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Abstract—Graphs are a natural way to model real-world
entities and relationships between them, ranging from social
networks to data lineage graphs and biological datasets. Queries
over these large graphs often involve expensive sub-graph
traversals and complex analytical computations. These real-
world graphs are often substantially more structured than a
generic vertex-and-edge model would suggest, but this insight
has remained mostly unexplored by existing graph engines for
graph query optimization purposes. In this work, we leverage
structural properties of graphs and queries to automatically
derive materialized graph views that can dramatically speed
up query evaluation. We present KASKADE, the first graph
query optimization framework to exploit materialized graph
views for query optimization purposes. KASKADE employs a
novel constraint-based view enumeration technique that mines
constraints from query workloads and graph schemas, and
injects them during view enumeration to significantly reduce the
search space of views to be considered. Moreover, it introduces
a graph view size estimator to pick the most beneficial views
to materialize given a query set and to select the best query
evaluation plan given a set of materialized views. We evaluate its
performance over real-world graphs, including the provenance
graph that we maintain at Microsoft to enable auditing, service
analytics, and advanced system optimizations. Our results show
that KASKADE substantially reduces the effective graph size and
yields significant performance speedups (up to 50X), in some
cases making otherwise intractable queries possible.

I. INTRODUCTION

Many real-world applications can be naturally modeled as
graphs, including social networks [1], workflow, and depen-
dency graphs as the ones in job scheduling and task execution
systems [2], [3], knowledge graphs [4], [5], biological datasets,
and road networks [6]. An increasingly relevant type of
workload over these graphs involves analytics computations that
mix traversals and computation, e.g., finding subgraphs with
specific connectivity properties or computing various metrics
over sub-graphs. This has resulted in several systems being
designed to handle complex queries over such graphs [7].

In these scenarios, graph analytics queries require response
times on the order of a few seconds to minutes, because they are
either exploratory queries run by users (e.g., recommendation or
similarity search queries) or they power systems making online
operational decisions (e.g., data valuation queries to control
replication, or job similarity queries to drive caching decisions).
However, many of these queries involve the enumeration of
large subgraphs of the input graph, which can easily take
minutes to hours to compute over large graphs on modern
graph systems. To achieve our target response times over large
graphs, new techniques are needed.

We observe that the graphs in many of these applications
have an inherent structure: their vertices and edges have
specific types, following well-defined schemas and connectivity
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Fig. 1: Running example of query over a heterogeneous network: the
“blast radius” impact for a given job in a data lineage graph (blue
circles correspond to jobs; gray squares to files).

properties. For instance, social network data might include
users, pages, and events, which can be connected only in
specific ways (e.g., a page cannot “like” a user), or workload
management systems might involve files and jobs, with all
files being created or consumed by some job. As we discuss in
§ I-A, the provenance graph that we maintain at Microsoft has
similar structural constraints. However, most existing graph
query engines do not take advantage of this structure to improve
query evaluation time.

At the same time, we notice that similar queries are
often run repeatedly over the same graph. Such queries can
be identified and materialized as views to avoid significant
computation cost during their evaluation. The aforementioned
structural regularity of these graphs can be exploited to
efficiently and automatically derive these materialized views.
Like their relational counterparts, such graph views allow us to
answer queries by operating on much smaller amounts of data,
hiding/amortizing computational costs and ultimately delivering
substantial query performance improvements of up to 50X in
our experiments on real-world graphs. As we show, the benefits
of using graph views are more pronounced in heterogeneous
graphs1 that include a large number of vertex and edge types
with connectivity constraints between them.

A. Motivating example

At Microsoft, we operate one of the largest data lakes
worldwide, storing several exabytes of data and processing them
with hundreds of thousands of jobs, spawning billions of tasks
daily [8]. Operating such a massive infrastructure requires us
to handle data governance and legal compliance (e.g., GDPR),
optimize our systems based on our query workloads, and
support metadata management and enterprise search for the
entire company, similar to the scenarios in [2], [3]. A natural
way to represent this data and track datasets and computations
at various levels of granularity is to build a provenance graph
that captures data dependencies among jobs, tasks, files, file
blocks, and users in the lake. As discussed above, only specific
relationships among vertices are allowed, e.g., a user can submit
a job, and a job can read or write files.

1By heterogeneous, we refer to graphs that have more than one vertex types, as opposed
to homogeneous with a single vertex type.



To enable these applications over the provenance graph, we
need support for a wide range of structural queries. Finding
files that contain data from a particular user or created by a
particular job is an anchored graph traversal that computes
the reachability graph from a set of source vertices, whereas
detecting overlapping query sub-plans across jobs to avoid
unnecessary computations can be achieved by searching for
jobs with the same set of input data. Other queries include label
propagation (i.e., marking privileged derivative data products),
data valuation (i.e., quantifying the value of a dataset in terms
of its “centrality” to jobs or users accessing them), copy
detection (i.e., finding files that are stored multiple times by
following copy jobs that have the same input dataset), and data
recommendation (i.e., finding files accessed by other users who
have accessed the same set of files that a user has).

We highlight the optimization opportunities in these types
of queries through a running example: the job blast radius.
Consider the following query operating on the provenance
graph: “For every job j, quantify the cost of failing it, in
terms of the sum of CPU-hours of (affected) downstream
consumers, i.e., jobs that directly or indirectly depend on j’s
execution.” This query, visualized in Fig. 1, traverses the graph
by following read/write relationships among jobs and files,
and computes an aggregate along the traversals. Answering
this query is necessary for cluster operators and analysts to
quantify the impact of job failures—this may affect scheduling
and operational decisions.

By analyzing the query patterns and the graph structure,
we can optimize the job blast radius query in the following
ways. First, observe that the graph has structural connectivity
constraints: jobs produce and consume files, but there are no
file-file or job-job edges. Second, not all vertices and edges in
the graph are relevant to the query, e.g., it does not use vertices
representing tasks. Hence, we can prune large amounts of data
by storing as a view only vertices and edges of types that are
required by the query. Third, while the query traverses job-
file-job dependencies, it only uses metadata from jobs. Thus, a
view storing only jobs and their (2-hop) relationships to other
jobs further reduces the data we need to operate on and the
number of path traversals to perform. A key contribution of our
work is that these views of the graph can be used to answer
queries, and if materialized, query answers can be computed
much more quickly than if computed over the entire graph.

B. Contributions
Motivated by the above scenarios, we have built KASKADE, a
graph query optimization framework that employs graph views
and materialization techniques to efficiently evaluate queries
over graphs. Our contributions are as follows:
Query optimization using graph views. We identify a class of
graph views that can capture the graph use cases we discussed
above. We then provide algorithms to perform view selection
(i.e., choose which views to materialize given a query set) and
view-based query rewriting (i.e., evaluate a query given a set of
already materialized views). As far as we know, this is the first
work that employs graph views in graph query optimization.
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Fig. 2: Architecture of KASKADE.

