 28] and considering the geometry of partitions using machinery from
information theory [15].

Ensemble-based redistricting. A growing body of research centers on ensemble-
based redistricting, which uses algorithms to generate and analyze thousands or millions
of candidate districting plans that meet some criteria [2, 6, 7, 8, 13, 22, 23]. These
methods/analyses are increasingly used by legal experts, policymakers, and the public
at large to inform debates around redistricting. In the legal context, ensembles of
voting maps generated with these methods are being submitted as evidence to state
and federal courts in redistricting and voting rights cases, underlining a pressing need
to understand quantitative and qualitative properties of ensembles. This is challenging
because the space of maps meeting reasonable criteria is large and poorly understood,
making it difficult to quantify the ``diversity"" of a collection of plans. Previous works
compute distributions of statistics of interest, such as the number of districts won by
a particular political party or a compactness metric, and perform statistical analysis
in this lower-dimensional space.

For such analyses to be robust, they should be performed on a sample of plans
representative of the universe of valid plans, such as those that meet legal criteria. If an
ensemble contains many plans that are all slight variations of one another, a projection
to summary statistics may be misleading, since those similar plans likely yield similar
statistics, which would in turn be overrepresented in the analysis. Assessing a sample's
diversity requires a measure of dissimilarity, and a rigorous development of such a
measure is not present in the previous literature. This paper presents a novel direction
within the ``geometry of redistricting"" that is orthogonal to the primary direction
of the field, which focuses on analyzing the shapes of the districts themselves; for a
survey of classical approaches in shape analysis for political districts, see [40].

3. Preliminaries. A graph will be denoted by G = (V,E) with vertices V and
edges E. If G is weighted with a weight \omega : E \rightarrow R, we will write G = (V,E, \omega ). The
signed incidence matrix associated to the graph G will be denoted by P :
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GEOMETRY OF GRAPH PARTITIONS VIA OPTIMAL TRANSPORT A3343

Table 1
Notation.

Notation Definition
G = (V,E) Graph with vertices V and edges E
G = (V,E, \omega ) Weighted graph with vertices V , E, and weights \omega : E \rightarrow R
d(v, w) Shortest-path distance between v, w \in V
M(V ) Set of all mass distributions on V
M(V )k Ordered k-tuples of mass distributions on V
M(V )k\ast The set M(V )k modulo index rearrangements
Prob(V ) Set of all probability distributions on V
Prob(V )k Ordered k-tuples of probability distributions on V
Prob(V )k\ast The set Prob(V )k modulo index rearrangements
W1(f, g) Wasserstein distance between f and g

Pev :=

\left\{    - 1 if e = (v, w) for some w \in V,
1 if e = (w, v) for some w \in V,
0 otherwise.

We denote by M(V ) the set of all mass distributions over V and by Prob(V ) \subset 
M(V ) the set of all probability distributions over V . Specifically,

M(V ) = \{ x \in R| V | | x(v) \geq 0 \forall v \in V \} and

Prob(V ) =

\Biggl\{ 
x \in R| V | | x(v) \geq 0 \forall v \in V and

\sum 
v\in V

x(v) = 1

\Biggr\} 
.

We will also consider the set of mass distributions over the product V \times V :

M(V \times V ) = \{ x \in R| V | 2 | x(v, w) \geq 0 \forall v, w \in V \} .

Let Prob(V )k be the set of k-tuples of elements of Prob(V ), and let Prob(V )k\ast \sim =
Prob(V )k/Sn be the set of k-tuples of elements of Prob(V ) up to reordering. Similarly,
let M(V )k be the set of k-tuples of elements of M(V ), and let M(V )k\ast \sim =M(V )k/Sn
be the set of k-tuples of M(V ) up to reordering. Table 1 provides relevant notation.

4. Transport distances. In this section, we review some notions from the theory
of OT that will be relevant to our discussion. We limit to a few basic results from
transport over graph domains; see [36, 39] for the general case.

Let x, y \in M(V ). A coupling or transport plan between x and y is a function
\pi : V \times V \rightarrow R+ such that\sum 

w\in V
\pi (v, w) = x(v) \forall v \in V and

\sum 
v\in V

\pi (v, w) = y(w) \forall w \in V.

We will use \Pi (x, y) to denote the set of such couplings.

Remark 4.1. If for x, y \in M(V ) there is at least one \pi \in \Pi (x, y), then\sum 
v\in V

x(v) =
\sum 
v\in V

\sum 
w\in V

\pi (v, w) and
\sum 
w\in V

y(w) =
\sum 
w\in V

\sum 
v\in V

\pi (v, w).

The sums on the right-hand sides are finite rearrangements and therefore agree.
Conversely, if x and y have the same total mass m > 0, then the product distribution
\pi (v, w) = 1

mx(v)y(w) belongs to \Pi (x, y). This means that there are admissible plans
between x and y exactly when these distributions have the same total mass.
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A3344 ABRISHAMI ET AL.

The total transportation cost of \pi \in \Pi (x, y) is
\sum 
v,w\in V d(v, w)\pi (v, w), where the

cost of moving mass between vertices v, w \in V is the shortest-path distance d(v, w).
Then, the transport distance (or 1-Wasserstein distance) between x and y is the
minimum total transportation cost for a plan \pi \in \Pi (x, y), denoted W1(x, y):

W1(x, y) := min
\pi \in \Pi (x,y)

\sum 
v,w\in V

d(v, w)\pi (v, w).(4.1)

We take W1(x, y) = +\infty if x and y do not have the same total mass. A consequence
of general OT theory is that W1 defines a metric on Prob(V ); see [39, Chapter 7]
or [36, Chapter 5] for general discussion or [11] for a proof in the discrete case.

In practice, (4.1) can be difficult to solve because it deals with | V | \times | V | pairwise
distances. In graph theory, however, this problem is known as minimum cost flow
without edge capacities and admits an alternative formulation scaling linearly in | E| :

(4.2) W1(x, y) =

\Biggl\{ 
min
J\in R| E| 

\sum 
e\in E

\omega (e)| Je| 
subject to P\top J = y  - x,

where \omega denotes edge weights and P is the incidence matrix. If G is unweighted, we can
take \omega (\cdot ) \equiv 1. The equivalence between (4.1) and (4.2) is discussed in subsection 6.4
in the broader setting of unbalanced transport. See also [17] and references therein for
motivation as well as references to relevant algorithms.

5. The distance on partitions: Balanced case. In this section, we propose
a distance between graph partitions that lifts the transport distances described above.
This distance is defined in two steps: computing distances between partition com-
ponents and subsequently finding a minimum-cost matching between the partition
components. In particular, we take the distance between components to be the Wasser-
stein distance and use linear assignment to find the matching. With this definition in
place, we prove some basic properties of the lifted distance and give a formulation as
a single combined linear program rather than a two-step procedure.

5.1. Distances between components. Let G = (V,E) be a graph, and let
(V1, . . . , Vk) be a partition of V . We represent (V1, . . . , Vk) by an element of Prob(V )k\ast 

as follows: To every Vi, we associate a vector xi \in R| V | such that

(5.1) xi(v) =

\left\{   
1

| Vi| if v \in Vi,

0 otherwise.

Then, X = (x1, . . . , xk) \in Prob(V )k\ast gives a concrete representation of (V1, . . . , Vk).
This expression defines a balanced representation of partitions, because

\sum 
v\in V xi(v) = 1

for all i \in \{ 1, . . . , k\} . The case of unbalanced representations is covered in section 6.

Remark 5.1. Given a strictly positive weight function on the vertices \omega : V \rightarrow R+,
we can give an alternative definition of the vector xi associated to component Vi as

xi(v) =

\left\{   
\omega (v)\sum 

u\in Vi

\omega (u) if v \in Vi,

0 otherwise.

