The Graph Based Benchmark Suite (GBBS)

Laxman Dhulipala Jessica Shi Tom Tseng
Carnegie Mellon University MIT CSAIL MIT CSAIL
ldhulipa@cs.cmu.edu jeshi@mit.edu tomtseng@csail. mit.edu
Guy E. Blelloch Julian Shun
Carnegie Mellon University MIT CSAIL
guyb@cs.cmu.edu jshun@mit.edu
Abstract 1 Introduction

In this demonstration paper, we present the Graph Based
Benchmark Suite (GBBS), a suite of scalable, provably-efficient
implementations of over 20 fundamental graph problems
for shared-memory multicore machines. Our results are ob-
tained using a graph processing interface written in C++,
extending the Ligra interface with additional functional prim-
itives that have clearly defined cost bounds. Our approach en-
ables writing high-level codes that are simultaneously simple
and high-performance by virtue of using highly-optimized
primitives. Another benefit is that optimizations, such as
graph compression, are implemented transparently to high-
level user code, and can thus be utilized without changing
the implementation. Our approach enables our codes to scale
to the largest publicly-available real-world graph containing
over 200 billion edges on a single multicore machine.

We show how to use GBBS to process and perform a vari-
ety of tasks on real-world graphs. We present the high-level
C++ APIs that enable us to write concise, high-performance
implementations. We also introduce a Python interface to
GBBS, which lets users easily prototype algorithms and
pipelines in Python that significantly outperform NetworkX,
a mature Python-based graph processing solution.

ACM Reference Format:

Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Ju-
lian Shun. 2020. The Graph Based Benchmark Suite (GBBS). In
3rd Joint International Workshop on Graph Data Management Ex-
periences & Systems (GRADES) and Network Data Analytics (NDA)
(GRADES-NDA’20), June 14, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3398682.3399168

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

GRADES-NDA’20, June 14, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8021-8/20/06.
https://doi.org/10.1145/3398682.3399168

Programming algorithms that can process massive graphs
with billions to hundreds of billions of edges is a challenging
task. To simplify the task, we have designed a problem-based
benchmark and corresponding C++ library called Graph
Based Benchmark Suite (GBBS) to make it easier to design
provably-efficient and scalable shared-memory parallel graph
algorithms [15, 16]. GBBS began as a project to benchmark
parallel graph algorithms, but over time has evolved into a
useful library for designing and implementing new highly
performant parallel graph algorithms. In this short paper, we
present an overview of the C++ library underlying GBBS,
including the core techniques, system design, and APIs that
enable us to achieve our results and enable the design of sim-
ple, efficient implementations. We have made GBBS publicly-
available at https://github.com/ParAlg/gbbs, and provide a
website documenting the benchmark at https://paralg.github.
io/gbbs/. We hope our approach will be applicable to other
algorithmic and data mining tasks on graphs in the future.

Graph Based Benchmark Suite (GBBS). In GBBS, we pro-
vide a high-level graph processing interface in C++ that ex-
tends the Ligra, Ligra+, and Julienne frameworks [14, 42, 45]
with additional functional primitives that are parallel by
default. We have found our approach to be broadly appli-
cable as we have designed and implemented simple, fast,
and provably-efficient multicore implementations of over 20
benchmark graph problems, ranging from standard graph
kernels such as breadth-first search and connectivity, to
more challenging problems such as biconnectivity, mini-
mum spanning forest, k-clique enumeration, and strongly
connected components. Importantly, the GBBS benchmarks
provide clear input-output specifications enabling others to
easily compare other algorithms and implementations with
our results. Other benchmarks suites, such as the GAP [7],
PBBS [44], and LDBC Graphalytics [24] benchmarks have
inspired our work, but we extend the approach taken by
these benchmarks to a much broader set of graph problems.
We believe that the benchmark suite implemented as part of
GBBS is one of the broadest set of high-performance graph
algorithm implementations available today.

https://doi.org/10.1145/3398682.3399168
https://doi.org/10.1145/3398682.3399168
https://github.com/ParAlg/gbbs
https://paralg.github.io/gbbs/
https://paralg.github.io/gbbs/

GRADES-NDA’20, June 14, 2020, Portland, OR, USA

Core GBBS Interfaces
Graph > Vertex

e s

< Compression Lib

:
|

.

.

l 1

.

.

:

Cilk, OpenMP, TBB,)

‘
Homegrown N -

Bucketing

Runtime

Figure 1: System architecture of GBBS. The core interfaces are
the bucketing, graph, and vertex interfaces. These interfaces utilize
parallel primitives and routines from PBBS. Parallelism is imple-
mented using a parallel runtime system—Cilk Plus, OpenMP, TBB,
or a homegrown scheduler that we wrote ourselves—and can be
swapped using a command line argument. The vertex and graph
interfaces use a compression library that mediates access to the un-
derlying graph, which can either be compressed or uncompressed.

