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ABSTRACT

The James Webb Space Telescope (JWST) is expected to observe galaxies at z > 10 that are
presently inaccessible. Here, we use a self-consistent empirical model, the UNIVERSEMA-
CHINE, to generate mock galaxy catalogues and lightcones over the redshift range z = 0−15.
These data include realistic galaxy properties (stellar masses, star formation rates, and UV
luminosities), galaxy–halo relationships, and galaxy–galaxy clustering. Mock observables are
also provided for different model parameters spanning observational uncertainties at z < 10.
We predict that Cycle 1 JWST surveys will very likely detect galaxies with M∗ > 107 M⊙
and/or M1500 < −17 out to at least z ∼ 13.5. Number density uncertainties at z > 12 expand
dramatically, so efforts to detect z > 12 galaxies will provide the most valuable constraints
on galaxy formation models. The faint-end slopes of the stellar mass/luminosity functions at
a given mass/luminosity threshold steepen as redshift increases. This is because observable
galaxies are hosted by haloes in the exponentially falling regime of the halo mass function
at high redshifts. Hence, these faint-end slopes are robustly predicted to become shallower
below current observable limits (M∗ < 107 M⊙ or M1500 > −17). For reionization models,
extrapolating luminosity functions with a constant faint-end slope from M1500 = −17 down
to M1500 = −12 gives the most reasonable upper limit for the total UV luminosity and cos-
mic star formation rate up to z ∼ 12. We compare to three other empirical models and one
semi-analytic model, showing that the range of predicted observables from our approach en-
compasses predictions from other techniques. Public catalogues and lightcones for common
fields are available online.
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1 INTRODUCTION

JWST will provide our first clear view of galaxy formation at

z > 10, offering the potential to study exotic physical systems (e.g.,

population III stars and direct-collapse black holes; see Bromm

⋆ E-mail: behroozi@arizona.edu

& Yoshida 2011 for a review) and extreme conditions (e.g., low

metallicities, high densities, high merger rates, and high accretion

rates; see Bromm & Yoshida 2011 and Stark 2016 for reviews).

At the same time, JWST will test whether key trends for galaxies

at z = 4− 10 persist at higher redshifts. Examples include steeper

faint-end slopes for luminosity and mass functions (Bouwens et al.

2015; Finkelstein et al. 2015; Song et al. 2016), rapid fall-off

c© 2020 The Authors
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2 P. Behroozi et al.

in observed cosmic star formation rates at z > 9 (Oesch et al.

2014, 2018), and increasing stellar mass–halo mass ratios (e.g.,

Behroozi & Silk 2015; Moster et al. 2018; Behroozi et al. 2019b;

cf. Rodríguez-Puebla et al. 2017).

Predictions for what JWST will see have become increas-

ingly common as its launch approaches (e.g., Mason et al. 2015;

Behroozi & Silk 2015; Tacchella et al. 2018; Williams et al. 2018;

Yung et al. 2019a; Lagos et al. 2019; Park et al. 2020; Endsley

et al. 2020; Vogelsberger et al. 2020; Hainline et al. 2020; Griffin

et al. 2020; Kauffmann et al. 2020), as these predictions are essen-

tial for proposal planning. In this paper, we provide public cata-

logues and lightcones containing a range of JWST predictions gen-

erated by the UNIVERSEMACHINE (Behroozi et al. 2019b). The

UNIVERSEMACHINE is an empirical model that self-consistently

parametrizes galaxy star formation rates as a function of their host

dark matter halo masses, mass accretion rates, and redshifts. As

with other empirical models (Mutch et al. 2013; Becker 2015;

Cohn 2017; Rodríguez-Puebla et al. 2016b; Moster et al. 2018),

this parametrization is applied to the merger trees of simulated dark

matter haloes, thereby tracing the growth of model galaxies over

time. Empirical models have the unique ability to extract galaxy–

halo relationships from observational constraints without making

explicit assumptions about the particular physical processes driving

galaxy growth (Behroozi et al. 2019a). At the same time, empirical

models can map the range of plausible galaxy formation scenarios

consistent with all observations simultaneously. See Somerville &

Davé (2015) and Wechsler & Tinker (2018) for reviews of this and

other approaches to modelling galaxy formation.

