Session 1: Optimizations for GPUs

PACT 20, October 3-7, 2020, Virtual Event, USA

Exploring the Design Space of Static and Incremental Graph
Connectivity Algorithms on GPUs

Changwan Hong Laxman Dhulipala Julian Shun
MIT CSAIL CMU MIT CSAIL
changwan@mit.edu ldhulipa@andrew.cmu.edu jshun@mit.edu
ABSTRACT other have the same label, and otherwise have different labels [25].

Connected components and spanning forest are fundamental graph
algorithms due to their use in many important applications, such
as graph clustering and image segmentation. GPUs are an ideal
platform for graph algorithms due to their high peak performance
and memory bandwidth. While there exist several GPU connec-
tivity algorithms in the literature, many design choices have not
yet been explored. In this paper, we explore various design choices
in GPU connectivity algorithms, including sampling, linking, and
tree compression, for both the static as well as the incremental
setting. Our various design choices lead to over 300 new GPU im-
plementations of connectivity, many of which outperform state-of-
the-art. We present an experimental evaluation, and show that we
achieve an average speedup of 2.47x speedup over existing static al-
gorithms. In the incremental setting, we achieve a throughput of up
to 48.23 billion edges per second. Compared to state-of-the-art CPU
implementations on a 72-core machine, we achieve a speedup of
8.26-14.51x for static connectivity and 1.85-13.36x for incremental
connectivity using a Tesla V100 GPU.

CCS CONCEPTS

» Theory of computation — Parallel algorithms.

KEYWORDS

Connected components, Graph algorithms, GPU algorithms, Span-
ning forest

ACM Reference Format:

Changwan Hong, Laxman Dhulipala, and Julian Shun. 2020. Exploring the
Design Space of Static and Incremental Graph Connectivity Algorithms
on GPUs. In Proceedings of the 2020 International Conference on Parallel
Architectures and Compilation Techniques (PACT °20), October 3-7, 2020,
Virtual Event, GA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3410463.3414657

1 INTRODUCTION

Connected components (connectivity) is a fundamental graph prob-
lem that plays a critical role in many graph applications. Given an
undirected graph with n vertices and m edges, the problem assigns
each vertex a label such that vertices that are reachable from each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PACT °20, October 3—7, 2020, Virtual Event, GA, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8075-1/20/10...$15.00
https://doi.org/10.1145/3410463.3414657

55

Connectivity algorithms are used in many applications, such as
computer vision [31, 43], VLSI design [61], and social analysis [41].
Graph connectivity is also a key subroutine to solve other graph al-
gorithms, such as biconnectivity [86] and clustering [33, 72, 90, 91],
and some of these algorithms require many calls to graph connectiv-
ity. As such, there has been a large amount of work on efficient paral-
lel connectivity algorithms [2-7, 11, 12, 14, 15, 17, 20-23, 27, 34, 36—
40, 42, 46-48, 50, 55-59, 62, 63, 67, 68, 73-75, 77-79, 81-83, 85, 87].

Graphics processing units (GPUs) are attractive devices for per-
forming graph computations because of their high computing power
and memory bandwidth. However, achieving high performance
using GPUs is challenging due to several factors, including unco-
alesced memory access, insufficient parallelism to tolerate high
memory latency, load imbalance, and thread divergence. Several
GPU connectivity implementations have been proposed in the lit-
erature [13, 24, 49, 65, 71, 85, 88], but we found that there are many
algorithmic choices and optimizations that have not been thor-
oughly explored for GPU connectivity. The goal of this paper is to
explore this large design space to better understand how different
choices affect performance.

In this paper, we study min-based connectivity algorithms [52, 53,
62, 73, 78, 83], which are based on vertices propagating labels to
other connected vertices, and keeping the minimum label received.
At convergence, vertices will have the same label if and only if
they are in the same connected component. A large number of
our algorithms are based on using a union-find data structure for
maintaining disjoint sets. The data structure maintains a tree for
each sub-component found so far, and joins trees to merge sub-
components that are connected. We also study several other min-
based algorithms that maintain trees, but not using a disjoint set
data structure. All existing GPU connectivity implementations are
min-based; however, there are various design choices that have not
been explored, such as different rules for searching and compressing
union-find trees and for propagating labels. Furthermore, these
algorithms can be improved by using sampling as a preprocessing
step to remove vertices in a large component from consideration,
so that the remaining steps are more efficient. Sutton et al. [85]
provide one instantiation of sampling combined with a particular
union-find algorithm. Inspired by their work, we explore different
sampling strategies in this paper, and combine them with each of
our algorithms to sweep the search space.

To implement different connectivity algorithms, we designed
the GConn framework, which is an extension of the Connectlt
framework [29] for multicore CPUs. However, achieving high per-
formance for connectivity algorithms on GPUs requires significant
effort beyond what is provided in Connectlt for two reasons. The
first reason is that the programming models on CPUs and GPUs are

https://doi.org/10.1145/3410463.3414657
https://doi.org/10.1145/3410463.3414657
https://doi.org/10.1145/3410463.3414657

Session 1: Optimizations for GPUs

B GPU-CC mGSWITCH ®ECL-CC N Afforest B GCONN
%6
3 5
84
3
©2 |
5l e e e I H
€o I - ﬁ I I\ e
S S \2 g 9 " 3 \Z A
2 53"» & g,)’c’ \}@?}\QQ & 9"6\ > OOé"L o‘@ ~ ,’190 -\x@ &
L F S FTNFECE Y &S
R -\A@\ &© \7,"0 RS </,°Q & & <&
<,<2 MW e @ 0* 03" .Qbo <,o‘(\
°) ANy © N
&
Graph

Figure 1: Normalized speedup of four existing implementa-
tions/libraries and GConn. The fastest existing implementa-
tion’s performance is normalized to 1.

different, which required us to significantly rewrite the codebase.
The second reason is that the bottlenecks on CPUs and GPUs are
different (e.g., on GPUs, performance can be easily degraded from
uncoalesced memory accesses, low parallelism, and heavy use of
atomics), and this required us to apply GPU-specific optimizations
to achieve high performance. GConn contains several GPU-specific
optimizations: edge reorganization, which is specific to our connec-
tivity algorithms, and CSR coalescing and vertex gathering, which
are commonly used in other graph algorithms.

In this paper, we generate a total of 339 different connectivity
implementations and evaluate their performance. With our compre-
hensive study, we are able to obtain the fastest GPU connectivity
algorithms to date. Figure 1 shows the normalized performance
of the fastest implementation in GConn compared to four state-
of-the-art GPU implementations: GPU-CC [82], GSWITCH [65],
ECL-CC [49], and Afforest [85]. We achieve an average speedup
of 2.48x over the fastest implementation for each graph input. Al-
though we consider many connectivity implementations, we note
that based on the results of our experimental study, practitioners
only need to consider a handful of these implementations to obtain
high performance.

In addition to connected components, most of our algorithms
solve the related problem of computing a spanning forest of a
graph. Furthermore, we extend our algorithms to the incremental
setting, where the connected components or spanning forest is
updated upon new edge arrivals. Our incremental algorithms are
able to achieve throughputs of up to 48.23 billion edges per second,
which improves upon state-of-the-art for GPUs—EvoGraph [76]—
by orders of magnitude based on a rough comparison of reported
numbers since their code is not available. Additionally, we com-
pare our GPU implementations to the CPU implementations in
Connectlt on a 72-core CPU and show that we achieve speedups of
8.27-17.48x for static connectivity, and 1.85-13.36x for incremental
connectivity on a Tesla V100 GPU that costs about half as much
as the CPU. Finally, we perform an analysis of different design
choices to explain where the performance benefits of our fastest
implementations are coming from. GConn is publicly available at
https://github.com/hochawa/gconn.

Summary of Contributions. We believe that this paper presents
the most comprehensive study of GPU implementations of con-
nectivity for both static and incremental connectivity to date. By
performing this extensive study, we provide an understanding of

56

PACT 20, October 3-7, 2020, Virtual Event, USA

how different algorithmic choices affect performance and where the
performance benefits of fast connectivity implementations come
from. Our paper provides the fastest GPU implementations of con-
nectivity, which we obtain by combining many combinations of
algorithmic choices that prior work did not explore. Building high-
performance implementations of these optimizations and combin-
ing them is key to achieving high performance. We believe that our
proposed techniques can be integrated into graph processing com-
pilers and other frameworks to significantly improve performance.

The remainder of the paper is organized as follows. Section 2
discusses graph terminology and prior work. Section 3 describes
the design choices in GConn, and their relation to prior work. We
perform a comprehensive evaluation of our implementations in
Section 4, and conclude in Section 5.

2 NOTATION, PRELIMINARIES, AND PRIOR
WORK

Graph Notation and Formats. In this paper, we focus on undi-
rected, unweighted graphs, which we denote as G = (V, E). V and
E are the set of vertices and edges, and n = |V| and m = |E| are
the number of vertices and edges, respectively. We consider two
graph formats, coordinate list (COO) and compressed sparse row
(CSR), with 0-based index notation (i.e., each vertex is labeled with
a unique identifier in the range [0, ...,n — 1]). The COO format
is represented using an array of edges, where each edge contains
a source and a destination vertex. The CSR format contains two
arrays, Offsets and Edges, of lengths n + 1 and m, respectively. The
edges for vertex i are stored in Offsets[i], . .., Offsets[i + 1] — 1, and
Offsets[n] = m, and we assume they are in sorted order.

Graph Connectivity Problems. A connected component (CC)
in G is a maximal set of vertices in which each pair of vertices
in the component is connected by a path. A connected compo-
nents algorithm computes a vertex label labels(v) for each v € V.
Two vertices u,v € V are in the same component if and only if
labels(u) = labels(v). A connectivity query returns true if and
only if two input vertices belong to the same component. A span-
ning forest (SF) maintains a connected tree for each connected
component. A breadth-first search (BFS) takes a graph with a
source vertex and returns an array A where A(v) stores the shortest
path between the source and v. If a vertex v is unreachable from
the source vertex, A(v) is set to infinity.

A union-find (disjoint set) data structure keeps track of a num-
ber of disjoint sets such that elements in each set have the same
labels. Each set is represented by a tree and each element in the
set has a parent pointer. The parent of a tree root points to itself.
In this paper, we assume that elements either point to themselves
or point to a parent with a smaller ID. The data structure provides
three operations: MAKESET, UNION, and FIND [25]. MAKESET(u)
generates a new tree that is composed of only one node u, which
is a root. UNTON(u, v) joins two trees, u and v, into a single tree.
FIND(u) returns the label of the root of the tree containing u. FIND
and UNION operations can perform path compression during execu-
tion to speed up subsequent operations. Union-find can be used for
connectivity by creating a set for each vertex, and calling UN1oN
on the endpoints of each edge. The labels of the vertices can be
obtained in the end by running FIND on each vertex.

https://github.com/hochawa/gconn

Session 1: Optimizations for GPUs

In this paper, we also consider connectivity algorithms that main-

tain trees, where we can move vertices between trees without com-
pletely joining the trees (as needed for merging sets in union-find).
We refer to an algorithm as root-based if it only modifies the parent
pointers of tree roots to point to vertices in other trees (vertices
are still free to update their pointer to point to other vertices in the
same tree). All of the union-find algorithms are root-based.
Compare-and-Swap. In this paper, we use the atomic compare-
and-swap (CAS) primitive, which takes as input a memory loca-
tion, an old value, and a new value. If the value stored in the memory
location is equal to the old value, then the CAS atomically replaces
the old value with the new value, and returns true. Otherwise, the
CAS does not update the value, and returns false.
Prior work on GPUs. Soman et al. [82] provide GPU-CC, the
first high-performance implementation of the Shiloach-Vishkin al-
gorithm [77] on GPUs. Many libraries (e.g., Gunrock [89], IrGL [71],
and Groute [13]) also adopt a variant of this approach. Note that
GPU-CC uses the COO format so the performance does not suffer
from poor load-balance on GPUs. GSWITCH [65] is a framework
for graph processing which provides different combinations of
optimization strategies for different graph algorithms, including
connectivity. Hence, GSWITCH allows tens of different combina-
tions of optimizations (e.g., different load-balancing strategies can
be combined with other optimization strategies). The best set of
optimizations is found using a machine learning approach. ECL-
CC [49] uses a concurrent union-find algorithm for connectivity
in the CSR format. Afforest [85] incorporates the k-out sampling
strategy (described in Section 3.3) that significantly improves per-
formance on many real-world graphs. Afforest uses the CSR format,
and uses the load-balancing technique from [13].