In this paper, we focus on describing our techniques, de-
sign principles, and APIs that enable short, reusable, and
composable codes that simplify programming a wide range
of fundamental graph problems. Importantly, all of our codes
scale to the largest publicly-available real-world graph, the
Hyperlink Web graph [33], with over 3.5 billion vertices and
128 billion edges (over 200 billion edges once symmetrized),
on a commodity multicore machine. GBBS is an active bed
for our ongoing research, and we hope to attract more users
to use our system for both benchmarking existing graph
algorithms as well as implementing new ones.
Contributions. We make the following contributions:

(1) We describe GBBS, including the core APIs and the over-
all organization and design of the library.

(2) We describe how to implement an algorithm in GBBS
and provide an example using CoSimRank, an important
data mining algorithm.

(3) We provide a new Python-based API for GBBS and show
that end-to-end processing of graphs using our API is
orders of magnitude faster than NetworkX, a mature
existing Python-based graph processing solution.

2 GBBS Design

GBBS is built as a number of layers, which we illustrate in
Figure 1. We provide a detailed description of the library, our
APIs and corresponding cost bounds, as well as the GBBS
benchmarks, on our website (see Appendix F).

Parallel Runtime and Cost Model

GBBS uses a shared-memory approach to parallel graph
processing in which the entire graph is stored in the main
memory of a single multicore machine. Our codes exploit
nested parallelism using scheduler-agnostic parallel prim-
itives, such as fork-join and parallel-for loops. Thus, they
can easily be compiled to use different parallel runtimes such
as Cilk Plus, OpenMP, TBB, and also a custom work-stealing

Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun

scheduler implemented by the authors. We analyze GBBS al-
gorithms in the classic work-depth model for shared-memory
algorithms, where the work is the number of operations used
by the algorithm and the depth is the length of the longest
sequential dependence in the computation [13, 25].
Parallel Datatypes and Primitives (PBBS)

We build on PBBS [44], a robust base layer providing parallel
primitives and utilities, upon which we build the higher-level
graph and vertex interfaces. PBBS provides the following
utilities. A sequence is a generic parallel sequence datatype,
similar to a parallel version of a C++ vector that provides par-
allel initialization and destruction. GBBS also uses generic
implementations of a parallel linear-probing hash table [43].
Lastly, we import parallel primitives over sequences, includ-
ing map, reduce, prefix-sum (scan), filter, pack, histogram,
random shuffle, and a set of efficient sorting algorithm.
Graph Representations

Compressed Graphs. Graphs in GBBS are stored in the
compressed sparse row (CSR) format. CSR stores two arrays, [
and A, where the vertices are in the range [0, n — 1] and inci-
dent edges of a vertex v are stored in {A[I[v]],. .., A[I[v +
1]—1]} (with a special case for vertex n—1). The uncompressed
format in GBBS is equivalent to the CSR format. GBBS also
supports several compressed graph formats from the Ligra+
framework [45]. Specifically, we provide support for graphs
where neighbor lists are encoded using byte codes and a
parallel generalization of byte codes (see Appendix B).
Weighted Graphs. The graph and vertex datatypes used
in GBBS are generic over the weight type of the graph.
Graphs with arbitrary edge weights can be represented by
simply changing a template argument to the vertex and graph
datatypes. We describe how edge weights integrate with
compression in Appendix B. We treat unweighted graphs as
graphs weighted by an implicit null (0-byte) weight.
Vertex and Graph Datatypes

Next, we describe the core vertex and graph interfaces which
mediate algorithms’ and high-level routines’ accesses to the
underlying graph representation (which can either be com-
pressed or uncompressed, and weighted or unweighted).
Vertex Datatypes and Primitives. GBBS provides vertex
datatypes for both symmetric and asymmetric vertices, used
for undirected and directed graphs, respectively. The vertex
datatype interface (see Figure 2) provides functional primi-
tives over vertex neighborhoods, such as MAP, REDUCE, SCAN,
couNT (a special case of reduce where the map function is a
boolean function), as well as primitives to extract a subset of
the neighborhood satisfying a predicate (FILTER) and a primi-
tive to mutate the vertex neighborhood and delete edges that
do not satisfy a given predicate (pAck). The interface also
provides functions for computing the INTERSECTION, UNION,

Graph Based Benchmark Suite (GBBS)

Graph filterGraph numVertices
operators: ~ packGraph numEdges
Aggregate at nghMap nghCount
neighbor: nghReduce nghPack
Aggregate at srcMap srcCount
source: srcReduce srcPack Graph
. map pack iterate
e reduce filter i-th
operators:
scan count degree
Vertex-Vertex 'mtersection
" union
Operators: jifference Vertex

Figure 2: Core GBBS interfaces. We provide descriptions in the text.

or DIFFERENCE between the set of neighbors of two vertices.
Due to space constraints, we provide the full interface on
our website (see Appendix F).

Vertex Subsets. We use the vertexSubset datatype from
Ligra, which represents a subset of vertices in the graph. A
subset can either be sparse (represented as a collection of
vertex IDs) or dense (represented as a boolean array or bit-
vector of length n, the number of vertices in the graph). A
vertexSubsetr is a generic vertexSubset, where each vertex
is augmented with a value of some type T.