In our target application of political redistricting, this alternative definition can be
useful when incorporating populations associated with census units.
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GEOMETRY OF GRAPH PARTITIONS VIA OPTIMAL TRANSPORT A3345

Now that we have a representation of graph partitions in Prob(V )k\ast , we can define
a distance between components of partitions. Let X = (x1, . . . , xk) \in Prob(V )k\ast and
Y = (y1, . . . , yk) \in Prob(V )k\ast be partitions of G. The distance between components
of X and Y is given by the (unweighted) Wasserstein distance, defined in section 4.
In particular, for any xi \in X and yj \in Y , we take

W1(xi, yj) =

\Biggl\{ 
min
J\in R| E| 

\sum 
e\in E

| Je| 
subject to P\top J = yj  - xi.

5.2. Distances between partitions. In subsection 5.1, we endowed the space
of partition components with the Wasserstein distance. Here, we lift this distance to a
distance between partitions using a linear assignment problem.

For ease of notation, we define the relevant constraint set for our problem:

Definition 5.2 (Birkhoff polytope). The Birkhoff polytope DSk is the set of
k\times k doubly stochastic matrices, nonnegative matrices whose rows/columns sum to 1:

(5.2) DSk = \{ S \in Rk\times k | S1 = 1, S\top 
1 = 1, and S \geq 0\} .

The Birkhoff--von Neumann theorem gives that DSk is a convex polytope and its
vertices are the permutation matrices, those elements of DSk with integer entries.

Definition 5.3 (lifted distance). Given a distance C : Prob(V )\times Prob(V ) \rightarrow R,
the lifted distance A : Prob(V )k\ast \times Prob(V )k\ast \rightarrow R between partitions X and Y is

(5.3) A(X,Y ) =

\Biggl\{ 
min

S\in Rk\times k

\sum 
ij

SijC(xi, yj)

subject to S \in DSk,

where X = (x1, . . . , xk), Y = (y1, . . . , yk) \in Prob(V )k\ast , and C(\cdot , \cdot ) is a distance between
partition components. Unless otherwise noted, we will take C =W1 from (4.2).

Because the extreme points of DSk are permutations, the minimizer of this linear
program is a matching between the components of X and the components of Y , and
the distance is the sum of the pairwise distances between matched components.

Remark 5.4. Many properties of this lifting are independent of the ground metric,
which in (5.3) is the transport distance W1. We can view this construction as an
instance of hierarchical OT, i.e., a matching problem whose cost comes from another
matching problem; see [41] for an example in natural language processing.

Before studying properties of our construction, we verify that (5.3) lifts any distance
between components (i.e., a distance on Prob(V )) to a distance on Prob(V )k\ast .

Proposition 5.5. Given any metric C : Prob(V ) \times Prob(V ) \rightarrow R, the lifted
distance A : Prob(V )k\ast \times Prob(V )k\ast \rightarrow R is a metric on Prob(V )k\ast .

Proof. Since C is a metric and S is nonnegative, it is immediate that A is
nonnegative and symmetric.

Let X = (x1, x2, . . . , xk), Y = (y1, y2, . . . , yk) \in Prob(V )k\ast , and suppose X \equiv Y
in Prob(V )k\ast . Then, there exists some permutation P with Pij = 1 if and only if
xi = yj . Since C(xi, yj) = 0 when xi = yj , we have

\sum 
ij PijC(xi, yj) = 0. Hence,

when X \equiv Y in Prob(V )k\ast , A(X,Y ) = 0. Conversely, suppose A(X,Y ) = 0, and let S
minimize (5.3). If Sij = 1, then since the objective is zero we must have C(xi, yj) = 0.
Because C is a metric, C(xi, yj) = 0 if and only if xi = yj . Therefore, X \equiv Y in
Prob(V )k\ast .

© 2020 Tara Abrishami, Nestor Guillen, Parker Rule, Zachary Schutzman, Justin Solomon, Thomas
Weighill, Si Wu

D
ow

nl
oa

de
d 

12
/0

8/
20

 to
 1

30
.6

4.
11

.1
61

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



A3346 ABRISHAMI ET AL.

Now, suppose X,Y, Z \in Prob(V )k\ast . Let N and W be minimizing permutation
matrices with A(X,Y ) =

\sum 
ij NijC(xi, yj) and A(Y,Z) =

\sum 
jlWjlC(yj , zl). Then,

A(X,Y )+A(Y,Z)=
\sum 
ij

NijC(xi,yj)+
\sum 
jl

WjlC(yj ,zl)=
\sum 
ilj

(NijC(xi,yj)+WjlC(yj ,zl)).

Because N and W are permutations, for a fixed j, there is a unique ij such that
Nijj = 1 and a unique lj such that Wjlj = 1. Therefore,

A(X,Y ) +A(Y,Z) =
\sum 
j

\bigl( 
C(xij , yj) + C(yj , zlj )

\bigr) 
\geq 
\sum 
j

C(xij , zlj )

by the triangle inequality. Let B = NW . Then,
\sum 
j C(xij , zlj ) =

\sum 
ilBilC(xi, zl).

Because B is a permutation,
\sum 
ilBilC(xi, zl) \geq A(X,Z). Therefore, A(X,Y ) +

A(Y,Z) \geq A(X,Z), verifying a triangle inequality.

Remark 5.6. Since C is a metric, Proposition 5.5 likely follows from general results
about discrete transport, e.g., [11, Theorem 1]. We include the direct proof since
metric properties follow directly from our definition.

5.3. Basic properties. In this section, we prove several basic properties of the
lifted distance. First, we show that if two partitions have a component in common,
there exists an optimal matching that fixes the shared component.

Proposition 5.7. Let X = (x1, . . . , xk) and Y = (y1, . . . , yk) be two partitions
of G, and suppose xa = yb. Then, there exists a matching S such that Sab = 1 and S
is an optimizer for the lifted distance (5.3).

Proof. Let P be a permutation matrix that is an optimizer for A(X,Y ), so
A(X,Y ) =

\sum 
ij C(xi, yj)Pij . Suppose that P maps xa to some yd and some xc to yb.

Let S be the permutation obtained by matching xa to yb, xc to yd, and every other
component in X to its image under P . It is clear that\sum 
ij

SijC(xi, yi) =
\sum 
ij

PijC(xi, yj) - C(xa, yd) - C(xc, yb) + C(xa, yb) + C(xc, yd).

Since C is a metric, the triangle inequality yields C(xa, yd) + C(xc, yb) \geq C(xc, yd).
Because xa = yb by assumption, C(xa, yb) = 0, so  - C(xa, yd) - C(xc, yd)+C(xa, yb)+
C(xc, yd) \leq 0, and therefore

\sum 
ij SijC(xi, yi) \leq 

\sum 
ij PijC(xi, yj). Since P is an opti-

mizer for the lifted distance, we also have that
\sum 
ij PijC(xi, yj) \leq 

\sum 
ij SijC(xi, yj).

Therefore, S is an optimizer for A(X,Y ) with Sab = 1.

Our formulation of the lifted distance involves pairwise distances between partition
components and a subsequent linear assignment problem to find the minimum cost
matching. Below, we formulate the lifted distance using only one linear program.

Proposition 5.8. The lifted distance A(X,Y ) between partitions X,Y satisfies

(5.4) A(X,Y ) =

\left\{       
min

Q\in R| E| \times k2 ,S\in Rk\times k

\sum 
ij

\sum 
e\in E

| Qeij | 

subject to S \in DSk,

P\top Qij  - (xi  - yj)Sij = 0.
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GEOMETRY OF GRAPH PARTITIONS VIA OPTIMAL TRANSPORT A3347

Proof. Substituting the transport cost (4.2) into (5.3), we can write

A(X,Y ) =

\left\{             

min
S\in Rk\times k

\sum 
ij

Sij
\sum 
e\in E

| J\ast e
ij | 

subject to S \in DSk

J\ast 
ij =

\Biggl\{ 
argmin
Jij\in R| E| 

\sum 
e\in E

| Jeij | ,

subject to P\top Jij = (xi  - yj).