3 GConn OVERVIEW

We first describe the overview of Connectlt in Section 3.1. Then
we provide an overview of the GConn framework in Section 3.2. In
Sections 3.3 and 3.4, we provide an overview of specific algorithmic
choices that we explore. Due to space constraints, we defer the
complete description and pseudocode for some of these methods to
the full version of our paper [45].

3.1 Overview of Connectlt

Connectlt is a framework for multicore connectivity algorithms
that outperforms existing state-of-the-art multicore algorithms and
generates various implementations for connectivity based on a two-
phase execution model: a sampling phase and a finish phase. In the
sampling phase, a subset of edges are inspected to partially form
connected components. Next, the most frequently occurring label
(Lmax) is identified. In the finish phase, only vertices whose label
is not equal to Lyax need to process their outgoing edges. Vertices
with label L,y skip processing their edges, since any neighbor with
label Ly is already in the same component, and any neighbor
with label other than Ly, will process an edge to this vertex. This
two-phase execution can significantly reduce the number of edges
processed. Connectlt provides correctness proofs for the two-phase
execution. GConn is an extension of Connectlt that we developed
for GPUs, which enables easy exploration of different algorithmic
choices.

57

PACT 20, October 3-7, 2020, Virtual Event, USA

Algorithm 1 GConn for Static Connectivity

1: procedure StaTicConN(G(V, E), sample, finish, compress)

2: labels « IN1TLABEL(V)

3: labels « SampLEPHASE(G, labels, sample, finish, compress)
4: Lax < GETMOSTFREQUENTLABEL(labels)

5: labels < FintsHPHASE(G, labels, finish, comp)

6 labels «— LaBeLFINALIZATION(V, labels)

7 return labels

Algorithm 2 GConn for Spanning Forest

1: procedure SPANNINGFOREST(G(V, E), sample, finish, compress)

2 labels < INITLABEL(V)

3: edges < INITEDGE(V)

4: (labels, edges) «— SAMPLEPHASE(G, labels, sample, finish, compress)
5 Lmax < GETMOSTFREQUENTLABEL(labels)

6 (labels, edges) « FiNisHPHASE(G, labels, finish, comp)

7 return edges

3.2 GConn Framework

In this section, we give an overview of the GConn that we use to
obtain our GPU implementations for static connectivity, spanning
forest, and incremental connectivity.

Static Connectivity. Algorithm 1 presents the main steps in GConn.
GConn takes in a graph in either CSR or COO format, as well as
parameters for the sampling algorithm (sample), the finish algo-
rithm (finish), and the compression algorithm (compress). The label
of each vertex is initialized to its own ID on Line 2, and the sam-
pling phase is performed on Line 3. On Line 4, the most frequently
occurring label (Lmax) is identified from the result of the sampling
phase. On Line 5, GConn performs the finish phase, processing
edges of vertices with label not equal to Liyax. Finally, on Line 6, we
finalize the labels of each vertex by assigning each vertex the label
of the root of its tree. We use C++ templates and inlined functions
to achieve high-performance implementations while keeping the
GConn implementations high-level. Our implementations modu-
larize the routines for the sampling algorithm, finish algorithm,
compression algorithm, the load-balancing strategy, and graph for-
mat, making it easy to test different implementations and add new
variants.

Static Spanning Forest. As shown in Algorithm 2, implemen-
tations for spanning forest are similar to those for connectivity;
GConn supports different combinations of sampling and finish
methods while generating correct spanning forest algorithms. In
conjunction with the label initialization (Line 2), we also maintain
the edges in the spanning forest using an auxiliary array of size
n (Line 3). The key idea behind our implementations of spanning
forest is to assign each edge of the discovered spanning forest to a
unique vertex that is one of the endpoints of the edge. This special
vertex is the root vertex in the union-find structure that updates
its parent pointer to point to another vertex, so that it is no longer
a root. Hence, the root-based algorithms for connectivity (to be
described in Section 3.4) can be converted to compute spanning
forests. The sampling phase simply creates a subset of the edges for
the spanning forest (Line 4), while computing partially connected
components and determining Lay, as in static connectivity (Line 5).
After that, using Liayx, the finish phase computes the rest of the
edges for the spanning forest (Line 6). The finalization step is not
required for spanning forest since the edges of the spanning forest
have already been generated in previous steps, which eliminates
the overhead for the post-processing. In our experiments, we found

Session 1: Optimizations for GPUs

that spanning forest algorithms are 6% faster on average than their
static connectivity counterpart.

Incremental Connectivity. As many real-world graphs are be-
ing updated frequently, many connectivity algorithms have been
proposed for dynamic graphs [1, 28, 30, 64, 76, 80]. Many of our
algorithms are a natural fit for the incremental setting, where edges
are inserted but not deleted. We designed GConn to support incre-
mental connectivity (and spanning forest) algorithms that receive
batches of operations consisting of edge insertions and connectiv-
ity queries that can be executed in parallel. We will describe how
GConn supports incremental connectivity algorithms in Section 3.6.

3.3 Sampling Algorithms

As done in Connectlt [29], we decompose connectivity algorithms
into the sampling and finish phases. The sampling phase traverses
a subset of edges in the graph to update the labels of vertices. The
sampling phase can reduce the number of edges inspected in the
finish phase, since in practice we expect that a large fraction of
the vertices will already be settled in the Lyax component after
applying the sampling phase. All connectivity algorithms in the
literature today, except for Afforest [85], only support a finish phase.
We implement sampling for graphs in CSR format due to the ease
of skipping over all edges for particular vertices (i.e., the ones
with label Lmax after sampling). Below we introduce the different
sampling methods implemented in GConn. We discuss them in
the context of connectivity, although they are used similarly in
spanning forest. Pseudocode for these methods can be found in the
full version of our paper [45].

k-out Sampling. Given a parameter k, k-out sampling computes
connected components on a sampled graph constructed by uni-
formly sampling k edges out of each vertex [44]. Sutton et al. [85]
use a type of k-out sampling strategy where the first k edges out
of each vertex are used. The vertices obtain labels as a result of
running a parallel connected components algorithm on the sampled
graph. In practice, after applying k-out sampling, many of the ver-
tices in the largest connected component will have the same label,
since many real-world graphs have a single massive component
that most vertices will be a part of in the sampled graph. In GConn,
we implemented several variants of k-out sampling for different
values of k, and found that taking the first 2 edges, as in [85], gave
the best performance overall. Taking the first 2 edges per vertex
enabled us to label most of the vertices in the largest component
with the final label, and minimized the overall number of edge in-
spections during the sampling and finish phases. Moreover, since in
many real-world graphs, the edges for a vertex are sorted and if all
vertices choose their first two edges (neighbors), there are likely to
be many shared neighbors, which improves locality and increases
the size of the large component found. For running connectivity
on the subgraph, we use different variants of union-find (discussed
in Section 3.4).

Hook-Based Search (HB) Sampling. Inspired by ECL-CC [49],
we designed the hook-based search (HB) sampling approach to
potentially reduce the number of edge traversals compared to k-out
sampling. This approach uses a union-find structure to maintain ver-
tex labels. First, each vertex v inspects its smallest (i.e., first) neigh-
bor w, and updates its label to labels(v) = min(labels(v), labels(w)).

58

PACT 20, October 3-7, 2020, Virtual Event, USA

This step is efficient since there is no contention. Second, for all
vertices that are still roots (i.e., labels(v) = v), we inspect their
first N edges and apply the union operation to these edges. The
goal of these steps is to minimize the total number of roots after
sampling, since fewer roots mean that the graph is more connected.
This approach can potentially require fewer edge traversals than
k-out sampling for k > 2 if there are few roots after the first step.

Breadth-First Search (BFS) Sampling. In breadth-first search
(BFS) sampling, we run a BFS from a chosen source vertex, which
discovers the connected component of this source. If the graph has
a massive connected component (containing a large fraction of the
vertices), we have a high probability of finding the largest connected
component. Connected component algorithms typically incur a
large overhead in a concurrent setting, whereas BFS with idempo-
tent operations can incur a smaller overhead [66]. Furthermore, the
performance of BFS can be improved using direction-optimizing to
reduce unnecessary edge traversals for many real-world graphs [9].
In our BFS sampling strategy, we applied a BFS from a source ver-
tex, which we chose by sampling a subset of vertices and using the
vertex with the largest degree from the sample. This idea was used
by Slota et al. [81] to speed up label propagation.

3.4 Finish Algorithms

Here we introduce the finish algorithms in GConn. Again, we dis-
cuss them in the context of connectivity, but they are applied simi-
larly in spanning forest. Our algorithms are min-based algorithms,
where vertices maintain labels, propagate labels to other connected
vertices, and keep the minimum label received. When the algo-
rithms converge, vertices will have the same label if and only if
they are in the same component. Pseudocode for our algorithms
can be found in the full version of our paper [45].

Union-Find. Union-find algorithms are a special case of min-
based algorithms that use a disjoint set data structure to main-
tain and propagate labels. GConn includes a broad set of concur-
rent union-find algorithms that are obtained by combining dif-
ferent union operations with different path compression strate-
gies, all of which are root-based algorithms. In particular, it con-
tains concurrent GPU implementations of union used in Rem’s
algorithm (Union-Rem-Lock [73]), randomized linking by index
(Union-Async [52]), and randomized linking by rank (Union-JTB
[53]). Note that Union-Async and Union-JTB are lock-free compare-
and-swap (CAS) implementations, whereas Union-Rem-Lock is a
lock-based implementation. Spin-locks are used in Union-Rem-Lock,
which can significantly degrade parallelism on GPUs [32], so we
also implemented a lock-free version using CAS (Union-Rem-CAS).
We also implement two variations of Union-Async: Union-Early,
which traverses the paths of the two inputs simultaneously and
terminates once a common node is reached [52]; and Union-Hooks,
which performs CAS operations on an auxiliary hooks array so
that writes to the labels array are uncontended (on the other hand,
Union-Async directly performs CAS operations directly on the
labels array). All of our union operations link from larger to smaller
ID to ensure that there are no cycles. FIND is implemented by
traversing to the root of the tree of the input vertex.

Session 1: Optimizations for GPUs

In our implementations, path compression is done on-the-fly
when calling either UN1oN or FIND, and GConn includes five op-
tions: no path compression, path-splitting, path-halving, full path
compression, and path-splicing. We describe these operations in
detail in the full version of our paper [45]. Each union operation
can be combined with a subset of these path compression rules.
Connectlt[29] proves which of the combinations are valid, and
GConn supports the valid combinations from [29].

All of the implementations are asynchronous, meaning that

Uni1oN and FIND calls can be executed concurrently without syn-
chronization. Furthermore, all of the implementations, except for
Union-Rem-Lock, are wait-free. As far as we know, none of the
variants of union-find above have been implemented for GPUs in
the literature. The only union-find variants that have been imple-
mented on GPUs are ECL-CC [49] and Afforest [85]. ECL-CC [49]
implements a union-find algorithm, which uses the Union-Async
rule, but has a separate path compression step to fully compress the
paths, which requires synchronization. Afforest [85] implements a
variant of the classic Shiloach-Vishkin algorithm [77]. Their algo-
rithm also has a separate compression step, and requires synchro-
nization. Both ECL-CC and Afforest are root-based algorithms. We
also implemented these algorithms using GConn.
Other Min-based Algorithms. Besides the union-find algorithms
previously described, we also implement the following min-based
algorithms in GConn: Shiloach-Vishkin (SV) algorithms [3], Liu-
Tarjan (LT) algorithms [62], Stergiou’s algorithm [83], and the Label
Propagation (LP) algorithm [78]. These other min-based algorithms
generalize the union-find algorithms by allowing a vertex v in tree
T to be moved to another tree T’, without requiring that all vertices
in T be moved to T”. The algorithms still link from larger to smaller
ID to prevent cycles.