Constraint-based view enumeration. Efficiently enumerating
candidate views is crucial for the performance of view-based
query optimization algorithms. To this end, we introduce a
novel technique that mines constraints from the graph schema
and queries. It then leverages view templates expressed as
inference rules to generate candidate views, injecting the mined
constraints at runtime to reduce the search space of views to
consider. The number of views our technique enumerates is
further lowered when using the query constraints.
Cost model for graph views. Given the importance of path
traversals, we introduce techniques to estimate the size of views
involving such operations and to compute their creation cost.
Our cost model is crucial for determining which views are
the most beneficial to materialize. Our experiments show that
by leveraging graph schema constraints and associated degree
distributions, we can estimate the size of various path views
in a number of real-world graphs reasonably well.
Results over real-world graphs. We have incorporated all
of the above techniques in our system, KASKADE, and have
evaluated its efficiency using a variety of graph queries over
both heterogeneous and homogeneous graphs. KASKADE is
capable of choosing views that, when materialized, speed up
query evaluation by up to 50X on heterogeneous graphs.

II. OVERVIEW

KASKADE is a graph query optimization framework that
materializes graph views to enable efficient query evaluation.
As noted in § I, it is designed to support complex enumeration
queries over large subgraphs, often involving reporting-oriented
applications that repeatedly compute filters and aggregates, and
apply various analytics over graphs.

KASKADE’s architecture is depicted in Figure 2. Users
submit queries in a language that includes graph pattern
constructs expressed in Cypher [9] and relational constructs
expressed in SQL. They use the former to express path
traversals, and the latter for filtering and aggregation operations.
This query language, described in § III, is capable of capturing
many of the applications described above.

KASKADE supports two main view-based operations: (i) view
selection, i.e., given a set of queries, identify the most
useful views to materialize for speeding up query evaluation,
accounting for a space budget and various cost components;
and (ii) view-based query rewriting, i.e., given a submitted



query, determine how it can be rewritten given the currently
materialized views in the system to improve the query’s
execution time by leveraging the views. These operations are
detailed in § VI. The workload analyzer drives view selection,
whereas the query rewriter is responsible for the view-based
query rewriting.

An essential component in both of these operations is
the view enumerator, which takes as input a query and a
graph schema, and produces candidate views for that query. A
subset of these candidates will be selected for materialization
during view selection and for rewriting a query during view-
based query rewriting. As we show in § V, KASKADE
follows a novel constraint-based view enumeration approach.
In particular, KASKADE’s constraint miner extracts (explicit)
constraints directly present in the schema and queries, and uses
constraint mining rules to derive further (implicit) constraints.
KASKADE employs an inference engine (we use Prolog in
our implementation) to perform the actual view enumeration,
using a set of view templates it expresses as inference rules.
Further, it injects the mined constraints during enumeration,
leading to a significant reduction in the space of candidate
views. Moreover, this approach allows us to easily include new
view templates, extending the capabilities of the system, and
alleviates the need for writing complicated code to perform
the enumeration.

KASKADE uses an execution engine component to create
the views that are output by the workload analyzer, and to
evaluate the rewritten query output by the query rewriter. In
this work, we use Neo4j’s execution engine [10] for the storage
of materialized views, and to execute graph pattern matching
queries. However, our query rewriting techniques can be applied
to other graph query execution engines, so long as their query
language supports graph pattern matching clauses.

III. PRELIMINARIES

A. Graph Data Model
We adopt property graphs as our data model [11], in which
both vertices and edges are typed and may have properties in
the form of key-value pairs. This schema captures constraints
such as domain and range of edge types. In our provenance
graph example of § I-A, an edge of type “read” only connects
vertices of type “job” to vertices of type “file” (and thus never
connects two vertices of type “file”). As we show later, such
schema constraints play an essential role in view enumeration
(§ V). Most mainstream graph enginesprovide support for this
data model (including the use of schema constraints).

B. Query Language
To address our query language requirements discussed in
§ II, KASKADE combines regular path queries with relational
constructs in its query language. In particular, it leverages
the graph pattern specification from Neo4j’s Cypher query
language [9] and combines it with relational constructs for
filters and aggregates. This hybrid query language resembles
that of recent industry offerings for graph-structured data
analytics, such as those from AgensGraph DB [12], SQL
Server [13], and Oracle’s PGQL [14].

Listing 1 Job blast radius query over raw graph.
SELECT A.pipelineName, AVG(T_CPU) FROM (
SELECT A, SUM(B.CPU) AS T_CPU FROM (
MATCH (q_j1:Job)-[:WRITES_TO]->(q_f1:File)
(q_f1:File)-[r*0..8]->(q_f2:File)
(q_f2:File)-[:IS_READ_BY]->(q_j2:Job)
RETURN q_j1 as A, q_j2 as B

) GROUP BY A, B
) GROUP BY A.pipelineName

As an example, consider the job blast radius use case
introduced in § I (Fig. 1). Lst. 1 illustrates a query that combines
OLAP and anchored path constructs to rank jobs in its blast
radius based on average CPU consumption.

Specifically, the query in Lst. 1 ranks jobs up to 10 hops away
in the downstream of a job (q_j1). In the example query, this is
accomplished in Cypher syntax by using a variable length path
construct of up to 8 hops (-[r*0..8]->) between two file
vertices (q_f1 and q_f2), where the two files are endpoints
of the first and last edge on the complete path, respectively.

Although we use the Cypher syntax for our graph queries,
our techniques can be coupled with any query language, as
long as it can express graph pattern matching and schema
constructs.

C. Graph Views
We define a graph view over a graph G as the graph query
Q to be executed against G. This definition is similar to the
one first introduced by Zhuge and Garcia-Molina [15], but
extended to allow the results of Q to also contain new vertices
and edges in addition to those in G. A materialized graph view
is a physical data object containing the results of executing Q
over G.

KASKADE can support a wide range of graph views through
the use of view templates, which are essentially inference rules,
as we show in § V. Among all possible views, we identify
two classes, namely connectors and summarizers, which are
sufficient to capture most of the use cases that we have
discussed so far. Intuitively, connectors result from operations
over paths (i.e., path contractions), whereas summarizers are
obtained via summarization operations (filters or aggregates)
that reduce the size of the original graph.
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Fig. 3: Construction of different 2-hop connector graph views over a
heterogeneous network (namely, a data lineage graph) with two vertex
types (N = 2) and two edge types (M = 2).

As an example, Fig. 3 shows the construction of 2-hop same-
vertex-type connector views over a data lineage graph (similar



TABLE I: Connectors in KASKADE

Type Description

Same-vertex-
type connector

Target vertices are all pairs of vertices with
a specific vertex type.

k-hop connector Target vertices are all vertex pairs that are
connected through k-length paths.

