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Abstract—We study the communication complexity of wel-
fare maximization in combinatorial auctions with m items
and two players with subadditive valuations. We show that
outperforming the trivial 1/2-approximation requires expo-
nential communication, settling an open problem of Dobzinski,
Nisan and Schapira [STOC’05, MOR’10] and Feige [STOC’06,
SICOMP °09].

To derive our results, we introduce a new class of subadditive
functions that are ‘“far from” fractionally subadditive (XOS)
functions, and establish randomized communication lower
bounds for a new ‘“near-EQUALITY” problem, both of which
may be of independent interest.

I. INTRODUCTION

Combinatorial auctions have been a driving force of
Algorithmic Game Theory (AGT) since its inception: how
should one allocate goods among interested parties? In a
combinatorial auction, a central designer has a set M of m
indivisible goods to allocate, and each of n players has a
valuation (set) function v; : 2™ — R, which is private
(known only to player 7). We wish to partition the items in
a way that maximizes the social welfare 3, v;(S;), where
S; denotes the items received by player ¢ in the partition.

This fundamental problem has received significant atten-
tion in various models: with or without incentives, with or
without restrictions on valuations, with or without compu-
tational limits on the players, etc. In this paper we prove
standard communication lower bounds when two players
have subadditive valuations.! That is, our lower bounds rule
out the existence of good mechanisms even when players
honestly follow the intended protocol, are computationally
unbounded, and are assumed to have subadditive valuation
functions. Subadditive set functions are central to Algorith-
mic Game Theory as the frontier of complement-freeness
(e.g. [FFGL13], [RW15], [CM16], [CZ17]), and are natural

A valuation function is subadditive if for all S, T v(SUT) < v(S) +
v(T).
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mathematical objects of study in algorithm design broadly
(e.g. [BDFT12], [RS17]).

Previous work: The study of combinatorial auctions
through the lens of communication complexity was pio-
neered by Blumrosen, Nisan, and Segal, motivated by the
fact that communication lower bounds sidestep challenging
debates on what can be assumed about players’ behav-
ior [Nis00], [BNSO7], [NS06]. A high-level overview of this
early literature appears in Section I-B.

The current state-of-the-art is fairly remarkable: Without
any restrictions on the valuations, a max{l/n,1/0(y/m)}-
approximation to the optimal welfare can be achieved in
poly(n, m) communication [LS11]; and this is tight [NS06].
For fractionally subadditive (XOS) valuations (a strict sub-
class of subadditive),> a (1 — (1 — 1/n)™)-approximation
can be achieved in poly(n,m) communication [Fei09]; and
this is tight [DNS10]. For subadditive valuations, a 1/2-
approximation can be achieved in poly(n, m) communica-
tion [Fei09]; and no better than a (1/2+ 1/2n)-approximation
can be achieved in poly(n, m) communication [DNS10], so
this is tight as n — co.

The two-player case: While Feige’s 1/2-approximation
is tight as n — oo, the gap between 1/2 and 3/4 for the
two-player case was posed as an open problem in [Fei09],
[DNS10]. At first glance, it seems quite unusual for the n =
2 case to be singled out in this way when the asymptotics are
resolved. Yet in our context, there is a substantial difference
in the merits of a 1/2-approximation for n = 2, and a !/2-
approximation for n > 2: Feige’s !/2-approximation for n >
2 employs an incredibly sophisticated LP rounding, but for
n = 2 the same guarantee is achieved by multiple trivial
algorithms.

For concreteness, consider the following simple 1!/2-

2 A valuation is fractionally subadditive if it can be written as a maximum
over additive functions.
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approximation algorithms: (a) allocate all of the items in
M to a uniformly random player; or (b) allocate each item
independently to a uniformly random player; or (c) ask each
player to report v;(M) and award M to the highest bidder.
Note that methods (a) and (b) are particularly trivial in that
they are completely oblivious to the valuations, and methods
(a) and (c) are particularly trivial in that they maintain their
guarantee even without subadditivity. All three can trivially
be made into truthful auctions — methods (a) and (b) don’t
even solicit input and are therefore truthful, and (c) is simply
a second-price auction on the grand bundle M.

By the above discussion, resolving the gap between 1/2
and 1/2+1/2n = 3/4 for n = 2 is not just a question of deter-
mining the optimal constant. The question is really whether
or not it is possible to achieve any non-trivial guarantees
for two subadditive valuations. As Feige notes, “finding
matching upper and lower bounds for this case may lead to
new insights about subadditive functions.”> The main result
of this paper rules out non-trivial guarantees, while shedding
new light on subadditivity and developing new randomized
communication lower bounds — see Section I-A.

Main Result (Informal). For two subadditive players, a 1/2-
approximation of the maximum social welfare is optimal
among all protocols with subexponential communication.

Implications: Before overviewing our construction and
discussing extensions of our main result beyond subad-
ditivity, we wish to highlight immediate implications for
combinatorial auctions with strategic bidders, via two recent
reductions that underscore the significance of the n = 2 case.

(1) The power of truthful vs. non-truthful
communication-efficient protocols: The central driving
theme of algorithmic mechanism design is understanding
the relative power of truthful vs. non-truthful “efficient”
protocols [NRO1]. For combinatorial auctions, when
“efficient” refers to poly(n,m)-communication, no
separation is known to exist — for any valuation class
nor any number of players. This is despite significant gaps
in the state-of-the-art approximation ratios, as described
in Section I-B. Recent work of [Dobl6b] provides a
deep structural connection between truthful communication-
efficient combinatorial auctions and their simultaneous, non-
truthful communication-efficient counterparts, specifically
when n = 2.* This immediately proposes extensive study
of the n = 2 case to search for the first separation for
truthful vs. non-truthful combinatorial auctions. On this
front, our result proves that in fact no separation exists for
subadditive players, as the aforementioned trivial protocols
(now proved to be optimal) are also truthful.

(2) Price of anarchy of simple mechanisms: The central
measure by which the performance of non-truthful combina-
torial auctions is quantified in strategic settings is the price

3See Conclusions Section in [Fei09].
4There are also implications when n > 2, but not quite as strong as for
n=2.
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of anarchy (PoA). In the Bayesian version (BPoA), this is de-
fined as the worst-case ratio between the expected welfare of
the worst equilibrium on one hand, and the optimal expected
welfare on the other. The PoA and BPoA of various simple
combinatorial auction formats have been studied extensively
in recent years. For subadditive valuations, simultaneous
first-price auctions are known to have BPoA at least 1/2
[FFGL13]. The work of [CKST16] shows this is tight even
for two players. Can auction formats other than first-price
do better? Roughgarden [Roul4] shows that the key to
simultaneously bounding BPoA over all auction formats is
communication lower bounds. Applying his framework to
our new lower bound reveals that there is no auction format
with sub-doubly-exponentially many strategies and BPoA
better than 1/2. We conclude that simultaneous first-price
auctions are optimal among this class of auctions, for all
values of n.

A. Results and Intuition

Main Theorem. Any (randomized) protocol that guarantees
a /2 + 6/10g, (m)-approximation to the optimal welfare for

two monotone subadditive bidders requires communication
Q(ev™).

In this section we provide intuition for the main proof
steps. The first step (Section III) is the construction of a
new class of subadditive functions. Given previous work
on fractionally-subadditive valuations, if our new class is
to demonstrate a stronger hardness result than 3/4, clearly it
cannot be fractionally-subadditive. Feige [Fei09] shows how
to construct such subadditive, non-fractionally-subadditive
valuations from instances of set cover, but this is the only
known general such construction in the literature.> More-
over, to move away from 3/4, our new class must be “far”
from fractionally-subadditive.

Our first contribution is to identify a key property that
every v(-) in our class must have on top of being far from
fractionally-subadditive in order to demonstrate hardness
stronger than 1/2 + e: for all subsets T, v(T) + v(T)
must belong to the range [v(M), (1 + 3e)v(M)]. In other
words, v(-) must essentially appear additive at the large
scale. In Section III we show that without this property
for (say) player 1’s valuation, there exists a simple protocol
guaranteeing a (1/2+¢)-approximation (specifically, the best
of allocating either 7" or T uniformly at random to player 1
and the rest to player 2, or allocating everything to player 2).
The necessity of this property means we cannot use Feige’s
set cover construction as is. The main idea behind our new
construction is then to hard-code v(T) + v(T) = v(M) for
all 7" into the appropriate far-from-fractionally-subadditive
instances, while carefully ensuring that subadditivity is not
violated. This construction itself may be of independent

SWhile every valuation v for which v(S) € {1,2} for any S # 0 is
subadditive, such functions trivially admit a 3/4-approximation and so don’t
serve as a useful starting point.
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interest due to the scarcity of subadditive classes that are
far from fractionally-subadditive.

In Section IV, we show that the new construction is rich
enough to encode the EQUALITY problem.® The property
o(T) + v(T) v(M) turns out to be extremely conve-
nient as it immediately implies that OPT(v1, v2) = v1 (M)
whenever v1(-) = v2(-). To complete the reduction from
EQUALITY, we establish a doubly-exponentially-large subset
V of valuations from our class such that for every nonequal
v(-) # w(-) € V, it holds that: (a) v(M) = ¢; and
(b) OPT (v, w) = 2¢. By the convenient property, beating a
1/2-approximation when both players have valuations from
this subset is exactly deciding whether or not vy (:) = va(+).

Finally, we prove our full lower bound for random-
ized protocols in Section V. There, we first very briefly
overview why our construction is unlikely to admit a re-
duction from canonical problems known to require expo-
nential randomized communication (such as DISJOINTNESS
or GAP-HAMMING-DISTANCE). Instead, we propose a new
“near-EQUALITY” problem that we call EXIST-FAR-SETS,
and directly prove that it requires exponential randomized
communication via the information complexity approach
of [BJKS04], [Bral2], [BGPW13]. To our knowledge, this
is the first application of these modern communication
complexity tools within Algorithmic Game Theory. The
randomized hardness of EXIST-FAR-SETS may therefore be
of independent interest.

Extensions beyond subadditive: Our main result con-
cerns subadditive valuations. In Section VI, we consider
the space between fractionally-subadditive and subaddi-
tive valuations, and between their respective 3/4- and 1/2-
approximations. We apply a natural parameterization of
this space called the Maximum-over-Positive-Hypergraphs
(MPH) hierarchy [FFIT15]. Fractionally-subadditive valua-
tions are equivalent to MPH-1 (level 1 in the hierarchy), and
all subadditive functions lie in MPH-7/2 (level ™/2 in the
hierarchy). For any 2 < k < m/2, we establish a protocol
for welfare maximization as follows:

Theorem. There exists a protocol with poly(m) communi-
cation that guarantees /24 1/0(1og k) of the optimal welfare
for 2 bidders whose valuations are subadditive and MPH-k.

Our protocol is an oblivious rounding of the well-known
configuration linear program (LP).” The key property we use
to establish our guarantee for MPH- is a generalization of a
result of [Fei09] for MPH-1 (see Lemma VI.4). Our results
may be useful for obtaining a better understanding of the
space between fractionally-subadditive and subadditive set

%Tn EQUALITY, Alice and Bob are each given a k-bit string as input,
and are asked to decide whether their strings are equal or not. EQUALITY
is known to require communication of & to solve deterministically, but to
admit efficient randomized protocols.

"That is, while communication is indeed needed to optimally solve the
configuration LP, no further communication is necessary in order to round
the resulting solution. See [FFT16] for further discussion on the merits of
oblivious versus non-oblivious rounding.
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functions in the future.®

We conclude by noting the following interesting corollary
from combining the theorem on MPH-k with our main
result: since the main result proves that a (1/2 4 6/logm)-
approximation is impossible with subexponential communi-
cation, and as all subadditive functions are MPH-m /2, our
protocol and lower bound must be tight even up to lower-
order terms.

B. Related Work

Communication complexity of combinatorial auctions:
The works most related to ours concern the standard com-
munication complexity of combinatorial auctions. The tables
below summarize prior work for various valuation classes.
While the n = 2 table is most relevant for the present
paper, the general n table is included for reference. Note
that no separate row is needed for hardness of truthful
communication, because no such results are known (aside
from general communication hardness).’

For context, it is worth noting that all referenced (truthful
or not) communication protocols take one of two forms. The
first is via solving a particular LP relaxation (called the con-
figuration LP) and rounding the fractional optimum [FV10],
[Fei09], [LS11]. The second is via mechanisms which
randomly sample a fraction of bidders to gather statistics,
then run a posted-price mechanism on the remaining bid-
ders [Dobl16a], [Dob07]. Both classes of mechanisms require
bidders to communicate demand queries. That is, bidders are
asked questions of the form: “For item prices pi,...,pm,
which set of items maximizes v;(S) —>_ ;g p; 7" All of the
aforementioned protocols/mechanisms make polynomially
many demand queries, and have further polynomial-time
overhead.