Bucketing. We use the bucketing interface from Julienne [14],
which enables priority-based graph algorithms, including
integer-weighted shortest paths, A-stepping for shortest
paths, k-core decomposition, and others. Each bucket is rep-
resented as a vertexSubset, and the interface allows vertices
to dynamically be moved through different buckets as pri-
orities change. Algorithms using the interface iteratively
extract the highest priority bucket, potentially update inci-
dent vertex priorities, and repeat until all buckets are empty.

Graph Datatypes and Primitives. GBBS provides graph
datatypes for both symmetric and asymmetric graphs. The
distinction is important for statically enforcing arguments to
problems and routines that require a symmetric input (e.g.,
it does not make sense to call connectivity or biconnectivity
on a directed input). Aside from standard functions to query
the number of vertices and edges, the core graph interface
is the set of functional operators defined on graphs, which
extend and generalize the EDGEMAP primitive provided by
Ligra, which we review for completeness in Appendix C.
Generalizing EDGEMAP. In GBBS, we generalize the EDGEMAP
primitive (Appendix C) in two ways. First, we observe that
EDGEMAP is a function from a vertexSubset to a vertexSub-
set containing neighbors of the input vertexSubset, and that
it is often useful to apply a functional operator over a ver-
texSubset and return the results for the same vertexSubset.
Second, we observe that we can generalize applying the map
operation to perform reductions, counts, and packs using
the same interface.

GRADES-NDA’20, June 14, 2020, Portland, OR, USA

Graph Dataset
com-Orkut

Num. Edges

234,370,166
Hyperlink2012 3,563,602,789 | 128,736,914,167
Hyperlink2012-Sym 3,563,602,789 | 225,840,663,232

Table 1: Graph inputs, including vertices and edges.

Num. Vertices ‘
3,072,627

Based on these observations, we provide versions of the
EDGEMAP primitive that aggregate the results at the source:
SRCMAP, sSRCREDUCE, SRCCOUNT, and srRcPAck. We also pro-
vide generalizations of EDGEMAP that return a subset of
the neighbors of the input vertexSubset, including NGHMAP
(equivalent to EDGEMAP), NGHREDUCE, NGHCOUNT, and NGH-
Pack. We provide additional details about the generalized
primitives in Appendix C.

Finally, we provide an operator for filtering edges out of
a graph that returns a new graph, called FILTERGRAPH. The
primitive is useful for codes such as triangle counting and k-
clique enumeration, which require directing the edges of an
undirected graph to eliminate redundant work. We provide a
similar primitive which operates in-place called PACKGRAPH.
Python Interface
We have implemented a Python-based interface for GBBS
that makes it easy for users to utilize our benchmark imple-
mentations and data structures. The library is implemented
using pybind11 [26], which provides zero-copy interoper-
ability between C++ and Python. We provide functionality
to load graphs from a variety of formats and sources, includ-
ing datasets from SNAP [29] and LAW [8], as well as the
uncompressed and compressed formats in GBBS.

3 Demonstration Walkthrough

In this section, we demonstrate how to use the GBBS graph
and vertex APIs, set up and implement CoSimRank, a new
benchmark using GBBS, and demonstrate how to use GBBS
to solve problems using a new zero-copy Python interface
that we have implemented.

Using the Graph and Vertex APIs

The C++ graph and vertex APIs can be used as follows:
using sym_vertex_int = symmetric_vertex<int>;

using sym_graph_int = symmetric_graph<symmetric_vertex,

— int>;

After loading an integer-weighted symmetric graph G
(please see our website for how to load graphs of different
types from C++), we can now call various graph methods,
and access a vertex object for the i’th vertex as follows:
size_t n = G.numVertices();
size_t m = G.numEdges();
sym_vertex_int vtx10 = G.get_vertex(10);

Similarly, methods on the vertex can be called as follows:

// Intersect vtx1@ and vtx42 and return the size
sym_vertex_int vtx42 = G.get_vertex(42);

size_t intersection_size = vtx10.intersect(vtx42);
// Compute number of heavy edges incident to vtx10
auto pred = [J(vtxid_t u, vtxid_t v, int wgh) {

GRADES-NDA’20, June 14, 2020, Portland, OR, USA

10° Values on top of bars display running times in seconds.
7/ /2 NetworkX
AO\XN\ GBBS(T1)
BN GBBS(T60) 165

10*
10.5

2
10 3.88

%9'930.838 0.187
7N 7\

Coloring MaximalMatching

8.7

KCore

MM

1C

Slowdown (log,, scale)

JJ
10°

PageRank

Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun

1.96 0.2

N 5\0.015

MIS BFS CoSimRank

Figure 3: Comparison between GBBS and NetworkX algorithm implementations for the com-Orkut graph. We report the slowdown relative
to GBBS(T60), which is GBBS on 60 threads. The experiments are run on a c2-standard-60 Google Cloud instance, which consists of 60 cores
(with two-way hyper-threading), with 3.8GHz Intel Xeon scalable (Cascade Lake) processors and 240 GiB of main memory.

return wgh > 5;3%;
size_t num_heavy = vtx10.countOutNgh(pred);