Same-edge-type
connector

Target vertices are all pairs of vertices that
are connected with a path consisting of edges
with a specific edge type

Source-to-sink
connector

Target vertices are (source, sink) pairs, where
sources are the vertices with no incoming
edges and sinks are vertices with no outgoing
edges.

to the graph of Fig. 1). In Fig. 3(a), the input graph contains
two types of vertices, namely jobs (vertex labels with a j prefix)
and files (vertex labels with an f prefix), as well as two types of
edges, namely w (a job writes to a file) and r (a file is read by
a job). Fig. 3(b) shows two different types of connector edges:
the first contracts 2-hop paths between pairs of job vertices
(depicted as blue dashed edges); the second contracts 2-hop
paths between pairs of file vertices (depicted as red dashed
edges). Finally, Fig. 3(c) shows the two resulting connector
graph views: one containing only the job-to-job connector
edges (left), and one with only the file-to-file connector edges
(right).

Next, we introduce a formal definition and examples of
connectors and summarizers. We consider their definition as
a means to an end rather than a fundamental contribution of
this work. Thus, here we only provide sufficient information
over graph views for the reader to follow our techniques in
Sections V and VI. As path operations tend to be the most
expensive operations in graphs, our description will pivot mostly
around connectors. Materializing such expensive operations
can lead to significant performance improvements at query
evaluation time. Moreover, the semantics of connectors is less
straightforward than that of summarizers, which resemble their
relational counterparts (filters and aggregates). Note, however,
that the techniques described here are generic and apply to any
graph views expressible as view templates.

IV. VIEW DEFINITIONS AND EXAMPLES

Next we provide formal definitions of the two main classes
of views supported in KASKADE, namely connectors and
summarizers, which were briefly described in § III-C. Moreover,
we give various examples of the views from each category that
are currently present in KASKADE’s view template library.

While the examples below are general enough to capture
many different types of graph structures, they are by no means
an exhaustive list of graph view templates that are possible in
KASKADE; as we mention in § V, KASKADE’s library of view
templates and constraint mining rules is readily extensible.

A. Connectors
A connector of a graph G = (V,E) is a graph G′ such that
every edge e′ = (u,v) ∈ E(G′) is obtained via contraction of a
single directed path between two target vertices u,v ∈ V (G).
The vertex set V (G′) of the connector view is the union of all

target vertices with V (G′)⊆V (G). Based on this definition, a
number of specialized connector views can be defined, each
of which differs in the target vertices that it considers. Table I
lists examples currently supported in KASKADE.

Additionally, it is easy to compose the definition of k-hop
connectors with the other connector definitions, leading to more
connector types. As an example, the k-hop same-vertex-type
connector is a same-vertex-type connector with the additional
requirement that the target vertices should be connected through
k-hop paths. Finally, connectors are useful in contexts where a
query’s graph pattern contains relatively long paths that can
be contracted without loss of generality, or when only the
endpoints of the graph pattern are projected in subsequent
clauses in the query.
B. Summarizers
A summarizer of a graph G = (V,E) is a graph G′ such
that V (G′) ⊆ V (G), E(G′) ⊆ E(G), and at least one of the
following conditions are true: (i) |V (G′)| < |V (G)|, or (ii)
|E(G′)| < |E(G)|. The summarizer view operations that
KASKADE currently provides are filters that specify the type
of vertices or edges that we want to preserve (inclusion
filters) or remove (exclusion filters) from the original graph.2

Also, it provides aggregator summarizers that either group
a set of vertices into a supervertex, a group of edges into a
superedge, or a subgraph into a supervertex. Finally, aggregator
summarizers require an aggregate function for each type of
property present in the domain of the aggregator operation.
We provide examples of summarizer graph views currently
supported in an extended preprint version at [16]. KASKADE’s
library of template views currently does not support aggregation
of vertices of different types. The library is readily extensible,
however, and aggregations for vertices or edges with different
types are expressible using a higher-order aggregate function
to resolve conflicts between properties with the same name, or
to specify the resulting aggregate type.

Lastly, summarizers can be useful when subsets of data (e.g.,
entire classes of vertices and edges) can be removed from the
graph without incurring any side-effects (in the case of filters),
or when queries refer to logical entities that correspond to
groupings of one or more entity at a finer granularity (in the
case of aggregators).

V. CONSTRAINT-BASED VIEW ENUMERATION

Having introduced a preliminary set of graph view types in
§ III-C (see also § IV for more examples), we now describe
KASKADE’s view enumeration process, which generates candi-
date views for the graph expressions of a query. As discussed
in § II, view enumeration is central to KASKADE (see Fig. 2),
as it is used in both view selection and query rewriting, which
are described in § VI. Given that the space of view candidates
can be large, and that view enumeration is on the critical path
of view selection and query rewriting, its efficiency is crucial.

In KASKADE we use a novel approach, which we call
constraint-based view enumeration. This approach mines

2Summarizer views can also include predicates on vertex/edge properties in their
definitions. Using such predicates would further reduce the size of these views, but
given they are straightforward, here we focus more on predicates for vertex/edge types.
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constraints from the query and the graph schema and injects
them at view enumeration time to drastically reduce the search
space of graph view candidates. Fig. 4 depicts an overview of
our approach. Our view enumeration takes as input a query,
a graph schema and a set of declarative view templates, and
searches for instantiations of the view templates that apply to
the query. KASKADE expresses view templates as inference
rules, and employs an inference engine (namely, Prolog)3 to
perform view enumeration through rule evaluation. Importantly,
KASKADE generates both explicit constraints, extracted directly
from the query and schema, and implicit ones, generated
via constraint mining rules. This constraint mining process
identifies structural properties from the schema and query
that allow it to significantly prune the search space for view
enumeration, discarding infeasible candidates (e.g., job-to-job
edges or 3-hop connectors in our provenance example).

Apart from effectively pruning the search space of can-
didate views, KASKADE’s view enumeration provides the
added benefit of not requiring the implementation of complex
transformations and search algorithms—the search is performed
by the inference engine automatically via our view templates
and efficiently via the constraints that we mine. Moreover,
view templates are readily extensible to modify the supported
set of views. In our current implementation, we employ SWI-
PL’s inference engine [17], which gives us the flexibility to
seamlessly add new view templates and constraint mining
rules via Prolog rules. On the contrary, existing techniques for
view enumeration in the relational setting typically decompose
a query through a set of application-specific transformation
rules [18] or by using the query optimizer [19], and then
implement search strategies to navigate through the candidate
views. Compared to our constraint-based view enumeration,
these approaches require higher implementation effort and are
inflexible when it comes to adding or modifying complex
transformation rules.

We detail the two main parts of our constraint-based view
enumeration, namely the constraint mining and the inference-
based view enumeration, in Sections V-A and V-B, respectively.
A. Mining Structural Graph Constraints
KASKADE exploits information from the graph’s schema and
the given query in the form of constraints to prune the set of
candidate views to be considered during view enumeration. It
mines two types of constraints:

3While a subset of KASKADE’s constraint mining rules are expressible in Datalog,
Prolog provides native support (i.e., without extensions) for aggregation and negation,
and we use both in summarizer view templates. KASKADE also relies on higher-order
predicates (e.g., setof, findall) in constraint mining rules, which Datalog does not
support.