Recent work of [Dobl6b] proves a surprising connec-
tion between two-player truthful combinatorial auctions,
and two-player simultaneous (non-truthful) protocols. In
particular, any separation between the approximation guar-
antees achievable by communication-efficient protocols and
communication-efficient simultaneous protocols would con-
stitute the first separatation between truthful and non-truthful
communication-efficient combinatorial auctions. Such sepa-
rations were already known for large n [ANRW15], [Ass17],
but not for n = 2 (and therefore aren’t relevant to Dobzin-
ski’s framework). As such, the n 2 setting is now
receiving extra attention, although the desired separation still

8For example, to claim lower bounds on the MPH levels of specific
functions: since our lower bound construction does not admit a (1/2 +
6/10g m)-approximation in subexponential communication, it establishes the
existence of a constant C' such that it is provably not in MPH-C'm.

Note that [DN15] consider “multi-unit” auctions, where v(S) = v(T)
whenever |S| = |T'|. Such valuations can be described with m numbers,
and therefore the VCG-auction is communication/computationally-efficient.
They show, however, that a (> 1/2)-approximation can be achieved signifi-
cantly faster (in poly(log(m)) communication) without incentives, while a
1/2-approximation is the best achievable in poly(log(m)) communication
by a truthful auction.
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n=2 Submodular XOS Subadditive General
Communication hardness || 1% [DV13] [ 3 [DNSI0] | 3 [DNSI0] [ I [NS06]
Communication protocol % [FV10] % [Fei09] % [Trivial] % [Trivial]
Truthful comm. protocol || 7 [Trivial] | 7 [Trivial] | 3 [Trivial] | 7 [Trivial]
General n Submodular XOS Subadditive General
Comm. hardness 1 — o [DVI3] 1—(1— LI)" [DNS10] 1 + 5 [DNSI0] max{, 5r =y} INS06]

Comm. protocol 1-— % +10~° [FV10]

1—(1— I)m [Fei09]

1 [Fei09] max{L, ﬁ} [LS11]

Truthful comm. [Dob16a]

T T
O0(V/logm) O0(/logm)

[Dobl6a]

T T T
O(log m log log m) [Dob07] max{g, \/Tim} [LS11]

remains elusive [BMW 18]. In particular, note that no non-
trivial approximation guarantees are known for two-player
combinatorial auctions via truthful communication-efficient
protocols, even when the valuations are submodular.

Related results on combinatorial auctions: As pre-
viously referenced, combinatorial auctions are studied via
other complexity lenses as well. The most popular alterna-
tive is the value-queries model, or standard computational
complexity. That is, each bidder is capable only of querying
their valuation function on a given set (value query), or
has access to the explicit (poly-sized) circuit which com-
putes a value query. In both models, a tight (1 — 1/e)-
approximation is known for submodular valuations [VonOS8],
[MSVO08], [DV12b], and a tight ©(1/\/m)-approximation is
known for XOS and subadditive valuations [DNS10]. To
reconcile these latter impossibility results with the above-
referenced positive results, observe that it generally requires
exp(m) value queries (or is NP-hard with explicit circuit
access) to compute a demand query. Unlike the commu-
nication model, strong separations between guarantees of
truthful and non-truthful mechanisms are known in these
models [PSS08], [BDF'10], [BSS10], [DSS15], [Dobl1],
[DV12a], [DV12b]. It is worth noting that some of these
approaches also yield communication lower bounds for
the restricted class of Maximal-in-Range/VCG-based proto-
cols [BDFT10], [DSS15], or for the “combinatorial public
projects” problem [PSS08]. For further details of these
results, see [DSS15, Table 1].

Communication complexity in AGT: Beyond combi-
natorial auctions, communication complexity has appeared
in the study of matching markets [GNORI15], [ABKS17],
fair division [BN19], voting theory [CS05], and most re-
cently equilibrium computation [RW16], [BR17], [GR18],
[BDN19]. The last sequence of works is notable for in-
troducing the AGT community to recent developments in
“lifting theorems.” In a similar vein, the present paper
applies recent developments in information complexity.

C. Summary

We study the communication complexity of welfare max-
imization in two-player combinatorial auctions. Our main
result is that the trivial 1/2-approximation is in fact optimal
among all (possibly randomized) protocols with subex-
ponential communication. Our key innovations are: (1) a
new class of subadditive functions far from fractionally-
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subadditive with an “additive-at-the-large-scale” property,
and (2) a new “near-EQUALITY” problem with high random-
ized communication complexity, EXIST-FAR-SETS (both
of which may be of independent interest). In addition to
resolving an open question of [Fei09], [DNS10], our results
establish the following corollaries: (a) There is no gap
between the approximation ratios achievable by truthful and
not-necessarily-truthful mechanisms with poly(m) commu-
nication for two subadditive players; (b) For any number of
subadditive players, simultaneous first-price auctions achieve
the optimal price of anarchy (i.e., 1/2) among all auctions
with sub-doubly-exponentially-many strategies. We addi-
tionally develop a (1/2+ 1/0(log k))-approximation whenever
both players are subadditive and MPH-k. Therefore, our
lower bound is tight even up to lower order terms (i.e.,
1/2 + 1/0(logm) is achievable in poly(m) communication,
but no better).

II. PRELIMINARIES

We consider the following problem. There is a set M
of m items. Alice and Bob each have a valuation function
A(-) and B(-), respectively that takes as input subsets of
M and outputs an element of R, . Moreover, A(-) and B(-)
are both monotone (v(X UY) > v(X) for all X,Y) and
subadditive (v(XUY) < v(X)+v(Y)). Alice and Bob wish
to communicate as little as possible about their valuation
functions in order to find a welfare-maximizing allocation
(that is, the X maximizing A(X) + B(M \ X)). Formally,
we study the following decision problem — observe that this
is a promise problem for which if the input does not satisfy
the promise, any output is considered correct.

Definition 1.1 (WELFARE-MAXIMIZATION(m, ¢v)).
WELFARE-MAXIMIZATION is a communication problem
between Alice and Bob:

o Alice’s Input: A(-), a monotone subadditive function
over 2" and a target C.

e Bob’s Input: B(-), a monotone subadditive function
over 2ml ; and a target D.

e Promise: C = D. Also, there either exists an S C [m)]
satisfying A(S) + B(S) > C, or for all S C [m)],
A(S) + B(S) < aC.

e Output: 1 if 35S C [m], A(S)+ B(S) > C; 0if VS C

[m], A(S)+ B(S) < aC.
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We will sometimes drop the parameter m when it is
irrelevant. We will also refer to any protocol solving
WELFARE-MAXIMIZATION(m, &) as an «-approximation
for WELFARE-MAXIMIZATION(m).

Also of interest is the corresponding search problem,
which instead asks Alice and Bob to find an X max-

imizing A(X) + B(X) (and an a-approximation is a
protocol guaranteeing a Y satisfying A(Y) + B(Y) >
maxxcp{A(X) + B(X)}). It is easy to see that any
poly(m)-communication protocol for the search problem
implies a poly(m)-communication protocol for the decision
problem (with an extra round of communication). As such,
we will prove all lower bounds against the decision problem
(as they immediately imply to search as well), and develop
all protocols for the search problem (as they immediately

imply to decision as well).

III. MAIN CONSTRUCTION

In this section, we present our base construction. In
subsequent sections, we show how to leverage this construc-
tion to derive our lower bounds. We begin by considering
a collection of subsets S {S1,...,Sk} where each
S; € M, and defining a useful property that S may possess.
Throughout this section, let £ denote an even integer > 4.
Most proofs are deferred to Appendix A.

Definition IIL.1 (¢-sparse). We say that S is {-sparse if for
all Ty, ..., Ty_4 € S, U.7T7 §£ M.

That is, S is ¢-sparse if there do not exist £ — 1 elements
of S such that their union is the entire ground set M. We
now follow [Fei09], [BR11] in defining a class of valuation
functions parameterized by a collection of sets. Specifically,
let S = {S1,..., Sk} be an ¢-sparse collection. For X C M,

define
i Y:YCk],XCU,.vSit, C 1;

O'S(X) - H’lln{‘ ‘ = [ ]7 = UzEY } ase

max{/, k}, O/W;

where Case 1 occurs if X is covered by S, that is, if X C
Ui Si- So 0s(X) is the smallest number of sets from S

vo(T),v1(T) + vo(T), and va(M). Observe further that
choosing uniformly at random between the first two guar-
antees welfare:

1/2 . (’U1 (T) + Vo (T) + v (T) + Vg (T))
Y2 ((1+¢e)v1 (M) + vz (M))

>
> 1/2-OPT(v1,v2) + evy (M).

Therefore, if v1 (M) > OPT(v1,v2)/3, the best of the first
two guarantees guarantees a 1/2+¢/3 approximation. On the
other hand, if v; (M) < OPT(v1,v2)/3, then we have:

()PT(Ul7 ’UQ) S (%1 (M) + ’UQ(M)
< OPT(’Ul,’UQ)/?)—F’UQ(M)
— ’UQ(M) > 2/3 . OPT(’U1,’U2).
So in either case, the best of the three allocations guarantees
a 1/2 + ¢/3 approximation. [
Lemma III.1 implies that any hard instance must appear
additive at the large scale, but os(-) generally lacks this
property (see Figure 1). Our new construction essentially
hard-codes this property onto os(-). We now define our new
valuation function f5(-):

(@) If 05(X) < %, then define f5(X)

fE(X) =1 —os5(X).
(b) For any X whose value is not defined in (a), f5(X)
£

os(X) and

5-

Blolislijfe}
Bfelilo}l|lc)

— e

Figure 1: Example of ¢-sparse S. There are m = 6 items, k = 6 sets, and ¢ = 4. The

set S = {S1,..

., Se} is depicted by the rectangles. S is £-sparse, as no collection of

whose union contains X, or some large number max{/¢, k} if 3 sets in S covers [m].

there are no such sets. Let us now revisit the barrier to using
this construction as-is, before defining our new construction.

Lemma IIL1. Let ¢ < 1/2, and let there exist a set T and
player i for which v;(T) + v;(T) > (1 + &)v;(M). Then
at least one of the following three allocations achieves a
/2 + ¢/3-approximation to WELFARE-MAXIMIZATION(m):
(a) give to player i the set T and to the other T, (b) give
to player i the set T and to the other player T, (c) give the
other player all items. Therefore, a /2 + ¢/3-approximation
fo WELFARE-MAXIMIZATION(m) exists with poly(m) com-
munication (simply check all three allocations and pick the

best).

Proof: Without loss of generality, let ¢ 1. Then
the three allocations, respectively, achieve welfare v1(T') +

253

It is not immediately clear that f5(-) is well-defined;
indeed, if 05(X) and 05(X) are both < £, then f§(X) is
doubly defined. Fortunately, this can never occur when S is
{-sparse.

Lemma IIL.2. [f S is (-sparse, then f&(-) is well-defined.

Now, we would like to prove that fé is monotone and
subadditive whenever S is (-sparse (Corollary II1.4). The
following facts about f& and os highlight the key steps in
the proof.

Lemma IIL3. Let S be {-sparse. Then:

(1) os is monotone and subadditive.
(2) For all X, f&(X) = — f&(X).

Authorized licensed use limited to: Princeton University. Downloaded on December 07,2020 at 23:41:39 UTC from IEEE Xplore. Restrictions apply.



(3) If 0s(X) < § or f5(X) < £, then f5(X) = os(X).
(4) 1f F5(X) > L then F(X) = € — 05(X).
(5) Forall X, f¢(X) < os(X).

Corollary IIL4. If S is (-sparse, then f5(-) is monotone
and subadditive.

Functions of the form f5(-) will form the basis of our
lower bound constructions, which we overview in the follow-
ing sections. Figure 1 demonstrates one illustrative example
to help parse the construction: In this example, it holds
that o5({2}) = 1 < £/2, so f&({2}) = 1. It follows that
f5({1,3,4,5,6}) = £ — 05({2}) = 3. As another example,
os({1,4,5}) =3 > ¢/2 and 05({2,3,6}) = 3 > £/2, so
f5({1,4,5}) = f5({2,3,6}) = ¢/2 = 2. Finally, observe
that 05({1,4,5}) + 05({2,3,6}) = 6 > 4 = 05(M), so
trying to use os(+) directly would violate Lemma III.1, and
the modification to fé(-) is necessary for any traction.

IV. DETERMINISTIC PROTOCOLS FOR SUBADDITIVE
VALUATIONS

The construction in Section III gets us most of the way
towards our deterministic lower bound. The remaining step
is a reduction from EQUALITY. To briefly remind the reader,
Alice receives input a € {0,1}*, and Bob receives input
b € {0,1}*. Their goal is to output yes if a; = b;
for all i € [k], and no otherwise. It is well-known (see,
e.g., [KN97]) that any deterministic protocol for EQUALITY
requires communication > k.