Here, vtxid_t is the numeric type for vertex IDs.
Benchmark Implementation: CoSimRank
CoSimRank [38] is a local version of SimRank [27] that al-
lows the similarity of a pair of vertices to be computed with-
out computing the similarity of all pairs of vertices in the
graph. Its computation involves a simplified Personalized
PageRank computation [10], without the use of a damping
factor. We provide the pseudocode and description for our
implementation using GBBS in Algorithm 1 in Appendix D.
Using the Python Interface
Next, we illustrate how to use GBBS in an end-to-end fashion
to rapidly import a graph from the SNAP benchmark and
run the CoSimRank algorithm on it. Extending the Python
bindings after implementing a new benchmark requires only
a few lines of code to add an extra method to the graph object
exported by the library.
We first build the bindings using Bazel [6] and add the
compiled libraries to the Python path:
> bazel build //pybindings/...
> export PYTHONPATH=$(pwd)/bazel-bin/pybindings/:$PYTHONPATH
Next, we launch the Python REPL, import the library, and
import a downloaded graph from the SNAP dataset [29].
>>> import gbbs
>>> G = gbbs.loadSNAP("com-youtube.ungraph.txt",

< undirected=True)

This command creates an uncompressed graph in the GBBS
format at the same location as the input (compression can
optionally be enabled using a separate flag). We can then
apply the CoSIMRANK method defined on graphs:

>>> sim = G.CoSimRank(src=10, dest=82)
>>> print(sim)
0.0002881

Other primitives can be applied similarly. For example:

>>> components = G.Connectivity()

>>> print(components[10] == components[82])

True

>>> cores = G.KCore() # Computes coreness values
>>> print(cores[10], cores[82])

(41, 50)

Comparison with NetworkX
We compared the performance of our implementations with
that of NetworkX [23]. We ran our experiments on a 60-
core, 2-way hyper-threaded c2-standard-60 Google Cloud
instance, with 3.8GHz Intel Xeon Scalable (Cascade Lake)
processors and 240 GiB of memory.

Figure 3 shows the results of the comparison for the com-
Orkut graph from SNAP. For PageRank and maximal inde-
pendent set (MIS), the NetworkX implementation did not
finish after 1 hour. For CoSimRank, the NetworkX library
calls an all-pairs implementation of SimRank [27], which
runs out of memory as it materializes an n X n matrix. We
find that even for this small input which has about 3 mil-
lion vertices and 234 million edges (see Table 1), GBBS is
significantly faster than NetworkX even for GBBS running
on a single thread. In particular, we demonstrate significant
speedups of 7.77x to over 1836.73x running our benchmarks
on a single thread, and of 92.12x to over 4444.44x running
our benchmark on 60 threads, as shown in Figure 3.

Although this comparison is not apples-to-apples, since

our implementations are run in parallel using a highly-optimized

C++ library, and NetworkX is implemented in Python, we
believe that our approach and our Python bindings make
high-performance algorithm implementations more accessi-
ble to the broad Python community.

4 Conclusion and Future Work

We have presented the Graph Based Benchmark Suite (GBBS),
a benchmark suite of over 20 fundamental graph problems,
and an overview of the techniques and interfaces enabling
our implementations. In future work, we intend to implement
our interface on a recent system for streaming graphs called
Aspen [17] in a way that enables all GBBS codes to work
without modifications over the Aspen graph representations.
We encourage others to use GBBS for both benchmarking
existing graph algorithms as well as implementing new ones.
Acknowledgements. This research was supported by DOE
Early Career Award #DE-SC0018947, NSF Graduate Research
Fellowship #1122374, NSF CAREER Award #CCF-1845763,
NSF grants CCF-1910030 and CCF-1919223, and Google Fac-
ulty Research Award.

Graph Based Benchmark Suite (GBBS)

References
[1] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. CRONO: A benchmark

—_
(=)
=

—
~
—

[10

[11

[12

(13

(14

(15

(16

(17

(18

—

—

-

[t

]

—

]

=

=

— =

=

—

suite for multithreaded graph algorithms executing on futuristic mul-
ticores. In Proceedings of the 2015 IEEE International Symposium on
Workload Characterization, ISWC 15, Washington, DC, USA, 2015.
IEEE Computer Society.

T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan.
LinkBench: A database benchmark based on the facebook social graph.
In ACM SIGMOD International Conference on Management of Data,
pages 1185-1196, 2013.

D. A. Bader, J. Feo,]. Gilbert, J. Kepner, D. Koester, and E. Loh. HPC
scalable graph analysis benchmark.

D. A. Bader and K. Madduri. Design and implementation of the HPCS
graph analysis benchmark on symmetric multiprocessors. In Inter-
national Conference on High-Performance Computing (HiPC), pages
465-476, 2005.

G. Bagan, A. Bonifati, R. Ciucanu, G. H. Fletcher, A. Lemay, and N. Ad-
vokaat. gMark: Schema-driven generation of graphs and queries. IEEE
Transactions on Knowledge and Data Engineering, 29(4):856-869, 2016.
Bazel. https://bazel.build/.

S. Beamer, K. Asanovic, and D. A. Patterson. The GAP benchmark
suite. CoRR, abs/1508.03619, 2015.

P. Boldi and S. Vigna. The Webgraph framework I: compression tech-
niques. In International World Wide Web Conference (WWW), pages
595-602, 2004.