The SV algorithm is a classical parallel connectivity algorithm,
and many variants of it have been proposed in the literature, e.g., [3,
5, 10, 13, 24, 36, 65, 71, 82, 89, 92]. Besides Afforest, all other GPU
implementations [13, 65, 71, 82, 89] are based on a GPU implemen-
tation by Soman et al. [82]. Soman et al’s algorithm alternates be-
tween hooking from smaller to larger ID and from larger to smaller
ID (the idea was originally proposed by Greiner [36]), but does
not guarantee that only roots are hooked. We also implemented a
root-based variant of SV, where on every round each vertex uses
an atomic minimum operation to update their neighbors’ labels,
followed by full path compression via pointer jumping.

The LT algorithms are generated by combining several simple
rules about how to update the labels array by using edges to transfer
connectivity information. The updates are done using atomic min
operations. In their paper [62], only five algorithms are considered,
but Connectlt supports 16 variants by considering more combina-
tions of rules (all are min-based, and 6 variants are root-based as
well). Stergious’s algorithm [83] is very similar to one of the LT
variants, but it maintains two labels arrays, one for the previous
iteration and one for the current iteration.

Many implementations and frameworks for connectivity adopt
the LP algorithm, including [69, 78, 81]. In each round of the LP
algorithm, the labels corresponding to the endpoints of each edge
are compared, and if they are different, the larger label updates

59

PACT 20, October 3-7, 2020, Virtual Event, USA

M Base+CSR-C
W Base+CSR-C+ER+VG

B Base
Base+CSR-C+ER

1.8

=
N

0.6

Speedup over Baseline

Figure 2: The speedup of adding each optimization tech-
nique against Baseline for Union-Async with path compres-
sion and k-out sampling, which is the fastest connectivity
variant on average. The performance of each graph is nor-
malized to Baseline.

itself to be equal to the smaller label. The LP algorithm terminates
when there is a round in which no labels are updated.

3.5 Iterative GPU Optimizations

This section describes three key GPU optimizations—CSR coalescing
(CSR-C), edge reorganization (ER), and vertex gathering (VG)—that
we apply to our implementations in GConn. For practical purposes,
we only consider the optimization strategies that improve the per-
formance of the fastest GConn implementations. Since we found
Afforest [85] to be the fastest existing implementation in most cases,
we identify the performance bottlenecks in Afforest, and show how
to iteratively apply our optimizations to achieve the performance of
our fastest implementations. We first substituted their union-find
implementation with Union-Async, which we found to be faster,
and use this as the baseline. Figure 2 shows how performance im-
proves over the baseline (Base) with each additional optimization
applied.

CSR Coalescing (CSR-C). We identified that the sampling phase
requires a significant amount of time in Afforest (35.15-98.63%,
with a median of 88.80%), as shown in our experimental evaluation
in Section 4.2. During k-out sampling with k = 2, Afforest has
two sub-phases, the first which traverses the first edge out of every
vertex, and the second which traverses the second edge out of every
vertex. This strategy traverses the scattered entries in the CSR array
twice, which wastes memory bandwidth. Since the first two edges
of a vertex are contiguous in the memory layout, the two edges of
a vertex can be processed simultaneously by two adjacent threads,
which makes memory accesses for the CSR array coalesced and
halves the data volume needed to access the CSR array. We observe
that applying this optimization on top of the baseline (Base+CSR-C
in Figure 2) improves performance by an average of 20.68%.

Edge Reorganization (ER). During k-out sampling, we found
that CAS operations make the warp-efficiency on the GPU very
low due to only a few threads in a warp being active. For these
algorithms, if two edges having the same endpoint try to update a
memory location at the same time, then the updates can become
serialized. This is often the case in CSR format since edges incident
to a single vertex are processed in the same warp. To alleviate
this issue, we could have each thread read the first two edges of a

Session 1: Optimizations for GPUs

vertex and process them sequentially; however, this would cause
threads to have scattered accesses to the CSR edge array, which
decreases memory efficiency. The edge reorganization optimization
groups threads into pairs, where each pair reads the two edges
for one vertex together, and then reads the two edges for another
vertex together. Each time, the pair of threads reads contiguous
locations in memory. Then, using warp shuffling [18, 84] the four
edges can be reorganized so that the edges from the same vertex
are contiguous in memory, enabling each thread to process the two
edges of a vertex serially to avoid CAS operations. Base+CSR-C+ER
in Figure 2 shows the performance improvement after applying ER
on top of CSR-C. We achieve an average performance improvement
of 28.79% over the baseline.

Vertex Gathering (VG). The previous optimizations improve the
performance of the sampling phase. However, we found that the
performance of the finish phase can also be improved. In the kernel
for the finish phase in Afforest, each thread accesses entries in the
labels array in a cyclic fashion, and if the entry of the i’th label is
not equal to Ly, then the edges of vertex i are processed in a load-
balanced fashion by distributing the edges across threads. However,
as we show in Section 4.2, only a small subset of vertices have labels
not equal to Lyax. Therefore, many threads will be idle during the
finish phase, which degrades performance. To improve performance
in the finish phase, we first aggregate the vertices whose labels are
not equal to L,y into an active vertex set, and in the finish phase,
each thread reads a vertex in the active vertex set, and distributes the
edges for load-balancing. We show the performance improvement
of adding the vertex gathering optimization in Base+CSR-C+ER+VG
of Figure 2. With all three optimizations, the overall performance
is 41.55% faster than the baseline on average.

3.6 Incremental Connectivity Support

Algorithm 3 GConn for Incremental Connectivity

1: procedure INCREMENTAL(G(V, E), sample, finish, compress)
2: labels « StaticConN(G(V, E), sample, finish, compress)
3: for B € Batches do
4: (labels, query_results) «—

FinisHPHASEBATCH(B, labels, finish, comp)

This section describes how GConn supports incremental con-
nectivity given batches of updates. We support incremental connec-
tivity for the root-based algorithms, and the pseudocode is shown
in Algorithm 3. We first generate the initial graph (which can be
empty) by initializing the labels array for the vertices in the graph
(Line 2) using the StaTicCoNN procedure from Algorithm 1. We
assume that the labels array is large enough to hold all of the ver-
tices that will be encountered, but we only initialize the entries
for vertices present in the initial graph. Batches of insertions and
connectivity queries arrive in an online fashion, and are processed
using one of the finish algorithms on just the batch (Lines 3-4).
The batches are given in COO format, which is a natural input for
streaming algorithms. However, sampling is inefficient for graphs
in COO format, and hence we do not use sampling for incremental
algorithms.

Each batch B is composed of a mix of inserts and queries. For
an update, FINISHPHASEBATCH updates the labels array as FINISH-
PHASE from Algorithm 1 does. Furthermore, a thread that inserts a
new vertex will initialize its entry in the labels array by acquiring

60

PACT 20, October 3-7, 2020, Virtual Event, USA

a spin lock. For a query, FINISHPHASEBATCH calls the FIND func-
tion (one of the compression algorithms GConn provides) for both
query endpoints to check whether they are in the same component.
The query results (query_results in Line 4) are stored in a bitvector:
the i’th entry in the bitvector is true if the i’th edge of B is a query,
and the two endpoints of it are in the same component.

As shown in Algorithm 3, the previous batches are never in-
spected because the root-based algorithms guarantee correctness
without requiring inspecting edges in a previous batch [29]. The
root-based algorithms incorporated into GConn are all union-find
algorithms used for static connectivity, Shiloach-Vishkin, and the
root-based Liu-Tarjan algorithms. However, when Union- Rem-CAS
and Union-Rem-Lock with SpliceAtomic is used, the updates and
queries need to be processed separately to guarantee correctness [29].

4 EVALUATION

In this section, we provide an experimental evaluation and analysis
of GConn. All numbers reported in this section are the median of
five runs on the Volta machine unless noted otherwise. We found
that the trends for spanning forest are similar to the trends for
connectivity, with our spanning forest implementations obtaining
an average speedup of 6% over the connectivity implementations
due to not requiring the label finalization step.

Overview of Results. The results of this section can be summa-

rized as follows:

e We provide an experimental evaluation of GConn connectivity
implementations in the no sampling setting (Section 4.1). With-
out sampling, Union-Async and Union-Rem-CAS are the fastest
implementations.

e In the sampling setting, we provide a detailed analysis of different
sampling procedures and find that k-out sampling or HB sampling
can significantly improve the performance unless the average
degree of vertices is low (Section 4.2).

o The fastest GConn algorithms consistently and significantly out-
perform state-of-the-art GPU connectivity implementations (Sec-
tion 4.3).

e GConn incremental connectivity algorithms can achieve a through-
put of tens of billions of edges per second. We also evaluate the
throughput for different batch sizes, and ratios of insertions to
queries (Section 4.4). In the incremental setting, Union-Async is
usually the fastest implementation.

e Compared to Connectlt, a framework for CPU connectivity algo-
rithms, GConn achieves 8.26-14.51x speedup for static connec-
tivity and 1.85-13.36x speedup for incremental connectivity. Our
analyses also show GPUs are an attractive platform for connec-
tivity algorithms in terms of both speed and cost (Section 4.6).

Experimental Setup. Our GPU evaluation is performed on two

machines. The first is an NVIDIA Tesla V100, which is a Volta gener-

ation GPU with 32GB that offers a 900 GB/sec memory bandwidth,
6MB of L2 cache, and 128KB of L1 cache per Streaming Multipro-
cessor (SM) with a total of 80 SMs. The second is an NVIDIA TITAN

Xp, which is a Pascal generation GPU with 12GB that offers a 547.6

GB/sec memory bandwidth, 3MB of L2 cache, and 48KB of L1 cache

per SM with a total of 30 SMs. All implementations are compiled

with NVCC v10.0 using the -03 and --use_fast_math flags.

Session 1: Optimizations for GPUs

Dataset n m, Diam. Num. Comps. Largest Comp.
coPapersDBLP 540.49K| 30.49M 15* 1 540.49K
cit-Patents 3.77M| 33.04M 20* 3,627 3.76M
road_usa 23.95M| 57.71IM| 6,809 1 23.95M
soc-LiveJournall 4.85M| 85.70M 16 1,876 4.84M
ljournal-2008 5.36M| 99.03M 31" 75 5.36M
delaunay_n24 16.78M | 100.66M | 1,720* 1 16.78M
europe_osm 50.91M|108.11M | 19,314* 1 50.91M
hollywood-2009 1.14M | 112.75M 11 44,508 1.07M
kron_g500-logn21| 2.10M|182.08M 6 553,159 1.54M
com-Orkut 3.07M | 234.37M 9 1 3.07M
indochina-2004 7.41M|301.97M 26 295 7.32M
uk-2002 18.52M | 523.57M 29* 38,359 18.46M
twitter7 41.65M 2.41B 23* 1 41.65M
com-Friendster 65.61M| 3.61B 32 1 65.61M

Table 1: Graph inputs, including number of vertices (n),
edges (m), diameter, number of connected components, and
the largest connected component. The graphs are symmet-
ric, and edges are counted once in each direction. For graphs
on which we were unable to compute the exact diameter, we
compute the effective diameter (marked with *), which is a
lower bound on the actual diameter.

g W Union-Async B Rem-CAS 12.39 10.31
-
§ NJTB Union-Hooks
8 Rem-Lock B Union-Early
<
o4
>
(o]
3, mﬂn& W O 0 e e
2
S) O N & P D
S FEST TS F IS G S
& B TS X N el ¥ 0O gy &S
&K FE L O LY e
Q,DQ & & & \@Q \»@ & & &
© o(‘\/ 2N an & Qo‘(\
) AN ‘0 N
A
Graph

Figure 3: The slowdown over the fastest union-find variants
for each graph in the no-sampling setting.

Graph Data. To show how GConn performs on various graphs of
different scales, we selected all publicly-available graphs used in
ECL-CC [49], EvoGraph [76], and Connectlt [29] that have more
than 30M edges and fit in the GPU memory. Table 1 shows the
details of our graph inputs, including the number of vertices and
edges, the graph diameter, the number of connected components,
and the size of the largest component. Our inputs include many
Web and social network graphs that have low diameters, as well
as road networks that have high diameters. All graphs that we use
were obtained from SuiteSparse [26] or SNAP [60]. We symmetrized
all of the graphs.