Theorem IV.1. For any even integer { € [4,log,(m)],
any deterministic communication protocol that guarantees a
(Y/2+1/e)-approximation to WELFARE-MAXIMIZATION(m)
requires communication exp (m/e-2%). In particular, a guar-
antee of 1/2 + ¢ requires communication oem/2Ye eSHm),

and a guarantee of 1/2 4 2/iog(m) requires communication
Q1)
m

Before proceeding with our construction, we’ll need one
more property of collections of sets:

Definition IV.1 ([KS73]). A collection S = {Sj,..

is (-independent if {11, ..
{8, Si}.

7Sk}

., Tk} is (-sparse whenever T; €

In other words, S is ¢-independent if we can choose either
S; or S; independently, for each i, and form an ¢-sparse
collection no matter our choices. For example, while S in
Figure 1 is (-sparse for ¢ = 4, it is not (-independent,
since, e.g., S5 U Sg covers [m]. We now proceed with
our reduction, which relies on the existence of large /-
independent collections (such collections are known to exist;
at the end of this section we give a precise statement and a
proof appears in Appendix A for completeness).

Proposition IV.2. Let S be an (-independent collection with
|S| = k. Then any deterministic communication protocol
that guarantees a (1/2 4+ 1/2¢—3)-approximation to the opti-
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mal welfare for two monotone subadditive bidders requires
communication at least k.

Proof: Let S = {S1,...,Sk} be (-independent. For
each i, define S} := S;, and S? := S;. Now, consider an
instance of EQUALITY where Alice is given a and Bob is
given b. Alice will create the valuation function ffi\, where
A= {57",..., 5%} (i.e. Alice builds A by taking either
S} or S?, depending on a;). Bob will create the valuation
function f§, where B := {S% ..., Szk} Observe first that
f4() and f§(-) are indeed well-defined, monotone, and
subadditive as S is ¢-independent (and therefore A and B
are both /-sparse).

Observe that if @ = b, then A = B and moreover
f4() = f5(-). So immediately by part (2) of Lemma IIL.3,
the maximum possible total welfare is ¢ (indeed, any parti-
tion of the items gives welfare £). On the other hand, if there
exists an 7 such that a; # b; (without loss of generality say
that a; = 1 and b; = 0), we claim that welfare 2¢ — 2 is
achievable. To see this, consider the allocation which awards
S; to Alice and S; to Bob. Indeed, f4(S;) =1 (as S; € A),
so f4(S;) = ¢—1. Similarly, f5(S;) = 1, s0 f5(S;) = (-1,
achieving total welfare 2(¢ — 1).'°

So assume for contradiction that a deterministic % +
ﬁ > ﬁ-approxima'ti.on e).(ists to the optimal v.velf'are
for 2 monotone subadditive bidders with communication
< k. Then such a protocol would solve EQUALITY with
communication < k by the reduction above, a contradiction.

Finally, in the next lemma we show how large k£ can be
while guaranteeing an /-independent collection of size k to
exist. This suffices to complete the proof of Theorem IV.1.
The lemma is based on a known existential construction
using the probabilistic method, which we repeat for the sake
of completeness in Appendix A (explicit constructions of
comparable guarantees also exist [Alo86]).

Lemma IV.3. Forall m, x > 1, and { = logy(m) —log, (),
there exists a (-independent collection of subsets of [m] of
size k = e®/*.

Proof of Theorem IV.1: Combine Proposition IV.2 and
Lemma IV.3, and the observation that 2/ — 3 > ¢ whenever
¢ > 4. The “in particular” parts of the statement follow first
by taking £ = 1/¢ (implying ¢ = log,(m) — logy(m/2'/¢)
and k = /2" and then by taking ¢ = log,(m)/2
(implying ¢ = log,(m) —log,(y/m)) and k = e2Vm/log(m)

|

10As an aside, note that welfare exceeding 2¢ — 2 is not possible, as
Alice and Bob each value all non-empty sets at least at 1, and therefore
value all strict subsets of M at most at £ — 1 by (2). Therefore, the only
way Alice or Bob could have value exceeding ¢ — 1 is to get all of M,
meaning that the other player receives value 0.
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V. RANDOMIZED PROTOCOLS FOR SUBADDITIVE
VALUATIONS

The construction in Section IV carries the high-level intu-
ition for our randomized lower bound. However, we clearly
cannot reduce from EQUALITY and get a randomized lower
bound, as EQUALITY admits randomized communication-
efficient protocols. As such, we will instead directly show
that a certain “near-EQUALITY” problem requires exponen-
tial randomized communication. Our proof uses the informa-
tion complexity approach popularized in [BJKS04], [Bral2],
[BGPW13]. In order to introduce these tools to the AGT
community, we will provide a complete exposition starting
from the basics.

Let’s first be clear about what a randomized protocol looks
like. Alice and Bob have access to a public infinite string
of perfectly random bits, r. All messages sent by (e.g.)
Alice may therefore depend on her input, any messages
sent by Bob, and r. At the end of the protocol, Alice
and Bob will guess yes or no, and the answer should
be correct with probability 2/3."" The protocol is only
“charged” communication for actual messages sent, and not
for randomness used. The main result of this section is as
follows:

Theorem V.1 (Randomized hardness). Any randomized
protocol that guarantees a (1/2 + 6/1og(m))-approximation
to WELFARE-MAXIMIZATION(m) requires communication
complexity Q(eV™).

Let’s now understand the issue with our previous con-
struction. Aside from the fact that the previous proof clearly
does not extend to a randomized lower bound, the construc-
tion itself admits a good randomized algorithm. Specifically,
let S be some /(-independent set, and let exactly one of
{S,S} be in A for all S € S (and also let exactly one
of {S, S} be in B). Let Alice have valuation f4(-) and Bob
have valuation f5(-). The problem is that Alice and Bob are
still just trying to determine whether or not A = B (that
is, if A = B, then the optimal welfare is at most £. If not,
then the optimal welfare is 2/ — 2). Since A and B are both
subsets of 2 | the randomized algorithm for EQUALITY for
inputs of size 2" works.

The natural idea to try next is to reduce from a problem
like DISJOINTNESS instead (for which randomized protocols
indeed require exponential communication). Let’s see one
natural attempt from our previous construction and why
it fails (just for intuition, we will not exhaustively repeat
this for all possible reductions). Again let S denote an
{-independent collection, and again consider any instance
(A, B) of DISJIOINTNESS of size k (recall that A and B
are bitstrings of length £ and DISJOINTNESS asks to decide
whether or not there exists an index ¢ with A; = B; = 1).

T As usual, the bound of 2/3 is arbitrary, as any protocol with success
probability > 1/2 + 1/poly(m) can be repeated independently poly(m)
times to achieve a protocol with success probability 2/3 (and then further
repeated to achieve success 1 — 1/exp(m)).
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A first attempt at a reduction might be to let A contain S;
for all 7 such that 4, = 1, and B contain all S; such that
B; 1 (but A will never contain S;, and B will never
contain S;). Indeed, with this construction if there exists
any index ¢ with A; = B; = 1, the optimal welfare will
be 2¢ — 2 (give Alice S;, and Bob S;). Unfortunately, even
if there does not exist an index for which A; = B; = 1,
the welfare can still be £ — 1 + ¢/2. To see this, consider
any index i for which 4; = 1. Then f4(S;) = ¢ — 1.
Moreover, as S; ¢ B, and S is (-independent, f5(S;) = ¢/2
(because S is f-independent, neither S; nor S; can be
covered with fewer than ¢ — 1 of the other sets in 5. As
such, f§(Si) = f5(Si;) = £/2). So while in the “yes”
case, the welfare is indeed 2¢ — 2 just like our previous
reduction, the welfare in the “no” case will be 3¢/2 — 1
as opposed to ¢, proving only that a 3/4-approximation
requires exponential randomized communication (which is
already known). Of course this is not a formal claim that
no reduction from DISJOINTNESS is possible, but provides
some intuition for why searching for one (or from GAP-
HAMMING-DISTANCE, etc.) is likely not the right approach.

The issue is that our construction is getting much of its
mileage from the fact that v(S) + v(S) = ¢ for all S, and
reducing from any problem except EQUALITY fails to make
use of this. So the plan for our new construction is to observe
that if v(-) and w(-) are almost the same (in a precise sense
defined shortly), then we can still claim that v(S)+w(S) = ¢
for all S.

The main idea of our construction is as follows: consider
still an /-independent set S. For each S; € S, rather than
adding either S; or S; to A, we will add either S; U {5}
or S; U {j}, where j is a uniformly random element of M
(and ditto for B). Adding this random element to each set
barely changes the welfare, but makes it significantly harder
for Alice and Bob to figure out whether their valuations
are nearly identical or not. We now proceed with the
construction, followed by a complete proof.

Definition V.1. Two ordered collections of subsets X' =
(X1, Xi); Y =(Y1,...,Yy) of M are {-compatible if

() | X;| = |Y;| = % + 1 for all i.

(2) Either | X;AY;| =2 or |X; NY;| = 2 for all 3.1

(3) Xi,..., X} are (-sparse, as are Y7,..., Y.

(4) For any subset S C M of size less than
one of X1,..
Yi,..., Y.

0
5, at least

., X} contains S, as does at least one of

The main idea is as follows: for any /-compatible X, ),
consider the valuation functions f%(-) and f§,(-). If for
some 4, |[X; NY;| = 2, this roughly corresponds to the
“not equal” case in the previous construction, and welfare
near 2¢ is achievable. If instead, for all i |X;AY;| = 2,
this roughly corresponds to the “equal” case in the previous
construction, and welfare near ¢ is the best achievable. We

12 represents symmetric difference, | X; UY;| — |X; N Y;].

Authorized licensed use limited to: Princeton University. Downloaded on December 07,2020 at 23:41:39 UTC from IEEE Xplore. Restrictions apply.



first state this formally, and then follow with a proof that
randomized protocols require exponential communication to
distinguish these two cases. The proof of Lemma V.2 appears
in Appendix A.

Lemma V.2. Let X,) be (-compatible. If for some i,
| X; NY;| = 2, then welfare 2(¢ — 1) is achievable between
f4() and f5,(-). Otherwise, the maximum achievable wel-
fare is at most { + 1.

A. FAR-SETS and EXIST-FAR-SETS

Towards proving our lower bound, we’ll define the fol-
lowing two problems, which may themselves be of inde-
pendent interest, at least within the AGT community, as
a “near-EQUALITY” problem which requires exponential
randomized communication. Below, note that both FAR-
SETS and EXIST-FAR-SETS are promise problems: if the
input doesn’t satisfy any of the stated conditions, arbitrary
output is considered correct.

Definition V.2 (FAR-SETS(m)). FAR-SETS is a communi-
cation problem between Alice and Bob:

o Alice’s Input: X C M, with | X|=m/2+ 1.
e Bob’s Input: Y C M, with |Y| =m/2+ 1.
o Promise: Either [ XAY|=2or [XNY]|=2.
« Output: 0 if [XAY|=2; 1if |[XNY]|=2.

Definition V.3 (EXIST-FAR-SETS(m, k,{)). EXIST-FAR-
SETS is a communication problem between Alice and Bob:

Alice’s Input: X' = (X;,..., X}). Each X; C M.
Bob’s Input: ) = (Y7,...,Y;). Each Y; C M.
Promise: X’ and ) are ¢-compatible.

Output: \/, ;) FAR-SETS(X;,Y;). Observe that if
the EXIST-FAR-SETS promise above is satisfied, then
by definition the FAR-SETS promise is satisfied for
all (X;,Y;) (but not necessarily vice versa — the
EXIST-FAR-SETS promise is strictly stronger due to
(-sparsity).

Observe that EXIST-FAR-SETS is exactly the problem
referenced in Lemma V.2 (we state this formally below).
Therefore, the goal of this section is to lower bound the ran-
domized communication complexity of EXIST-FAR-SETS.

Corollary V.3. Let C(m,k,{) be such that every random-
ized communication protocol which solves any given in-
stance of EXIST-FAR-SETS(m, k, £) with probability at least
2/3 has communication complexity at least C(m, k, (). Then
every randomized communication protocol which solves any
given instance of WELFARE-MAXIMIZATION(m, 1 + 15)
with probability at least 2/3 has randomized communication
complexity at least C(m, k, ().