A. Bonifati, G. Fletcher, J. Hidders, and A. Iosup. A survey of bench-
marks for graph-processing systems. In Graph Data Management,
pages 163-186. Springer, 2018.

S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. In Computer Networks and ISDN Systems, pages 107-117,
1998.

N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L.Puzar, Y.]. Song, and V. Venkataramani. TAO: Facebook’s distributed
data store for the social graph. In USENIX Annual Technical Conference
(ATC), pages 49-60, 2013.

N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms.
SIAM J. Comput., 14(1):210-223, Feb. 1985.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms (3. ed.). MIT Press, 2009.

L. Dhulipala, G. Blelloch, and J. Shun. Julienne: A framework for
parallel graph algorithms using work-efficient bucketing. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 293-304, 2017.

L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel
graph algorithms can be fast and scalable. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 393-404,
2018.

L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel
graph algorithms can be fast and scalable. CoRR, abs/1805.05208, 2018.
L. Dhulipala, G. E. Blelloch, and J. Shun. Low-latency graph streaming
using compressed purely-functional trees. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI),
pages 918-934, 2019.

L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B. Gibbons,
and J. Shun. Sage: Parallel semi-asymmetric graph algorithms for
NVRAMs. Proceedings of the VLDB Endowment, 13(9), 2020.

A. Dubey, G. D. Hill, R. Escriva, and E. G. Sirer. Weaver: a high-
performance, transactional graph database based on refinable times-
tamps. Proceedings of the VLDB Endowment, 9(11):852-863, 2016.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

GRADES-NDA’20, June 14, 2020, Portland, OR, USA

O. Erling, A. Averbuch, J. Larriba-Pey, H. Chafi, A. Gubichev, A. Prat,
M.-D. Pham, and P. Boncz. The LDBC social network benchmark:
Interactive workload. In ACM SIGMOD International Conference on
Management of Data. Association for Computing Machinery, 2015.

L. Gao, L. Golab, M. T. Ozsu, and G. Alug. Stream WatDiv: A streaming
RDF benchmark. In Proceedings of the International Workshop on
Semantic Big Data, pages 1-6, 2018.

J. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph:
Distributed graph-parallel computation on natural graphs. In USENIX
Symposium on Operating System Design and Implementation (OSDI),
pages 17-30, 2012.

A. Hagberg, P. Swart, and D. S Chult. Exploring network structure,
dynamics, and function using NetworkX. Technical report, Los Alamos
National Lab.(LANL), Los Alamos, NM (United States), 2008.
A.Tosup, T. Hegeman, W. L. Ngai, S. Heldens, A. Prat-Pérez, T. Man-
hardto, H. Chafio, M. Capota, N. Sundaram, M. Anderson, I. G. Tanase,
Y. Xia, L. Nai, and P. Boncz. LDBC graphalytics: A benchmark for large-
scale graph analysis on parallel and distributed platforms. Proceedings
of the VLDB Endowment, 9(13):1317-1328, Sept. 2016.

J.Jaja. Introduction to Parallel Algorithms. Addison-Wesley Professional,
1992.

W. Jakob, J. Rhinelander, and D. Moldovan.
— seamless operability between C++11 and Python,
https://github.com/pybind/pybind11.

G.Jeh and J. Widom. SimRank: a measure of structural-context similar-
ity. In ACM SIGKDD International conference on Knowledge Discovery
and Data Mining, pages 538-543, 2002.

A. Khandelwal, Z. Yang, E. Ye, R. Agarwal, and I Stoica. ZipG: A
memory-efficient graph store for interactive queries. In ACM SIGMOD
International Conference on Management of Data, pages 1149-1164,
2017.

J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, 2019.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Heller-
stein. GraphLab: A new framework for parallel machine learning. In
Conference on Uncertainty in Artificial Intelligence (UAI), pages 340-349,
2010.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing.
In ACM SIGMOD International Conference on Management of Data,
pages 135-146, 2010.

R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: A
survey of vertex-centric frameworks for large-scale distributed graph
processing. ACM Comput. Surv., 48(2):25:1-25:39, Oct. 2015.

R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer. The graph structure
in the web-analyzed on different aggregation levels. The Journal of
Web Science, 1(1), 2015.

L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin. GraphBIG: under-
standing graph computing in the context of industrial solutions. In
SC’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1-12. IEEE, 2015.
Neodj. http://neo4j.com.

D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure
for graph analytics. In ACM Symposium on Operating Systems Principles
(SOSP), pages 456—471, 2013.

V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M. Hari-
dasan. Managing large graphs on multi-cores with graph awareness.
In USENIX Conference on Annual Technical Conference (ATC), pages
41-52, 2012.

S. Rothe and H. Schiitze. CoSimRank: A flexible & efficient graph-
theoretic similarity measure. In Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1392-1402, 2014.

pybind11
2017.

https://bazel.build/
http://snap.stanford.edu/data
http://neo4j.com

GRADES-NDA’20, June 14, 2020, Portland, OR, USA

[39] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph engine
on a memory cloud. In ACM SIGMOD International Conference on
Management of Data, pages 505-516, 2013.