The UNIVERSEMACHINE is well-suited to high-redshift pre-

dictions for several reasons. First, the model was calibrated directly

to z> 4 UV luminosity functions and IR Excess–UV (IRX–UV) re-

lationships from the Atacama Large Millimeter Array (ALMA), in-

stead of less-certain stellar mass functions. Second, the constrain-

ing data included new and existing clustering measurements over

z= 0−1 (Coil et al. 2017; Behroozi et al. 2019b), and the mock cat-

alog of the resulting best-fit model matches pair counts and cluster-

ing of observed galaxies to at least z ∼ 5 (Pandya et al. 2019; End-

sley et al. 2020). Finally, the model agrees with clustering-derived

stellar mass–halo mass relationships out to z ∼ 7 (Harikane et al.

2016, 2018; Ishikawa et al. 2017). These qualities allow the UNI-

VERSEMACHINE to generate realistic galaxy properties (including

UV luminosities, stellar masses, and star formation rates), realistic

galaxy–halo relationships, and realistic galaxy clustering at high

redshifts.

High-redshift galaxy evolution can be empirically predicted

by smooth interpolation between two boundary conditions: 1) the

Universe had no stars when it began, and 2) modelled galaxies

at observable redshifts must match actual observations. Combin-

ing these boundary conditions with Lambda Cold Dark Matter

(ΛCDM) simulations on halo growth is surprisingly powerful. For

example, Behroozi & Silk (2015) showed that z = 0 observations

of the galaxy stellar mass function and specific star formation rates

could successfully predict evolution of the stellar mass–halo mass

relation to z = 3, and similarly that z ≤ 4 constraints could success-

fully predict the stellar mass–halo mass relation to z = 8. To aid

confidence that the range of our predictions encompasses a wide

variety of other possible techniques, we compare our predictions

both to other empirical models (Behroozi & Silk 2015; Moster et al.

2018; Williams et al. 2018) and to a semi-analytical model (the

Santa Cruz model; Somerville et al. 2015; Yung et al. 2019a,b).

In this paper, Section 2 details the dark matter simulation

that we use, provides an overview of the UNIVERSEMACHINE,

and discusses observational constraints at z < 10. Section 3 de-

scribes results from the generated mock catalogues, including

mass/luminosity functions and cosmic star formation rates. We dis-

cuss these results in Section 4 and conclude in Section 5. Ap-

pendix A summarizes key equations for the UNIVERSEMACHINE,

Appendix B contains resolution tests, and Appendix C describes

the effects of cosmology uncertainties. Throughout this paper, we

adopt a flat, ΛCDM cosmology (h = 0.68, ΩM = 0.307, ΩΛ =
0.693, ns = 0.96, σ8 = 0.823) consistent with Planck constraints

(Planck Collaboration et al. 2018). Halo masses use the virial

spherical overdensity definition of Bryan & Norman (1998). Stel-

lar masses assume a Chabrier (2003) initial mass function (IMF), a

Bruzual & Charlot (2003) stellar population synthesis model, and a

Calzetti et al. (2000) dust law. The adopted galaxy–halo modelling

uses the UNIVERSEMACHINE Data Release 1 (DR1) code release

(Behroozi et al. 2019b). Except where otherwise specified, galaxy

formation is assumed to be inefficient in haloes with Mh < 108 M⊙
due to the atomic cooling limit (O’Shea et al. 2015; Xu et al. 2016).

2 METHODS

The original UNIVERSEMACHINE analysis (Behroozi et al. 2019b)

used a large-volume dark matter simulation (Bolshoi-Planck;

Klypin et al. 2016; Rodríguez-Puebla et al. 2016b). However, the

halo mass resolution of Bolshoi-Planck (∼ 1010 M⊙) is not suf-

ficient to resolve most star formation above z = 10, which likely

occurs in 109 − 1010 M⊙ haloes (Behroozi & Silk 2015). In this

section, we describe the higher-resolution simulation used in this

paper (§2.1), the UNIVERSEMACHINE code (§2.2), our resolution

tests (§2.3), and the lightcone generation process (§2.4).