Our plan of attack follows Braverman’s lower bound on
the randomized communication complexity of DISJOINT-
NESS [Bral2]. The end result is Theorem V.18, which states
that EXIST-FAR-SETS requires communication exponential
in k.
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B. Information Theory Preliminaries

Here, we provide some basic facts about information
theory and information complexity. These are the standard
preliminaries one would find in a paper on information
complexity (e.g. [BGPW13]). Below, when we refer to a
distribution p, we use p(w) where w is in the support
of p to denote the probability of w according to p. All
logarithms taken in this section are base-2. Also for this
section, all distributions and random variables are supported
on a finite set Q. If p(w) = 0 for some w € Q, we let
0-log,(1/0) := lim,_,0 - logy(1/x) = 0.

Definition V.1 (Entropy). Let i be a probability distribution
over a finite set S). The (Shannon) entropy of u, denoted by
H(p), is defined as H(p) == > .o p(w)log(ﬁ). If A
is a random variable distributed according to |14, we also
write H(A) :== H(ua).

Definition V.2 (Conditional Entropy). Let A and B be two
random variables supported on a finite set ). Then the
conditional entropy of A, conditioned on B is H(A|B) :=
Speq Pr[B=1b]- H(A|B =b)."

Observe that as H(-) is a strictly concave function,
H(A|B) < H(A) for all B (with equality iff A and B
are independent).

Fact V4. H(A,B) = H(A) + H(B|A). Here, H(A, B)
denotes the entropy of the random variable (A, B).

Fact V.4 above intuitively says that the entropy of a tuple
of random variables is equal to the entropy of the first, plus
the entropy of the second conditioned on the first. Note
that if A and B are independent, then the joint entropy
H(A,B)=H(A)+ H(B).

Definition V.3 (Mutual Information). For two random vari-
ables A, B, the mutual information between A and B,
denoted by I(A;B) is: 1(A;B) := H(A) — H(A|B) =
H(B)— H(B|A).

Definition V.4 (Conditional Mutual Information). For three
random variables A, B, C, the mutual information between
A and B, conditioned on C' is denoted by I(A; B|C), and
I(A; B|C) := ) cq Pr[C = ¢] - I(A|C = ¢; B|C = ¢).

Fact V.5 (Chain Rule). Let A, B, C, D be random variables.
Then I(A,B;C|D) = I(A;C|D) + I(B; C|A, D).

Fact V.5 above intuitively says that the information
learned about (A, B) from C' (conditioned on D) can be
broken down into the information learned about A from C'
(conditioned on D), plus the information learned about B
from C' (now conditioned on A in addition to D).

Definition V.5 (KL Divergence). We denote by D(A||B)
the Kullback-Leibler Divergence between A and B, which

is defined as D(A||B) := > .q Pr[A =w] - log g:{gzﬂ.

wes

3To be clear, by H(A|B = b) we mean the entropy of the random
variable A, when drawn conditioned on the event B = b.
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Fact V.6. For any random variables A, B,C, I(A; B|C) =
Ep o [D(Apc||Ac)]. Here, Ay denotes the random variable A
conditioned on B = b,C = ¢, and A, denotes the random
variable A conditioned on C = c.

Fact V.7 (Pinsker’s Inequality). For any pair of random

variables A, B of finite support, ||P — Q||1 < +/2D(P||Q).
Here, ||P — Q|| := > cq | Pr[P = w] — Pr[Q = w]|.

Definition V.6 (Information Complexity). The (internal)
Information Complexity of a communication protocol w with
respect to a distribution p over pairs (X,Y) of inputs is
defined as follows. Let 11(X,Y) denote the random vari-
able which is the transcript produced when Alice and Bob
participate in protocol  with inputs (X,Y), when (X,Y)
are drawn from p. Then IC,(7) = I(II(X,Y);Y|X) +
I(II(X,Y); X|Y).

Above, the “transcript” refers to all communication be-
tween Alice and Bob (including the order bits were sent,
who sent them, etc., and including any public randomness)
when participating in protocol 7. In particular, it is always
possible to glean the output produced by 7 from viewing the
transcript (but possibly additional information). Informally,
the Information Complexity captures the amount of infor-
mation Alice learns about Bob’s input from participating in
7 (given that she already knows her own input, the public
randomness, and that their joint input is drawn from p), plus
what Bob learns about Alice’s input. Intuitively, it should be
impossible for a protocol to convey C' bits of information
without C' bits of communication. Indeed, this is the case:

Lemma V.8 ([BR14]). For any distribution p and protocol
m, 1C,(m) < CC(w) (where CC(m) denotes the worst-
case number of bits communicated during protocol ™ on
any input).

We conclude with a few more basic facts about com-
munication protocols. Lemma V.9 below captures one key
difference between communication protocols and algorithms
with access to the entire input. Lemma V.9 below refers to
private randomness, which are random bits which are known
only to Alice (but not Bob) and vice versa. Such bits are also
not counted towards the communication cost of the protocol
(unless Alice wishes to share her private randomness with
Bob).

Lemma V.9. Let Py(-,-,-) be a function where Py (z,X,Y)
denotes the probability that Alice with input X and Bob
with input Y produce transcript z when participating in a
protocol T over the randomness of any private randomness
used (as public randomness is already accounted for in the
transcript). Then there exist functions Q(-,-) and R, (-,")
such that P (2, X,Y) = Q.(2,X) - R:(z,Y).

The proof of Lemma V.9 is straightforward. Essentially,
Qr(z,X) is the probability that Alice doesn’t deviate from
transcript z with input X, conditioned on Bob communicat-
ing according to transcript z so far. Similarly, R.(z,Y") de-
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notes the probability that Bob doesn’t deviate from transcript
z with input Y, conditioned on Alice communicating accord-
ing to transcript z so far. These probabilities are well-defined
because Alice must choose her future messages based only
on the transcript so far (including the public randomness)
and her input X (and Bob’s must be only on the messages
so far and Y'), as well as her private randomness. Once
confirming that these probabilities are well-defined, it is easy
to see that indeed Pr(z, X,Y) = Qr(2,X) - Rx(2,Y).
Finally, the lemma below states that lower bounds on the
information complexity of any protocol that only uses private
randomness also lower bound the information complexity of
any protocol which uses public randomness. This initially
may seem counterintuitive, since the opposite is true for
communication. Both simple claims below have “approxi-
mate” versions in the other directions (discussed in the cited
references), but we only use the easy directions.

Lemma V.10 (Folklore, see [New91], [BG14], [BBK*16]).
Let ™ be a protocol, and . be a distribution over inputs.
Then:

o If T uses private randomness, there exists a protocol 7'
using public randomness with exactly the same output
as m, and CC (') < CC(r). But maybe IC, (") >
IC,(m).

o If m uses public randomness, there exists a protocol 7'
using private randomness with exactly the same output
as w, and 1C,(7") < IC,, (7). But maybe CC(7') >
CC(n).

Both claims in Lemma V.10 follow by simple reductions.
For the first bullet, simply use all odd bits of the public
randomness string as private randomness for Alice, and
all even bits of the public randomness string as private
randomness for Bob. Then the output of the protocol is
identical, and the communication has not changed. However,
Bob now knows Alice’s private randomness, so the protocol
may reveal significantly more information than previously
(one example to have in mind is that perhaps the protocol
has Alice output one uniformly random bit of her input.
With private randomness, Bob learns very little about Alice’s
input upon seeing the bit. With public randomness, Bob
learns exactly one bit of Alice’s input). For the second
bullet, simply use Alice’s private randomness as the public
randomness. That is, whenever the protocol requests random
bits, Alice outputs these bits from her private random string.
These bits are completely independent of her input, and
therefore reveal no additional information. However, the
communication might become enormous, as the randomness
is now being directly communicated, and counts towards the
communication cost. To use Lemma V.10, our lower bounds
proceed by first lower bounding the information complexity
of any protocol for EXIST-FAR-SETS with private random-
ness, using the second bullet of Lemma V.10 to lower bound
the information complexity of any protocol for EXIST-
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FAR-SETS with public randomness,'* using Lemma V.8

to lower bound the communication complexity of EXIST-
FAR-SETS with public randomness (if desired, we could
then use the first bullet of Lemma V.10 to further lower
bound the communication complexity of EXIST-FAR-SETS
with private randomness). The point is just that exponential
communication is required with either public or private
randomness.

C. From EXIST-FAR-SETS to FAR-SETS

In this section, we show how to lower bound the ran-
domized communication complexity of EXIST-FAR-SETS,
provided we have any lower bound on the information
complexity of (certain instances of) FAR-SETS. This section
follows a similar path as Section 7.2 of [Bral2]."> To
get started, we need some additional notation for promise
problems.

Definition V.7 (Promise problem). Let f be some func-
tion mapping {0,1}™ x {0,1}™ — {0,1}, and let P C
{0,1}™x{0, 1}™. Then the communication problem solving
f under promise P refers to the communication problem
which requires Alice with input A and Bob with input B to
output f(A, B) whenever (A, B) € P (and they may provide
arbitrary output otherwise).

Definition V.8 (b-compatible inputs). Say that an input
(X,Y) is b-compatible with respect to f and P if (X,Y) €
Pand f(X,Y)=0.

Definition V.9 ((k, z)-safe distributions). Say that a dis-
tribution p over {0,1}™ x {0,1}™ together with a
promise P C {0,1}™ x {0,1}™ are (k,z)-safe with
respect to promise P* C ({0,1}™ x {0,1}™)* if for
all j € [k, and all (X;,Y;) € P, the probability that
(X1, Y1), ..., ( Xk, Ys)) € P* is at least z, when (X;,Y;)
are drawn i.i.d. from p for all i # j.

Below is the main tool from information complexity that
we’ll use, which provides a method for proving communica-
tion lower bounds for k-dimensional communication prob-
lems via information complexity lower bounds on a related
1-dimensional problem (plus some technical assumptions to
handle the promises).

Theorem V.11 (Follows from [Bral2]). Let f be some
Sfunction mapping {0,1}™ x {0,1}™ — {0,1}, and let
P C {0,1}™ x {0,1}™ be some promised set of inputs.
Let F™* be defined so that

F*((Xy,...

LX), (Y1, V) = \/ F(X0 ).

ick

4Indeed, the second bullet of Lemma V.10 states that if there exists a
protocol for EXIST-FAR-SETS with public randomness and low IC then
there exists such a protocol with private randomness, contradicting the first
lower bound in the chain.

15 Also, because of the additional promise of EXIST-FAR-SETS, we are
unaware of prior work which could be cited as a black-box.
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Let also P* C ({0,1}™ x {0,1}™)* be some promised set
of inputs such that P* C P¥ (that is, every coordinate of
an element of P* is in P).

Let also 1 be any distribution over inputs that are 0-
compatible with respect to f and P. Let also . and P be
(k, z)-safe with respect to P*.

Then, if any protocol 7 that solves [ under promise P
with probability at least ¢ has IC\,(7) > ¢, any randomized
protocol 7 that solves F* under promise P* with proba-
bility at least q/z must have CC(m*) > kc.

Proof: We use the same reduction proposed in Section
7.2 of [Bral2] for DISJOINTNESS. The analysis requires
a little extra work to accommodate the promises. Assume
for contradiction that there exists a randomized protocol 7*
that solves F'* under promise P* with probability at least
q/z and CC(7*) < kc. We prove the contrapositive of the
theorem statement by providing a randomized protocol 7
that solves f under promise P with probability at least g,
with IC,,(m) < c. Here is the reduction (recall that 7* is
the assumed protocol for F™* under promise P*, and we will
use 7 to refer to the designed protocol):

o Alice and Bob are given input (X,Y) € P.

Alice and Bob use the shared randomness to select an
i € [k] uniformly at random. Let X; := X and Y; := Y.
Alice and Bob use shared randomness to publicly
sample X1,...,X;_; ii.d. from px, and Y;qq,..., Y%
i.id. from py. Here, pux denotes the marginal of g
restricted to X (ditto for py).

Alice privately samples X; from px|Y; for all j > .
That is, Alice samples X; from jx, conditioned on Y.
Bob privately samples Y} from 1y | X; for all j < ¢.
Alice and Bob run protocol 7* on input
(X1, XY, ..., Y,) (refer to this as (X,))
for notational simplicity) and output the answer.

Let’s first observe the following about the correctness of
the above protocol: First, maybe (X,)) ¢ P*. In this case,
we have no guarantees about the success of the protocol
(because 7* may behave arbitrarily). However, because
(u, P) are (k, z)-safe with respect to P*, we know that for
all (X,Y), the resulting (X,)) is in P* with probability at
least z.

Moreover, observe that, conditioned on (X,)) € P*,
protocol 7* is correct with probability at least ¢/z by def-
inition. Finally, we observe that because p is 0-compatible
with respect to f and P, f(X;,Y;) = 0 for all j # 1.
Therefore, f(X,Y) = Vi, f(X;.Y;) = F*(X,)). So
whenever protocol 7* is correct on (X, )), our protocol 7 is
correct on (X, Y'). At this point, we may conclude that our
protocol is correct with probability at least z - ¢/z = q.
The remaining step is to compute its information complexity
with respect to p.