Since the inner and outer problems are both minimizations, we can simplify to

A(X,Y ) =

\left\{       
min

S\in Rk\times k,J\in R| E| 

\sum 
ij Sij

\sum 
e\in E

| Jeij | 
subject to S \in DSk,

P\top Jij = (xi  - yj)

This is a quadratic program in S and J . Substituting Qeij = SijJ
e
ij yields (5.4).

The formula in Proposition 5.8 computes the distances between components
and the assignment in a single linear program, suggesting an alternative means for
computing A(\cdot , \cdot ) without precomputing pairwise costs. Even so, S gives the minimum
matching of the components of X and Y , and Q represents the per-edge flow.

A standard linear programming duality argument applied to (5.4) shows

(5.5) A(X,Y ) =

\left\{       
max

\phi ,\psi \in Rk,\gamma \in R| V | \times k2
1
\top (\phi + \psi )

subject to \phi i + \psi j \leq \gamma \top ij (xi  - yj),

| \gamma wij  - \gamma ijv| \leq 1 \forall (w, v) \in E.

Similar to the argument in Proposition 5.8, this formula also can be derived directly
by substituting the dual of (4.2) into the dual of (5.3).

6. The distance on partitions: Unbalanced case. We now revisit the con-
struction in section 5 to propose a distance between graph partitions when the mass
of each component may not be equal. We call these unbalanced partitions. Similar
to the balanced case, we define the distance in two steps: computing distances be-
tween partition components and using a linear assignment to lift the distance between
components to a distance between partitions. Our distance between components is a
modified transport distance that allows mass to be inserted or removed at vertices
with some cost. Lifting the unbalanced distance between components gives a valid
metric on the space of unbalanced partitions; we also prove basic properties of the
general distance.

6.1. Distances between unbalanced components. Let G = (V,E, \omega ) be a
weighted graph, and let (V1, . . . , Vk) be a partition of the vertices of G. We define an
unbalanced representation of (V1, . . . , Vk) in M(V )k\ast as follows: To every component
Vi, we associate a vector xi \in R| V | such that

xi(v) =

\left\{   \omega (v) if v \in Vi,

0 otherwise.

Then, X = (x1, . . . , xk) \in M(V )k\ast gives an unbalanced representation of the partition
(V1, . . . , Vk). For example, in our target application of redistricting, the vertices of the
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A3348 ABRISHAMI ET AL.

graph correspond to geographic units such as census blocks, and \omega might represent
populations associated with these units, which typically are balanced between voting
districts but not identical from one unit to the next.

We address this first at the level of M(V ) with some inspiration from the for-
mulations of unbalanced OT in [9, 26]. Let x, y \in M(v). For p \geq 1 and \lambda > 0, the
unbalanced problem minimizes (see subsection 6.4 for further discussion when p = 1)

(6.1)
min

J\in R| E| ,z\in R| V | 
\| J\| 1 + \lambda \| z\| p

subject to P\top J = y  - x+ z.

Then, we introduce a distance function on the space M(V ) of unbalanced partition
components of a graph G = (V,E, \omega ) as follows.

Let X = (x1, . . . , xk), Y = (y1, . . . , yk) \in M(V )k\ast be unbalanced partitions of G.
The distance between components xi and yj is defined as

(6.2) C\lambda ,p(xi, yj) =

\left\{   min
J\in R| E| ,z\in R| V | 

\| J\| 1 + \lambda \| z\| p
subject to P\top J = yj  - xi + z,

where \lambda \geq 0 and p \geq 1 are parameters of the distance function C\lambda ,p. The variable z
allows slack in the mass transported to or from each vertex under the transport plan,
and \lambda and p determine the weight of z relative to J in the objective. In subsection 6.3,
we discuss how \lambda affects C\lambda ,p. We first show that C\lambda ,p defines a valid metric on M(V ).

Proposition 6.1. C\lambda ,p(x, y) is a metric on M(V ) when \lambda \geq 0 and p \geq 1.

Proof. It is immediate that C\lambda ,p is nonnegative and symmetric.
Let x, y \in M(V ), and suppose x = y. Then, J = 0 and z = 0 are feasible for C\lambda ,p,

so C\lambda ,p = 0. Conversely, let x, y \in M(V ), and suppose C\lambda ,p = 0. Then, J = 0 and
z = 0, so the constraint P\top J = y  - x+ z implies that x = y.

Now, suppose x, y, w \in M(V ), and let

C\lambda ,p(x, y) = \| Jxy\| 1 + \lambda \| zxy\| p,

C\lambda ,p(x,w) = \| Jxw\| 1 + \lambda \| zxw\| p,

C\lambda ,p(w, y) = \| Jwy\| 1 + \lambda \| zwy\| p.

Then, P\top (Jxw + Jwy) = y  - x+ zxw + zwy, so Jxw + Jwy and vxw + vwy are feasible
for C\lambda ,p(x, y). Since Jxy and vxy are optimizers for C\lambda ,p(x, y), we have

\| Jxy\| 1 + \lambda \| vxy\| p \leq \| Jxz + Jzy\| 1 + \lambda \| vxz + vzy\| p
\leq \| Jxz\| 1 + \| Jzy\| 1 + \lambda \| vxz\| p + \lambda \| vzy\| p.

Hence, C\lambda ,p(x, y) \leq C\lambda ,p(x, z) + C\lambda ,p(z, y), so C\lambda ,p satisfies the triangle inequality.

6.2. Distances between unbalanced partitions. We now extend the lifted
distance from subsection 5.2 to a general lifted distance between unbalanced partitions.

Definition 6.2 (unbalanced lifted distance). The unbalanced lifted distance
A\lambda ,p :M(V )k\ast \times M(V )k\ast \rightarrow R between partitions X and Y is defined as

(6.3) A\lambda ,p(X,Y ) =

\Biggl\{ 
min

S\in Rk\times k

\sum 
ij

SijC\lambda ,p(xi, yj)

subject to S \in DSk,
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GEOMETRY OF GRAPH PARTITIONS VIA OPTIMAL TRANSPORT A3349

where X = (x1, . . . , xk), Y = (y1, . . . , yk) \in M(V )k\ast and C\lambda ,p is the unbalanced
distance between partitions in (6.2).

Like the balanced case, the unbalanced lifted distance uses a linear assignment
problem to find a minimum-cost matching of the partition components. The unbalanced
lifted distance induces a valid metric on the space of unbalanced graph partitions.

Proposition 6.3. The lifted distance A\lambda ,p in (6.3) is a metric on M(V )k\ast .

The proof of Proposition 6.3 follows from the proof of Proposition 5.5.

6.3. Basic properties. In this section, we prove several properties of the un-
balanced lifted distance (6.3). First, we show that C\lambda ,p and A\lambda ,p are monotonic in
\lambda .

Proposition 6.4. The unbalanced cost function C\lambda ,p is monotonic in \lambda .

Proof. Suppose \lambda 1, \lambda 2 \geq 0 and \lambda 2 > \lambda 1. Let J2 and z2 be optimizers for
C\lambda 2,p(xi, yj). Then, J2 and z2 are feasible for C\lambda 1,p(xi, yj), so

C\lambda 1,p(xi, yj) \leq 
\sum 
e

| Je2 | + \lambda 1\| z2\| p \leq 
\sum 
e

| Je2 | + \lambda 2\| z2\| p \leq C\lambda 2,p(xi, yj).

Therefore, if \lambda 2 > \lambda 1, we have C\lambda 2,p \geq C\lambda 1,p.

Corollary 6.5. The unbalanced lifted distance A\lambda ,p is monotonic in \lambda .

Proof. Suppose \lambda 1, \lambda 2 \geq 0 and \lambda 2 > \lambda 1. Let S2 be an optimizer for A\lambda 2,p. Since
S2 is feasible for A\lambda 1,p,

A\lambda 1,p \leq 
\sum 
ij

S2ijC\lambda 1,p(xi, yj) \leq 
\sum 
ij

S2ijC\lambda 2,p(xi, yj) = A\lambda 2,p,

as desired.