2.1 Dark Matter Simulation

Throughout this work, we use the public Very Small MultiDark-

Planck (VSMDPL) simulation,1 which follows a periodic comov-

ing cube of side length 160h−1 Mpc from z = 150 to z = 0 with

38403 particles. This gives VSMDPL both very high particle mass

resolution (9.1×106 M⊙) and force resolution (1 h−1 kpc at z < 1,

2 h−1 comoving kpc at z > 1) resolution; the simulation thereby

resolves 109 M⊙ haloes with > 100 particles. As described in §2.3,

this gives sufficient resolution to capture almost all star formation

in haloes at z ≤ 15. The VSMDPL box was run with the GADGET-

2 code (Springel 2005), with a flat, ΛCDM cosmology (h = 0.68,

ΩM = 0.307, ΩΛ = 0.693, ns = 0.96, σ8 = 0.823). Haloes were

identified at 151 snapshots from z = 25 to z = 0 using the ROCK-

STAR phase-space halo finder (Behroozi et al. 2013a). Merger trees

were constructed using the CONSISTENT TREES code (Behroozi

et al. 2013b).

2.2 The UNIVERSEMACHINE

2.2.1 Overview

The UNIVERSEMACHINE is an empirical model that links galaxy

star formation rates to properties of their host haloes (Behroozi

et al. 2019b). Specifically, the model parametrizes the probability

distribution of galaxy star formation rates (SFRs) as a function of

host halo mass (Mh), mass accretion rate (Ṁh), and redshift, z, i.e.,

1 https://www.cosmosim.org/cms/simulations/vsmdpl/
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P(SFR|Mh,Ṁh,z). The UNIVERSEMACHINE uses a guess in this

parameter space to assign an SFR to each halo at every redshift of

the simulation; each galaxy’s SFR is integrated along the merger

tree of its host halo to obtain a stellar mass and UV luminosity.

This results in an entire mock universe populated with galaxy prop-

erties. The UNIVERSEMACHINE then compares statistics of this

mock universe to real observations to obtain a likelihood for the

original guess. This likelihood is fed to a Markov Chain Monte

Carlo algorithm, which repeatedly generates new guesses in pa-

rameter space (and new mock catalogues) until the chain converges

to the posterior distribution of the model parameters. The full 44-

dimensional parametrization is designed to be flexible so that the

model can approximate the true probability distribution of galaxy

SFRs in haloes; see Behroozi et al. (2019a). Almost all these pa-

rameters control behaviour at low redshifts (z ≤ 1), where observ-

able constraints are tightest.

2.2.2 Observational Constraints

Full observational constraints are described in Appendix C of

Behroozi et al. 2019b. The observational constraints used at z > 4

include UV luminosity functions from z = 4−10 (Finkelstein et al.

2015; Bouwens et al. 2016a), IRX–UV relationships from z= 4−7

(Bouwens et al. 2016b), UV–SM relationships from the SEDITION

code (Behroozi et al. 2019b) applied to stacked SEDs from Song

et al. (2016) for z = 4 − 8, galaxy specific star formation rates

(McLure et al. 2011; Labbé et al. 2013; Smit et al. 2014; Salmon

et al. 2015), and total cosmic star formation rates from UV galaxy

surveys (Yoshida et al. 2006; Cucciati et al. 2012; van der Burg

et al. 2010; Finkelstein et al. 2015) and gamma-ray bursts (Kistler

et al. 2013). See Section 2.3 for comparisons between the UNI-

VERSEMACHINE and observed stellar mass and luminosity func-

tions at z ≥ 4.

2.2.3 Effective Behaviour at High Redshifts

Although we use the full UNIVERSEMACHINE parametrization for

the results in this paper (see Appendix A for key equations and

Behroozi et al. 2019b for full details), its behaviour reduces to a

much simpler effective model at high redshifts, which we describe

here to guide intuition.