First, we wish to point out that indeed the communication
complexity of m can be quite high. Indeed, it is blowing
up what should be a one-dimensional problem into a k-
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dimensional problem before solving it. Intuitvely, though,
we’d like to say that only a 1/k-fraction of this communica-
tion is actually being used to solve our original instance. It’s
hard to make this a formal statement, but this intuition can be
made formal if we look at information complexity instead:
In expectation, only a 1/k-fraction of the information our
protocol learns is relevant to the original instance.

Below, recall that /(P; Q) denotes the mutual information
of random variables P and () and I(P;Q | R) denotes the
expected mutual information of P and @) conditioned on R.
We will use II(X,Y") to denote the random variable corre-
sponding to the transcript of the protocol 7, when (X,Y)
are drawn from p, and will use IT*(X,)) to denote the
random variable corresponding to the transcript of 7* when
inputs (X,)) are drawn from u*. Let’s begin by writing
the information that Alice learns about Y given X from
our protocol 7 I(II(X,Y);Y | X) = I(II*(X,));Y |
X1, X1, X, Xva, oo, X, Yina, oo, Yi).

Let’s parse the above statement before proceeding. It
is essentially saying that what Alice learns about Y from
II(X,Y) given that she already knows X is exactly the
same as what she learns from the random variable II(X,))
(because these random variables are identical), except now
Alice already knows X and Y;41, ..., Y} (because they were
sampled publicly). Now we can perform some manipulations
based on the facts from Section V-B. For the first step,
we’ll separate out the conditioning on ¢, as ¢ is independent
of all other random variables (we’ll also start replacing
X000, X201, X, Xig1, ..., X with X to save space):

I(H*(X y)'Y‘iaXay;'+17"'aYk)
k

=25

i=1

I(IT* (X, Y); Y|X, Yig, ... Y2

1
k

1 k

=7 S IA(X, V) Vil X, Vi,

i=1

Yg).

Above, the second equality is simply relabeling (X,Y") as
(X;,Y;), as they are identically distributed and independent
of all other random variables. From here, we can repeatedly
apply the chain rule. Specifically, recall that the chain rule
implies that

T (X, V); Yie &) + T(IT(X, V); Vi | X, Ve) - =
I(H*(X,y);Yk_l,YHX).
More generally, for any i, I(II*(X,));Y;, ..., Yi|X) +

I(I*(X,Y); Vil | X, Ye, .., V) =
I(IT*(X,Y); Yi_1, ..., Yg|X). As such, we get that:

k
1
. SOIA(X, Y)Y | X, Yiga, ... Ye) =
i=1
1
£ I (X, V)Y | X),

We may now conclude that I(ILY|X) =
I(IT*(X,Y); Y| X). The exact same argument swapping the

=

roles of X and Y yields that I(II(X,Y); X | Y)

+ - IA1*(X,Y); X | V). These are the key claims: even
though the communication of the protocol 7 may be huge,
the information complexity is small. In a formal sense,
only a 1/k fraction of the information conveyed throughout
protocol 7 is conveyed about the specific indices where we
placed (X,Y). From here, we now conclude:

IC,(r) = II(X,Y);X|Y)+II(X,Y);Y | X)
= LUOT (XY X[ )+ IO (X, V)9 | X))
_ %Jcﬂk(w*)g%ccm).

Recall that we assumed for for contradiction that CC(II) <
ck, and therefore we would conclude that IC), () < c. The
contrapositive proves the theorem statement. [ ]

D. The Information Complexity of FAR-SETS

Theorem V.11 reduces our search for a communication
lower bound on EXIST-FAR-SETS to a search for an in-
formation complexity lower bound on FAR-SETS. In this
section, we prove such a bound. To get started, let’s first de-
fine the distribution p for which we’ll prove our information
complexity lower bound:

Definition V.4. Let ;1 denote the uniform distribution over
all pairs of sets (X,Y") of size % +1 such that [ XAY| = 2.

Recall that intuitively, the goal of this section is to
prove that any protocol that solves FAR-SETS correctly with
probability bounded away from 1/2 on all instances must
result in Alice learning some information about Y (or Bob
learning some information about X) when this protocol is
run on instances (X, Y") drawn from p. Note that it is crucial
to assume that the protocol is correct on all instances, and
not just those drawn from g (as all instances drawn from p
can be correctly answered by communicating nothing and
outputting 0).

Theorem V.12. Let 7 be a randomized protocol (with public
or private randomness) that solves FAR-SETS correctly with
probability greater than 0.8 on every input (that satisfies the
promise). Then 1C,,(7) > 1=

4mb>

Proof: For simplicity of notation, assume that m is
a multiple of 4 (if not, it is just an issue of being more
careful with indices). For further simplicity of notation,
let n = m/2. The main idea of the proof is to derive
a contradiction from the following two arguments. First,
if IC,(m) is negligible, then there exists a “chain” of
sets Sp,...,S, such that |S;NS,| = 2; and for all i,
|SiAS;+1| = 2, Alice with input S; must not be able to
effectively distinguish between when Bob has S; 1 or S;_1
just from the transcript of .

On the other hand, if 7 solves FAR-SETS on every
instance (that satisfies the promise), then when Alice has
input Sy, Alice must be able to effectively distinguish
between when Bob has S5 and .S, just from the transcript
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of m (because the correct output is different in these two
cases, and the distribution of transcripts must therefore be
noticeably different). Due to the nature of communication
protocols, these two claims will turn out to be contradictory.
These are the key steps in the proof approach; we now begin
formally. In the lemma statement below, for two random
variables X,Y with finite support we let || X — Y||; :
Yo | Pr[X = 2] = Pr[Y =z]|.

Proposition V.13. Let 7 be any private-randomness protocol
that correctly solves FAR-SETS on every instance (satisfying
the promise) with probability at least 0.8. Then no chain of
sets St,...,S, satisfies the following properties simultane-
ously:
o |Sil =m/2+1 for all i.
e |S1NS,| =2and forall 1 <i<mn, |S;AS;41| = 2.
o Forallodd1 < i <n, H(Si,Si_l)—H(Si,Si+1)‘|1 <
1/m?2.
o For all even 1 <
I(Siy1, 5|1 < 1/m?.

Proof: Assume for contradiction that such a chain of
sets exists. By Lemma V.9, there exist functions P(-,-) and
Q(-,-) such that Pr[II(X,Y) = 2] = P(2,X)-Q(z2,Y). We
thus have (simply by expanding the bottom two hypotheses).

S IP(:,8) Qe Sic1) — Qz,S141))| < —y (i 04

7 < ‘|H(S,L,1,S.L) —

n,

> 1Q(z,8i) - (P(2,Si—1) — P(z, Si1))| < % (i even).

For notational simplicity for the remainder of the proof,
we will denote by a;(z) := P(z,S;) when i is even, and
ai(z) := Q(z,S;) when i is odd. Observe that the above
equations are then simply:

> lai(2)(aic1(2) — aia (2))] < 3
Finally, let s(z) := >, ,lai(2)(ai—1(2) — aiy1(2))].
The following lemma bounds a;(z)(az(z) — a,(2)) in terms
of s(z). Recall that a1(z) - az(z) = Pr[II(S1,52) = 2]
and a1(z) - an(z) := Pr[lI(S1,S,) = z]. So the lemma
is bounding some term having to do with the difference
between II(Sy, S2) and II(Sy,.S,,) in terms of the sums of
differences between I1(.S;,S;—1) and II(S;, S;41).

Lemma V.14. For all z, we have a;1(z)(az2(z) — an(z)) <
ms(z).

1<1<n.

Proof: To ease notational burden through this proof, we
will drop the parameter z (since the proof is independent of
z). In particular, we will use terms a; throughout the proof
and s, where s := 3, _,_, |a;-(a;—1 —a;41)|. Observe that
ai(a;—1 — a;y1) < s for all 4.

If a1as < ms, then the lemma statement follows trivially,
as ay,a, > 0. So now consider when that ajas > ms. In
this case, we will define new bq,...,b, for which b; < q;
for all 7, and analyze these instead.
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To this end, define b; = aq, b = ao, and for 2 < i < n
define b; := b;_o — s/b;_1. Observe that the b;s satisfy the
following equality (to see this, substitute b;_1 — s/b; for
bit1):

&)

Since b1by = ajas > ms, this means that for all i < n
we have b;b;11 > (m — i+ 1)s > 0 (recall that n = ).
Since by and bs are strictly positive, we conclude that all b;
are strictly positive as well. Now, we claim that b; < a; for
all 7. Indeed, this is true for ¢+ = 1,2. We now prove this by
induction for 7 > 2. Assume for inductive hypothesis that
bj < Qj. Then bj+1 = bj,1 — % < aj—1 — aij < Qi1 The
last step follows from the equation a;(aj—1 — a;41) < s.

Now, we wish to prove further properties of the b;s
towards our end goal. We show the following inequality by
induction:

bibit1 = bibi 1 — s.

m m
b1 (by—bo;) < _ .. -
(b2 2)_S<m—1 m—3+ +m—(22—3)
(2)
Proof of Equation 2:
Observe first for + = 2 that we have:
S b1
bi(by —by) =by | by — [ by — — = —.5=
1(b2 1) 1<2 (2 b3)> bs
b1 b1bo aias
s - =s- =
b1 — é b1b2 — S a1as — S
aj1a

Now, PR is decreasing in ajaq, and we assumed already
that a1as > ms, so we have

a1a9 ms m

ms — S

<S§-

bl(bz — b4) =S

ajay — s m—1

This proves the base case (i = 2). Now assume for inductive
hypothesis that the inequality holds for ¢ — 1. We then have:

b1 (b2 — b2;) = b1(ba — bai—1)) + b1(bagi—1) — b2s)
= b1 (b2 — ba(i—1)) + b1 - :

b1

The last step here follows from Equation 1. From here we
continue with:

s
b1(ba — bagi—1)) + b1 - b
2i—1
s
= bi(by — by(i—1)) + b1 - 5 (
2i—3 — bai_2
bai—2s

b1(by — bo;— by —m———.
1( 2 20 1))+ ! bai_3bai o2 — s

From here, we now apply Equation (1) to the term in the
denominator 2¢ — 4 times. That is, we successively replace
bjbj11 with bjb;_1 — s, 20 — 4 times. This leaves us with:

boj_2s
blbg — (22 — 3)8

Now, it is easy to see from the definition of b;s that for
all j, bj12 < b;. As such, we also have by;_o < by. Finally,

b1(ba —b2;) = b1 (b2 —ba(i—1)) +b1 - (3
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note that the denominator (b1b2 — (2i—3)s) is positive (since
we are in the case that b1by = ajas > ms), sO we can now
write:

b1b2

b1(ba — ba;) < b1(ba — bo(;— T o
1(b2 = b2i) < bi(b2 — bai—1)) + 5 bibs — (20 — 3)s

ms
< by(ba — bogim s — (21— 3)s
< bi(by = bai1y) + ms — (2i — 3)s
< oy oy 5
s —— - e I s———
< m—1"m_3 m— (2i — 3)

The penultimate step above follows from the fact that
m decreasing in b1bsy and we have assumed that
b1bo > ms. The last step follows by the inductive hypothe-
sis. This completes the proof of Equation (2). |

Now we return to the proof of Lemma V.14 with Equa-

tion (2) in hand. Now, since a,, > b,,, we have:

ai(az — an) = bi(by —an) < bi(by —by) <

1 1 1
ms| ——+ ——+-+ :

m— (% —3)

In the right-most term, observe that there are m/4 — 1
terms in the sum, each of which are at most 2/m. As such,
the total sum of these terms is < 1. Therefore, the right-
hand-side above is at most ms, and a1 (az — a,) < ms, as
desired. This concludes the proof of Lemma V.14. [ |

Now, we return to the proof of Proposition V.13. Recall
that the purpose of Lemma V.14 is to claim that the random
variables II(S7,S3) and II(S;,S,) are not that different
(which would contradict that 7 is correct with probability
at least 0.8 on both (S7,952) and (S1,5,)). Observe by
Lemma V.14 that:

Z al(z) (GQ(Z) - an(z))

z,a2(2)>an(2)

< m Z s(z) | < st(Z)
z,a2(z)>an (2) z
n—1
= m> Y lai(z)(ai-1(2) = ai1(2))]
=2 =z
< mn-2) L
- m? -2
Above, recall that n := m/2, and that we have assumed

for contradiction that > |a;(2)(ai—1(2) — aiy1(2)] <
1/m? for all i. (Recall that ) la;(2)(ai—1(z) —
ai+1(z)| = ||H(S,L, Si_l)—H(Si, Si+1)||1 when 7 is Odd, or
I|TI(S;—1, Si) —II(Si+1,5:)||1 when 7 is even, both of which
are assumed to be < 1/m? in the proposition statement.)