In the following proposition, we show that the norm of the optimizer of the mass
difference z for C\lambda ,p is monotonic in \lambda .

Proposition 6.6. The p-norm of the optimizer z\lambda for the unbalanced cost function
C\lambda ,p is monotonic in \lambda .

Proof. Suppose \lambda 1, \lambda 2 \geq 0 and \lambda 2 > \lambda 1. Let J1 and z1 be optimizers for C\lambda 1,p,
and let J2 and z2 be optimizers for C\lambda 2,p. Since J2 and z2 are feasible for C\lambda 1,p,
\| J1\| 1 + \lambda 1\| z1\| p \leq \| J2\| 1 + \lambda 1\| z2\| p, and thus \| J1\| 1  - \| J2\| 1 \leq \lambda 1(\| z2\| p  - \| z1\| p). By
an identical argument, \| J1\| 1 - \| J2\| 1 \geq \lambda 2(\| z2\| p - \| z1\| p). Combining these expressions,
\lambda 2(\| z2\| p  - \| z1\| p) \leq \lambda 1(\| z2\| p  - \| z1\| p). Since \lambda 2 > \lambda 1 by assumption, we must have
\| z2\| p  - \| z1\| p \leq 0, as needed.

In Proposition 5.8, we formulate the balanced lifted distance as a combined linear
program. We can derive a similar program for the unbalanced lifted distance.

Proposition 6.7. The unbalanced lifted distance A\lambda ,p(X,Y ) satisfies

(6.4) A\lambda ,p(X,Y ) =

\left\{         
min

Q\in R| E| \times k2 ,S\in Rk\times k,u\in R| V | \times k2

\sum 
ij

\biggl( \sum 
e\in E

| Qeij | + \lambda \| uij\| p
\biggr) 

subject to S \in DSk,

P\top Qij  - (xi  - yj)Sij = uij .
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A3350 ABRISHAMI ET AL.

Proof. This proof proceeds identically to the proof of Proposition 5.8. Plugging
the unbalanced transport cost (6.2) into the unbalanced lifted distance (6.3), we get

A\lambda ,p(X,Y ) =

\left\{               

min
S\in Rk\times k

\sum 
ij

Sij

\biggl( \sum 
e\in E

| J\ast e
ij | + \lambda \| z\ast ij\| p

\biggr) 
subject to S \in DSk

J\ast 
ij , z

\ast 
ij =

\Biggl\{ 
argmin
Jij ,zij

\sum 
e\in E

| Jeij | + \lambda \| zij\| p
subject to P\top Jij = xi  - yj + zij .

Since the inner and outer problems are both minimizations, this simplifies to

A\lambda ,p(X,Y ) =

\left\{         
min

S\in Rk\times k,J\in R| E| \times k2 ,z\in R| V | \times k

\sum 
ij

Sij

\biggl( \sum 
e\in E

| Jeij | + \lambda \| zij\| p
\biggr) 

subject to S \in DSk,

P\top Jij = xi  - yj + zij

The variable substitutions Qeij = SijJ
e
ij and uij = Sijzij give the desired result.

The dual of (6.4) is given by

(6.5) A\lambda ,p(X,Y ) =

\left\{             

max
\phi ,\psi \in Rk,\gamma \in R| V | \times k2

1
\top (\phi + \psi )

subject to \phi i + \psi j \leq \gamma \top ij (xi  - yj),

| \gamma wij  - \gamma vij | \leq 1 \forall (w, v) \in E,

\| \gamma ij\| q \leq \lambda ,

where the q-norm, satisfying

q =

\Biggl\{ 
p
p - 1 p > 1,

\infty p = 1,

is the dual of the p-norm in the primal objective. Slater's condition [38] gives that
strong duality holds for (6.4), since we can write the inner problem (6.2) as

(6.6) C\lambda ,p(xi, yj) =

\left\{     
min

J\in R| E| \times k2 ,z\in R| V | ,m\in R
\| J\| 1 + \lambda m

subject to P\top J = yj  - xi + z,
m \geq | | z| | p.

The final constraint is the only nonlinear one, and for any solution satisfying the
linear constraints, we can choose m to be large enough that this solution satisfies the
nonlinear constraint with strict inequality. The linear program that computes the
optimal matching does not introduce any additional nonlinear constraints, so Slater's
condition is satisfied for (6.4), and strong duality holds.

Next, we show that for balanced partitions, the general distance is an extension of
the balanced distance. Specifically, if we take p = 1, there exists \lambda sufficiently large
such that the unbalanced distance between two balanced partition components is equal
to the balanced distance. The following proposition formalizes this notion.

Proposition 6.8. If X and Y are balanced partitions of a graph G and \lambda \geq 
diam(G)/2, then C\lambda ,1(xi, yj) =W1(xi, yj) for xi \in X, yj \in Y .
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GEOMETRY OF GRAPH PARTITIONS VIA OPTIMAL TRANSPORT A3351

Proof. Suppose \=J and \=z are optimizers for C\lambda ,1(xi, yj). We know
\sum 
v\in V xi(v) +\sum 

v\in V \=z(v) =
\sum 
v\in V yj(v), so when X and Y are balanced,

\sum 
v\in V \=z(v) = 0. Let \=z+

and \=z - be defined such that

\=z+(v) =

\Biggl\{ 
z(v) z(v) > 0,

0 otherwise
and \=z - (v) =

\Biggl\{ 
| z(v)| z(v) < 0,

0 otherwise.

Let J\ast represent the OT plan between \=z - and \=z+. Then,

\| J\ast \| 1 \leq diam(G)
\sum 
v\in V

| \=z - (v)| = diam(G)

2

\sum 
v\in V

| \=z(v)| .

Therefore,

(6.7) \| \=J\| 1 + \| J\ast \| 1 \leq \| \=J\| 1 +
diam(G)

2
\| \=z\| 1 \leq C\lambda ,1(xi, yj).

Since PT ( \=J + J\ast ) = (xi  - yj + \=z) + (\=z -  - \=z+) = xi  - yj , we know \=J + J\ast is feasible
for W1(xi, yj), and

(6.8) W1(xi, yj) \leq \| \=J + J\ast \| 1 \leq \| \=J\| 1 + \| J\ast \| 1.

Combining (6.7) and (6.8), we get W1(xi, yj) \leq C\lambda ,1(xi, yj). In the balanced case,
C\lambda ,1(xi, yj) \leq W1(xi, yj), so W1(xi, yj) = C\lambda ,1(xi, yj), as desired.

We can extend the previous result to show that for \lambda \geq diam(G)/2, the unbalanced
lifted distance is equal to the balanced lifted distance for balanced partitions.

Corollary 6.9. If X and Y are balanced partitions of a graph G and \lambda \geq 
diam(G)/2, then A\lambda ,1(X,Y ) = A(X,Y ).

Proof. When W1(xi, yj) = C\lambda ,1(xi, yj) for all xi \in X, yj \in Y , the definition of
lifted distance in (5.3) is the same as the unbalanced lifted distance in (6.3).

6.4. The unbalanced transport problem when \bfitp = 1. When p = 1, the
unbalanced problem (6.1) is equivalent to a discrete version of the transportation
problem with boundary studied by Figalli and Gigli [18], which is to (6.1) what the
Kantorovich problem in (4.1) is to (4.2). The idea is to modify the Kantorovich
problem by adding vertices that serve as infinite-capacity sinks/reservoirs that can
receive or provide mass to compensate for unequal total masses between x, y \in M(V ).

In our case, we expand the graph G = (V,E, \omega ) by adding one extra auxiliary
vertex vs. We also add edges between every vertex and vs, all with the the same
weight \lambda > 0. Concretely, we define G\ast = (V\ast , E\ast , \omega \ast ) as follows:

V\ast := V \cup \{ vs\} , E\ast := E \cup V \times \{ vs\} \cup \{ vs\} \times V, and

\omega \ast (e) :=

\biggl\{ 
\omega (e) if e \in E,

\lambda if e \in E\ast \setminus E.