Fig. 1 shows average galaxy star formation rates for haloes at

z > 4 in the best-fit UNIVERSEMACHINE model. At z > 6, the lack

of massive and/or quenched haloes results in a simple power-law

form for average star formation rates (SFRs):

SFR(Mh,z) ≈ 10α(z) ·Mβ (z)
h

(1)

α(z) ≈ α0 +αz · z (2)

β (z) ≈ β0 +βz · z, (3)

where Mh is the peak halo mass (i.e., maximum mass attained over

the halo’s assembly history). The variation of SFR with the halo

mass assembly rate (Ṁh) is ∼0.3 dex, which is much smaller than

the corresponding variation of SFR with either Mh or redshift (both

several dex; see Fig. 1), so Ṁh does not appear in Eq. 1. The effec-

tive values of α0 and β0 are constrained principally by stellar mass

functions at z≤ 4, and those of αz and βz are effectively constrained

to match the evolution of UV luminosity functions over z = 4−10.

The UNIVERSEMACHINE integrates the SFR of each galaxy

along the merger tree of its dark matter halo to obtain galaxy stellar

mass and luminosity. UV luminosities (M1500) are calculated using

the Flexible Stellar Population Synthesis code (FSPS) v3.0 (Conroy
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Figure 1. Average galaxy star formation rates (M⊙ yr−1) in the best-fit

model of the UNIVERSEMACHINE as a function of redshift and peak halo

mass. White lines show typical halo growth histories for haloes of mass

1011, 1012, 1013, 1014, and 1015 M⊙ at z = 0. The grey shaded region shows

haloes below the number densities expected to be observable with JWST.
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Figure 2. Typical dust attenuation (A1500, magnitudes) in the best-fit model

of the UNIVERSEMACHINE as a function of redshift and peak halo mass.

White lines show typical halo growth histories as in Fig. 1. The grey shaded

region shows haloes below the number densities expected to be observable

with JWST.
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(M1500, AB magnitudes) in the best-fit model of the UNIVERSEMACHINE

as a function of redshift and peak halo mass. White lines show typical halo

growth histories as in Fig. 1. The grey shaded region shows haloes below

the number densities expected to be observable with JWST.MNRAS 000, 1–15 (2020)
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108.5 M⊙ (Fig. 16). For most UNIVERSEMACHINE models, lower-

ing the threshold halo mass from 108 M⊙ to 106 M⊙ with the same

SFR–halo mass prescription results in less than a 30% increase in

the total CSFR out to z ∼ 15.

3.5 Model Comparisons

We compare the UNIVERSEMACHINE to three other empirical

models and a semi-analytical model (SAM). The semi-analytical

model (the Santa Cruz model; Somerville et al. 2015; Yung et al.

2019a,b) employs analytic prescriptions for multiphase gas cool-

ing, stellar and black hole feedback, metallicity enrichment, and

dust-to-metal ratios; these prescriptions are integrated over Ex-

tended Press-Schechter dark matter halo merger trees to gener-

ate galaxy properties. For the Santa Cruz SAM, error bars show

the range of supernova feedback strengths explored in Yung et al.

(2019a,b). The empirical models include EMERGE (Moster et al.

2018), JAGUAR (Williams et al. 2018), and the model of Behroozi

& Silk (2015). Each uses redshift-dependent scaling laws to de-

scribe star formation rates and stellar masses in dark matter haloes

that are calibrated to match observations at z ≤ 10. Of note,

EMERGE has been recalibrated using a more flexible redshift scal-

ing than in Moster et al. (2018), which yields lower stellar mass–

halo mass ratios at z ∼ 3−6 than previously published (B. Moster

et al., in prep.). Additionally, to generate UV luminosities, it uses

the same approach described in §2.2.3, with dust parameters taken

from the best-fit UNIVERSEMACHINE model.

Fig. 13 compares CSFRs from the UNIVERSEMACHINE to

other data and models. All models agree with all observations at

z < 8, with disagreements becoming more prominent at z ∼ 10.

Behroozi & Silk (2015) gives the most optimistic predictions at

high redshifts, because the extrapolation technique used favours

increasing stellar–halo mass ratios at higher redshifts. JAGUAR

and the Santa Cruz SAM give the most pessimistic predictions.