• Explicit constraints (§ V-A1) are first-order logic state-
ments (facts) extracted from the schema and query (e.g.,
that files do not write files, only jobs);

• Implicit constraints (§ V-A2) are not present in the
schema or query, but are derived by combining the
explicit constraint facts with constraint mining rules. These
constraints are essential in KASKADE, as they capture
structural properties that otherwise cannot be inferred by
simply looking at the input query or schema properties.

1) Extracting explicit constraints
The first step in our constraint-based view enumeration is to
extract explicit constraints (facts) from the query and schema.
Transforming the query to facts. Our view enumeration
algorithm goes over the query’s MATCH clause, i.e., its graph
pattern matching clause, and for each vertex and edge in the
graph pattern, KASKADE’s constraint miner emits a set of
Prolog facts. In our example of the job “blast radius” query
(Lst. 1), KASKADE extracts the following facts from the query:

queryVertex(q_f1). queryVertex(q_f2).
queryVertex(q_j1). queryVertex(q_j2).
queryVertexType(q_f1, 'File').
queryVertexType(q_f2, 'File').
queryVertexType(q_j1, 'Job').
queryVertexType(q_j2, 'Job').
queryEdge(q_j1, q_f1). queryEdge(q_f2, q_j2).
queryEdgeType(q_j1, q_f1, 'WRITES_TO').
queryEdgeType(q_f2, q_j2, 'IS_READ_BY').
queryVariableLengthPath(q_f1, q_f2, 0, 8).

The above set of facts contains all named vertices
and edges in the query’s graph pattern, along with their
types, and any variable-length regular path expression
(queryVariableLengthPath( X,Y,L,U) corresponds
to a path between nodes X and Y of length between L and U).
In Lst. 1, a variable-length regular path of up to 8 hops is
specified between query vertices q_f1 and q_f2.
Transforming the schema to facts. Similar to the extraction
of query facts, our view enumeration algorithm goes over the
provided graph schema and emits the corresponding Prolog
rules. For our running example of the data lineage graph, there
are two types of vertices (files and jobs) and two types of edges
representing the producer-consumer data lineage relationship
between them. Hence, the set of facts extracted about this
schema is:

schemaVertex('Job'). schemaVertex('File').
schemaEdge('Job', 'File', 'WRITES_TO').
schemaEdge('File', 'Job', 'IS_READ_BY').

2) Mining implicit constraints
Although the explicit query and schema constraints that we
introduced so far restrict the view enumeration to consider only
views with meaningful vertices and edges (i.e., that appear in
the query and schema), they still allow many infeasible views
to be considered. For example, if we were to enumerate k-hop
connectors between two files to match the variable-length path
in the query of Lst. 1, all values of k ≥ 2 would have to be
considered. However, given the example schema, we know that
only even values of k are feasible views. Similarly, since the
query specifies an upper limit u = 8 in the number hops in



Listing 2 Example of constraint mining rule for the graph
schema.
% Determine whether acyclic directed k-length paths
% between two nodes X and Y are feasible over the input
% graph schema. schemaEdge are explicit constraints
% extracted from the schema.
schemaKHopPath(X,Y,K) :- schemaKHopPath(X,Y,K,[]).
schemaKHopPath(X,Y,1,_) :- schemaEdge(X,Y,_).
schemaKHopPath(X,Y,K,Trail) :-
schemaEdge(X,Z,_), not(member(Z,Trail)),
schemaKHopPath(Z,Y,K1,[X|Trail]), K is K1 + 1.

the variable-length path, we should not be enumerating k-hop
connectors with k ≥ 8.

To derive such implicit schema and query constraints that will
allow us to significantly prune the search space of views to con-
sider, KASKADE uses a library of constraint mining rules4 for
the schema and query. Lst. 2 shows an example of such a con-
straint mining rule for the schema. Rule schemaKHopPath,
expressed in Prolog in the listing, infers all valid k-hop paths
given the input schema. Note that the rule takes advantage
of the explicit schema constraint schemaEdge to derive this
more complex constraint from the schema, and it considers
two instances of schemaKHopPath different if and only if
all values in the resulting unification tuple are different. For ex-
ample, a schemaKHopPath(X=‘Job’,Y=‘Job’,K=2)
unification, i.e., a job-to-job 2-hop connector is different from a
schemaKHopPath(X=‘File’,Y=‘File’,K=2), i.e., a
file-to-file 2-hop connector. For completeness, we also provide a
procedural version of this constraint mining rule in an extended
preprint version at [16]. When contrasted with the Prolog rule,
the procedural version is not only more complex, but it also
explores a larger search space. This is because the procedural
function cannot be injected at view enumeration time as an
additional rule together with other inference rules that further
bound the search space (see § V-B).

Similar constraint mining rules can be defined for the query.
The extended preprint version at [16] shows examples of such
rules, e.g., to bound the length of considered k-hop connectors
(in case such limits are present in the query’s graph pattern),
or to ensure that a node is the source or sink in a connector.

These constraints play a crucial role in limiting the search
space for valid views. As we show in § V-B, by injecting such
rules at view enumeration time, KASKADE can automatically
derive implicit knowledge from the schema and query to
significantly reduce the search space of considered views.
Interestingly, KASKADE can derive this knowledge only on
demand, in that the constraint mining rules get fired only when
required and do not blindly derive all possible facts from the
query and schema.

Importantly, the combination of both schema and query
constraints is what makes it possible for our view enumeration
approach to reducing the search space of possible rewritings.
As an example, consider the process of enumerating valid k-hop
connector views. Without any query constraints, the number
of such views equals the number of k-length paths over the
schema graph, which has M schema edges. While there exists

4The collection of constraint mining rules KASKADE provides is readily extensible,
and users can supply additional constraint mining rules if desired.

Listing 3 Example view template definitions for connectors.
% k-hop connector between nodes X and Y.
kHopConnector(X, Y, XTYPE, YTYPE, K) :-

% query constraints
queryVertexType(X, XTYPE), queryVertexType(Y, YTYPE),
queryKHopPath(X, Y, K),
% schema constraints
schemaKHopPath(XTYPE, TYPE, K).

% k-hop connector where all vertices are of the same type.
kHopConnectorSameVertexType(X, Y, VTYPE, K) :-

kHopConnector(X, Y, VTYPE, VTYPE, K).

% Variable-length connector where all vertices are of
% the same type.
connectorSameVertexType(X, Y, VTYPE) :-

% query constraints
queryVertexType(X, VTYPE), queryVertexType(Y, VTYPE),
queryPath(X, Y),
% schema constraints
schemaPath(X, Y).

% Source-to-sink variable-length connector.
sourceToSinkConnector(X, Y) :-
% query constraints
queryVertexSource(X), queryVertexSink(Y), queryPath(X, Y),
% schema constraints
schemaPath(X, Y).

no closed formula for this combination, when the schema graph
has one or more cycles (e.g., a schema edge that connects a
schema vertex to itself), at least Mk k-hop schema paths can
be enumerated. This space is what the schemaKHopPath
schema constraint mining rule would search over, were it not
used in conjunction with query constraint mining rules on
view template definitions. KASKADE’s constraint-based view
inference algorithm enumerates a significantly smaller number
of views for input queries, as the additional constraints enable
its inference engine to efficiently search by early-stopping on
branches that do not yield feasible rewritings.