4.1 Static Parallel Connectivity without
Sampling

In this section, we evaluate our GConn implementations for static
connectivity algorithms in the No Sampling setting.
Evaluation of Union-Find Variants. The first group of rows in
Table 2 shows the results of the fastest implementations of each
algorithm in the no sampling setting.

Figure 3 shows the slowdown of the fastest of each of the union-
find variants over the fastest overall variant for each graph. For
each graph, six bars are listed in order of average performance.

61

PACT 20, October 3-7, 2020, Virtual Event, USA

269 972 3632

20 20000
*an')' BT 7ZZZ2SV Em|P -=--diam. /
216 /] 16000
© l (]
T 12 12000 %
g £
s 8 8000 s
s 4 4000 °
MCTITE i
§o Mkl dd HdHL LATIE
N O RN o>
c_?a ooéa/ 0&0 ;190 &Q’\/ \;\k\q} ,b»@& .&@" ;\90 ’19 \,’LQ & *S’» b?% 95&
Q'\ & Ob & O R S '\(‘fb N NG (\Q/(‘ LV P OQQ
S E TR S S & © RS
&7 x\c’\\\\ & o"\, P N
< 9 A
N Graph

Figure 4: Slowdowns for other min-based algorithms com-
pared to the fastest union-find variants for each graph in
the no-sampling setting. The graphs are sorted in ascending
order of diameter.

From Figure 3, we observe that the fastest implementation is ei-
ther Union-Async or Union-Rem-CAS in the No Sampling setting.
Union-Rem-CAS 1is 1.02x slower on average than Union-Async
across all graphs, and Union-JTB is 1.26x slower on average than
Union-Async due to the usage of 64-bit CAS operations. Union-
Hooks is designed to reduce the overhead for atomic operations,
but it is 1.44x slower on average than Union-Async due to a costly
memory barrier needed to avoid race conditions. Union-Rem-Lock
is 3.81x slower on average than Union-Rem-CAS due to the poor
performance of spin locks on GPUs.

Evaluation of Other Min-based Algorithms. Figure 4 shows
the slowdown of the other min-based algorithms compared to the
fastest variant across all algorithms in the no-sampling setting. The
graphs that are sorted in order of increasing diameter (presented
with the red curve).

As shown in Figure 4, the other min-based algorithms are much
slower than the union-find algorithms because union-find algo-
rithms only inspect each edge at once, whereas the other algorithms
typically traverse edges multiple times, which leads to redundant
computation. The fastest Liu-Tarjan and Shiloach-Vishkin variants
are 3.72x and 5.19x slower on average than Union-Async in the
no-sampling setting, respectively. We have included the Stergiou
algorithm in the category of Liu-Tarjan algorithms as this algo-
rithm is similar to Liu-Tarjan algorithms; however, it is always
much slower than the fastest variant of Liu-Tarjan algorithms (up
to 66x slower).

As shown for the three graphs located on the far right in Figure 4,
the performance of LabelPropagation degrades significantly as the
diameter increases. This is because LabelPropagation needs a large
number of rounds to propagate the minimum label to all vertices,
and during that time most vertices are active. Even on low-diameter
graphs (diameter at most 32 in our experiments), LabelPropagation
is still 7.76x slower on average than the union-find algorithms
since LabelPropagation still requires multiple traversals per edge,
whereas the union-find algorithms do not.

As shown in Table 2, we also incorporate the finish algorithms
used in two fastest state-of-the-art works, ECL-CC [49] (denoted as
G_ECL-CC) and Afforest [85] (denoted as G_Afforest), into GConn,
and evaluate them in Section 4.3.

Session 1: Optimizations for GPUs

PACT 20, October 3-7, 2020, Virtual Event, USA

. coPapers cit- soc-Live ljournal delaunay europe hollywood kron_g500 com- indochina . com-
Group Algorithm DBEP Patents road_usa Journal1 J—2008 _n24 Y 705151 —2);)09 —log_ng2l Orkut -2004 uk-2002 twitter? Friendster
Union-Early 1.49 4.79 5.68 8.18 8.83 17.65 6.87 8.14 16.23 14.11 26.39 32.89 375.50 853.87
Union-Hooks 0.68 3.44 5.56 3.94 5.26 5.98 11.67 1.95 4.65 4.02 7.36 13.97 155.98 410.61
Union-Async 0.46 2.02 3.39 3.07 3.17 3.84 6.76 1.62 3.64 3.85 5.32 9.09 123.78 365.98
bgD Union-Rem-CAS 0.45 1.88 3.83 2.98 3.20 4.09 5.90 1.53 3.60 3.70 5.39 9.26 133.46 369.59
i Union-Rem-Lock 0.90 4.66 9.57 5.73 7.59 10.31 11.45 2.73 6.52 4.19 65.96 93.69 484.23 487.72
% Union-JTB 0.53 2.84 5.53 3.70 3.68 5.29 10.85 1.96 5.23 5.78 6.40 11.07 130.01 400.17
g Liu-Tarjan 1.20 6.73 12.13 7.72 11.27 12.60 31.23 4.69 12.39 10.16 21.53 31.44 464.76 998.77
Z Shiloach-Vishkin 1.47 13.05 15.65 12.23 17.17 18.63 34.49 7.57 15.93 34.09 35.01 47.73 1056.17 2066.00
LabelPropagation 2.57 8.98 3289.59 15.01 58.89 1032.09 2.14e4 6.18 12.50 18.58 79.25 112.74 | 1361.37 3646.96
G_ECL-CC 0.51 2.26 3.76 3.18 3.80 4.19 10.09 1.92 3.84 5.01 6.75 11.58 161.13 385.48
G_Afforest 5.96 23.07 4.01 25.46 42.12 6.70 19.07 85.02 91.66 97.24 43.12 73.80 143.75 1661.75
Union-Early 0.26 3.30 8.93 1.28 1.85 6.34 9.50 0.74 0.85 1.00 7.33 7.83 22.59 49.34
Union-Hooks 0.20 2.52 8.13 1.05 1.63 4.87 10.57 0.39 0.61 0.74 242 4.39 14.01 31.09
. UniOI‘I-ASynC 0.18 1.60 5.27 0.85 1.19 3.60 6.95 0.35 0.51 0.63 2.07 3.46 10.91 27.79
£ Union-Rem-CAS 0.16 1.98 5.98 0.86 1.38 3.44 7.78 0.33 0.53 0.62 1.86 3.52 12.81 44.87
—g* Union-Rem-Lock 0.71 3.79 13.28 1.80 3.00 8.46 13.57 0.98 0.99 0.74 35.74 41.10 26.83 53.61
s Union-JTB 0.24 2.31 6.97 1.27 1.75 4.66 13.38 0.47 0.65 0.86 2.95 5.04 13.80 32.20
5 Liu-Tarjan 1.29 11.56 20.71 3.07 13.96 15.19 40.17 5.20 13.05 0.65 20.20 26.76 41.69 522.27
_z Shiloach-Vishkin 1.55 18.88 21.35 12.68 17.37 17.42 47.61 8.46 15.99 33.79 32.47 67.94 1150.68 2059.18
LabelPropagation 2.28 16.44 8228.75 2.67 72.57 895.65 [65136.83 8.32 18.65 0.60 103.27 134.05 27.01 163.80
G_ECL-CC 0.19 1.67 4.88 0.88 1.28 3.19 7.28 0.38 0.56 0.66 2.11 3.80 11.14 27.29
G_Afforest 0.24 4.72 5.63 1.25 4.40 3.81 9.58 0.84 241 0.80 2.79 5.60 13.46 31.84
Union-Early 0.41 2.59 17.79 1.03 1.86 48.33 25.42 1.48 0.76 0.49 12.95 17.26 12.62 19.26
Union-Hooks 0.24 1.75 12.45 0.70 1.41 7.37 16.78 0.43 0.64 0.50 3.00 5.99 9.90 17.97
Union-Async 0.24 1.47 8.60 0.67 1.22 5.95 14.99 0.41 0.57 0.49 2.60 4.97 9.12 17.75
éﬂ Union-Rem-CAS 0.24 1.56 8.62 0.67 1.28 6.37 13.66 0.41 0.57 0.50 2.43 4.83 9.60 18.30
i Union-Rem-Lock 1.51 2.39 14.37 8.16 1.90 9.63 17.11 0.60 1.59 0.49 10.60 20.95 11.78 19.09
5 Union-JTB 0.70 5.68 8.54 6.09 5.37 7.09 18.86 2.56 11.11 15.28 9.78 12.13 339.15 738.97
; Liu-Tarjan 1.36 11.68 21.85 191 10.53 24.67 40.01 3.70 9.06 0.61 15.80 27.15 14.33 353.80
jan) Shiloach-Vishkin 2.94 18.55 21.38 6.33 14.49 24.37 54.87 9.20 27.01 0.64 25.44 67.48 46.30 829.49
LabelPropagation 6.58 16.62 7943.94 2.22 73.01 982.00 6.65e04 8.24 19.12 0.57 97.24 125.14 24.71 123.77
G_ECL-CC 0.26 1.39 8.44 0.71 1.23 6.32 14.21 0.47 0.61 0.50 2.71 5.28 8.78 17.57
G_Afforest 0.26 2.85 8.04 0.73 2.03 9.12 13.80 0.55 1.14 0.50 3.56 6.22 10.83 17.75
Union-Early 1.34 2.39 409.15 2.10 2.67 90.27 1778.75 1.25 0.81 1.06 80.15 35.55 22.20 20.58
Union-Hooks 1.35 2.38 391.73 1.90 2.68 92.41 1652.54 1.22 0.80 1.03 79.23 32.24 22.19 20.56
Union-Async 1.32 2.40 390.92 1.93 2.68 92.91 1578.57 1.23 0.83 1.05 80.58 32.54 22.22 20.54
b:D Union-Rem-CAS 1.34 2.38 397.09 2.07 2.78 90.25 1598.75 1.26 0.82 1.03 79.64 32.32 22.16 20.52
i Union-Rem-Lock 1.32 2.38 399.62 2.06 2.74 92.41 1584.45 1.26 0.80 1.02 83.84 33.09 22.19 20.52
S Union-JTB 1.36 2.53 406.20 2.21 3.06 104.46 1627.93 1.29 0.89 1.18 80.51 32.89 23.98 23.72
J; Liu-Tarjan 1.38 3.14 395.90 2.55 2.92 91.79 1659.59 1.44 1.04 1.10 81.54 35.14 22.57 21.19
E Shiloach-Vishkin 1.41 3.07 401.61 2.50 2.90 97.07 1616.75 1.53 1.05 1.15 82.49 34.78 23.29 22.19
LabelPropagation 1.39 3.23 403.12 2.49 2.77 93.34 1626.54 1.51 0.95 1.07 89.03 40.99 22.35 20.86
G_ECL-CC 1.33 2.41 397.33 2.06 2.82 94.21 1631.24 1.24 0.83 1.06 81.36 32.57 22.20 20.51
G_Afforest 1.30 2.39 393.34 2.06 2.80 91.45 1625.83 1.30 0.83 1.06 83.19 32.84 22.18 20.48
«» |GPU-CC [82] 2.77 9.74 22.85 10.18 31.5 22.83 46.38 21.38 34.04 21.25 44.96 49.01 417.25 X
éng GSWITCH [65] 1.07 4.5 21.03 7.06 9.24 8.22 38.39 6.82 7.45 7.54 13.46 26.1 X X
:‘é % |ECL-CC [49] 0.78 5.89 22.55 7.14 7.71 18.94 25.97 2.1 6.02 8.58 9.06 26.31 258.56 415.44
L§ En Afforest [85] 0.35 6.13 5.54 1.27 5.07 3.69 9.13 1.06 2.97 0.82 4.55 7.67 13.5 32.4
« |BFS-CC 1.33 721.59 577.38 277.35 8.51 89.33 1749.63 4267.22 5.07e04 0.96 133.77 3698.56 21.07 19.22

Table 2: Running times of implementations in GConn and state-of-the-art static connectivity algorithms in miliseconds on a
V100 GPU. We report running times for five groups: implementations with No sampling, k-out sampling, HB sampling, BFS
sampling, and existing algorithms. Within each of the first four group, we display the fastest variant for each graph in green.
For each graph, we also display the fastest variant across all groups in bold font. x means that we were unable to obtain results
due to the graph not fitting in the GPU memory for the given implementation.