[40] J. Shi, L. Dhulipala, and J. Shun. Parallel clique counting and peeling
algorithms. arXiv preprint arXiv:2002.10047, 2020.

[41] J. Shun. Practical parallel hypergraph algorithms. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP),
pages 232-249, 2020.

[42] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing
framework for shared memory. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 135-146,
2013.

[43] J. Shun and G. E. Blelloch. Phase-concurrent hash tables for determin-
ism. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 96107, 2014.

[44] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.
Simhadri, and K. Tangwongsan. Brief announcement: the Problem
Based Benchmark Suite. In ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pages 68-70, 2012.

[45] J.Shun, L. Dhulipala, and G. E. Blelloch. Smaller and faster: Parallel pro-
cessing of compressed graphs with Ligra+. In IEEE Data Compression
Conference (DCC), pages 403-412, 2015.

[46] J.Shun and K. Tangwongsan. Multicore triangle computations without
tuning. In IEEE International Conference on Data Engineering (ICDE),
pages 149-160, 2015.

[47] Z.Xu, X. Chen, J. Shen, Y. Zhang, C. Chen, and C. Yang. Gardenia: A
graph processing benchmark suite for next-generation accelerators.
ACM Fournal on Emerging Technologies in Computing Systems (JETC),
15(1):1-13, 2019.

[48] D.Yan,Y.Bu, Y. Tian, and A. Deshpande. Big graph analytics platforms.
Foundations and Trends in Databases, 7(1-2):1-195, 2017.

A Related Work

Graph Processing Frameworks and Systems. There has
been a wealth of work on designing efficient parallel graph
frameworks and systems over the past two decades ([22,
30, 31, 36, 42] among many others). We refer the reader
to [32, 48] for excellent surveys of this growing literature.
The approach used in the GBBS library crucially depends
on the line of work on Ligra [42], and subsequent systems,
including Ligra+ [45], and Julienne [14]. Recently, the line
of work on Ligra was generalized for NVRAM-based sys-
tems [18], and to support hypergraphs [41]. An interesting
question is whether the extended EDGEMAP primitives used
in GBBS make it easier to implement a broad class of parallel
hypergraph algorithms.
Parallel Graph Algorithm Benchmarks. Many parallel
graph algorithm benchmarks have been proposed. A recent
survey by Bonifati et al. [9] provides a good overview of
many existing benchmarks. SSCA [3, 4] is an early bench-
mark specifying four graph kernels including graph genera-
tion, subgraph extraction, and clustering. The Problem Based
Benchmark Suite (PBBS) [44] is a more general parallel al-
gorithm benchmark that includes six problems on graphs
(BFS, spanning forest, minimum spanning forest, MIS, maxi-
mal matching, and graph separators). The PBBS benchmarks
are problem-based in that they are defined only in terms

Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun

of the input and output without specifying the algorithm
used to solve the problem. We follow the style of PBBS in
GBBS of defining the input and output requirements for each
problem. The LDBC Graphalytics benchmark [24] includes 6
algorithms including BFS, PageRank, connected components,
label propagation, local clustering coefficient, and SSSP. The
Graph Algorithm Platform (GAP) Benchmark [7] specifies six
kernels for BFS, SSSP, PageRank, connectivity, betweenness
centrality, and triangle counting. GBBS implements a super-
set of the GAP benchmarks, and supports a much broader
set of problems than both the LDBC and GAP benchmarks.
Several recent benchmarks focus on the architecural prop-
erties of parallel graph algorithms. CRONO [1] implements
10 graph algorithms, including all-pairs shortest paths, exact
betweenness centrality, traveling salesman, and depth-first
search, and performs an architectural analysis of their im-
plementations. GraphBIG [34] describes 12 algorithms, in-
cluding several problems that we consider, like k-core and
graph coloring (using the Jones-Plassmann algorithm), but
also problems like depth-first search, which are difficult to
parallelize. GARDENIA [47] provides a benchmark with 9
algorithms, including connectivity, BFS, betweenness central-
ity, PageRank, and triangle counting. Compared with these
architectural benchmarks, GBBS implements a much broader
set of graph problems. It would be interesting to study our
implementations from an architectural perspective.

Graph Databases and Streaming Systems. A related line
of research has been on graph databases (e.g., [11, 19, 28,
35, 37, 39]). Graph databases support dynamically updating
the graph, usually through transactions (i.e., multi-writer
concurrency) and are thus more general than the Ligra sys-
tem and its descendants. However due to the overheads of
supporting transactions, they are generally slower for static
graph algorithms, which is what GBBS targets. Aspen [17]
is a recent system supporting dynamic graph updates that
also supports a Ligra-like interface. An interesting question
that we plan to investigate is whether implementing the
core interfaces from GBBS on top of Aspen would enable the
growing number of GBBS implementations to automatically
run on both static and dynamically evolving graphs.