B. Inference-based View Enumeration
As shown in Fig. 4, KASKADE’s view enumeration takes

as input (i) a query, (ii) a graph schema, and (iii) a set of
view templates. As described in § V-A, the query and schema
are used to mine explicit and implicit constraints. Both the
view templates and the mined constraints are rules that are
passed to an inference engine to generate candidate views via
rule evaluation. Hence, we call this process inference-based
view enumeration. The view templates drive the search for
candidate views, whereas the constraints restrict the search
space of considered views. This process outputs a collection
of instantiated candidate view templates, which are later used
either by the workload analyzer module (see Fig. 2) when
determining which views to materialize during view selection
(§ VI-B), or by the query rewriter to rewrite the query using the
materialized view (§ VI-C) that will lead to its most efficient
evaluation.

Lst. 3 shows examples of template definitions for con-
nector views. Each view template is defined as a Prolog
rule and corresponds to a type of connector view. For
instance, kHopConnector(X,Y,XTYPE,YTYPE,K) cor-
responds to a connector of length K between nodes X
and Y, with types XTYPE and YTYPE, respectively. An
example instantiation of this template is kHopConnect-
or(X,Y,‘Job’,‘Job’,2), which corresponds to a con-



crete job-to-job 2-hop connector view. This view can be
translated to an equivalent Cypher query, which will be used
either to materialize the view or to rewrite the query using this
view, as we explain in § VI. Other templates in the listing are
used to produce connectors between nodes of the same type or
source-to-sink connectors. Additional view templates can be
defined in a similar fashion, such as the ones for summarizer
views that we provide in an extended preprint version at [16].

Note that the body of the view template is defined us-
ing the query and schema constraints, either the explicit
ones (e.g., queryVertexType) coming directly from the
query or schema, or via the constraint mining rules (e.g.,
queryKHopPath, schemaKHopPath), as discussed in
§ V-A. For example, kHopConnector’s body includes two
explicit constraints to check the type of the two nodes
participating in the connector, a query constraint mining rule
that will check whether there is a valid k-hop path between
the two nodes in the query, and a schema constraint mining
rule that will do the same check on the schema.

Having gathered all query and schema facts, KASKADE’s
view enumeration algorithm performs the actual view candidate
generation. In particular, it calls the inference engine for every
view template. As an example, assuming an upper bound of
k = 10 — in Lst. 1 we have a variable-length path of at most 8
hops between 2 File vertices, and each of these two vertices is
an endpoint for another edge — the following are valid instan-
tiations of the kHopConnector(X,Y,XTYPE,YTYPE,K)
view template for query vertices q_j1 and q_j2 (the only
vertices projected out of the MATCH clause):

(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=2)
(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=4)
(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=6)
(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=8)
(X='q_j1', Y='q_j2', XTYPE='Job', XTYPE='Job', K=10)

Or, in other words, the unification (X=‘q_j1’,
Y=‘q_j2’, XTYPE=‘Job’, XTYPE=‘Job’, K=2)
for the view template kHopConnector(X,Y,XTYPE,-
YTYPE,K) implies that a view where each edge contracts a
path of length k = 2 between two nodes of type Job is feasible
for the query in Lst. 1.

Similarly, KASKADE generates candidates for the remaining
templates of Listings 3 and the additional example templates
at [16]. For each candidate it generates, KASKADE’s inference
engine also outputs a rewriting of the given query that uses
this candidate view, which is crucial for the view-based query
rewriting, as we show in § VI-C. Finally, each candidate view
incurs different costs (see § VI-A), and not every view is
necessarily materialized or chosen for a rewrite.

VI. VIEW OPERATIONS

In this section, we present the main two operations that
KASKADE supports: selecting views for materialization given
a set of queries (§ VI-B) and view-based rewriting of a query
given a set of pre-materialized views (§ VI-C). To do this,
KASKADE uses a cost model to estimate the size and cost of
views, which we describe next (§ VI-A).

A. View Size Estimation and Cost Model
While some techniques for relational cost-based query op-
timization may at times target filters and aggregates, most
efforts in this area have primarily focused on join cardinality
estimation [20]. This is in part because joins tend to dominate
query costs, but also because estimating join cardinalities is a
harder problem than, e.g., estimating the cardinality of filters.
Furthermore, KASKADE can leverage existing techniques for
cardinality estimation of filters and aggregates in relational
query optimization for summarizers.

Therefore, here we detail our cost model contribution as it
relates to connector views, which can be seen as the graph
counterpart of relational joins. We first describe how we
estimate the size of connector views, which we then use to
define our cost model.
Graph data properties During initial data loading and
subsequent data updates, KASKADE maintains the following
graph properties: (i) vertex cardinality for each vertex type of
the raw graph; and (ii) coarse-grained out-degree distribution
summary statistics, i.e., the 50th, 90th, and 95th out-degree
for each vertex type of the raw graph. KASKADE uses these
properties to estimate the size of a view.
View size estimation. Estimating the size of a view is essential
for the KASKADE’s view operations. First, it allows us to
determine if a view will fit in a space budget during view
selection. Moreover, our cost components (see below) use view
size estimates to assess the benefit of a view both in view
selection and view-based query rewriting.

We estimate the size of a view as the number of edges that
it has when materialized since the number of edges usually
dominates the number of vertices in real-world graphs. Next,
we observe that the number of edges in a k-hop connector over
a graph G equals the number of k-length simple paths in G.
Therefore, for a directed graph G that is homogeneous (i.e.,
has only one type of vertex, and one type of edge), we define
the following estimator for its number of k-length paths:

Ê(G,k,α) = n ·degk
α (1)

where n = |V | is the number of vertices in G, and degα is the
α-th percentile out-degree of vertices in G (0 < α ≤ 100). For
a directed graph G that is heterogeneous (i.e., has more than
one type of vertex and/or more than one type of edge), an
estimator for its number of k-length paths is as follows:

Ê(G,k,α) = ∑
t∈TG

nt · (degα(ni))
k (2)

where TG is the set of types of vertices in G that are edge
sources (i.e., are the domain of at least one type of edge), nt
is the number of vertices of type t ∈ TG, and degα(nt) is the
maximum out-degree of vertices of type t ∈ TG.