4.2 Static Parallel Connectivity with Sampling

This section studies how our three sampling strategies affect per-
formance, in terms of their execution time and the quality of the
resulting sub-problem that they generate for the finish step in
GConn. We start by studying how k-out sampling performs.

Evaluation of k-out sampling. The second group of rows in Ta-
ble 2 presents the results of the fastest implementations of each
algorithm using k-out sampling. The fastest implementation is
Union-Async, Union-Rem-CAS, or G_ECL-CC; Union-Rem-CAS

62

is 1.03x slower on average than Union-Async, and we defer the
analysis for G_ECL-CC to Section 4.3.

Figure 5 shows how each sampling algorithm improves perfor-
mance. To see the performance improvement with respect to the
average degree of the vertices (i.e., m/n), we sorted the graphs in
ascending order of the average degree.

For the union-find variants, except on the two road-network
graphs (road_usa and europe_osm), k-out sampling improves per-
formance over the unsampled versions by 6.16x on average due
to the significant reduction of edges that need to be inspected, as
we will show shortly. For the other min-based algorithms, other

Session 1: Optimizations for GPUs

11.34 14.10

=
o

o0 Emk-out sampling 17.87
= 8 mEHB sampling 20.84
E 5 NNBFSsampling 13.41
@ =—m/n
o4

el
§ ; o—8 l' Il
5 o i~ N |
Q
= S L EPFS S
] PRI RN A S
0 NP SN KN.E S
QQ&Q «°\o° & _\Ae\ & S
(2 R ™ NS ‘@0 04\\ (9Q

O N <

Figure 5: The speedup of the best variant of each sampling
algorithm over the best variant in the no-sampling setting.
The graphs are sorted in ascending order of m/n (i.e., the av-
erage degree).

than on the two road-network graphs, k-out sampling improves
performance by 4.61x on average over the unsampled versions.
As shown in Figure 5, when the average degree is small (e.g.,
road_usa and europe_osm), k-out sampling as well as other sampling
algorithms degrades performance. This is because most of the edges
in the graph get inspected in the sampling phase, and there is
additional overhead to split the computation across two phases. In
general, k-out sampling decreases the number of edge inspections
by up to m — kn, and so as the average degree increases, we can
expect a higher potential performance improvement. As shown in
Figure 5, k-out sampling usually shows better performance when
the average degree is large.
Evaluation of HB sampling. The third group of rows in Table 2
presents the fastest variants of each algorithm using HB sampling
with a default value of N = 4, which we found to work the best
on average across our input graphs.! Unlike k-out sampling, HB
sampling does not always improve performance; in many cases,
the performance is degraded. The overall trend of HB sampling
is similar to that of k-out sampling. As shown in Figure 5, when
the average degree of vertices is small, HB sampling significantly
degrades performance, and otherwise HB sampling can greatly
improve performance. We will discuss how HB sampling compares
with our other sampling schemes shortly.
Evaluation of BFS sampling. The fastest variants using BFS sam-
pling are presented in the fourth group in Table 2. The effectiveness
of BFS sampling is dependent on the diameter of an input graph
and the parameters for the direction-optimizing BFS. As shown
in Figure 5, for the high-diameter graphs (the three graphs on the
far left), BFS sampling degrades performance by 24.59x on average
over the unsampled versions due to the very small active vertex set
for each BFS iteration and since a GPU kernel must be launched for
each iteration. For the other graphs, BFS sampling achieves a 0.07—
174.87x speedup over the unsampled versions. Note that as shown
in the last row of Table 2, we also implemented the BFS-CC algo-
rithm introduced in Ligra [78], in which a BFS is repeated on each
new component until all components are found. BFS-CC performs

! Although the optimal value of N can vary based on the input graph, determin-
ing the optimal value on a per-graph basis would incur significant overhead, which
would outweigh the benefits of using the optimal parameter as opposed to the default
parameter.

63

PACT 20, October 3-7, 2020, Virtual Event, USA

Graph BfS BFS BFS KQut KOut KOut HB HB HB
Time Cov IC Time Cov IC Time Cov IC
coPapersDBLP 60.3%(100.0%|0.0%|46.7%| 98.9% | 0.2% |97.2%| 89.1% | 5.4%
cit-Patents 83.9%| 99.7% 0.0%[90.1%| 98.2% | 0.6% [99.5%| 96.0% | 2.3%
road_usa 86.8%(100.0%|0.0%|85.4%| 95.9% | 3.6% [83.1%| 0.0% [100.0%
soc-LiveJournall |86.9%| 99.9% |0.0%(91.0%| 99.9% | 0.0% [92.1%| 99.5% | 1.1%
ljournal-2008 92.1%(100.0%|0.0%(83.7%| 99.3% | 0.2% [92.0%| 94.9% | 2.5%
delaunay n24 92.3%(100.0%|0.0%(76.9%(100.0%| 0.0% {89.3%| 0.0% [100.0%
europe_osm 92.4%(100.0%|0.0%(79.2%|100.0%| 0.0% [92.4%| 0.0% [100.0%
hollywood-2009 |55.1%| 93.8% [0.1%|42.0%| 91.0% | 0.5% [99.8%| 87.4% | 2.0%
kron_g500-logn21|93.5% | 73.6% |0.0%|41.2%| 73.6% | 0.0% [99.7%| 73.5% | 0.0%
com-Orkut 74.4%|100.0%|0.0%|54.4%|100.0%| 0.0% [97.8%(100.0%| 0.0%
indochina-2004 90.3%| 98.7% |1.3%|42.5%| 86.8% | 7.4% [99.5%| 63.2% | 24.4%
uk-2002 95.9%| 99.7% 0.1%[90.2%| 92.0% | 4.9% [88.2%| 72.4% | 20.8%
twitter7 93.4%(100.0%|0.0%|39.4%|100.0%| 0.0% [99.7%| 99.5% | 0.0%
com-Friendster 98.0%(100.0%|0.0%[95.2%|100.0%| 0.0% [90.3%| 99.9% | 0.0%

Table 3: This table presents how effective the sampling strat-
egy is for each of our graph inputs. The Time columns show
the percentage of sampling time to the total execution time.
The Cov columns show the percentage of vertices that are in
the largest connected component after the sampling phase.
Hence, the edges incident to these vertices are not inspected
in the finish phase. The IC columns show the percentage of
inter-component edges that will be processed in the finish
phase.

4 13.42 5.12 18.31~ 11.46 5.16
27335
£g s
g 225
e
HE 2
5 H15 ;
23 - badid :
2%05 E E E E E E
0 i K
o]l ¢ 8 T & 2 83 53 8 2 5 £ 8
sl > & 2 5 2 8 £ e 398 7 3
B =g I %' 2 3 3 g m O I O o I
lz 8 5§ 5 =20 g &2 3"~ Ta
@ c 9 5 2 A o
= 5 8 % 3 B g S @
o o R 8 L] o o
pury O ’% =) =
T5% Graph *
€ “ @Union-Find @ Label Init. WBFS
Figure 6: The normalized number of edges inspected for

each sampling strategy. The first bar for each graph (green
only) corresponds to the number of edge inspections for k-
out using union-find. The second bar for each graph (red
and green) shows the number of edge inspections in the la-
bel initialization step, and the number of edges inspected by
the union-find step of HB sampling respectively. Finally, the
blue bar shows the number of edges inspected in BFS sam-

pling.

poorly due to the GPU kernel launch overhead for high-diameter
graphs and for graphs with many connected components.

Comparing Different Sampling Strategies. Table 3 shows how
many vertices and edges are covered by each sampling algorithm.
As shown in Table 3, since BFS traverses all vertices connected to a
source vertex likely to be in the largest connected component, the
fraction of vertices covered (Cov) and the fraction of remaining

Session 1: Optimizations for GPUs

inter-component edges (IC) are maximized and minimized, respec-
tively. Unfortunately, as shown in Table 2, BFS sampling takes
significantly longer than other sampling algorithms, especially for
the high-diameter graphs (delaunay_n24, road_usa, and europe_osm)
due to the kernel launch overhead and low parallelism on these
graphs. It also inspects significantly more edges than the other two
schemes, as we will show shortly. Although BFS sampling usually
takes longer than k-out sampling, we observe that Cov and IC for
BFS sampling and k-out sampling are very similar on our inputs.
The sampling time for HB sampling is much lower than for the
others due to the reduced number of edge inspections, but for some
graphs, CoV and IC are significantly lower than for the other two
schemes (especially for high-diameter graphs). The Time columns
in Table 3 show the ratio of the sampling time to the total execution
time. We see that the sampling phase takes most of the time, and
hence, the design of an efficient, high-quality sampling algorithm
is of paramount importance.

Figure 6 shows the normalized total number of edges inspected
during the execution of each sampling algorithm. For each graph,
Figure 6 shows three bars. The first bar (green only) corresponds
to the number of edges inspected by k-out sampling using union-
find. The second bar (red and green) shows the number of edges
inspected during the label initialization step, and the union-find
step of HB sampling, respectively. Finally, the third bar (blue) shows
the number of edges inspected by BFS sampling. From Table 2 and
Figure 6, we observe that BFS sampling is never the fastest, and HB
sampling is the fastest when the number of edge inspections for
union-find is small during the sampling phase. In this case, the total
number of edge inspections is also minimized. For com-Friendster,
as shown in Table 2, BFS sampling is faster than k-out sampling;
the number of edge inspections with BFS sampling is usually the
highest, but for com-Friendster, the total number of edge inspections
for both BFS sampling and k-out sampling is similar, and thus BFS
sampling is faster because the edge inspection step performed by
the BFS (a single CAS on one of the endpoints) is much faster
than the edge inspection by a union-find algorithm (a loop that
must potentially run multiple times due to contention). As seen in
Figures 5 and 6, for some graphs (e.g., indochina-2004, which has a
speedup of 0.07x), the number of edge inspections is much higher
for BFS, leading to significant performance degradation.

4.3 Comparison with State-of-the-art

This section compares our implementations with current state-of-
the-art connectivity implementations on GPUs, which are shown
in the last group of rows in Table 2. Figure 7 presents the normal-
ized execution time over the fastest current state-of-the-art im-
plementation for each graph with our fastest variant without and
with sampling. Note that we did not report results for Groute [13],
Gunrock [88], and IrGL [71] as they are outperformed by ECL-CC
[49], which we compare against. We also tried the strategy by Cong
and Muzio [24], but it never gave the best performance.