Graph Database Benchmarks. Recently, there has been
interest in designing benchmarks for graph databases [2, 5,
20, 21]. The LinkBench benchmark [2] generates a synthetic
graph database, update stream, and operations that simu-
late the workload observed at Facebook. The LDBC Social
Network Benchmark [20] presents a broad benchmark with
many graph-based queries, and supports generating syn-
thetic networks at various scales. The gMark benchmark [5]
is a domain- and query-language-independent benchmark
for generating graphs and query workloads. Stream Wat-
Div [21] is a streaming RDF benchmark for benchmarking

Graph Based Benchmark Suite (GBBS)

O srcCount O nghCount O
0O o ©:
@/ g ||/ N,
© @ ®: ®:
(1) (2) (3)

Figure 4: Illustration of sRcCoUNT and NGHCOUNT primitives. The
input is illustrated in Panel (1), and consists of a graph and a vertex-
Subset, with vertices in the vertexSubset illustrated in green. The
green edges are edges for which the condition function C returns
true. Panel (2) and Panel (3) show the results of applying skRcCounT
and NGHCOUNT, respectively. Both primitives emit an augmented
vertexSubset;,;, illustrated in red, where each vertex has an associ-
ated count of the number of edges satisfying C.

SPARQL-based streaming systems, which are closely related
to graph databases. Compared with these efforts, the main
difference in GBBS is that we focus on static graphs, and
focus on problems from the parallel graph algorithms litera-
ture.

B Compression

Byte Codes. In byte codes, we store a vertex’s neighbor list
by difference encoding consecutive vertices, with the first
vertex difference encoded with respect to the source. Decod-
ing is done by sequentially uncompressing each difference,
and summing the differences into a running sum which gives
the ID of the next neighbor. As this process is sequential,
graph algorithms using the byte format that map over the
neighbors of a vertex will have poor depth bounds.
Parallel Byte Codes. We enable parallelism using the parallel-
byte format from Ligra+. This format breaks the neighbors of
a high-degree vertex into blocks, where each block contains
a constant number of neighbors. Each block is difference
encoded with respect to the source, and the format stores
the blocks in a neighbor list in sorted order. As each block
can have a different size, it also stores offsets that point to
the start of each block. Using the parallel-byte format, the
neighbors of a high-degree vertex can then be done in paral-
lel over the blocks. We refer the reader to Ligra+ [45] for a
detailed discussion of this idea.

Integrating Edge Weights. Both schemes above provide
support for compressing weighted graphs. If the graph weight
type is E, the encoder simply interleaves the weighted ele-
ments of type E with the differences generated by the byte
or parallel byte code. GBBS supports compressing integer
weights using variable-length coding, similar to Ligra+ [45].

C EDGEMAP and Generalizing EDGEMAP

EDGEMAP. Next, we review the EDGEMAP primitive from
Ligra, which is the basis for the generalized interface used in
GBBS. EDGEMAP is a basic graph processing primitive useful
for performing graph traversal. The EDGEMAP primitive takes
as input a frontier, or subset of seed vertices. It then applies

GRADES-NDA’20, June 14, 2020, Portland, OR, USA

a user-defined function to generate a new frontier consisting
of neighbors of the input frontier. For example, in a breadth-
first search, the user-defined primitive emits a neighbor in
the output frontier if it has not yet been visited.

More formally, given a graph G(V, E), EDGEMAP takes as
input a vertexSubset U, and two boolean functions F (the map
function) and C (the cond or condition function). EDGEMAP
applies F to (u,v) € E such that u € U and C(v) = true
(call this subset of edges E,), and returns a vertexSubset U’,
where u € U’ if and only if (u,v) € E, and F(u,v) = true.
Generalizing EDGEMAP. Here we provide some additional
details about our generalizations of the EDGEMAP primitive.
The interface for these primitives is similar to EDGEMAP, but
the return types differ depending on the functional operation:
o The mAP operator (like EDGEMAP) returns a vertexSubset.

e The REDUCE operator returns an vertexSubsetg, where E
is the result type of the reduction operation.

o The cOUNT operator is a specialization of REDUCE, return-
ing a vertexSubsetint, where each vertex is augmented
with the number of incident edges satisfying the condition
function (defined in the description of EDGEMAP above).

e The pACK operator preserves edges satisfying an input
predicate P and deletes edges that do not satisfy P. It re-
turns a vertexSubset;,; containing the new vertex degrees
of affected vertices (either the sources or the neighbors).
Figure 4 illustrates the two COUNT operator variants used

in GBBS, srRcCouNT and NGHCOUNT. Both primitives are

generalizations of the EDGEMAP primitive.