Pr[I1(S1,S52) = 2], and

Invoking that a;(z)as(z)
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a1(z)an(z) = Pr[II(S1, Sn) = 2], we further conclude that:

>

2,Pr[II(S1,52)=2]>Pr[lI(S1,S,)=%]
Pr[II(Sy, Sy) = 2]

| PI‘[H(Sl, SQ) = Z]

1
= Y al)(a) -a) < 5
z,a2(2)Zan (2)
But note that > Prlli(5,5) =z =

>, Pr[lI(S1, S,) = 2] = 1, which means that:

>

2, Pr[II(S1,52)=2] >Pr[II(S1,5n)=2]

Pr[I1(Sy1,S,) = 7] |
2

| Pr[II(S1,52) = 2]
z,Pr[II(S1,S2)=z]<Pr[II(S1,5,)=z]
Pr[II(S,S,) = 2] |,

| PI‘[H(Sl, SQ) = Z]

so in fact both sums are < 1/2. We may now conclude that:

[ITI(S1,.52) — II(S1, Sp)lli < 1. 4

Now, we are ready to wrap up the proof of Proposi-
tion V.13, as Equation 4 asserts that the random variables
I1(S1, Se2) and TI(Sy,.S,,) are too similar in order for pro-
tocol 7 to be correct with probability at least 0.8 on both
(S1,52) and also (S1,S,).

Indeed, let Z; be the set of transcripts that output b. Then
because 7 is correct with probability at least 0.8, II(.S1,.S,,)
assigns mass at least 0.8 to z € Zy, and II(Sy, S2) assigns
mass at most 0.2. So terms in Z; alone contribute at least
0.6 to the difference. In addition, I1(.S1, S,,) assigns mass at
most 0.2 to z € Zy, and II(S1, S — 2) assigns mass at least
0.8. So terms in Z contribute at least 0.6 to the difference.
Therefore, because 7 is correct, we must have ||II(S1, S2) —
II(S1, Sn)||1 > 1.2, contradicting our conclusion above.

This concludes the proof of Proposition V.13. To recap:
we first showed how to relate the statistical difference
between II(S7,S2) and II(S:,S,) to the statistical dis-
tance between adjacent pairs I11(S;, S;+1) and II(S; 12, Si+1)
(Lemma V.14). Lemma V.14 required a decent amount of
math, the bulk of which is in proving Equation (2). With
Lemma V.14, we then obtained a contradiction: the statistical
difference between II(S;,S2) and II(S1,S,) cannot be
small if 7 is to possibly be correct on both (S57,S52) and
(S1,Sn), because the answers must be different with good
probability.

|

Proposition V.13 claims that no chains of the proposed
form can exist for any private-randomness protocol which
solves all instances of FAR-SETS with probability 0.8. Now
we will claim that any protocol which has low information
complexity with respect to ;1 must have some chain of the

proposed form. To this end, we first give a few definitions:
Definition V.5. Let n = 2

5 as before.
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A link is an ordered pair (X,Y") of sets of size n + 1
such that [ XAY| = 2.

A chain is a sequence of sets T1,...,7T, such that
(T;, Tiyq) is alink for 1 <i <n,and [Ty NT,| =2.
Given a link (X,Y"), recall that II(X,Y") is the random
variable denoting the transcript when 7 is run on
input (X,Y). Further define I1(X,?) to be the random
variable which first samples a uniformly random Y
such that (X,Y") is a link (note that this is simply
sampling a uniformly random element of X to remove,
and a uniformly random element ¢ X to add), and then
samples II(X,Y"). Define II(7,Y") similarly.

A link (X,Y) is broken if D(II(X,Y) || II(X, 7)) >
sor or if DANX,Y) | II(?,Y)) > gz Here,
D(- || -) represents Kullback-Leibler divergence from
Definition V.5.

A chain Ty,...,T, is broken if for some odd i,
(T;,Ti41) or (T3,T;—1) is a broken link. These n — 1
links are the chain’s structural links.

=

Proposition V.15. Let m be a protocol with IC,(7) <

Sm%N. Then at most a 1/N fraction of links are broken.

Proof: Let’s first compute I(II(X,Y); X|Y) when
(X,Y) are drawn from p. In order to draw from p, we may
first draw X uniformly at random from all sets of size n+1,
and then draw Y uniformly at random among all sets of size
n+ 1 with | XAY| = 2 (note that there are (n+ 1)(n — 1)
such sets: pick an element in X to kick out and an element
¢ X to add). So we get that I(II(X,Y); X | V) is equal to:

1

(1)

n+1

> IIX,Y);X|Y=T)=
TCM

|T|=n+1

IS

TCM S where
|T|=n+1 (S,T)
is a link

1

m
n+1

1
( ) (n+1)(n—1)

The first step above is just expanding the definition of
conditional mutual information. The second step requires
some further explanation. First, note that the number of S
such that (S,7) is a link is (n + 1)(n — 1) (one of the
n + 1 elements of 7" needs to be kicked out and one of the
n—1 elements of 7" needs to be put in to form .S), and each
of these sets are equally likely to be drawn from . The
second step is again just unraveling the definition of mutual
information via Fact V.6.

Now, the above sum can be written to directly sum over
all links. That is:

IIIX,Y); X |Y) =
e * S s DAIS DT 7).
Identical math concludes that I[(II(X,Y);Y | X)

[ © Dtinks (s, DAL, T)[|II(S, 7). This

means that /C), () is equal to - D(II(S,T) ||

.
) (nt1) (n—1)

™m

D(IL(S, T) || TI(?,T)).
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II(?,T)) + D(II(S,T) | TII(S,?)). Observe that this is
simply the average over all links of D(II(S,T) || II(?,T))+
D(I(S,T) || II(S,?)). So if a 1/N fraction of all links are
broken, then the average of this quantity over all links is at

least g—lr, meaning that IC),(7) > gl
|
Now, we claim that if most links are not broken, there

must exist an entire chain which is not broken.

Lemma V.16. If fewer than % links are broken, there exists
an unbroken chain.

Proof: We first claim that the number of chains is
%!. Indeed, consider the structure of a chain 77i,...,7),.
Observe that there are exactly two items that persist in N;7;.
Moreover, each 7; adds a unique element to 7;_; (that
previously wasn’t added) and removes another one (which
previously wasn’t removed). So if we order the m elements
so that the first two elements are in MN;7;, and the next n— 1
elements are added in 75,73,...,7},, and the next n — 1
elements are removed in 75,...,7,, this defines a chain.
The chain defined is invariant under flipping the order of the
first two elements, but modulo this, each ordering defines a
unique chain.

As counted previously, the total number of links is
(nﬁl) (n — 1)(n 4 1): for a link (X,Y) there are (71711)
choices for X and (n—1)(n+1) choices for Y conditioned
on this. Each chain consists of n — 1 structural links, so the
number of pairs (C, L) such that L is a link in chain C is
m7‘(n — 1). By symmetry, every link is a structural link of
the same number of chains, so for a given link, the number
of chains which contain it as a structural link is:

m!
Y(n+1)

m!(n—1)
J(n—1)(n+1)

2 (nrzl 2 (nTl
m!

Thus, for all 5 chains to be broken, there must be at
least m!/2 pairs (C, L) such that C is a chain and L is a
broken structured link of C. By the above counting, this
means there must be at least (nﬁl) (n+1) broken links. But
this is —X5 = —2— > 2/m fraction of all of the links. So
if fewer than this are broken, there must exist an unbroken
chain. [ |

Now, we want to claim that an unbroken chain exactly
satisfies the hypotheses of Proposition V.13. This is the last
step in wrapping up the proof of Theorem V.12.

Lemma V.17. Let Sq,...,S, be an unbroken chain. Then
fOl" all odd 1 < i < n, |H(SL,SZ_1) — H(Si,Si+1)||1 <
1/m?, and for all even 1 < i < n, |[TI(S;_1,S;) —
H(SZ‘+1,SZ')H1 S 1/m2

Proof: Because the chain is unbroken, we get that for all
odd i > 1, D(H(SZ,SZ+1 H H(S”?)) and ]D)(H(Sl,Sl_l) H
I1(S;,?)) are both at most g-—. Now, Pinsker’s inequality
allows us to conclude that ||TI(S;, Si+1) — II(S;, 7)|[1 <

\/ 521 = 3oz for all i, and also that ||[II(S;, Si+1) —
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II(?, Si+1)|l1 € 52 for all i. By the triangle inequality,
we therefore conclude that for odd i:

I[T1(S;, Siv1) — H(Si, Si—1)||1 < 1/m?

And for even 1:

ITL(Si41,S:) — H(Si—1, Si)|1 < 1/m?.

|

Now, we are finally ready to conclude the proof of
Theorem V.12. We have two contradictory lines of argu-
ment: on one hand, if 7 uses private randomness and is
correct on every input with probability at least 0.8, then
Proposition V.13 combined with Lemma V.17 claims that
no unbroken chain can exist. However, Proposition V.15
combined with Lemma V.16 claims that if IC, (1) < 115,
then there is an unbroken chain. So no private-randomness
protocol can simultaneously have IC,(7) < ;s and
correctly solve FAR-SETS on every input with probability
at least 0.8. From Lemma V.10 it also follows that no
protocol, whether making use of public randomness or not,
can simulatenously have IC),(m) < ﬁ and correctly solve
FAR-SETS on every input with probability at least 0.8. MW

E. Wrapping everything up

Now, we can complete the proof of Theorem V.1 by
combining everything together. We first need to combine
Theorem V.12 and Theorem V.11 to conclude that ran-
domized protocols for EXIST-FAR-SETS require exponential
communication.

Theorem V.18. For all m, ¢, k such that { < (1—c)logs(m)
for some constant ¢ > 0 and k € (m,exp(#@)), any
randomized protocol w that solves EXIST-FAR-SETS with

probability at least 2/3 on all instances (which satisfy the
promise) has CC () = Q(k/m5).

Proof: We already have a distribution p for which
any protocol 7 solving FAR-SETS with probability at least
0.8 on all inputs has IC,(7) > ;5. It is also clear
that EXIST-FAR-SETS(X,Y) = V., FAR-SETS(X;, Y;).
So we just need to check the details with respect to the
promises. In particular, we just need to see for what values
of (k,z), p is and the FAR-SETS promise are (k, z)-safe
with respect to the EXIST-FAR-SETS promise.

Observe that conditions (1) and (2) of the EXIST-FAR-
SETS promise are trivially satisfied. So we just need to
check conditions (3) and (4). Note that these conditions
depend only on Alice’s sets and, separately, Bob’s sets,
and not on how Alice’s and Bob’s sets interact. Now,
the EXIST-FAR-SETS promise is invariant under permuta-
tions of M, and also under permutations of the indices
(.e. if (X1,Y1),...,(Xk,Yy) satisfy the EXIST-FAR-SETS
promise, then so do (X,(1),Y51)), -+ (Xo(k), Yor)) for
any permutation o from [k] to [k]). Therefore, we may
treat Alice as having i.i.d. subsets of M of size % + 1,

263

and likewise with Bob. We are interested in bounding the
probability that Alice’s sets do not satisfy conditions (3) and
(4); then, a simple union bound will give us the probability
that the EXIST-FAR-SETS promise is satisfied.

Lemma V.19. Let X = (X;,..., Xi) be drawn so that each
X, is an i.i.d. uniformly random set of size m/2+1. For any
x, let £ := logs(m) — logs(z), and let k < e2:¢. Then with
probability at least 1 — e=*/% — ke~ X is (-sparse.

Proof: Consider the following roundabout way to draw
X;: first place each element of M in X independently with
probability 2/3. Then, if | X!| > m/2+1, let X; be a random
subset of X! of size m/2+ 1. If any | X/| < m/2+ 1, abort
the entire process and consider it a failure. Observe that
X; C X/

For a fixed item j, and fixed set L of indices with |L| = £,
the probability that j € U;er, X/ is 1—(1/3)%. Because these
events are independent, the probability that M C U;er, X/
is exactly (1 — (1/3)%)™. Taking a union bound over all

;) subsets we get that the probability the collection is not
{-sparse, conditioned on not failing initially, is at most:

(?) (1—1/39)" < Kexp <_32”>

=exp (/In(k) — z) < exp(—z/2).

Finally, observe that the expected number of items in each
X/ is 2m/3. So the probability that a single X/ fails to have
m/2+1 elements is e~ (™) by the Chernoff bound. Taking
a union bound over all k£ X/s accounts for the additional
ke=(m) term. |

Lemma V.20. Let X = (X;,..., Xi) be drawn so that each
X, is an ii.d. uniformly random set of size m/2 + 1. Then
with probability at least 1 — e~k/3 e~ M) for all sets
T of |T| = ¢, there exists an X; 2 T.