GPU-CC [82] and GSWITCH [65]. GPU-CC adopts a classic SV al-
gorithm, which turns out to be slow as shown in Figure 7. Our fastest
implementations without sampling and with sampling are 7.06x and
26.68x faster on average than GPU-CC, respectively. GSWITCH
also applies a classic SV algorithm, but outperforms GPU-CC due

64

PACT 20, October 3-7, 2020, Virtual Event, USA

26 mGPU-CC GSWITCH
35 @ECL-CC S Afforest
$, WGCONN(NS) , BIGCONN (S)
Ea
=2
Lddadbatda ddd 1
sl E N AN
N D) A
L’QQ’\/ /5@\9 695’2’\;\(\,2}'\’ . ¥ /0%@6’9@ 6)00 O‘\&“ :‘90 /’9@/ \"‘@k Qb‘;&(
%Qé (_}(Q & R & & co@' & ¥ = &8
Q . O
QOQ L)od\’ N2 Q‘O\Q _\Qbo co&

Figure 7: The normalized speedup over GPU-CC of current
state-of-the-art implementations/libraries and GConn (with
and without sampling). GCONN(NS) and GCONN(S) show
the normalized speedup without and with sampling, respec-
tively.

to several additional optimizations. Our fastest implementations
without sampling and with sampling are 3.24x and 8.88x faster on
average than GSWITCH.
ECL-CC [49]. ECL-CC is faster than both GPU-CC and GSWITCH
due to using a more efficient algorithm based on union-find. As
shown in Figure 7, our fastest implementations without sampling
and with sampling are 2.78x and 10.15x faster on average than
ECL-CC, respectively, mainly because we use a more efficient load-
balancing strategy, and more efficient find and compress rules.
We also implemented the finish algorithm G_ECL-CC that is
used in ECL-CC. As shown in Table 2, G_ECL-CC without sampling
is 2.30x faster on average than ECL-CC. The speedup comes from
using a different load-balancing strategy; in ECL-CC, one thread
handles all edges of a vertex with degree at most 16, which can
lead to significant load-imbalance. In contrast, GConn enables those
edges to be processed in a load-balanced fashion using a variation of
a strategy by Merrill et al. [66] that we designed. Without sampling
and with sampling, G_ECL-CC is 1.19x and 1.04x slower on average
than our fastest variants, respectively.
Afforest [85]. Afforest also implements a root-based algorithm with
k-out sampling. As shown in Figure 7, our fastest implementations
without sampling are 1% slower on average than Afforest with sam-
pling due to the fact that many edges are not inspected in Afforest.
Our fastest implementations with sampling are 2.51x faster on
average because variants using HB sampling sometimes outper-
form those using k-out sampling, and the finish algorithm used in
Afforest is slower than those used in our fastest variants. We also
implemented G_Afforest, the finish algorithm used in Afforest, in
GConn. We found that compared to other finish algorithms in the
no sampling setting, G_Afforest is 12.6x slower on average than our
fastest finish algorithm. The main reason seems to be due to some
union-find algorithms, such as Union-Async and Union-Rem-CAS,
handling path compression more efficiently than the method used
in G_Afforest.

4.4 Incremental Parallel Graph Connectivity

In this section, we evaluate incremental connectivity algorithms
on GPUs. We achieve a raw speedup of 2,482x over EvoGraph [76]
which is the fastest current state-of-the-art streaming connectivity
implementation. Furthermore, the memory bandwidth-normalized

Session 1: Optimizations for GPUs

1.E+11
1.E+10 =
o 1.E+09 /
0D JEH08 e e o i e
<]
= 1.E+07 Liu-Tarjan Union-Hooks
= 1.E+06 Shiloach-Vishkin Union-JTB
’ Union-Async Union-Rem-CAS
1.E+05
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

Batch Size

Figure 8: Throughput vs. batch size for com-Orkut.

speedup is 794x over EvoGraph. Unfortunately, we are not able
to directly compare our streaming connectivity implementations
with existing implementations on the same machine, although we
provide indirect comparisons based on the numbers provided by
the authors in their paper. cuSTINGER [35] and Hornet [16] are
GPU frameworks for streaming graphs, but their code does not
contain streaming connectivity algorithms.

We conduct two types of streaming experiments. In the first type
of experiment, we generate a stream of edge updates from the input
graphs in Table 1. The second type of experiment models real-world
graph streams using synthetic graph generators. Specifically, we use
the RMAT generator [19] with parameters (a, b, ¢) = (0.5,0.1,0.1)
and the Barabasi-Albert (BA) generator [8]. For both generators,
we use n = 227 and m = 10n. The edges in a batch are given in COO
format, and are unsorted.

Throughput. We evaluate the throughput of our incremental con-
nectivity implementations on all of the input graphs in Table 2, and
the two large synthetic graphs generated from the RMAT and BA
generators. Table 4 reports the streaming throughput achieved by
the fastest variant of each algorithm for each input when all of the
edges are treated as a single batch of updates.

As shown in Table 4, the Union-Async algorithm usually achieves
the highest throughput. Recall that for static parallel connectivity,
Union-Rem-CAS is 1.02x slower on average than Union-Async, but
here Union-Rem-CAS is 3.41x slower on average than Union-Async.
In the incremental setting, when accessing an element of the labels
array, the algorithm must check whether the element has been ini-
tialized, which incurs an additional overhead: for instance, Union-
Async when used in the incremental setting is 1.73x slower on
average than when it is used in the static setting. Compared to
Union-Async, in Union-Rem-CAS, the labels array is accessed much
more often, which decreases the throughput.

The other min-based algorithms are much slower than the union-
find algorithms because the other min-based algorithms inspect
more edges. In particular, Liu-Tarjan is 2.86x slower on average than
Union-Async, and Shiloach-Vishkin is 4.87x slower on average than
Union-Async.

Throughput vs. Batch Size. Figure 8 shows the throughput of the
fastest variant for each algorithm with respect to different batch
sizes. When the batch size is small, the performance significantly
degrades mainly due to the GPU kernel launch overhead: the time
to launch the GPU kernel takes tens of times longer than the time
to run it for a small batch size. For small batch sizes, the Liu-Tarjan
and Shiloach-Vishkin algorithms are much slower because for each

2We contacted the authors for their code, but were unable to obtain it.

65

PACT 20, October 3-7, 2020, Virtual Event, USA

1.E+09
- 1.E+09
© 1.E+09
Q
2 8.E+08

c

< 6.E+08

REBEREKDB |§ |

oo 4.E+08
el
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09
Batch Size

LT &SV

The number of

Figure 9: The number of edges inspected for each batch size
for Liu-Tarjan and Shiloach-Vishkin on com-Orkut.

. 2.5E+09 Union-Early Union-Hooks
2 Union-Async Rem-CAS
g 2E+09 | s Rem -LoCk e | TB
joR
S 15E+09
o
3
2 1E+09
[
>
2 0.5E+09
ey
=
0

02 03 04 05 06 07 08

Insert-To-Query Ratio

0.9 1

Figure 10: Throughput of the fastest variant (when the be-
low ratio is 1) of each algorithm on europe_osm, plotted for
different ratios of insertions to queries.

batch, the GPU kernels are launched multiple times to process the
current batch until the labels array converges.

One interesting point is that Liu-Tarjan and Shiloach-Vishkin

become slower when the batch size is larger than 107 due to the
increase in the number of edge inspections. Figure 9 shows the
number of edges being inspected for different batch sizes for one
variant of Liu-Tarjan as well as Shiloach-Vishkin on com-Orkut.
The number of edges examined increases significantly for a batch
size larger than 107 because in those algorithms, all edges in a
batch need to be inspected until the batch converges. We observed
a similar trend in the other graphs for all variants of Liu-Tarjan as
well as Shiloach-Vishkin.
Mixed Inserts and Queries. We evaluate the performance of the
variants used in Figure 8 to study how the ratio of insertions to
queries affects the throughput. For a ratio of insertions to queries
of x, we generate 1/x queries with random vertex pairs per insert,
and shuffle them with the original edges (which are insertions) that
are also randomly permuted to prevent data locality from affecting
performance.

Figure 10 shows the throughput with different insert-to-query
ratios on the europe_osm graph. As the ratio decreases, throughput
also increases because the path to the root vertex in the labels array
is compressed, which speeds up the processing of the remaining
insertions and queries. Note that for very well connected graphs
(e.g., com-Orkut), the throughput with respect to different ratios
is quite stable, because even when the ratio is 1, the labels have
converged after processing a small subset of insertions.

4.5 Evaluation on Titan Xp (Pascal)

This section presents our evaluation of GConn on the Titan Xp
(Pascal) GPU. Table 5 shows the average slowdown against our eval-
uation on the V100 GPU, as well as the average of the speedup over

Session 1: Optimizations for GPUs

PACT 20, October 3-7, 2020, Virtual Event, USA

coPapers cit-

soc-Live ljournal delaunay europe hollywood kron_g500 com- indochina

. . com-
Algorithm DBLP Patents rOad_usa]ournall -2008 _n24 _osm -2009 -logn21 Orkut -2004 uk-2002 twitter? Friendster RMAT BA
Union-Early 8.18e09 |6.08e09| 5.44€09 | 5.19e09 | 3.78e¢09 | 4.87e09 [6.83e09| 4.65e09 4.37e09 [5.58¢09| 2.39¢09 |3.42e09 |3.19¢09 | 1.78¢09 |3.67e09|7.50e08
Union-Hooks 2.66e10 |7.51e09| 5.69e09 | 1.17e10 | 9.58e09 | 8.78e09 [4.75€09| 3.52e10 2.65e10 |4.26e10| 1.29e10 |1.29e10 | 1.18e10 | 5.54e09 [9.95e09|4.81e09
Union-Async 3.17e10 (1.27e10| 7.35e09 | 1.72e10 |1.31e10| 1.24e10 |6.74e09| 3.93e10 | 3.25e10 [4.66e10[1.59e10 |1.65e10|1.51e10| 6.08¢09 |1.17e10(5.03e09
Union-Rem-CAS| 1.05e10 |6.50e09| 4.46e09 | 6.20e09 | 4.00e09 | 5.70e09 |6.05€09| 7.64e09 1.03e10 |1.16e10| 1.98e09 |3.27e09 |3.80e09 | 3.14e09 |5.60e09(9.61e08
Union-Rem-Lock| 3.25¢09 |5.45e09| 3.48e09 | 1.96e09 | 4.97e¢08 | 5.50e09 |4.44e09| 6.20e09 1.94e10 |4.49e10| 4.14e07 |1.55e08 | 5.46e08 | 7.23e09 |1.11e10(4.17e09
Union-JTB 2.78e10 [8.70e09| 5.29¢09 | 1.33e10 | 9.39e09 | 8.63e09 |4.68e09| 3.32e10 2.52e10 |2.94e10| 1.14e10 |1.21e10|1.41e10| 5.85e09 |[8.14e09(5.70e09
Liu-Tarjan 1.39e10 [2.50e09| 2.92e09 | 7.41e09 | 6.99¢09 | 4.62e09 |2.63e09| 1.42e10 7.38¢09 |1.18e10| 8.85e09 |9.56e09 | 4.74e09 | 2.08e09 |[3.05e092.28¢09
Shiloach-Vishkin| 9.42e09 [2.09¢09| 2.97€09 | 5.39€09 | 4.27€09 | 3.12e09 [2.02¢09| 4.84e09 3.90e09 |3.79e09| 5.90e09 |7.90e09 | 3.22e09 | 1.37e09 [2.50e09]|2.36e09

Table 4: Throughput achieved by incremental connectivity algorithms in GConn on a V100 GPU machine when all of the edges
in the graph are treated as a single batch of updates. For each graph, the highest throughput is shown in green.

Average slowdown against V100 | Average speedup

Algorithm Across all variants | Fastest variants | over state-of-the-art

Static conn. 1.62 1.71 2.38

Span. forest 1.59 1.60 -
Streaming conn. 1.79 2.25 -

Table 5: Summary of results on the Titan Xp machine.

15 m Speedup in execution time

o Speedup in memory movement time
=] ,:,
° :
3
57 N | :
0 B m=s Bd
e & X & X X X
/\Xé S & &
& < s W XX o &
& 3 N 2 » & &
i) Q N oS b")
id & o & S & N
< <& il P & < R
& - S 53
N &
0(4 (/0

Graph + Sampling setting

Figure 11: The performance comparison between the fastest
variant on the GPU vs. CPU for each graph in the no-
sampling setting (+NS) and with k-out sampling (+kout).

the fastest one among GPU-CC, GSWITCH, ECL-CC, and Afforest
also run on the Titan Xp GPU. As shown in Table 5, the trends for
both GPU machines are very similar, and except for incremental
connectivity, the average slowdown is close to the ratio of the band-
width of the V100 to that of Titan Xp (900/547.6 = 1.6). For incre-
mental connectivity, accessing the labels array requires spin-locks,
which prevents the algorithms from fully saturating the memory
bandwidth. We note that we had to modify Union-Rem-Lock to
avoid deadlocks [51, 70] for the Pascal machine in which threads
in a warp are executed in lock-step [54].

4.6 Performance analysis on CPUs vs. GPUs

In this section, we compare the performance of GConn [29] on the
V100 with the performance of Connectlt. Connectlt’s experiments
were performed on a Dell PowerEdge R930 with 4 X 2.4GHz Intel 18-
core E7-8864 x4 Xeon professors, a 45MB L3 Cache and a memory
bandwidth of 85 GB/sec.