JAGUAR is driven by matching the rapidly-decreasing luminosity

functions measured at z > 8 in Oesch et al. (2018). The Santa Cruz

SAM requires star formation timescales for molecular (∼ 102K)

gas that are increasingly significant compared to the age of the Uni-

verse at z> 10. EMERGE predictions are most similar (within one-

sigma uncertainties of the UNIVERSEMACHINE), likely due to the

similar observational constraints used. All models (and data) above

are consistent within two-sigma uncertainty contours of the UNI-

VERSEMACHINE.

Fig. 14 compares predicted ratios between total and observ-

able (M1500 <−17) CSFRs. JAGUAR is not shown, as it integrates

CSFRs only down to M∗ ∼ 106 M⊙. The remaining models are

in excellent agreement from z = 5 to z = 12, at which point the

predictions for the fraction of observable star formation diverge.

This is consistent with the divergence of uncertainties in the UNI-

VERSEMACHINE. At z < 5, the Santa Cruz SAM has significantly

more dust-obscured star formation at M1500 >−17 than other mod-

els.

Lastly, we compare predicted stellar mass and luminosity

functions in Fig. 17. These show broad agreement with the CSFR

trends in Fig. 13. As with CSFRs, Behroozi & Silk (2015) gives

more optimistic predictions; JAGUAR as well as the Santa Cruz

SAM give more pessimistic predictions; and EMERGE gives simi-

lar predictions. Of note, predicted faint-end slopes for the luminos-

ity function are similar up to z ∼ 12, regardless of the approach,

leading to similar predicted total to observed CSFR ratios in Fig.

14. As with CSFRs, the range of theoretical predictions gener-

ally falls within the two-sigma uncertainties of the UNIVERSEMA-

CHINE.

4 DISCUSSION

In this paper, we present predictions from an empirical model at

z > 10. As discussed in Behroozi & Silk (2015), such extrapola-

tions can be valid as long as the dominant physical processes for

galaxy formation remain the same and have no major discontinu-

ities. Confirmation or rejection of these predictions with JWST will

hence reveal whether 1) similar physics applies at z > 10, or 2) new

processes become important at these high redshifts.

We expect that JWST will be able to observe galaxies with

M∗ > 107 M⊙ or M1500 < −17 out to z ∼ 13.5 with > 85% confi-

dence in planned Cycle 1 surveys (Fig. 6). Typical UNIVERSEMA-

CHINE models suggest that JWST will also detect z ∼ 15 galaxies.

However, the most pessimistic models suggest that z = 15 galaxies

will be inaccessible, even in a lensed survey, since greater depth

will result in reduced effective volume (Fig. 17). Given the more

than 1.5 dex one-sigma uncertainties in number density at z = 15

(Fig. 17), even upper limits will be extremely useful to constrain

galaxy evolution.

Lensed surveys may access the fainter galaxies that are be-

lieved to play important roles in reionization (e.g., Bouwens et al.

2012; Robertson et al. 2015; Finkelstein et al. 2019; c.f., Naidu

et al. 2020). With the Hubble Space Telescope, observations of

lensed galaxies in the Hubble Frontier Fields (Lotz et al. 2017)

yielded UV luminosity functions 2 − 3 magnitudes fainter than

otherwise possible (Livermore et al. 2017; Bouwens et al. 2017;

Ishigaki et al. 2018). Systematic uncertainties in lensing maps and

galaxy intrinsic sizes prevent robust measurements at fainter mag-

nitudes (Bouwens et al. 2017; Yue et al. 2018). Hence, galaxies

down to M1500 ∼ −14 and M∗ ∼ 106 M⊙ may be accessible in

lensed fields with JWST.

Consistent with past approaches, we find that faint galaxies

(M1500 > −17) should dominate cosmic star formation at z ≥ 8

(Fig. 14). Nonetheless, we predict most cosmic star formation at

z < 15 to occur in galaxies brighter than M1500 = −14 (Fig. 14,

right panel), which are accessible to JWST in lensed fields. We em-

phasize that the dominance of M1500 .−14 galaxies in high-z CS-

FRs does not require a change in SFR feedback in fainter galaxies

that affects the slope of the stellar mass–halo mass relation. Instead,

this magnitude limit is a natural consequence of the changing slope

of the halo mass function (Section 3.1), which becomes shallower

for lower-mass haloes (Fig. 9). As a result, probes of the total cos-

mic CSFR at z < 12 (e.g., short gamma-ray bursts) will not place

significant constraints on the lower threshold for galaxy formation

in haloes as long as it is Mh ∼ 108.5 M⊙ or below (Fig. 16).