We denote by d\lambda (v, w) the resulting graph distance in V \ast ; this simply extends the
distance in G via d(v, vs) = \lambda for every v \in V .

Given x, y \in M(V ), we will say that \pi \in M(V \times V ) is an admissible transport
plan for x and y with sink at vs if\sum 

w\in V\ast 

\pi (v, w) = x(v) \forall v \in V and
\sum 
v\in V\ast 

\pi (v, w) = y(w) \forall w \in V.
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A3352 ABRISHAMI ET AL.

This condition is similar to the usual Kantorovich problem from (4.1), except in our
larger space we do not impose the marginal constraint at vs; this means we are free to
move any amount of mass to, from, or through vs. The set of such admissible plans
will be denoted \Pi \ast (x, y). Then, the analogue of the Kantorovich problem is

min
\pi \in \Pi \ast (x,y)

\sum 
v,w\in V\ast 

d\lambda (v, w)\pi (v, w).(6.9)

We will show that problem (6.9) is equivalent to problem (6.1) when p = 1.

Lemma 6.10. The minimum for (6.9) is the same as the minimum for the problem

(6.10)
minJ\in R| E| \| J\| 1 + \lambda \| z\| 1
subject to P\top J = y  - x+ z.

Moreover, from any \pi that minimizes (6.9) we can construct (J, z) that minimizes
(6.10).

To prove Lemma 6.10, let us make some preliminary observations. The essence
of the proof lies in the following construction, which is commonly used to prove the
equivalence between (4.1) and (4.2) (see [36, section 4.2]). For every v, w \in V\ast , choose
a minimal path from v to w, and denote by E(v, w) \subset E\ast the set of edges in this
path. That is, if the minimal path between v and w is v = v0, . . . , vN = w, then
E\ast (v, w) = \{ (v0, v1), (v1, v2), . . . , (vN - 1, vN )\} . Then, given any \pi \in M(V\ast \times V\ast ) we
define J\pi : E\ast \rightarrow R and z\pi : V\ast \rightarrow R as follows:

J\pi ,e :=
\sum 
v\in V\ast 

\sum 
w\in V\ast 

1E(v,w)(e)\pi (v, w), z\pi (v) := \pi (v, vs) - \pi (vs, v).(6.11)

The proof of Lemma 6.10 boils down to showing that if \pi minimizes (6.9), then (J\pi , z\pi )
given by (6.11) minimizes (6.10). We start by showing (J\pi , z\pi ) is admissible.

Proposition 6.11. Let x, y \in M(V ). If \pi \in \Pi \ast (x, y), then (P\top J\pi )(v) = y(v) - 
x(v) + z\pi (v) for v \in V. Moreover, we have, with P\ast denoting the incidence matrix for
the graph G\ast , (P

\top 
\ast J\pi )(v) = y(v) - x(v) for v \in V.

Proof. Let Ein(v) and Eout(v) denote the sets of the incoming and outgoing edges
of vertex v, respectively; then

(P\top J\pi )(v) =
\sum 

e\in Ein(v)

J\pi ,e  - 
\sum 

e\in Eout(v)

J\pi ,e.

Fix v0, w0 \in V , and let \pi 0 be the function

\pi 0(v, w) =

\biggl\{ 
1 if (v, w) = (v0, w0),
0 otherwise.

Then, we have \sum 
e\in Eout(v0)

J\pi ,e  - 
\sum 

e\in Ein(v0)

J\pi ,e = 1,

\sum 
e\in Eout(w0)

J\pi ,e  - 
\sum 

e\in Ein(w0)

J\pi ,e =  - 1, and

\sum 
e\in Eout(v)

J\pi ,e  - 
\sum 

e\in Ein(v)

J\pi ,e = 0 if v \not = v0, w0.
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GEOMETRY OF GRAPH PARTITIONS VIA OPTIMAL TRANSPORT A3353

From a linear combination of these identities for each pair (v0, w0) \in V \times V we obtain
the following formula for any \pi \in M(V \times V ):\sum 

e\in Eout(v)

J\pi ,e  - 
\sum 

e\in Ein(v)

J\pi ,e =
\sum 
w\in V\ast 

\pi (w, v) - 
\sum 
v\in V\ast 

\pi (v, w).

Now, if \pi is an admissible plan, we have\sum 
e\in Eout(v)

J\pi ,e - 
\sum 

e\in Ein(v)

J\pi ,e =
\sum 
w\in V

\pi (w, v) - 
\sum 
w\in V

\pi (v, w)+\pi (vs, v) - \pi (v, vs)

= x(v) - y(v) - z\pi (v).

It follows that (P\top J\pi )v = y(v) - x(v) + z\pi (v), proving the first identity. For the
second, observe

(P\top 
\ast J\pi )v =

\sum 
e\in E\ast 

PevJ\pi ,v =
\sum 
e\in E

PevJ\pi ,v +
\sum 
w\in V

P(w,vs)vJ\pi ,w +
\sum 
w\in V

P(vs,w)vJ\pi ,w

= (P\top J\pi )(v) - J\pi ,(v,vs) + J\pi ,(vs,v).

Using that J\pi ,(v,vs) = \pi (v, vs) and J\pi ,(vs,v) = \pi (vs, v) together with the formula for

(P\top J\pi )v, we obtain

(P\top 
\ast J\pi )v = y(v) - x(v) + z\pi (v) - \pi (v, vs) + \pi (vs, v) = y(v) - x(v),

and the second formula is proved.

With this, we are ready to prove the equivalence between the two problems.

Proof of Lemma 6.10. Let \pi be a minimizer for problem (6.9). According to
Proposition 6.11, (J\pi , z\pi ) is an admissible pair for problem (6.10). Therefore,

\| J\pi \| 1 + \lambda \| z\pi \| 1 \geq 
\biggl\{ 

minJ\in R| E| \| J\| 1 + \lambda \| z\| 1
subject to P\top J = y  - x+ z.

We have J\pi ,e \geq 0 for every e, and hence\sum 
e\in E\ast 

| J\pi ,e| \omega (e) =
\sum 
e\in E\ast 

J\pi ,e\omega (e) =
\sum 
e\in E\ast 

\sum 
v\in V\ast 

\sum 
w\in V\ast 

1E(v,w)(e)\omega (e)\pi (v, w)

=
\sum 
v\in V\ast 

\sum 
w\in V\ast 

\Biggl( \sum 
e\in E

1E(v,w)(e)\omega (e)

\Biggr) 
\pi (v, w).

From the definition of the sets E(v, w), for any v, w \in V\infty we have\sum 
e\in E\ast 

1E(v,w)(e)\omega (e) = d\lambda (v, w).

Therefore,
\sum 
e\in E\ast 

| J\pi ,e| \omega (e) =
\sum 
v\in V\ast 

\sum 
w\in V\ast 

d\lambda (v, w)\pi (v, w). On the other hand, the
sum on the left can be decomposed as\sum 

e\in E\ast 

J\pi ,e\omega (e) =
\sum 
e\in E

J\pi ,e\omega (e) +
\sum 
v\in V

J\pi ,(v,vs)\omega (v, vs) +
\sum 
v\in V

J\pi ,(vs,v)\omega (vs, v).

Since \omega (vs, v) = \omega (v, vs) = \lambda for every v \in V ,
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A3354 ABRISHAMI ET AL.\sum 
e\in E\ast 

J\pi ,e\omega (e) =
\sum 
e\in E

J\pi ,e\omega (e) + \lambda 
\sum 
v\in V

J\pi ,(v,vs) + J\pi ,(vs,v).

From the definition of J\pi ,e, J\pi ,(vs,v) = \pi (vs, v) and J\pi ,(v,vs) = \pi (v, vs) for every v \in V.
The minimizer \pi can always be modified so that for every v at most one of \pi (v, vs)
and \pi (vs, v) is nonzero. In this case | z\pi (v)| = \pi (v, vs) + \pi (vs, v) for every v \in V , and\sum 

e\in E\ast 

J\pi ,e\omega (e) =
\sum 
e\in E

J\pi ,e\omega (e) + \lambda 
\sum 
v\in V

| z\pi (v)| .