Observe that if α = 100, then degα is the maximum out-
degree and the estimators above are upper bounds on the
number of k-length paths in the graph. This is because there
are n possible starting vertices, each vertex in the path has
at most deg100 (or deg100(ni)) neighbors to choose from for
its successor vertex in the path, and such a choice has to be
made k times in a k-length path. In practice, we found that



α = 100 gives a very loose upper bound, whereas 50≤ α ≤
95 gives a much more accurate estimate depending on the
degree distribution of the graph. We present experiments on
the accuracy of our estimator in § VII.
View creation cost. The creation cost of a graph view refers to
any computational and I/O costs incurred when computing and
materializing the views’ results. Since the primitives required
for computing and materializing the results of the graph views
that we are interested in are relatively simple, the I/O cost
dominates computational costs, and thus the latter is omitted
from our cost model. Hence, the view creation cost is directly
proportional to Ê(G,k,α).
Query evaluation cost. The cost of evaluating a query q,
denoted EvalCost(q), is required both in the view selection
and the query rewriting process. KASKADE relies on an existing
cost model for graph database queries as a proxy for the cost
to compute a given query using the raw graph. In particular, it
leverages Neo4j’s [10] cost-based optimizer, which establishes
a reasonable ordering between all vertex scans without indexes,
scans from indexes, and range scans. For future work, we plan
to incorporate our findings from graph view size estimation to
further improve the query evaluation cost model.
B. View Selection
Given a query workload, KASKADE’s view selection process
determines the most effective views to materialize for answering
the workload under the space budget that KASKADE allocates
for materializing views. This operation is performed by the
workload analyzer component, in conjunction with the view
enumerator (see § V). The goal of KASKADE’s view selection
algorithm is to select the views that lead to the most significant
performance gains relative to their cost, while respecting the
space budget.

To this end, we formulate the view selection algorithm as
a 0-1 knapsack problem, where the size of the knapsack is
the space budget dedicated to view materialization.5 The items
that we want to fit in the knapsack are the candidate views
generated by the view enumerator (§ V). The weight of each
item is the view’s estimated size (see § VI-A), while the
value of each item is the performance improvement achieved
by using that view divided by the view’s creation cost (to
penalize views that are expensive to materialize). We define
the performance improvement of a view v for a query q
in the query workload Q as q’s evaluation cost divided by
the cost of evaluating the rewritten version of q that uses v.
The performance improvement of v for Q is the sum of v’s
improvement for each query in Q (which is zero for the queries
for which v is not applicable). Note that we can extend the
above formulation by adding weights to the value of each query
to reflect its relative importance (e.g., based on the query’s
frequency to prioritize frequent queries, or on the query’s
estimated execution time to prioritize expensive queries).

The views that the above process selects for materialization
are instantiations of Prolog view templates output by the

5The space budget is typically a percentage of the machine’s main memory size, given
that we are using a main memory execution engine. Our formulation can be easily
extended to support multiple levels of memory hierarchy.

view enumeration (see § V). KASKADE’s workload analyzer
translates those views to Cypher and executes them against the
graph to perform the actual materialization. As a byproduct of
this process, each combination of query q and materialized view
v is accompanied by a rewriting of q using v. In other words, a
pair of candidate view and query rewriting are both inferred and
costed together during inference-based view enumeration. This
does not imply, however, that all possible candidate views and
rewriting pairs are enumerated; rather, only the rewritings that
are feasible given the explicit and implicit mined constraints.
Further, we also note that iteratively rewriting the query as part
of view enumeration is a commonly accepted approach, with
significant advantages over query rewriting done only after
enumeration [21], [22]. This is crucial in the view-based query
rewriting, described next. The rewriter component converts the
rewriting in Prolog to Cypher, so that KASKADE can run it on
its graph execution engine.

C. View-Based Query Rewriting
Given a query and a set of materialized views, view-based
rewriting is the process of finding the rewriting of the query
that leads to the highest reduction of its evaluation cost by
using (a subset of) the views. In KASKADE, the query rewriter
module (see Fig. 2) performs this operation.

When a query q arrives in the system, the query rewriter
invokes the view enumerator, which generates the possible view
candidates for q, pruning those that it has not materialized.
Among the views that are output by the enumerator, the query
rewriter selects the one that, when used to rewrite q, leads to
the smallest evaluation cost for q. As discussed in § V, the
view enumerator outputs the rewriting of each query based
on the candidate views for that query. If this information
is saved from the view selection step (which is true in our
implementation), we can leverage it to choose the most efficient
view-based rewriting of the query without having to invoke
the view enumeration again for that query. As we mentioned
in § V, KASKADE currently supports rewritings that rely on a
single view. Combining multiple views in a single rewriting is
left as future work.

Lst. 4 shows the rewritten version of our example query of
Lst. 1 that uses a 2-hop connector (“job-to-job”) graph view.
Listing 4 Job blast radius query rewritten over a 2-hop
connector (job-to-job) graph view.
SELECT A.pipelineName, AVG(T_CPU) FROM (
SELECT A, SUM(B.CPU) AS T_CPU FROM (
MATCH (q_j1:Job)-[:2_HOP-JOB_TO_JOB*1..4]->(q_j2:Job)
RETURN q_j1 as A, q_j2 as B

) GROUP BY A, B
) GROUP BY A.pipelineName

VII. EXPERIMENTAL EVALUATION

In this section, we experimentally confirm that by leveraging
graph views (e.g., summarizers and connectors) we can:
(i) accurately estimate graph view sizes—§ VII-D; (ii) effec-
tively reduce the graph size our queries operate on—§ VII-E;
and (iii) improve query performance—§ VII-F. We start by
providing details on KASKADE’s current implementation, and
follow by introducing our datasets and query workload.



TABLE II: Networks used for evaluation: prov and dblp are
heterogeneous, while roadnet-usa and soc-livejournal are
homogeneous and have one edge type.

Short Name Type |V | |E|
prov (raw) Data lineage 3.2B 16.4B
prov (summarized) Data lineage 7M 34M
dblp-net Publications [25] 5.1M 24.7M
soc-livejournal Social network [26] 4.8M 68.9M
roadnet-usa Road network [6] 23.9M 28.8M

A. Implementation
We have implemented KASKADE’s components (see Fig. 2)
as follows. The view enumerator component (§ V) uses SWI-
Prolog [17] as its inference engine. We wrote all constraint
mining rules, query constraint mining rules, and view templates
using SWI-Prolog syntax [23]. We wrote the knapsack problem
formulation (§ VI-B) in Python 2.7, using the branch-and-
bound knapsack solver from Google OR tools combinatory
optimization library [24]. As shown in Fig. 2, KASKADE uses
Neo4J (version 3.2.2) for storage of raw graphs, materialized
graph views, and query execution of graph pattern matching
queries. All other components were written in Java.

For the experimental results below, KASKADE extracted
schema constraints only once for each workload, as these do
not change throughout the workload. Furthermore, KASKADE
extracted query constraints as part of view inference only the
first time we entered the query into the system. This process
introduces a few milliseconds to the total query runtime and
is amortized for multiple runs of the same query.

B. Datasets
In our evaluation of different aspects of KASKADE, we
use a combination of publicly-available heterogeneous and
homogeneous networks and a large provenance graph from
Microsoft (heterogeneous network). Table II lists the datasets
and their raw sizes. We also provide their degree distributions
in an extended preprint version of this work at [16].