UV luminosity and stellar mass functions similarly do not

have constant faint-end slopes (Fig. 10), again due to the shape of

the halo mass function. Extrapolating a constant faint-end slope to

M1500 =−10 (as done in Bouwens et al. 2012) likely overestimates

the CSFR by ∼ 20% near reionization. More recent reionization

studies (e.g. Robertson et al. 2015; Finkelstein et al. 2019) extrap-

olated to M1500 ∼ −13, which more closely approximates the true

CSFR. We find that extrapolating to M1500 = −12 results in the

least expected error, at least up to z ∼ 12 (Section 3.4; Fig. 14).

Shallower UV luminosity functions below M1500 = −17 at

z ≥ 8 also imply fewer ultrafaint dwarf galaxies at z = 0. As noted

in Weisz & Boylan-Kolchin (2017), a turnover below M1500 =−13

is likely necessary to reconcile ultrafaint dwarf galaxy counts with

MNRAS 000, 1–15 (2020)
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steep observed faint-end slopes at M1500 =−17. Quantitative com-

parison with expected luminosity functions at z ≥ 7 is difficult

due to uncertainties in the exact formation redshifts of ultrafaint

dwarfs. However, the UNIVERSEMACHINE does give z = 0 stellar

mass–halo mass relations consistent with constraints from ultra-

faint dwarf satellites of the Milky Way (Fig. 12). As more ultra-

faint dwarf galaxies are observed (e.g., with the Vera Rubin Ob-

servatory Legacy Survey of Space and Time), these will likely

tighten constraints on the shape of high-redshift luminosity func-

tions. Our results here combined with constraints on the very low

mass galaxy–halo connection from the dwarf galaxy analysis of

Nadler et al. (2020) indicate that for the foreseeable future, these

very local measurements are likely to provide more insight into the

low-mass threshold for galaxy formation than will very high red-

shift measurements on their own.

5 CONCLUSIONS

In this paper, we apply the UNIVERSEMACHINE to a high-

resolution simulation (VSMDPL) for redshifts from z= 0 to 15. Us-

ing the posterior distribution of parameters for the UNIVERSEMA-

CHINE that match z ≤ 10 observations, we make predictions for

what JWST may observe at 10 < z < 15. Key results include:

(i) Planned JWST Cycle 1 surveys will likely observe hundreds

of z > 10 galaxies, with a highest redshift of at least z ∼ 13.5 (Table

1 and Figs. 5-7).

(ii) JWST will likely be able to measure the evolution in the stel-

lar mass–halo mass relation to at least z ∼ 13.5 in planned Cycle 1

surveys (Section 3.3).

(iii) Most star formation at z> 8 is predicted to occur in galaxies

brighter than M1500 = −14, which would be accessible in lensed

JWST fields.

(iv) The current uncertainty in galaxy number densities rises

dramatically at z ≥ 12 (Figs. 5–7, 13–14); both detections and non-

detections at these redshifts will be extremely valuable to constrain

galaxy formation models.

(v) Faint-end slopes (α) for observed stellar mass and luminos-

ity functions are expected to continue to steepen beyond α = −2

with increasing redshift (Fig. 8). This is a natural consequence of

ΛCDM halo mass functions, which have slopes much steeper than

−2 at the halo masses which host observable galaxies at these red-

shifts (Fig. 9).

(vi) Faint-end slopes for stellar mass and luminosity functions

are expected to become shallower below observable thresholds

(Figs. 10 and 11; M∗ < 107 M⊙ or M1500 > −17) because the

haloes hosting these galaxies are in the exponentially falling region

of the halo mass function. For reionization models, a reasonable

upper limit to the total CSFR can be obtained by extrapolating a

constant faint-end slope from M1500 = −17 to M1500 = −12 (Fig.