This shows that \sum 
v\in V\ast 

\sum 
w\in V\ast 

d\lambda (v, w)\pi (v, w) = \| J\pi \| 1 + \lambda \| z\pi \| 1,

which shows the minimum for (6.9) is no smaller than the minimum for (6.10).
For the reverse inequality we will implicitly use the dual problem to (6.9). Consider

pairs of functions \phi , \psi : V\ast \rightarrow R such that \phi (vs) = \psi (vs) = 0 and for every v, w \in V\ast 

\phi (v) + \psi (w) \leq d\lambda (v, w).(6.12)

Following [20, Appendix A], the dual problem to (6.9) is maximizing the functional\sum 
v\in V

\phi (v)x(v) +
\sum 
w\in V

\psi (w)y(w)

over all pairs \phi , \psi described above. Let us show that the minimum of (6.10) is larger
than this for any \phi , \psi . Without loss of generality, we may assume that \phi is such that

\phi (v) = min
w\in V \ast 

d\lambda (v, w) - \psi (w).

In this case it is easy to see that | \phi (v)  - \phi (v)| \leq d\lambda (v, w) for every v and w. In
particular, if e = (v, w) is an edge, we have | \phi (w)  - \phi (v)| \leq d\lambda (v, w) = \omega (e). Since
(P\ast \phi )e = \phi (w) - \phi (v), this shows | (P\ast \phi )e| \leq \omega (e) for every e \in E\ast . Combining these
inequalities for each e \in E\ast and using the dual of P\ast , we have\sum 

e\in E\ast 

\omega (e)| Je| \geq  - 
\sum 
e\in E\ast 

Je(P\ast \phi )e =
\sum 
v\in V\ast 

(P\top 
\ast J)v\phi (v).

Since \phi (vs) = 0 and (P\top 
\ast J)v = y(v) - x(v) when v \not = vs, it follows that\sum 

e\in E\ast 

\omega (e)| Je| \geq 
\sum 
v\in V

\phi (v)(x(v) - y(v)) =
\sum 
v\in V

\phi (v)x(v) - 
\sum 
v\in V

\phi (v)y(v).

On the other hand, applying (6.12) with v = w yields the inequality \psi (v) \leq  - \phi (v) for
every v, from where it follows that\sum 

v\in V
\phi (v)x(v) - 

\sum 
v\in V

\phi (v)y(v) \geq 
\sum 
v\in V

\phi (v)x(v) +
\sum 
v\in V

\psi (v)y(v).

In conclusion, for every admissible pair \phi and \psi we have the inequality\sum 
e\in E\ast 

| Je| \omega (e) \geq 
\sum 
v\in V

\phi (v)x(v) +
\sum 
v\in V

\psi (v)y(v).

Taking the supremum over all admissible \phi and \psi we have, by duality,\sum 
e\in E\ast 

| Je| \omega (e) \geq inf
\pi \in \Pi \ast 

\sum 
v\in V\ast 

\sum 
w\in V\ast 

d\lambda (v, w)\pi (v, w),

and this finishes the proof.
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GEOMETRY OF GRAPH PARTITIONS VIA OPTIMAL TRANSPORT A3355

6.5. Overview of the distance. Informally, the lifted distance between par-
titions X = (x1, . . . , xk) and Y = (y1, . . . , yk) quantifies the notion of how difficult
it is to change partition X into partition Y , working componentwise. Suppose, for
example, that x1 = y1. Intuitively, then, when changing X to Y , the component x1
should remain the same; this idea is formalized in Proposition 5.7. Similarly, when
changing x2 into a component of Y , we would prefer to turn x2 into a component
yi that is almost equal to x2 instead of a component yj that is very different from
x2. The linear assignment performs this calculation over all the components at once,
matching each xi to a component yj such that the total difference across all matched
pairs is as small as possible.

In the unbalanced case, not all of the components have the same weight. Therefore,
it may not be possible to change component xi into any component yj exactly. For
this reason, the unbalanced component distance between xi and yj allows xi to fail to
be matched exactly to yj , and the cost incorporates the extent of this failure; this is
represented by the variable z in the unbalanced component distance (6.2). When the
penalty for a component xi failing to exactly become yj is high, we prefer to match xi
to a component yj with similar total weight, to minimize the failure. If the penalty
for xi failing to exactly become yj is sufficiently high, the unbalanced distance will
ensure that xi perfectly becomes yj when X and Y are balanced; this is proven in
Proposition 6.8.

7. Bounds. We can relate our distance on partitions to other constructions in
the literature: the Hamming distance and the total variation distance.

The Hamming distance between two binary strings of equal length is the number
of positions in which they differ. Inspired by this definition, [22] computes a notion of
Hamming distance between two graph partitions X and Y . Using v \in xi to indicate
that vertex v belongs to component i of partition X, the Hamming distance is

(7.1) distHAM(X,Y ) =

\Biggl\{ 
min

S\in Rk\times k

\sum 
v\in V

\sum 
ij

Sij1 [v \in xi \wedge v /\in yj ]

subject to S \in DSk.

That is, for a given matching of the components, we count the number of vertices
whose label differs and take the minimum over all matchings. Generalizing to non-
binary functions for the weights on vertices, we can formulate a distance as the sum
of the vertexwise differences in weights over the matched components. First, we can
write the L1 or total variation distance between two components xi and yj as

(7.2) \ell 1(xi, yj) =
1

2

\sum 
v\in V

| xi(v) - yj(v)| ,

and we can lift this to a distance between partitions by solving the assignment problem
using \ell 1 as the cost function. We write

(7.3) L1(X,Y ) =

\Biggl\{ 
min

S\in Rk\times k

\sum 
v\in V

\sum 
ij

Sij\ell 1(xi, yj)

subject to S \in DSk.

These distances are of the same form as (5.3) but with different cost functions C.
We can show that, for any choice of weight on the vertices, the L1 distance

lower-bounds the transport distance between partitions.

Proposition 7.1. For balanced X and Y , we have L1(X,Y ) \leq A(X,Y ).
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A3356 ABRISHAMI ET AL.

Proof. Consider a pair of components xi and yj . From (4.1), we know that

W1(xi, yj) = min
\pi \in \Pi (xi,yj)

\sum 
v,w\in V

d(v, w)\pi (v, w).

Because d(v, w) is the shortest path distance between v and w, d(v, w) = 0 if and only
if v = w, and d(v, w) \geq 1 otherwise. Therefore, for any \pi \in \Pi (xi, yj),\sum 

v,w\in V
d(v, w)\pi (v, w) =

\sum 
v \not =w

d(v, w)\pi (v, w) \geq 
\sum 
v \not =w

\pi (v, w).

Let \pi \ast be the element of \Pi (xi, yj) that minimizes W1(xi, yj). Then,\sum 
v \not =w

\pi \ast (v, w) =
\sum 
v,w\in V

\pi \ast (v, w) - 
\sum 
v\in V

\pi \ast (v, v) =
\sum 
v\in V

(xi(v) - \pi \ast (v, v)) .

Because \pi \ast moves as little mass as possible, \pi \ast (v, v) = min(xi(v), yj(v)). Then,

xi(v) - \pi \ast (v, v) =

\Biggl\{ 
0 if xi(v) \leq yj(v),

xi(v) - yj(v) otherwise,

and hence
\sum 
v \not =w \pi 

\ast (v, w) =
\sum 
v\in V,xi(v)\geq yj(v) xi(v) - yj(v) =

1
2

\sum 
v\in V | xi(v) - yj(v)| .

Therefore, we have shown that

min
\pi \in \Pi (xi,yj)

\sum 
v,w\in V

d(v, w)\pi (v, w) \geq 1

2

\sum 
v\in V

| xi(v) - yj(v)| ,

so W1(xi, yj) \geq \ell 1(xi, yj).
Now, let S denote the optimal matching for A(X,Y ) given in (5.3). Then,

A(X,Y ) =
\sum 
ij SijW1(xi, yj) \geq 

\sum 
ij Sij\ell 1(xi, yj) \geq L1(X,Y ), as desired.