We compare CPU and GPU performance with the five graphs
used in Connectlt that can fit in the GPU memory [29]. To under-
stand the relation between the execution time and the total data
movement from/to memory, Figure 11 shows the speedup in execu-
tion time achieved by GConn over Connectlt (blue bars), and the
speedup in time for the data movement from/to memory at peak

66

memory bandwidth using the GPU compared to the CPU (red bars).
Our GPU provides 900/85 = 10.59 times higher memory bandwidth
compared to the CPU, but the CPU L3 cache is much larger than the
GPU L2 cache. Hence, there can be more memory transactions on
the GPU, depending on the graph. As shown in Figure 11, there is a
strong correlation between the execution time and the time for data
movement (a Pearson correlation coefficient of 0.854). Note that the
first five pairs of bars are without sampling, and the rest of them are
with k-out sampling. For a fair comparison, we did not apply HB
sampling because the best variants in Connectlt for these graphs
always adopt k-out sampling. The best variant of GConn without
HB sampling achieves 8.26-14.51x speedup over the best variant
with Connectlt. For incremental algorithms, when we treat all of
the edges as one large batch, GConn only achieves 1.85-13.36x
speedup over Connectlt due to the spin-locks on the labels array
being more expensive on GPUs than CPUs.

To obtain a rough estimate of the monetary cost savings for
running the connectivity algorithms on the GPU vs. the CPU, we
compare two machines on Amazon EC2: the p3.2xlarge configura-
tion, which is very similar to our V100 setup, and the x1.16xlarge
configuration, which provides a multicore similar to the Dell Pow-
erEdge R930. On-demand pricing of the p3.2xlarge and x1.16xlarge
instances is $3.06 and $6.669 per hour, respectively. The fastest vari-
ant of GConn is 12.02x faster on average than that of Connectlt.
Hence, for our input graphs, we can expect to save roughly a factor
of (6.669/3.06) X 12.02 = 26.2 in costs by using a similar GPU
compared to a similar CPU.

4.7 Takeaways and Guidelines

Based on our experimental study, we found that variants of union-
find that have not been studied in prior work on GPU connectivity
performed the best. We discovered that the sampling phase mostly
dominates the execution time, which indicates that reducing the
overhead for the sampling phase is crucial for high performance.
We found that many of our static connectivity algorithms can be
extended to support spanning forest and incremental connectivity,
and can achieve high performance as well. Finally, we found GPUs
to be a cost-efficient option for connectivity algorithms compared
to CPUs, as long as the graph can fit in the GPU memory.

The fastest implementation is dependent on a given input graph,
and as GConn supports several hundred variants, trying all variants
to find the fastest one can be overwhelming. We provide some
guidelines below on how to choose an implementation with high
performance.

Session 1: Optimizations for GPUs

Yes No

HB Cov £ 95%

{No sampling, Union-Async or Union-Rem-CAS}

Yes

{k-out sampling, Union-Async or Union-Rem-CAS} {HB sampling, G_ECL-CC}

Figure 12: A decision tree for the sophisticated dynamic
mechanism.

First, a practitioner can simply use the best variant overall based
on our experimental evaluation, which is to use Union-Async or
Union-Rem-CAS combined with k-out sampling. For our input
graphs, using this approach achieves performance that is within
20.8% on average of the performance of the fastest implementation
for each graph.

A more sophisticated dynamic mechanism for selecting sampling
methods for a fixed finish method is as follows. First, we observed
that if the average degree in the graph is small enough, most edges
are inspected in the sampling phase, and an additional overhead
to access the edge array multiple times is incurred. Therefore, we
found that when the average degree is small, sampling is not a
worthwhile optimization. Second, we observed that one does not
need to consider BFS sampling, as it is always outperformed by
either k-out sampling or hook-based search (HB) sampling. From
Table 3, we see that when HB Cov (the percentage of vertices in the
largest connected component after HB sampling) is high enough,
HB sampling is always the best strategy. As shown in Figure 6,
in this case, HB sampling samples a minimal number of edges. A
rough lower bound of HB Cov can be obtained by applying the
first step of HB for a few edges, which is inexpensive, and then
using this value to choose between HB or k-out sampling.

Our study also provides insights on choosing finish methods that
complement a particular sampling method. First, we found that the
fastest finish method is always one of {Union-Async, Union-Rem-
CAS, or G_ECL-CC}. In the no-sampling setting, either Union-
Async or Union-Rem-CAS is the fastest. G_ECL-CC performs fewer
on-the-fly compressions, which normally leads to more path tra-
versal (and thus more cache misses). On the other hand, when HB
sampling is used, which implies the input graph is very well con-
nected, G_ECL-CC is recommended as only a very few edges are
inspected by the union-find algorithms. In this case, G_ECL-CC
has the lowest overhead as it does not perform much on-the-fly
compression, which requires performing additional writes. On our
input graphs, using this strategy for choosing the sampling and
finish methods gives a slowdown of only 9.4% on average compared
to using the fastest implementation for each graph.

Figure 12 presents a decision tree for the strategy above. HB
Cov is the lower bound mentioned above, and Union-Async can be
substituted with Union-Rem-CAS as their performance is similar.

5 CONCLUSION

We have designed the GConn framework, which supports several
hundred efficient implementations on GPUs for static connectivity,
spanning forest, and incremental connectivity. To the best of our

67

PACT 20, October 3-7, 2020, Virtual Event, USA

knowledge, this paper provides the most comprehensive study of
different variants of connectivity algorithms on GPUs. Extensive
evaluations show that the best connectivity implementations in
GConn significantly outperform other state-of-the-art libraries and
implementations. For future work, we are interested in extending
our framework to the multi-GPU or distributed memory settings.

ACKNOWLEDGEMENTS

We thank the reviewers of this paper for their helpful feedback.
This research was supported by DOE Early Career Award #DE-
SC0018947, NSF CAREER Award #CCF-1845763, Google Faculty
Research Award, DARPA SDH Award #HR0011-18-3-0007, and Ap-
plications Driving Architectures (ADA) Research Center, a JUMP
Center co-sponsored by SRC and DARPA.

REFERENCES

[1] Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala. 2019.
Parallel Batch-Dynamic Graph Connectivity. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 381-392.

[2] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong.
2018. Parallel graph connectivity in log diameter rounds. In IEEE Symposium on
Foundations of Computer Science (FOCS). 674-685.

[3] B. Awerbuch and Y. Shiloach. 1987. New Connectivity and MSF Algorithms
for Shuffle-Exchange Network and PRAM. IEEE Trans. Comput. C-36, 10 (1987),
1258-1263.

[4] David A. Bader and Guojing Cong. 2005. A fast, parallel spanning tree algorithm
for symmetric multiprocessors (SMPs). Journal of Parallel and Distrib. Comput.
65, 9 (2005), 994-1006.

[5] David A. Bader, Guojing Cong, and John Feo. 2005. On the Architectural Require-
ments for Efficient Execution of Graph Algorithms. In International Conference
on Parallel Processing (ICPP). 547-556.

[6] David A. Bader and Joseph JaJa. 1996. Parallel Algorithms for Image Histogram-
ming and Connected Components with an Experimental Study. J. Parallel Distrib.
Comput. 35, 2 (1996), 173-190.

[7] Dip Sankar Banerjee and Kishore Kothapalli. 2011. Hybrid Algorithms for List
Ranking and Graph Connected Components. In International Conference on High
Performance Computing (HiPC). 1-10.

[8] Albert-Laszlo Barabasi and Eric Bonabeau. 2003. Scale-Free Networks. Scientific
American (2003).

[9] Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing

breadth-first search. In ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis (SC). Article 12, 12:1-12:10 pages.

Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The GAP Benchmark

Suite. CoRR abs/1508.03619 (2015). http://arxiv.org/abs/1508.03619

Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, and Vahab

Mirrokni. 2019. Near-optimal massively parallel graph connectivity. In IEEE

Symposium on Foundations of Computer Science (FOCS). 1615-1636.

Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab

Mirrokni, and Warren Schudy. 2019. Massively Parallel Computation via Re-

mote Memory Access. In ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA). 59-68.

Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017. Groute:

An Asynchronous Multi-GPU Programming Model for Irregular Computations.

In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP). 235-248.

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. 2012.

Internally Deterministic Parallel Algorithms Can Be Fast. In ACM SIGPLAN

Symposium on Proceedings of Principles and Practice of Parallel Programming

(PPoPP). 181-192.

Libor Bus and Pavel Tvrdik. 2001. A Parallel Algorithm for Connected Compo-

nents on Distributed Memory Machines. In Recent Advances in Parallel Virtual

Machine and Message Passing Interface. 280-287.

Federico Busato, Oded Green, Nicola Bombieri, and David A Bader. 2018. Hornet:

An efficient data structure for dynamic sparse graphs and matrices on GPUs. In

IEEE High Performance Extreme Computing Conference (HPEC). 1-7.

E.N. Caceres, F. Dehne, H. Mongelli, SW. Song, and J.L. Szwarcfiter. 2004. A

Coarse-Grained Parallel Algorithm for Spanning Tree and Connected Compo-

nents. In Euro-Par.

Bryan Catanzaro, Alexander Keller, and Michael Garland. 2014. A Decomposition

for In-Place Matrix Transposition. In ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP). 193-206.

—_
-

=
)

[13

[14

(15]

=
&

(17]

(18

http://arxiv.org/abs/1508.03619

Session 1: Optimizations for GPUs

[19

[20

[21]

[22]

[23]

[24

[25]

[26

[27]

[28

[29

[30]

[31

[32

[33]

(34

[35]

[36]

[37]

[38]

[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A
Recursive Model for Graph Mining. In SIAM International Conference on Data
Mining (SDM). 442-446.

Francis Y. Chin, John Lam, and I-Ngo Chen. 1982. Efficient Parallel Algorithms
for Some Graph Problems. Commun. ACM 25, 9 (Sept. 1982), 659-665.

Laukik Chitnis, Anish Das Sarma, Ashwin Machanavajjhala, and Vibhor Rastogi.
2013. Finding Connected Components in Map-Reduce in Logarithmic Rounds. In
IEEE International Conference on Data Engineering (ICDE). 50-61.

KW. Chong and TW. Lam. 1995. Finding Connected Components in
O(log nloglog n) Time on the EREW PRAM. Journal of Algorithms 18, 3 (1995),
378-402.

Richard Cole and Uzi Vishkin. 1991. Approximate parallel scheduling. II. Appli-
cations to logarithmic-time optimal parallel graph algorithms. Information and
Computation 92, 1 (1991), 1-47.

Guojing Cong and Paul Muzio. 2014. Fast Parallel Connected Components
Algorithms on GPUs. In Euro-Par. 153-164.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms (3. ed.). MIT Press.

Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix
Collection. ACM Trans. Math. Software 38, 1 (Nov. 2011), 1:1-1:25.

Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2018. Theoretically Efficient
Parallel Graph Algorithms Can Be Fast and Scalable. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). 393-404.

Laxman Dhulipala, David Durfee, Janardhan Kulkarni, Richard Peng, Saurabh
Sawlani, and Xiaorui Sun. 2020. Parallel Batch-Dynamic Graphs: Algorithms
and Lower Bounds. In ACM-SIAM Symposium on Discrete Algorithms (SODA).
1300-1319.

Laxman Dhulipala, Changwan Hong, and Julian Shun. 2020. ConnectIt: A
framework for static and incremental parallel graph connectivity algorithms.
https://arxiv.org/abs/2008.03909

D. Ediger, R. McColl, J. Riedy, and D. A. Bader. 2012. STINGER: High performance
data structure for streaming graphs. In IEEE Conference on High Performance
Extreme Computing (HPEC). 1-5.

Ehsan Elhamifar and Rene Vidal. 2013. Sparse subspace clustering: Algorithm,
theory, and applications. IEEE Transactions on Pattern Analysis and Machine
Intelligence 35, 11 (2013), 2765-2781.