Proof: Let’s again consider the following roundabout
way to draw X;: first place each element of M in X/
independently with probability 1/3. Then if | X/| < m/2+1,
let X; be a random superset of X/ of size m/2 + 1. If any
|X!| > m/2+ 1, abort the entire process and consider it a
failure. Observe that X; O X/.

For a fixed set T' of size ¢, The probability that X/
contains T is just 1/3%. So the probability that no X!
contains T is (1 — 1/3%)% < exp(—k/3%). Again, the
probability of failure is at most ke (") resulting in the
lemma statement. u

Now to wrap up, we observe that the probability that
the EXIST-FAR-SETS promise is not satisfied is at most
2(ke=m) 4 e=k/3" 4 e=2/2) where £ := logs(m)—logs ()
and k < ez7. Here, the factor of 2 comes from a union bound
from the events that Alice’s sets fail condition (3) or (4) and
that Bob’s sets fail condiiton (3) or (4).

When & = m¢, for any ¢ < 1, we get that £ := (1 —
¢)logg(m), and k < 2o 1esatm | As such, ke~ (M) =
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o(1), e=*/2 = o(1), and furthermore ¢~*/3" = o(1) as long
as k = Q(m).

Theorem V.11 combined with Theorem V.12 then implies
that any protocol 7 for EXIST-FAR-SETS which succeeds on
all inputs (satisfying the promise) with probability at least
0.8/(1 — o(1)) has CC(r) > -E-. To replace 0.8/(1 —
o(1)) with 2/3 in the Theorem statement, observe that if
we had a protocol with success probability 2/3, we could
repeat it independently a constant number of times and take
a majority to get a protocol with success probability 0.8/(1—
o(1)). ]

Proof of Theorem V.1: The proof of Theorem V.1 now
follows immediately from Theorem V.18 and Corollary V.3.
In particular, by plugging in ¢ = logs(m)/3, we may take
c=2/3, and k = 4m?® - eV™ in Theorem V.18 to conclude
that any randomized protocol guaranteeing a (1/2+ %)-
approximation for WELFARE-MAXIMIZATION with proba-
bility at least 2/3 on all instances requires communication
Q(eV™).

|

VI. FROM XOS TO SUBADDITIVE: THE MPH
HIERARCHY

In this section, we explore the space between fractionally
subadditive and subadditive functions via the MPH hierar-
chy.

A. MPH Preliminaries

Let’s first review the definitions.

Definition VI.1 (Positive-Hypergraph [ABDR12]). A valu-
ation function v(-) is PH-k if there exists a non-negative set
function w(-) such that for all S, v(S) = Y rc g 1<k W(T).

Observe that PH-1 functions are exactly additive func-
tions.

Definition VI.2 (Maximum-over-Positive-Hyper-
graphs [FFIT15]). A valuation function v(-) is MPH-k if
there exists a collection F of PH-k valuation functions

such that for all S, v(S) = maxser{f(5)}.

Observe that MPH-1 functions are exactly fractionally
subadditive (XOS) functions.
The next observation follows directly from the definitions.

Observation VI.1. Let v(-) be MPH-k. Then for every item
set S, there exists a non-negative set function wg(-) such
that (i) v(S) = 3 pcgws(T); (i) v(S') = X pcg ws(T)
for every S’ # S; and (iii) ws(T) = 0 for every set T of
size |T| > k.

Proof: By definition, v(-) is a maximum over PH-k
functions. Let fg(-) be the PH-k function that is the arg-
maximizer at S, i.e., v(S) = fs(S); then clearly v(S’) >
fs(S’) for every S’. Because fg(-) is PH-k, by definition
there exists a non-negative set function w(-) for which all
conditions are satisfied. [ ]
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The following lemma lower-bounds the MPH level of a
set function v(-) based on the ratio between the sum of
marginal contributions of the items to the grand bundle and
the grand bundle’s value.

Lemma VL2. Let v(-) be any set function. Then v(-) is not

MPH-k for k < 2+ 000 0UY,

Proof: Let k be the level of v(-) in the MPH hierarchy
(i.e., v(-) is MPH-k). Then by Observation VL1 there exists
a non-negative set function w(-) such that (i) >, w(T)
o(M); (i) v(M\A{j}) = YXrcan gy w(T) for all j; and
(iii) w(T) = 0 for every T with |T'| > k. Summing both
sides of (ii) over all items j yields:

> M\ {5} YooY w(@)

JEM j TCM\{j}

> w(T)(m —|T])

T

> w(T)(m — k)
v(M)(m — k).

>

>

Rearranging the inequality yields kv(M) > > . v(M) —
v(M\{j}), as required. [ |
[FFIT15] show that every monotone valuation function
is MPH-m, and that there exist subadditive functions that
are not in MPH-k for any & < m/2. In the Appendix we
show that this is tight; i.e., that every monotone subadditive
valuation function is MPH-[ ] (Proposition A.1).

Clearly, for any & > 1, there exist MPH-k functions
that are not complement-free (i.e., subadditive). Indeed,
even MPH-2 functions exhibit complementarities. Since we
are interested in exploring the space of functions between
XOS and subadditive, our results in this section will be
for “subadditive MPH-£” functions, which belong to both
classes simultaneously. The extra subadditive assumption is
necessary for our results (Proposition VI.12).

B. Our Results for Subadditive MPH-k

A preliminary question to address is: what is the MPH
level of the subadditive functions constructed in Section III?
It turns out to be quite high:

Proposition VL.3. For all S,(, such that f5(-) is well-
defined, f&(-) is not MPH-k for k < m/t.

Proof: For every item j, f§(M)—f5(M\{j}) > 1, and
f5(M) = ¢. Applying Lemma VI.2 completes the proof. W
Proposition VIL.3 raises the possibility to improve upon
the 1/2-approximation ratio for subadditive functions which
reside in lower MPH levels. The main result of this section
is a (3 + Q(j557))-approximation in poly(m) communica-
tion for WELFARE-MAXIMIZATION when Alice and Bob
have valuations that are both subadditive and MPH-k. This
approximation guarantee is tight for sufficiently large k& by

direct application of our previous bounds.
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Our main technical contribution in this section is an
oblivious rounding protocol for the configuration LP when
two bidders both have subadditive MPH-k valuations. The
protocol’s performance gradually degrades with the level
k, starting from 0.625 for & = 2 (Section VI-D) and
behaving like 1 + Q(@) in general (Section VI-E). An
alternative and simpler protocol with guarantee %—FQ( logm)
was developed independently for subadditive valuations by
Dobzinski (which makes use of the fact that XOS valuations
pointwise 1/H,,-approximate subadditive functions).'® It
is an interesting open question to determine whether the
simpler version can be extended to subadditive MPH-k
valuations with the § + Q(@) guarantee (for instance, by
proving that XOS valuations pointwise 1/H}-approximate
subadditive MPH-£ functions; note, however, that the “sub-
additive” is necessary for this claim to possibly be true).

We remark that the obliviousness of the protocol is known
to be without loss, by the results of [FFT16]: since the class
of MPH-£ valuations is closed under convex combinations,
by [FFT16] there exists an oblivious rounding scheme that
achieves an approximation guarantee matching the integral-
ity gap of the LP. In Section VI-F we show the matching
integrality gap of % + Q(loék) for sufficiently large k.We
also remark that our rounding-based technique necessarily
fails for MPH-£ valuations that are not subadditive. Indeed,
even for two MPH-2 valuations, the integrality gap may be
as large as % (Proposition VI.13).

C. Notation and Key Lemma

Throughout this section, we overload the notation v(S)
as follows. When S is a random set drawn from distribution
D, we use v(S) to denote Eg..p[v(S)]. Also, if X denotes
either Alice or Bob, we use X to denote the other player
(i.e. if X = Alice, then X = Bob, and vice versa).

The following key lemma extends a well-known result
of [Fei06] for XOS valuations to the MPH-£ hierarchy.

Lemma VL4. Let v(-) be an MPH-k function, and let S C
M be a subset of items. If T' is a random set such that every
U C S with |U| < k is contained in T with probability at
least p, then v(T) > p - v(S).

Proof: Let wg(-) be as promised from Observa-
tion VLI. Then wv(S) >rcsws(T), v(U) >

> rey ws(T) for all U, and ws(T) = 0 for all T' with
|T'| > k. Then we can conclude that:

> Pr(T’ C T ws(T)
T,|T|<Ek

D

T'CS [T |<k

o(T) >

> p ws(T') = p- o(S).

The first inequality follows from the fact that nonzero
weights only belong to sets T of size at most k. The second

16This protocol, which is not yet in print, was brought to our attention
in a personal correspondence with Shahar Dobzinski.
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follows because every subset of S of size k appears in T’
with probability at least p. [ |

It is also not hard to extend Lemma VI.4 to functions
which are “close” to MPH-k.

Definition VL3 (Pointwise [-approximation [DMSW15]).
A valuation function v(-) is pointwise [-approximated by
a valuation class W if for any set S C M, there exists a
valuation w € W such that: (a) fw(S) > v(S) and (b) for
all T C M, v(T) > w(T).

Similarly, we say that a class V is pointwise [-
approximated by a class W if all v € V are pointwise
B-approximated by W .

Corollary VL5. Let v(-) be pointwise [-approximated by
MPH-Fk functions, and let S C M be a subset of items. If
T is a random set such that every U C S with |U| < k
is contained in T with probability at least p, then v(T) >
Bou(9).

Bu

Proof: Let w(-) be the MPH-£ function which point-
wise S-approximates v(-) at S. Then we know that: v(71") >
w(T) = p-w(S) = Fo(S). The outer two inequalities are by
definition of pointwise approximation. The inner inequality

is by Lemma VIL.4. |

D. Protocol for Subadditive MPH-2 Valuations

Here, we describe our protocol specifically for subadditive
MPH-2, as it conveys the main ideas. Our protocol will
proceed as follows. First, we will solve the configuration
LP relaxation (defined shortly) which finds the optimal
fractional allocation. Then, we provide an oblivious round-
ing which takes the fractional solution to a distribution
over allocations. Assuming that both A(-) and B(-) are
subadditive MPH-k, the rounding will maintain at least a
3 4 Q(1/log(k)) fraction of the welfare.

Let’s now recall the configuration LP (defined below for
any n, we only use it for n = 2):

Variables: x;(S), for all bidders i and subsets S C M.
Constraint: x;(S) > 0 for all 7, S.

Constraint: For all 4, ) ¢ 2;(S) = 1 (dual variable u;).
Constraint: For all j, > 5., >", 2;(5) < 1 (dual vari-
able p;).

o Maximizing: ;5 vi(5) - z(95).

It is clear that the configuration LP is indeed a fractional
relaxation, as any integral allocation is feasible. Despite
having exponentially many variables, there are only n + m
non-trivial constraints, and so the dual has only n + m
variables. We quickly remind the reader of the dual:

L]

e Variables: u; for all bidders 4, p; for all items j.
» Constraint: u; > v;(5) — ;5 p; for all bidders i and
subsets S C M.
o Constraint: p; > 0.
o Minimize: >, p; + >, u;.
We remind the reader that a separation oracle for the
dual can be achieved via a demand oracle for each v;(-)
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(recall that this oracle takes as input a set of prices p and
outputs the set maximizing v;(S) — > ;cgp;). So the dual
can indeed be solved in polynomial communication (and
indeed only requires demand queries of the valuations).
Once the dual is solved, an optimal primal can be recovered
as well (for further details, see [BNO7]). Most state-of-the-
art communication protocols (including all those referenced
in Table ??) are derived by first solving this LP, and then
rounding. Indeed, our protocol follows this blueprint as well.
Moreover, our rounding protocol is oblivious: while we of
course need demand-query access to the valuations in order
to find the optimal fractional solution, once we have this
fractional solution our rounding scheme never looks at the
valuations again. The same rounding argument is guaranteed
to work for all subadditive MPH-2 valuations.

Oblivious rounding scheme for £ = 2. Draw player X
uniformly at random from {Alice, Bob} (also referred to as
{1,2}).

1) Let & denote the input fractional allocation.

2) Let Dy denote the distribution that takes set S with
probability zx (S).

3) With probability A = 0.5, draw Sx from Dx; give set
Sx to player X; and give set M \ Sx to player X.

4) Otherwise (with probability 1 — A = 0.5), draw set S’
from D, and set S%; from Dp; give set S NSy to
player X; and give set M \ (S’; N S}) to player X.

Proposition VLI.6. Letr C denote the optimal value of the
configuration LP. Then when Alice and Bob are both subad-
ditive MPH-2, the expected welfare of the above oblivious
rounding scheme is > 0.625 - C.