Qualitatively, we expect some differences between the L1 and transport distances.
L1 does not see the graph structure, since it is computed from only overlap. For
this reason, qualitatively similar components with little overlap are as far apart in
L1 as components on opposite sides of the graph, whereas transport recognizes that
the former are closer than the latter. This can happen if we take one partition with
thin components (i.e., nearly every vertex is on the boundary of a component) and
construct a new partition by slightly perturbing the first. We expect little overlap
between these partitions, but this small perturbation can be corrected by moving
mass a short distance, which gives rise to high L1 distance but low transport distance.
We give a concrete example in subsection 8.3, where two partitions of the grid with
``snakey"" components are far apart in L1 but not in transport distance because the first
partition is a small perturbation of the second.

8. Experiments and empirical evaluation. In this section, we provide a suite
of empirical applications of our metric using both synthetic data from grid partitions
and real geographic data including election results.

8.1. Implementation and experimental setup. We run our experiments
using Python on consumer-grade hardware; our code is available on GitHub.1 We
use CVXPY [16] and scikit-learn [33] for optimization and embedding. The grid

1https://github.com/vrdi/geometry-of-graph-partitions.
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GEOMETRY OF GRAPH PARTITIONS VIA OPTIMAL TRANSPORT A3357

partitions in subsection 8.2 and Markov chain sampling in subsections 8.4 to 8.6 rely on
the enumerator [37] and GerryChain [29] packages available on GitHub. Spatial and
electoral data comes from the mggg-states repository [30], the National Historical
Geographic Information System database [27], and the data accompanying [22] from
the Quantifying Gerrymandering group [21].

Many of our examples embed multiple partitions of a fixed graph onto the plane to
visualize an ensemble, using the method outlined below. We store pairwise distances
between the n partitions in a matrix D, where Dij is the distance between partitions
i and j. We then would like to find a set of points P1, . . . , Pn \in R2 such that
\| Pi  - Pj\| 2 \approx Dij . Doing so with zero distortion may be impossible or may require
using a high-dimensional ambient space. To resolve this issue, we use multidimensional
scaling (MDS), which computes P1, . . . , Pn in a way that (approximately) minimizes

(Dij  - dist(Pi, Pj))
2
. For a modern treatment of MDS, see [4].

8.2. Grid partitions. We begin by examining distances between partitions of a
grid graph. While the number of feasible districting plans for a US state is unfathomably
large, for small grids the number of partitions is more manageable; for example, there
are only 117 ways to partition a 4\times 4 grid into four connected components with four
vertices in each component. We can therefore compute the transport distance between
all or a large portion of the possible partitions and embed them in the plane.

In Figure 1, we show the MDS embedding of the pairwise transport distances
between the ten partitions of a 3\times 3 grid into three connected components of size three
(i.e., the triomino tilings). This visualization reveals several features of the metric
space. The two partitions into horizontal and vertical ``stripes"" are the furthest apart,
and the remaining eight partitions cluster in pairs based on which straight triomino is
included in the partition. For example, the two partitions near the middle-top both
have a straight triomino along the top row and two ``L""-triominos covering the lower
two rows. Furthermore, the partitions that include a horizontal straight triomino fall
in the top-left half, and the ones with a vertical straight triomino fall in the lower-right
half. The two top-right partitions share an ``L""-triomino, as does the lower-left pair.

Similar phenomena can be observed in the embedding of the 117 partitions of
the 4\times 4 grid into four connected components of size four (i.e., the tetromino tilings)
in Figure 2. Again, the two `striped' partitions are the furthest apart, and there are
visible clusters of partitions with similar compositions. Additionally, there are two

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

Fig. 1. The ten partitions of the 3\times 3 grid
into three equal-sized components.

−20 −10 0 10 20

−10

0

10

Fig. 2. The 117 partitions of the 4\times 4 grid
into four equal-sized components.

© 2020 Tara Abrishami, Nestor Guillen, Parker Rule, Zachary Schutzman, Justin Solomon, Thomas
Weighill, Si Wu

D
ow

nl
oa

de
d 

12
/0

8/
20

 to
 1

30
.6

4.
11

.1
61

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/p

ag
e/

te
rm

s



A3358 ABRISHAMI ET AL.

−20 −15 −10 −5 0 5 10 15 20
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Fig. 3. The four central and two peripheral partitions of the 4\times 4 grid.
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−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Fig. 4. Two samples of 102 partitions of the 6\times 6 grid into three components.

partitions each composed of four ``T""-tetrominos and two partitions composed of four
``L""-tetrominos which are at the center of this metric space, and these appear in the
middle of the image. Figure 3 highlights this structure.

To illustrate the balanced case, in Figure 4 we sample from partitions of the 6 \times 6
grid into three equal-sized components. There are 264,500 such partitions, and hence
computing pairwise distances is not practical or informative. Rather, we examine
a random sample of 100 partitions, plus the two ``striped"" partitions. The familiar
structure emerges: the ``striped"" partitions are the furthest apart, and visually similar
partitions appear near one another in the embedding.

To examine the unbalanced problem, we look at partitions of the 3 \times 3 grid into
three components of size between one and five, inclusive. There are 170 such partitions,
including those in Figure 1. We use (6.4) with p = 1. We vary \lambda to illustrate properties
of the unbalanced cost function for different parameter regimes:
\bullet First, we take \lambda = 0.5, so the cost of sending flow through an edge is the same as
leaving it as unbalanced mass in z. This formulation is similar to the Hamming
and total variation distances (section 7), where the cost to match component xi in
the first partition to component yj in the second is the number of vertices in the
set difference xi \setminus yj . Figure 5 confirms this observation: Nearby partitions tend to
have a component in common and the other two components are similar to each
other, often differing in the assignment of only one vertex.
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−4 −2 0 2 4

−2

0

2

Fig. 5. The partitions of the 3\times 3 grid into three components of size 3\pm 2 with a penalty of
\lambda = .5.

−10 −5 0 5 10
−10

−5

0

5

10

Fig. 6. The partitions of the 3\times 3 grid into three components of size 3\pm 2 with a penalty of
\lambda = 2.

\bullet Next, we consider \lambda = 2, shown in Figure 6, where the cost of leaving one unit in z
equals the graph diameter. As in Proposition 6.8, for any pairing of the partition
components, it will be suboptimal to move mass through z unless absolutely necessary,
in the case that two components of differing mass are matched.

\bullet The \lambda = 2 case contrasts significantly with \lambda = 5, shown in Figure 7. Here,
the cost of having mass in z is so high that the distance between any pair of
unbalanced partitions should be larger than the distance between any pair of
balanced partitions. In the embedding, we see the partitions for which there exists
a matching of components of equal mass cluster together. Furthermore, we see the
familiar structure emerge in each cluster separately. For example, the ten partitions
consisting of three components of size three appear together at the top of the Figure 7
in an arrangement similar to the one in Figure 1.

8.3. Hamming distance vs. transport distance on a grid. Because the
Hamming distance depends only on the amount of overlap between two districts in a
partition, it is insensitive to the distances between vertices in the graph. To illustrate
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Fig. 7. The partitions of the 3\times 3 grid into three components of size 3\pm 2 with a penalty of
\lambda = 5.

(a) Chain 1 start (b) Chain 2 start (c) Chain 1 end (d) Chain 2 end

Fig. 8. Two Markov chains on a 60-by-60 grid.

the difference between the Hamming and transport distances, we run two Markov
chains of partitions of a 60\times 60 grid into six components.

These Markov chains, at each time step, relabel a random vertex in the graph. If
the resultant partition consists of connected components that all have nearly the same
number of vertices, this partition is accepted and we propose another vertex to relabel.
Otherwise, the step is rejected and we retry. As shown in [32], this procedure results
in partitions with geometrically irregular and highly noncompact components; as an
example, the start and end positions of each chain are shown in Figure 8.