For our size reduction evaluation in Section VII-E, we
focus on gains provided by different graph views over the
two heterogeneous networks: dblp-net and a data lineage
graph from Microsoft. The dblp-net graph, which is publicly
available at [25], contains 5.1M vertices (authors, articles,
and venues) with 24.7M with 2.2G on-disk footprint. For
the second heterogeneous network, we captured a provenance
graph modeling one of Microsoft’s large production clusters
for a week. This raw graph contains 3.2B vertices modeling
jobs, files, machines, and tasks, and 16.4B edges representing
relationships among these entities, such as job-read-file, or
task-to-task data transfers. The on-disk footprint of this data
is in the order of 10+ TBs.

After showing size reduction achieved by summarizers and
connectors in Section VII-E, for our query runtime experiments
(§ VII-F), we consider already summarized versions of our
heterogeneous networks, i.e., of dblp-net and provenance
graph. The summarized graph over dblp-net contains only
authors and publications (“article”, “publication”, and “in-
proc” vertex types), totaling 3.2M vertices and 19.3M edges,

which requires 1.3G on disk. The summarized graph over the
raw provenance graph contains only jobs and files and their
relationships, which make up its 7M vertices and 34M edges.
The on-disk footprint of this data is 4.8 GBs. This allows us
to compare runtimes of our queries on the Neo4j 3.2.2 graph
engine, running on a 128 GB of RAM and 28 Intel Xeon
2.40GHz cores, 4 x 1TB SSD Ubuntu box. We chose to use
Neo4j for storage of materialized views and query execution
because it is the most widely used graph database engine as of
writing, but our techniques are graph query engine-agnostic.

C. Queries
We use the following 8 queries in our evaluation of query
runtimes. Queries Q1 through Q3 are motivated by telemetry
use cases at Microsoft, and are defined as follows. The first
query retrieves the job blast radius, up to 8 hops away, of
all job vertices in the graph, together with their average CPU
consumption property. Query Q2 retrieves the ancestors of a
job (i.e., all vertices in its backward data lineage) up to 4
hops away, for all job vertices in the graph. Conversely, Q3
does the equivalent operation for forward data lineage for all
vertices in the graph, also capped at 4 hops from the source
vertex. Both Q2 and Q3 are also adapted for the other 3 graph
datasets: on dblp, the source vertex type is “author” instead
of “job”, and on homogeneous networks roadnet-usa and
soc-livejournal all vertices are included.

Next, queries Q4 through Q7 capture graph operation primi-
tives which are commonly required for tasks in dependency
driven analytics [3]. The first, query Q4 (“path lengths”),
computes a weighted distance from a source vertex to all
other vertices in its forward k-hop neighborhood, limited to 4
hops. For each vertex in the 4-hop neighborhood, it performs
an aggregation operation (max) over a data property (edge
timestamp) of all edges in the 4-hop path. Queries Q5 and Q6
both measure the overall size of the graph (edge count and
vertex count, respectively).

Finally, Q7 (“community detection”) and Q8 (“largest
community”) are representative of common graph analytics
tasks. The former runs a 25 passes iterative version of
community detection algorithm via label-propagation, updating
a “community” property on all vertices and edges in the
graph, while Q8 uses the community label produced by Q7
to retrieve the largest community in terms of graph size as
measured by number of “job” vertices in each community. The
label propagation algorithm used by Q7 is part of the APOC
collection of graph algorithm UDFs for Neo4j [27].

For query runtimes experiments in § VII-F, we use the
equivalent rewriting of each of these queries over a 2-hop
connector. Specifically, queries Q1 through Q4 go over half of
the original number of hops, and queries Q7 and Q8 run around
half as many iterations of label propagation. These rewritings
are equivalent and produce the same results as queries Q1
through Q4 over the original graph, and similar groupings
of “job” nodes in the resulting communities. Queries Q5 and
Q6 need not be modified, as they only count the number of
elements in the dataset (edges and vertices, respectively).
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Fig. 5: Estimated, actual, and original graph sizes for 2-hop connector views over different datasets. Here we show estimates for two upper
bound variations derived from summary statistics over the graph’s degree distribution detailed in § VI-A. We also plot the original graph size
(x-axis, and dashed |E| series). Plots are in log-log scale.

D. View Size Estimation
In this section, we evaluate the accuracy of KASKADE’s view
size estimators (§ VI-A). Fig. 5 shows our results for different
heuristics estimators on the size of a 2-hop connector view
materialized over the first n edges of each public graph dataset.
We focus on size estimates for 2-hop connectors since, similar
to cardinality estimation for joins, the larger the k, the less
accurate our estimator. We do not report results for view size
estimates for summarizers, as for these KASKADE can leverage
traditional cardinality estimation based on predicate selectivity
for filters, as well as multi-dimensional histograms for predicate
selectivity of group-by operators [20].

We found that k-hop connectors in homogeneous networks
are usually larger than the original graph in real-world networks.
Further, we find that there is no direct relationship between
the size of a graph schema, and the expected size of a k-
hop view. This is because k-length paths can exist between
any two vertices in a homogeneous graph (smaller schema),
as opposed to only between specific types of vertices in
heterogeneous networks (larger schema), such as Microsoft’s
provenance graph. Note that the α = 50 line does a good job
of approximating the size of the graph as the number of edges
grows. Also, for networks with a degree distribution close to a
power-law, such as soc-livejournal, the estimator that
relies on 95th percentile out-degree (α = 95) provides an upper
bound, while the one that uses the median out-degree (α = 50)
of the network provides a lower bound. On other networks that
lack a power-law degree distribution, such as road-net-usa,
the median out-degree estimator better approximates an upper
bound on the size of the k-hop connector.

In practice, KASKADE relies on the estimator with α = 95
as it provides an upper bound for most real-world graphs that
we have observed. Note that the estimator with α = 95 for
prov decreases when the original graph increases in size from
100K to 1M edges, increasing again at 10M edges. This is
due to a decrease in the percentage of “job” vertices with a
large out-degree, shifting the 95th percentile to a lower value.
This percentile remains the same at 10M edges, while the 95th
out-degree for “file” vertices increases at both 1M and 10M
edges.
E. Size Reduction
This experiment shows how by applying summarizers and
connectors over heterogeneous graphs we can reduce the
effective graph size for one or more queries. Figure 6 shows
that for co-authorship queries over the dblp, and query Q1
over the provenance graph, the schema-level summarizer yields
up to three orders of magnitude reduction. The connector yields

another two orders of magnitude data reduction by summarizing
the job-file-job paths in the provenance graph, and one order
of magnitude by summarizing the author-publication-author
paths in the dblp graph.

Besides the expected performance advantage since queries
operate on less data, such a drastic data reduction allows us
to benefit from single-machine in-memory technologies (such
as Neo4j) instead of slower distributed on-disk alternatives for
query evaluation, in the case of the provenance graph. While
this is practically very important, we do not claim this as
part of our performance advantage, and all experiments are
shown as relative speed-ups against a baseline on this reduced
provenance graph on the same underlying graph engine.
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Fig. 6: Effective graph size reduction when using summarizer and
2-hop connector views over prov and dblp heterogeneous networks
(y-axis is in log scale).