D CoSimRank Pseudocode

Algorithm 1 Parallel CoSimRank

1: procedure CoSIMRANK(G, u, v, ¢ = 0.85, max_iter= 100, ¢ = le-6)

2: CUry ¢ €y, CUry, «— e > e,, is the standard basis vector
3 C: w — true > All neighbors are valid for NGHREDUCE
4: Su — {u}, Sy, — {v} > Initial frontier is # and v
5: map,,: (src, ngh) — cury,[src]/deg(src)
6.
7
8
9

> Contributions for u,v
map,,: (src, ngh) — cury, [src]/deg(src)
reduce: (€, r) > L +r
i—0
: sim «— cury - cure,
10: while i < max_iter do

11: Su «NGHREDUCE(S,, map,,, C, reduce)

12: Su «NGHREDUCE(S,,, map,,, C, reduce)

13: Vi, nxty[i] « Sy[i].value

14: Vi, nxty,[i] « Sy [i].value

15: sim < sim + ¢’ - (nxt,, - nxt,) > Compute similarity
16: if ||nxt, — cury ||; < € and ||nxt,, — cur,, ||; < ¢ then break
17: Swap cur,, and nxt,,

18: Swap cur,, and nxt,,

19: return sim

For a pair of vertices u and v, CoSimRank starts with the
standard basis vectors e, and e, respectively (Line 2), and
iteratively applies PageRank using NGHREDUCE for u and v

GRADES-NDA’20, June 14, 2020, Portland, OR, USA

Problem Work Running Time (s)
Breadth-First Search O(m) 8.44
Weighted Breadth-First Search | O(m)* 58.1
Bellman-Ford o(d(G)m) 59.4
Single-Source Widest Path o(d(G)m) 48.4
Single-Source Betweenness O(m) 37.1
O(k)-Spanner O(m)* 36.5
Low-Diameter Decomposition O(m)* 16.6
Connectivity O(m)* 25.0
Spanning Forest O(m)* 35.8
Biconnectivity O(m)* 165
Strongly Connected Components| O(m log m)* 185
Minimum Spanning Forest Oo(m)* 187
Maximal Independent Set O(m)* 32.2
Maximal Matching O(m)* 108
Graph Coloring O(m)* 158
Approximate Set Cover Oo(m)* 90.4
Triangle Counting o(m*/?) 1168
4-Clique Counting O(ma(G)?) 1.62 -10°
k-core O(m)* 184
Approximate Densest Subgraph | O(m) 51.4
PageRank Iteration O(m) 13.1

Table 2: Work bounds for GBBS implementations, and parallel run-
ning times in seconds on the Hyperlink2012 web graph. All bench-
marks other than strongly connected components are run on the
undirected version of the graph. * denotes that a bound holds in
expectation. m is denotes the number of edges in the graph, and we
assume that m = Q(n), where n is the number of vertices. d(G) is the
diameter of the graph, and a(G) is the arboricity of the graph (the
minimum number of spanning forests needed to cover the graph).
The depth bounds for most implementations is poly-logarithmic in
m, and we defer a full list of our depth bounds to the GBBS website.

(Lines 11-12). Specifically, starting with an initial singleton
frontier for each of u and v, for each traversed edge NGHRE-
DUCE computes the PageRank contribution from each source
(Lines 5-6), and reduces the sum to the neighbors (Line 7).
The values on the new frontier (Lines 13—14) are incorpo-
rated into the similarity score through an inner product. The
algorithm stops after a maximum number of iterations (Line
10) or when the ¢;-distances between consecutive PageRank
vectors for both vertices are below a threshold (Lines 16-17).

E Results on Hyperlink2012

Table 2 shows the experimental results for the graph bench-
marks currently supported in GBBS on the Hyperlink2012
Web graph [33]. The benchmarks are run on a 72-core Dell
PowerEdge R930 (with two-way hyper-threading) with 4 x
2.4GHz Intel 18-core E7-8867 v4 Xeon processors (with a
4800MHz bus and 45MB L3 cache) and 1TB of main memory.
Table 1 lists the number of vertices and edges in both the
directed, and undirected (-Sym) versions of this graph.

The times reported here are from our earlier work [15, 16],
and the clique-counting time is from [40]. We note that for
triangle counting [46] and higher-clique counting [40], the
bounds that we achieve are work-efficient with respect to
existing, highly-optimized sequential algorithms [12]. Other

Laxman Dhulipala, Jessica Shi, Tom Tseng, Guy E. Blelloch, and Julian Shun

than the running times for triangle counting and 4-clique
counting, all of our times run in just a few minutes, which
is surprising given the size of this graph. For triangle and
4-clique counting, our times are slower due to the sheer
number of triangles and 4-cliques supported by this graph—
9.648 x 10'2 and 7.306 X 10'°, respectively. All of our bench-
marks implementations have strong bounds on their work
and depth.

F GBBS Website

To make it easier to access GBBS documentation and also

view our benchmark specifications, we have built a website

for GBBS, which can be found at https://paralg.github.io/
gbbs/. The website contains:

(1) Input-output specifications for each problem currently
included in GBBS. Each specification page also includes
information on how to compile the benchmark and run
it on supported graph inputs.

(2) A getting-started guide, which explains the requirements
for GBBS, how to install the library, and how to compile
and run the codes on different graph formats.

(3) Instructions for how to use the Python bindings and
update the bindings with new benchmarks.

https://paralg.github.io/gbbs/
https://paralg.github.io/gbbs/

	Abstract
	1 Introduction
	2 GBBS Design
	3 Demonstration Walkthrough
	4 Conclusion and Future Work
	References
	A Related Work
	B Compression
	C edgeMap and Generalizing edgeMap
	D CoSimRank Pseudocode
	E Results on Hyperlink2012
	F GBBS Website