We let both chains run and compute the distance between them at every 1,000th
step, using Hamming and transport distance; Figure 9 shows the result. Over time,
Hamming distance increases while transport distance decreases. The plots in Figure 10
show that in this situation, transport and Hamming distinguish qualitatively different
properties. The Hamming distance highlights that the initial partitions many overlap-
ping vertices while the final partitions do not. Contrastingly, the transport distance
detects that transforming the initial partition into the other requires moving mass a
large distance through the graph, while less work is needed to match the final plans
since their boundaries are interleaved. Put differently, partitions whose boundaries are
long and intertwined are similar under the transport metric because mass does not
have to be displaced a long distance to convert one into the other, while Hamming
distances simply count overlapping vertices.

8.4. Simulated annealing on Arkansas. A more sophisticated technique for
generating partitions meeting a specific criterion uses simulated annealing, where a
weighting function is tuned over time to first allow rapid exploration of the space of
possibilities and later to settle into a local optimum.
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Fig. 9. Distance between Chain 1 and Chain 2.

−4 −2 0 2 4

−2

0

2

start
start

Chain 1
Chain 2

(a) Hamming distance

−60 −40 −20 0 20 40 60

−40

−20

0

20

40

start start

Chain 1
Chain 2

(b) Transport distance

Fig. 10. MDS embeddings of Chain 1 and Chain 2.

To show how our distance can be used to analyze such a process, we run a Markov
chain to partition Arkansas into four congressional districts, focusing on producing
compact plans. We take 500,000 steps along the Markov chain using the random
relabelling proposal as in subsection 8.3. To perform annealing, the first 100,000 are
taken without weighting, and for steps 100,000 to 500,000 we accept a proposed step
with probability proportional to exp(\beta | \partial P | ), where \partial P denotes the number of edges in
the graph which join two vertices in different components, a discretization of boundary
length. The parameter \beta ranges linearly from \beta = 0 (no weighting) to \beta = 3 from step
100,000 to step 400,000 and is fixed at 3 for the final 100,000 steps.

We show the Hamming distance and transport distance embeddings of every
10,000th plan in three different annealing chains in Figure 11. We also show the
pairwise distances for the red chain in Figure 11 as a heatmap in Figure 12. Note
the difference between the Hamming and transport distance matrices in the early
stages of the chain, which results in a qualitative difference in the embeddings. In
particular, the transport distance shows a clear clustering of plans before and after plan
15 (i.e., the 150,000th step in the chain, early on in the cooling phase). This transition
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Fig. 11. Three Markov chain-generated walks in the space of partitions with simulated annealing.

(a) Hamming distance (b) Transport distance

Fig. 12. Pairwise distance matrices for every 10,000th step in one simulated annealing walk
(the red chain in Figure 11).

could be related to the phase transition in sampling from a distribution proportional
to an exponent of total perimeter, observed in [32]. Both embeddings in Figure 11
show that when the chain is unrestrained by the Metropolis weighting, it moves more
quickly through the state space. Also, the chain initially moves away from the starting
plan before being brought closer to the initial plan once Metropolis weighting is
introduced. This observation can be confirmed in the snapshots in Figure 13.

In terms of computational cost, the 11,175 pairwise distances needed for the
embedding in Figure 11 took 7 seconds to compute for Hamming distance, and
about 15 hours to compute with transport distance. This illustrates the substantial
computational cost of the transport distance, although this particular application
(along with the others in this section) lends itself naturally to parallelization since the
pairwise distances can all be computed independently.

8.5. Partisan clustering. Given a large ensemble of districting plans, we can
investigate the geographic features of plans with extreme partisan statistics. To
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Initial 100,000 steps 400,000 steps Final

Fig. 13. Snapshots of a simulated annealing Markov chain on Arkansas districts (the red chain
in Figure 11).
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Fig. 14. Iowa ensemble colored by Democratic seats won.

Fig. 15. Partitions of Iowa with two Democratic seats under 2012 Presidential election results.
The two blue districts have a Democratic majority, and the two red districts have a Republican
majority.

illustrate how our distance can be used for such an analysis, we consider an ensemble
of congressional districting plans for Iowa, generated by a ``recombination"" Markov
chain [14]; rather than choosing a single random vertex to relabel, we instead randomly
choose two components of the partition to merge and resplit into two new components.

Figure 14 shows embeddings (using both tranport and Hamming distance) of
these plans, colored by the number of seats won under two historical elections: the
2008 Presidential election, in which the Democratic candidate Barack Obama won
approximately 55 percent of the two-way vote share against Republican John McCain,
and the 2012 Presidential election, in which Barack Obama won approximately 53
percent of the two-way vote share against Republican Mitt Romney. The Hamming
and transport embeddings tell the same story, namely, that for each election, most
plans produce three Democratic seats but a small number do not, and these cluster
near one another, with a stronger pattern for the 2012 voting data. Figure 15 shows the
maps of each of the plans which, under the 2012 data, had two majority Democratic
districts, which shows the geographic similarity which resulted in the clustering in the
embedding.

8.6. Outlier analysis. In [22], the authors demonstrate that the congressional
districting plans enacted in 2012 and in 2016 were atypical outliers in terms of their
partisan statistics (computed using fixed vote data from multiple elections), relative
to a computer-generated ensemble. A third plan by a bipartisan panel of judges was
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Fig. 16. Transport embeddings of human/computer-drawn plans for North Carolina.

found to be far more representative. Figure 16(a) shows an MDS embedding of one
hundred plans drawn from the the authors' ensemble as well as the three human-drawn
plans mentioned above, using our distance. In Figure 16(b), we show the same plot
but with an ensemble generated by a ``recombination"" Markov chain.

The judges' plan lies near the middle of the ensemble in both cases, whereas the
2012 and 2016 plans lie on the edge. This indicates that the judges' plan is far more
representative of the ensemble than the 2012 and 2016 plan in terms of its geography.
The authors in [22] show that the judges' plan is politically representative of the
ensemble, and here we see that it is geographically representative as well.

9. Conclusion. Through a straightforward construction, we demonstrate how
OT---already a lifting of a geometric structure to the set of probability measures---can
be further lifted to a geometry on partitions. Our definition as a transport problem
whose cost function is itself the result of solving a transport problem is an intriguing
example of hierarchical transport in its own right. We demonstrate that several
intuitve and classical results about transport and network flow apply in this lifted
setting. Moreover, by restricting this distance to the space of partitions rather than
general (unordered) collections of measures, we are able to derive some specialized
results.

Few works have put a geometry on the space of partitions, and our progress on
this problem suggests several avenues for future research:
\bullet A well-known challenge in redistricting is the sheer number of ways to partition a
graph, which obstructs global analysis of a districting plan relative to all possible
alternatives. By putting a geometry on the space of partitions, we can ask whether
the combinatorial count of partitions is truly insurmountable, or if there is a ``small
neighborhood"" phenomenon whereby most partitions are close to a relatively small
spanning subset of representatives.

\bullet While our construction puts an intuitive and interpretable distance on the space
of partitions, it can be expensive to compute relative to the more naive Hamming
distances and total variation distances (see section 7), which have far weaker
geometric behavior but are often very easy to compute. It may be the case that
alternatives exist with a better compromise between computational efficiency and
expressiveness.
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\bullet Motivated by our intended applications in redistricting, the constructions in this
paper are discrete and restricted to the 1-Wasserstein distance. Our definition
readily generalizes to partitions of compact regions in Rn, although the underlying
computational problem becomes much more challenging.

Ultimately, as demonstrated in section 8, our distance is not only a valuable mathe-
matical construction but also---perhaps more importantly---a practical tool needed in
emerging applications of data analysis to political science. Equipped with our distance
and embedding algorithms, we can navigate and judge the extent of a collection of
partitions, addressing a significant gap in current methodologies for ensemble-based
redistricting.
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