Ahmed ElTantawy and Tor M Aamodt. 2018. Warp scheduling for fine-grained
synchronization. In IEEE International Symposium on High Performance Computer
Architecture (HPCA). 375-388.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. 1996. A Density-
based Algorithm for Discovering Clusters a Density-based Algorithm for Discov-
ering Clusters in Large Spatial Databases with Noise. In International Conference
on Knowledge Discovery and Data Mining (KDD). 226-231.

Hillel Gazit. 1991. An Optimal Randomized Parallel Algorithm for Finding
Connected Components in a Graph. SIAM J. Comput. 20, 6 (Dec. 1991), 1046—
1067.

O. Green and D. A. Bader. 2016. cuSTINGER: Supporting dynamic graph al-
gorithms for GPUs. In IEEE High Performance Extreme Computing Conference
(HPEC). 1-6.

John Greiner. 1994. A Comparison of Parallel Algorithms for Connected Compo-
nents. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).
16-25.

Shay Halperin and Uri Zwick. 1994. An Optimal Randomized Logarithmic Time
Connectivity algorithm for the EREW PRAM (Extended Abstract). In ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA).

S. Hambrusch and L. TeWinkel. 1988. A study of connected component labeling
algorithms on the MPP. In International Conference on Supercomputing (ICS).
477-483.

Yujie Han and Robert A. Wagner. 1990. An Efficient and Fast Parallel-connected
Component Algorithm. 7. ACM 37, 3 (July 1990), 626—642.

K. A. Hawick, A. Leist, and D. P. Playne. 2010. Parallel Graph Component
Labelling with GPUs and CUDA. Parallel Comput. 36, 12 (Dec. 2010), 655-678.
Caroline Haythornthwaite. 2005. Social networks and Internet connectivity
effects. Information, Community & Society 8, 2 (2005), 125-147.

D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. 1979. Computing Connected
Components on Parallel Computers. Commun. ACM 22, 8 (Aug. 1979), 461-464.
Jeffrey Ho, Ming-Husang Yang, Jongwoo Lim, Kuang-Chih Lee, and David Krieg-
man. 2003. Clustering appearances of objects under varying illumination con-
ditions. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Vol. 1.

J. Holm, V. King, M. Thorup, O. Zamir, and U. Zwick. 2019. Random k-out
Subgraph Leaves only O(n/k) Inter-Component Edges. In IEEE Symposium on
Foundations of Computer Science (FOCS). 896-909.

Changwan Hong, Laxman Dhulipala, and Julian Shun. 2020. Exploring the
Design Space of Static and Incremental Graph Connectivity Algorithms on GPUs.
http://arxiv.org/abs/2008.11839

Tsan-Sheng Hsu, Vijaya Ramachandran, and Nathaniel Dean. 1997. Parallel
Implementation of Algorithms for Finding Connected Components in Graphs. In

68

[47]

(48]

[49]

[50

[51

[52

[53

[54]

[55

[56]

[57]

o
&,

[63

[64

o
i

[66]

[67

(68

[69

<
=

[71

[72]

PACT 20, October 3-7, 2020, Virtual Event, USA

Parallel Algorithms: 3rd DIMACS Implementation Challenge. 23-41.

J. Iverson, C. Kamath, and G. Karypis. 2015. Evaluation of Connected-component
Labeling Algorithms for Distributed-memory Systems. Parallel Comput. 44, C
(May 2015), 53-68.

Kazuo Iwama and Yahiko Kambayashi. 1994. A Simpler Parallel Algorithm for
Graph Connectivity. J. Algorithms 16, 2 (March 1994), 190-217.

Jayadharini Jaiganesh and Martin Burtscher. 2018. A High-performance Con-
nected Components Implementation for GPUs. In International Symposium on
High-Performance Parallel and Distributed Computing (HPDC). 92-104.

C. Jain, P. Flick, T. Pan, O. Green, and S. Aluru. 2017. An Adaptive Parallel
Algorithm for Computing Connected Components. IEEE Transactions on Parallel
and Distributed Systems 28, 9 (2017), 2428-2439.

Sanders Jason and Kandrot Edward. 2010. CUDA by example: an introduction to
general-purpose GPU programming. Addison-Wesley Professional (2010).
Siddhartha V. Jayanti and Robert E. Tarjan. 2016. A Randomized Concurrent
Algorithm for Disjoint Set Union. In ACM Symposium on Principles of Distributed
Computing (PODC). 75-82.

Siddhartha V. Jayanti, Robert E. Tarjan, and Enric Boix-Adsera. 2019. Randomized
Concurrent Set Union and Generalized Wake-Up. In ACM Symposium on Principles
of Distributed Computing (PODC). 187-196.

Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P Scarpazza. 2018. Dis-
secting the NVIDIA Volta GPU architecture via microbenchmarking. arXiv
preprint arXiv:1804.06826 (2018).

Donald B Johnson and Panagiotis Metaxas. 1997. Connected Components in
O(logS/2 n) Parallel Time for the CREW PRAM. J. Comput. System Sci. 54, 2
(1997), 227-242.

David R. Karger, Noam Nisan, and Michal Parnas. 1999. Fast Connected Com-
ponents Algorithms for the EREW PRAM. SIAM J. Comput. 28, 3 (Feb. 1999),
1021-1034.

Raimondas Kiveris, Silvio Lattanzi, Vahab Mirrokni, Vibhor Rastogi, and Sergei
Vassilvitskii. 2014. Connected Components in MapReduce and Beyond. In Pro-
ceedings of the ACM Symposium on Cloud Computing (SOCC). Article 18, 18:1-
18:13 pages.

Vaclav Koubek and Jana Krsnakova. 1985. Parallel algorithms for connected
components in a graph. In Fundamentals of Computation Theory. 208-217.
Clyde P. Kruskal, Larry Rudolph, and Marc Snir. 1990. Efficient parallel algorithms
for graph problems. Algorithmica 5, 1-4 (1990), 43-64.

Jure Leskovec and Andrej Krevl. 2019. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data.

Jianhua Li and Laleh Behjat. 2006. A connectivity based clustering algorithm
with application to VLSI circuit partitioning. IEEE Transactions on Circuits and
Systems II: Express Briefs 53, 5 (2006), 384-388.

Sixue Liu and Robert E. Tarjan. 2019. Simple Concurrent Labeling Algorithms
for Connected Components. In Symposium on Simplicity in Algorithms (SOSA).
3:1-3:20.

Kamesh Madduri and David A. Bader. 2009. Compact graph representations and
parallel connectivity algorithms for massive dynamic network analysis. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 1-11.

R. McColl, O. Green, and D. A. Bader. 2013. A new parallel algorithm for con-
nected components in dynamic graphs. In IEEE International Conference on High
Performance Computing (HiPC). 246-255.

Ke Meng, Jiajia Li, Guangming Tan, and Ninghui Sun. 2019. A Pattern Based Algo-
rithmic Autotuner for Graph Processing on GPUs. In ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP). 201-213.

Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU
Graph Traversal. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP). 117-128.

Dhruva Nath and S. N. Maheshwari. 1982. Parallel Algorithms for the Connected
Components and Minimal Spanning Tree Problems. Inf. Process. Lett. 14, 1 (1982),
7-11.

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight
Infrastructure for Graph Analytics. In ACM Symposium on Operating Systems
Principles (SOSP). 456—471.

Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight
Infrastructure for Graph Analytics. In ACM Symposium on Operating Systems
Principles (SOSP). 456—471.

Molly A O’Neil, Dan Tamir, and Martin Burtscher. 2011. A parallel GPU version
of the traveling salesman problem. In Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA). The
Steering Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp), 348-353.

Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput Optimization
of Graph Algorithms on GPUs. In ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).
1-19.

M. M. A. Patwary, D. Palsetia, A. Agrawal, W. k. Liao, F. Manne, and A. Choudhary.
2012. A new scalable parallel DBSCAN algorithm using the disjoint-set data

https://arxiv.org/abs/2008.03909
http://arxiv.org/abs/2008.11839
http://snap.stanford.edu/data

Session 1: Optimizations for GPUs

structure. In ACM/IEEE International Conference on High Performance Computing,
Networking, Storage and Analysis (SC). 62:1-62:11.

[73] Md. Mostofa Ali Patwary, Peder Refsnes, and Fredrik Manne. 2012. Multi-core
Spanning Forest Algorithms using the Disjoint-set Data Structure. In IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS). 827-835.

[74] C.A.Phillips. 1989. Parallel Graph Contraction. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA). 148-157.

[75] J. H. Reif. 1985. Optimal Parallel Algorithms for Integer Sorting and Graph
Connectivity. TR-08-85, Harvard University (1985).

[76] Dipanjan Sengupta and Shuaiwen Leon Song. 2017. EvoGraph: On-the-Fly

Efficient Mining of Evolving Graphs on GPU. In High Performance Computing.

97-119.

Yossi Shiloach and Uzi Vishkin. 1982. An O(log n) Parallel Connectivity Algo-

rithm. . Algorithms 3, 1 (1982), 57-67.

[78] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing

Framework for Shared Memory. In ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP). 135-146.

Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2014. A Simple and Prac-

tical Linear-Work Parallel Algorithm for Connectivity. In ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA). 143-153.

[80] Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu.
2017. Work-efficient parallel union-find. Concurrency and Computation: Practice
and Experience 30, 4 (2017).

[77

[79

[81] George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2014. BFS
and Coloring-based Parallel Algorithms for Strongly Connected Components
and Related Problems. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 550-559.

[82] J. Soman, K. Kishore, and P. J. Narayanan. 2010. A fast GPU algorithm for graph

connectivity. In IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 1-8.

[83] Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. 2018. Shortcut-
ting Label Propagation for Distributed Connected Components. In ACM Interna-
tional Conference on Web Search and Data Mining (WSDM). 540-546.

PACT 20, October 3-7, 2020, Virtual Event, USA

[84] I-Jui Sung, Juan Gémez-Luna, José Maria Gonzalez-Linares, Nicolas Guil, and

Wen-Mei W Hwu. 2014. In-place transposition of rectangular matrices on ac-
celerators. In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). 207-218.

M. Sutton, T. Ben-Nun, and A. Barak. 2018. Optimizing Parallel Graph Connec-
tivity Computation via Subgraph Sampling. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 12-21.

Robert E Tarjan and Uzi Vishkin. 1985. An efficient parallel biconnectivity
algorithm. SIAM J. Comput. 14, 4 (1985), 862-874.

Uzi Vishkin. 1984. An optimal parallel connectivity algorithm. Discrete Applied
Mathematics 9, 2 (1984), 197-207.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D. Owens. 2016. Gunrock: A High-performance Graph Processing Library
on the GPU. In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP).

Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl Yang, Leyuan
Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Riffel, and
John D. Owens. 2017. Gunrock: GPU Graph Analytics. ACM Trans. Parallel
Comput. 4, 1, Article 3 (Aug. 2017), 3:1-3:49 pages.

Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2017. Efficient
structural graph clustering: an index-based approach. Proceedings of the VLDB
Endowment 11, 3 (2017), 243-255.

Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas AJ Schweiger. 2007. Scan:
a structural clustering algorithm for networks. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). 824-833.

Yongzhe Zhang, Ariful Azad, and Zhenjiang Hu. 2019. FastSV: A Distributed-
Memory Connected Component Algorithm with Fast Convergence. CoRR
abs/1910.05971 (2019). http://arxiv.org/abs/1910.05971

http://arxiv.org/abs/1910.05971

	Abstract
	1 Introduction
	2 Notation, Preliminaries, and Prior Work
	3 GConn Overview
	3.1 Overview of ConnectIt
	3.2 GConn Framework
	3.3 Sampling Algorithms
	3.4 Finish Algorithms
	3.5 Iterative GPU Optimizations
	3.6 Incremental Connectivity Support

	4 Evaluation
	4.1 Static Parallel Connectivity without Sampling
	4.2 Static Parallel Connectivity with Sampling
	4.3 Comparison with State-of-the-art
	4.4 Incremental Parallel Graph Connectivity
	4.5 Evaluation on Titan Xp (Pascal)
	4.6 Performance analysis on CPUs vs. GPUs
	4.7 Takeaways and Guidelines

	5 Conclusion
	References