14), at least to z ∼ 12.

(vii) Other empirical and semi-analytic models of the high-

redshift Universe give predictions that are within the two-sigma

uncertainties of the UNIVERSEMACHINE (Figs. 13–14, 17).

(viii) Mock catalogues and lightcones for CANDELS fields, in-

cluding multiple realizations to evaluate sample variance and model

variance, are available online.
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APPENDIX A: KEY PARAMETRIZATIONS

The UNIVERSEMACHINE separately parametrizes the formation of

star-forming and quiescent galaxies. However, there are very few

quiescent galaxies at high redshifts (e.g., Muzzin et al. 2013), so

the SFR–halo relationship for star-forming galaxies dominates. The

median SFR for haloes as a function of their vMpeak (i.e., vmax at the

redshift of peak halo mass) is given by:

SFRSF = ε

[

(

vα + vβ
)−1

+ γ exp

(

− log10(v)
2

2δ 2

)]

(A1)

v =
vMpeak

V ·km s−1
(A2)

log10(V ) = V0 +Va(1−a)+Vla ln(1+ z)+Vzz (A3)

log10(ε) = ε0 + εa(1−a)+ εla ln(1+ z)+ εzz (A4)

α = α0 +αa(1−a)+αla ln(1+ z)+αzz (A5)

β = β0 +βa(1−a)+βzz (A6)

log10(γ) = γ0 + γa(1−a)+ γzz (A7)

δ = δ0, (A8)

where a is the scale factor. Equation A1 is a double power-law

with an extra Gaussian bump near the transition between the two

power laws. Physically, this corresponds to the transition between

two dominant modes of feedback, one for low-mass and one for

high-mass haloes. At high redshifts, however, the fraction of high-

mass haloes declines exponentially (Fig. 9), so that Eq. A1 reduces

to SFRSF ∼ εv−α . Additionally, vMpeak is tightly correlated with

halo mass, with vMpeak ∝ M
1
3

peak. Hence, typical star-forming be-

haviour is well-described by SFRSF ∝ ε
(

Mpeak

)− α
3 (Eq. 1). At high

redshifts, the scalings of ln(1+ z) and a change only weakly with

redshift, so the values of Vz, εz, and αz dominate the redshift scal-

ing. Of note, for a single power law, changes in Vz are degenerate

with changes in εz, so the overall redshift scaling reduces to Eqs.

2–3.

Scatter in SFRs is associated with halo accretion history, av-

eraged over the past dynamical time (1/
√

Gρvir). In the UNI-

VERSEMACHINE, this is limited to 0.3 dex for star-forming galax-

ies:

σSF = min(σSF,0 +(1−a)σSF,1,0.3) dex. (A9)

At z > 4, for all models in the UNIVERSEMACHINE posterior dis-

tribution, a variation of 0.3 dex in SFR is very subdominant to the

variation in SFR with halo mass and redshift.
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Figure B1. Median relation between SFR and UV luminosity in the UNI-

VERSEMACHINE. This is expressed as the SFR giving a UV luminosity of

M1500 = −17 on the left vertical axis, and as the SFR/UV luminosity ratio

(κFUV) on the right-hand axis. Since the Salpeter (1955) IMF is typically

used when reporting κFUV in the literature, we keep this convention here,

but report SFRs for a Chabrier (2003) IMF.

APPENDIX B: RESOLUTION TESTS

The parametrization of SFRs in Appendix A can be applied to any

halo mass function to closely approximate the SFR and UV lumi-

nosity distribution from the UNIVERSEMACHINE. Because halo

mass function fits are available to very low masses, we can eval-

uate the behaviour of the UNIVERSEMACHINE on an effectively

infinite resolution simulation.

Here, we use the halo mass function fit in Behroozi et al.

(2013c) (modified from Tinker et al. 2008) with the same cosmol-

ogy as VSMDPL (Fig. 9, left panel). To convert between vMpeak

and halo mass, we use the following relation from Behroozi et al.

2019b:

vMpeak(Mh,a) = 200kms−1

[

Mh

M200kms(a)

]1/3

(B1)

M200kms(a) =
1.64×1012 M⊙

(

a
0.378

)−0.142
+
(

a
0.378

)−1.79
, (B2)

where Mh is the peak virial halo mass (Bryan & Norman 1998).