F. Query Runtimes

This experiment measures the difference in total query runtime
for queries when executed from scratch over the filtered graph
versus over an equivalent connector view on the filtered graph.
Figure 7 shows our results, with runtimes averaged over 10
runs, plotted in log scale on the y-axis. Because the amount of
data required to answer the rewritten query is up to orders of
magnitude smaller (§ VII-E) in the heterogeneous networks,
virtually every query over the prov and dblp graphs benefit
from executing over the connector view. Specifically, Q2
and Q3 have the least performance gains (less than 2 times
faster), while Q4 and Q8 obtain the largest runtime speedups
(13 and 50 times faster, respectively). This is expected: Q2
(“ancestors”) and Q3 (“descendants”) explore a k-hop ego-
centric neighborhood in both the filtered graph and in the
connector view that is of the same order of magnitude. Q4
(“path lengths”) and Q8 (“community detection”), on the other
hand, are queries that directly benefit from the significant
size reduction of the input graph. In particular, the maximum
number of paths in a graph can be exponential on the number of
vertices and edges, which affects both the count of path lengths
that Q4 performs, as well as the label-propagation updates that
Q8 requires. Lastly, KASKADE creates views through graph
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transformations that are engine-agnostic, hence these gains
should be available in other systems as well.

For the homogeneous networks, we look at the total query
runtimes over the raw graph and over a vertex-to-vertex
materialized 2-hop connector, which may be up to orders
of magnitude larger than the raw graph (§ VII-D), as these
networks have only one type of edge. Despite these differences
in total sizes, a non-intuitive result is that the total query
runtime is still linearly correlated with the order of magnitude
increase in size for the network with a power-law degree
distribution (soc-livejournal), while it decreases for
path-related queries in the case of roadnet-usa. This is due
to a combination of factors, including the larger fraction of
long paths in roadnet-usa. Lastly, while the decision on
which views to materialize heavily depends on the estimated
view size (e.g., size budget constraints, and proxy for view
creation cost), these 2-hop connector views are unlikely to be
materialized for the two homogeneous networks, due to the
large view sizes predicted by our cost model (Figure 5).

G. View Selection Runtimes

This experiment measures the runtime of our view selection
algorithm, which identifies the most useful views to materialize
subject to a space budget. As described in VI-B, our algorithm
is formulated as a 0−1 knapsack problem. Figure 8 shows our
results for different sets of uniformly distributed view weights
and values, with runtimes averaged over 10 runs, plotted in
log-log scale. Aside from the 1 GB budget case (where the
solver finishes more quickly due to more views having weight
larger than the budget) all runtimes scale superlinearly on
number of views. We believe this is largely due to a core
component in our selection algorithm being currently single-
threaded [24]. Nonetheless, our results with the single-threaded
implementation show that even for a large set of candidate
views (e.g., 105), KASKADE can select the most useful views
for materialization in less than a few seconds. It is possible to
further reduce the runtime by splitting the knapsack problem

into multiple parallel subproblems, or to parallelize the solver
implementation, which we leave as future work.

VIII. RELATED WORK

Views and language. Materialized views have been widely
used in the relational setting to improve query runtime by
amortizing and hiding computation costs [28]. This inspires
our work, but the topological nature of graph views makes them
new and different. The notion of graph views and algorithms
for their maintenance was first introduced in[15] by Zhuge
and Garcia-Molina in 1998, but since then there has been little
attention in this area. With KASKADE, we aim at providing
a practical approach that can be used to deal with large-scale
graphs. It addresses various problems related to graph views,
including view enumeration, selection, as well as view-based
query rewriting. In this paper, we focus on extracting views
for the graph traversal portion of our queries, since these
are the most crucial for performance. An interesting avenue
for future work is to address a combined analysis of the
relational and graph query fragments, related to what [29]
proposes for a more restricted set of query types or [30] does
for OLAP on graphs scenarios. The challenge is to identify
and overcome the limits of relational query containment and
view rewriting techniques for our hybrid query language. A
related challenge is to support maintenance of our graph views
in the case of updates, which we leave as future work. Fan
et al. [31] provide algorithms to generate views for speeding
up fixed-sized subgraph queries, whereas KASKADE targets
traversal-type queries that can contain an arbitrary number of
vertices/edges. They do not provide a system for selecting the
best views to generate based on a budget constraint. Le et
al. [32] present algorithms for rewriting queries on SPARQL
views, but lack view selection. Katsifodimos et al. [33] present
techniques for view selection to improve performance of XML
queries, which are limited to trees due to XML’s structure.
RDF and XML. The Semantic Web literature has explored
the storage and inference retrieval of RDF and OWL data
extensively [34]. While most efforts focused on indexing and
storage of RDF triples, there has also been work on maintenance
algorithms for aggregate queries over RDF data [35]. While
relevant, this approach ignores the view selection and rewriting
problems we consider here, and it has limited applicability
outside RDF. RDFViewS [21] addresses the problem of view
selection in RDF databases. However, the considered query and
view language support pattern matching (which are translatable
to relational queries) and not arbitrary path traversals, which
are crucial in the graph applications we consider. Similar



caveats are present in prior work on XML rewriting [36],
[37], including lack of a cost model for view selection.
GFDs. Graph Functional Dependencies (GFDs) work aims
at discovering parts of a graph that violate topological con-
straints [38], [39], [40], [41], [42]. Our focus with graph query
optimization is different: materialize smaller graphs to speed
up query execution. We see their work as complementary to
ours, in that dependencies discovered by their approach may be
provided in the form of schema constraints inference rules in
KASKADE. A future work direction is to translate instantiations
constraint mining rules (§ V-A) into GFDs.
Graph summarization and compression. Summarization
finds smaller graphs that are representative of the original graph
to speed up graph algorithms or queries, for graph visualization,
or to remove noise [43]. Most related is summarization to
speed up graph computations for certain queries (lossless or
lossy) [44], [45], [46], [47], [48]. As far as we know, prior
work in this area has not explored the use of connectors and
summarizers as part of a general system to speed up graph
queries. Rudolf et al. [49] describe summarization templates
in SAP HANA, which can be used to produce what we
call graph views. However, their paper lacks a system that
determines what views to materialize, nor uses the views to
speed up graph queries. There has been significant work on
lossless graph compression to reduce space usage or improve
performance of graph algorithms (see, e.g., [50], [51], [52]).
This is complementary to our work on graph views, and
compression could be applied to reduce their memory footprint.

IX. CONCLUSIONS
We presented KASKADE, a graph query optimization framework
that employs materialization to efficiently evaluate queries over
graphs. Many application repeatedly run similar queries over
the same graph, and many production graphs have structural
properties that restrict the types of vertices and edges in them.
These facts motivate KASKADE to automatically derive graph
views using a new constraint-based view enumeration technique,
and a novel cost model that accurately estimates the size of
graph views. We show that queries rewritten over some of these
views can provide up to 50 times faster response times. Finally,
the rewriting techniques we have proposed are engine-agnostic
(i.e., only use fundamental graph transformations that typically
yield smaller graphs), thus applicable to other graph systems.
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