This relation was fit from the Bolshoi-Planck simulation (Klypin

et al. 2016; Rodríguez-Puebla et al. 2016a).

Given Eqs. A4-A8 and B1-B2, we can calculate the median

SFR for any halo mass and redshift. Subdividing the halo mass

function (from the fit above) into 0.05 dex bins in halo mass, we

compute the distribution of SFR in each mass bin using the log-

normal scatter in Eq. A9. For all results except for the mass thresh-

old test in Fig. 16, we assume that star formation ceases to be ef-

ficient below a halo mass of Mh = 108 M⊙, corresponding to the

atomic cooling limit (O’Shea et al. 2015; Xu et al. 2016). Integrat-

ing across halo masses yields the SFR function (i.e., the number

density of galaxies as a function of SFR), and integrating the SFR

function yields the CSFR.

To obtain UV luminosity functions, we need a scaling relation

between SFR and UV luminosity. For this, we evaluate the median

unobscured UV luminosity as a function of SFR and redshift from

the UNIVERSEMACHINE best-fit model applied to VSMDPL. We

find (as expected) that the unobscured UV luminosities are linear

functions of SFR. However, the normalization depends on redshift,

because higher-redshift galaxies have higher specific growth rates

(Behroozi & Silk 2015), leading to more rapidly-rising star forma-

tion histories. Specifically, we obtain a median ratio κFUV between

SFR and UV luminosity of:

κFUV,Chabrier(a) = 5.1×10−29 (1+ exp(−20.79a+0.98))

× M⊙ yr−1 erg−1 sHz, (B3)

where a is the scale factor. The corresponding κFUV,Salpeter for a

Salpeter (1955) IMF is a factor 1.58 larger (Salim et al. 2007); the

fit is shown in Fig. B1. Due to scatter in star formation histories, the

typical scatter in κFUV across galaxies is 0.12 dex. We convolve the

SFR function with this scatter and divide by the median κFUV from

Eq. B3 to obtain the unobscured luminosity function. Finally, we

apply Eqs. 4–5 to obtain the observed (attenuated) UV luminosity

function.

CSFR comparisons are shown in Fig. B2, and UV luminos-

ity function comparisons are shown in Fig. B3. We find excellent

agreement between the “Infinite Resolution” calculation above and

VSMDPL, even though VSMDPL is only formally complete down

to Mh = 109 M⊙. This is due to the fact that the SFR function be-

comes shallower for faint galaxies, so the contribution from low-

mass haloes becomes less important than would be expected as-

suming a steep, constant faint-end slope (Fig. 10). At the highest

redshifts, more star formation occurs in low-mass haloes, but VS-

MDPL is still at least 80% complete at z = 15 (Fig. B2).

We note in passing that the extrapolated UV luminosity func-

tions have a turnover at low luminosities. This is not due to any

change in the slope of the stellar mass–halo mass relation, but is

instead due to the lower halo mass limit of Mh = 108 M⊙. This

turnover moves to brighter magnitudes at higher redshifts, due to

expected higher star formation rates at fixed halo mass as redshift

increases (Figs. 1 and 3).

APPENDIX C: COSMOLOGY UNCERTAINTIES

For this analysis, cosmology uncertainties are subdominant

to galaxy formation uncertainties. We validate this by se-

lecting 200 points at random from the posterior distri-

bution of the baseline Planck 2018 cosmological results

(plikHM_TTTEEE_lowl_lowE_lensing; Planck Collaboration

et al. 2018) and computing halo mass functions according to Tinker

et al. (2008). Uncertainties (half the 16−84th percentile range) are

shown in Fig. C1. For the halo masses forming most stars at z > 8

(Mh < 1011 M⊙), relative uncertainties in number densities are at

the < 0.2 dex level even at z = 15, well below uncertainties from

existing constraints on galaxy number densities (Fig. 17). Of note,

systematic disagreements for h at the present 0.036 dex level (Riess

et al. 2019) would result in number density differences at the ∼ 0.1
dex level.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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