Proof: Let bundles S4,Sp be independent random
draws from distributions D4, Dp, respectively. The first
case of the oblivious rounding scheme achieves expected
welfare of (in expectation over randomly sampling X from

U({1,2})):

Sa(Sa) +us(M\S0) +

S A M\ S5)+v5(S5)) 2

%(’UA(SA)-F’UB(SB)) +
%(UA(SA\SB)‘FUB(SB\SA)) ’ ®)

where the inequality holds pointwise for every instantia-
tion of S4,S5p and follows from monotonicity of v4,vg.
Similarly, the second case of the oblivious rounding scheme
achieves expected welfare of:

1
i(vA(SA n SB) + ’UB(SA n SB)) +

%(UA(M \ (S418p)) +vs(M\ (SanSp))).

To analyze the latter case we use the following claim:

Claim VL7. Let vx be MPH-2 and let bundles S, Sg
be independent random draws from distributions D 4, Dp,
respectively. Then vx (M \ (Sa N Sp)) = svx(M).

Proof of Claim VI.7: For every pair of items 7,5 € M,
the probability that player X gets the pair when allocated
the random bundle M \ (S4 N Sp) is > % To see this,
observe that for player X not to get the pair, either ¢ or
j or both must be in S4 N Sg. By definition of S4, Sp,
the probability Pr[i € S4 N Sp] is equal to (D¢, 21(5)) -
(> _g5i 2(S)). We further know that 3 -, 21 (S)+22(S) <
1 by the constraints in the configuration LP. This means
that (D g5, 21(5)) - (Q2_g5; 72(S)) < 1/4, and therefore
Pri € SANSg] < 1/4 as well. By applying the union
bound we get that ¢ and/or j are in S4NSp with probability
< 1/4. Applying Lemma VL4 for MPH-2 valuations, player
X’s expected value for the random bundle M \ (S4 N Sp)
is thus at least Jvx (M). [ |

By Claim VI.7 the second case achieves expected welfare
of at least

%(UA(SA N1 S5) + vs(San Sp)) + i(m(m +up(@). ©)

Summing up the contributions from (5) and (6) weighted by
their respective probabilities A and 1 — A, the total expected
welfare of the oblivious rounding scheme is at least:

%(’UA(SA) +vp(Sp)) +

2 (0a(Sa\ S3) + v (S5 \ Sa)) +
1= )\(UA(SA N Sg) +vp(SanSg)) +
2 wa(M) + s (M)
> %(UA(SA) +up(Sp)) + g@A(sA) +up(SB)) +
2 wa(M) +up () ™
> g(fA(SA) + f5(Sk)) = 0.625 - C. ®)
where (7) holds since A was chosen such that 15 = 3, and

by subadditivity of v4,vp (importantly, note that (7) does
not necessarily hold without subadditivity), and (8) holds
since A = % and by monotonicity of v4,vp (both inequali-
ties hold pointwise for every instantiation of S4, Sp). This
completes the proof of Proposition VI.6. [ ]

To recap the proof of Proposition VI.6, the fact that the
valuations are MPH-2 means that if a player “loses” in the
second rounding case and is allocated the “leftovers”, this
player still gets at least half of her total value (see Claim
VIL.7). The fact that the valuations are subadditive means
that allocating the bundle in contention S4 N Sp with some
probability p to player X, and allocating the bundle not in
contention Sx \ (S4 N Sp) with the same probability to the
same player, is as good in terms of welfare as allocating Sx

to player X with probability p (see (7)).
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Corollary VL.8. If Alice and Bob are [3-pointwise approxi-
mated by subadditive MPH-2 valuations, then the expected
welfare of the oblivious rounding scheme is > (% + #)w.

Corollary VIL.8 follows by replacing Lemma VI.4 by
Corollary VL5 in the proof of Proposition VI.6.

E. Protocol for Subadditive MPH-k Valuations

We now generalize the oblivious rounding scheme above
to subadditive MPH-k. The main idea behind the approach
is similar to our protocol for MPH-2: the “level 0” protocol
that one should try first is to simply draw sets S4 and
Sp independently from D4, Dp. Prioritize awarding items
in S4 N Sp to a uniformly random player, and give the
leftovers to the other. Of course, this protocol might fail to
beat a 1/2-approximation. But the only way it fails is if both
Alice and Bob have high expected value for the intersection
SaNSp. If Alice and Bob have high expected value for the
intersection, then we can instead just recurse within S4NSp.
The following protocol and subsequent proof makes this
formal.

Oblivious rounding scheme for general k£ > 2. Draw
player X uniformly at random from {Alice, Bob}. Set r =
[log log k].

1) Let & denote the input fractional allocation.

2) Let Dx denote the distribution that takes set S with

probability zx (.5).
3) With probability A = 3, draw Sy from Dy; give set
Sx to player X; and give set M \ Sx to player X.

4) For 0 < ¢ < r, with probability A\, = 53+,
draw 27 sets SY,...,S%" iid. from D4 and 27 sets
Sk,...,8% iid. from Dp; give set S9 =S, N---N
S2'NSEN---NS% to player X, and give set M \ S¢
to player X.

5) Otherwise (with probability A\, =1 — X — E;;é Ag =
), draw 27 sets S%, ..., 5% iid. from D4 and 2"
sets S, ...,S% iid. from Dp; give S = Sy N---N
S% NSLN---NS% to player X, and give M \ S” to
player X.

Theorem VL.9. Let C denote the optimal value of the
configuration LP. Then when Alice and Bob are both subad-
ditive MPH-k, the expected welfare of the above oblivious

rounding scheme is > (% + Q(loék)) -C.

Proof: The proof generalizes that of Proposition VI.6
and proceeds by analyzing the contribution from each case of
the oblivious rounding scheme. The first case of the scheme
achieves expected welfare of at least §(va(Sa)+vp(Sp))+
3(va(Sa\SB)+v5(Sp\ Sa)) (identical to (5)). For every
0 < g < r, the corresponding case of the scheme achieves
expected welfare of at least

50451 +va(ST) + 5 (04(S\STH) + va(ST\ 57).
(€))

To analyze the last case we use the following claim:

Claim VL10. Let VX be an MPij valuation and let
bundles S, ..., SE{ and S}, ..., S%' be independent ran-
dom draws from distributions D o and D p, respectively. Let
ST = g},m--ﬂsi NSLN---NS%L. Then vx(M\S") >
(1 = zr)ux (M).

Proof of Claim VI.10: For every bundle of k items, the
probability that player X gets this bundle when allocated
the random bundle M \ S" is > 1 — %: For player X
not to get the bundle, at least one of its items must be in
ST. By definition of S”, the probability Pr [i € S”] is equal
0 (Xgs; 21(9))% (X gs; 22(9))%", where g, 21(S) +
22(S) < 1 because the solution is feasible for the configura-
tion LP. This means that Pr[i € 5”] < 3=, and by applying
the union bound we get that at least one of the items in the
bundle are in S™ with probability < 4%. Applying Lemma
V1.4 for MPH-k valuations, player X'’s expected value for
the random bundle M \ S is thus at least (1— 5 )vx (M).

|
By Claim VI.10 the last case achieves expected welfare

of at least

SA(ST) +us(ST) + 21— 1o

2 5 Y(wa(M) + vp(M)). (10)

We can now sum up the contributions from the first case,
the intermediate case (9), and the last case (10) weighted by
their respective probabilities of A, A, for every intermediate
case 0 < g < r, and \,.. Notice that A\,_; = .. The
weighted sum of the last two cases is thus at least

/\T2_1 (va(S™ ") +vp(S™H) +

2 08T\ 87) + up(57\ 87))
£ 2 walS) +un(87) + 51— a)(0a(M) + v (M)
> >\r272 (UA(ST—1)+UB(ST—1))+ 25"_2 (1— 4%) -C
= AT272 (a(S™™ 1) +vp(S™7h) + Q(@) -C.

Above, the first inequality follows by first observing that
Ar = A—1, Ar_2 = 2A,._1, and using subadditivity of
va(+),vp(-) to combine the first three terms together. The
last equality follows by observing that k/4% < 1/2, and that
r = [loglog k].

Now, we wish to continue by induction and sum the last
7 cases for 7 < r + 1. We claim that the contribution from
the last 7 cases is at least:

Arr _ ~
- (a8 up(STTH) + (1 log k) - €.

We have already proven the base case: this holds when
plugging in 7 = 2. Assume for inductive hypothesis that the
claim holds for 7, and we now prove it for 7+ 1. Then the
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sum of the last 7 + 1 terms is exactly:
)\rf‘r
2

(va(S™ ) +vp(S™T)) +

>\r7-r
2
>\r77'

2
>\r77'71

2
The inequality follows by definition of \,_,_1 := 2\, _,,
and because both v4(-) and vp(-) are subadditive. This
proves the inductive step. This means that the last r + 1
cases together contribute exactly (below, A_1 := 2 g = A:
A1
2

Now, together with the weighted contribution of the first
case, which is at least

(UA(ST—T \ ST—T-H) + ,UB(ST—T \ Sr—r+1)) +

(wa(STTTTY) 4 up (ST 4+ Q(1/ logk) - O >

(va(S™T) +vp(STT)) 4+ Q(1/logk) - C.

(va(8Y) +vp(S?) + Q(1/logk) - C.

g (va(Sa) +vp(Sp) +va(Sa\ Sg) +vp(Sp\ Sa)),

we get a total expected welfare of at least (recall that SO =
SaNSe):

A
5 (va(Sa) +va(Se) +va(Sa\Se)+ve(Ss\Sa))
A
+§ (va(SanNSe)+ve(SansSg))+Q(1/logk)-C >
A(va(Sa) +vB(Sp)) +Q(1/logk) - C =
(1/2+Q(1/logk)) - C.
This completes the proof of Theorem VI.9. [ ]

Corollary VL11. If Alice and Bob have valuations that
are pointwise [-approximated by subadditive MPH-k val-
uations, then the expected welfare of the oblivious rounding

scheme is > (% + Q(m)) -C.

FE. Integrality Gaps and Hardness

In this section, we briefly derive integrality gaps and com-
munication lower bounds for subadditive MPH-% valuations
based on previous constructions. We also show an integrality
gap of % for MPH-2 valuations that are not subadditive.

Proposition VI.12. Let k > 2. The integrality gap of the
configuration LP with two subadditive MPH-k bidders is
3+ O(5e%)-

Proof Sketch: The rounding algorithm presented above
witnesses that the integrality gap is 1/2 + O(1/logk), and
the construction from Section III witnesses that the gap is
1/2 4+ Q(1/logk).

Specifically, let Sq,...,S; be random sets of size k/2
that are all subsets of the same K C M of |K| = k. Then
with ¢ := VE&, € := logy(k)/2, {Si,...,S;} is (-sparse
with probability 1 — 1/poly(k). So consider the instance
with f5(-) = v1(-) = v2(-). Then in this case, we know
that the best achievable welfare is ¢ for an integral solution.
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However, the fractional solution which sets z;(S;) = 1/t
for all ¢ is feasible for the configuration LP, and achieves
welfare 2(¢ — 1). [ |

Proposition VI.13. The integrality gap of the configuration

LP with two (non-subadditive) MPH-2 bidders is %

Proof: Consider 4 items a,b,c,d. Alice has value 1
for bundle {a,b} and for bundle {c¢,d} (as well as for any
containing bundle); and Bob has value 1 for bundle {a,c}
and for bundle {b,d} (as well as for any containing bundle);
all other values are 0. These valuations are MPH-2 since they
can be described as the maximum over 2 hypergraphs, each
with a positive hyperedge of size 2 corresponding to one of
the two desired bundles. The best fractional solution to the
configuration LP is 21 ({a,b}) = 21({¢,d}) = z2({a,c}) =
x2({b,d}) = 1/2; one can check that all constraints are
satisfied and the objective is 2. The best integral solution
however cannot achieve welfare better than 1, completing
the proof. [ |

Proposition VI1.14. Let k > 2. There exists an absolute
constant C' such that the (randomized) communication re-
quired to achieve a (1/2 + C/logk)-approximation for
WELFARE-MAXIMIZATION even when both Alice and Bob
are subadditive MPH-k is Q(eV'F).

Proof: This is a direct application of Theorem V.1, after
observing that any subadditive valuation defined on items
K C M (with zero value for all other items) is MPH-| K|.

|
Observe that the above proposition further means that
our approximation guarantees for subadditive MPH-k are
asymptotically tight among protocols with poly(m) com-
munication whenever k = Q(log®m) (tighter calculations
could get this down to log(HE) m for any constant ¢ > 0,
if desired). It remains open whether there is an impossi-
bility result < 3/4 for two subadditive MPH-2 valuations
(3/4 is implied already by the impossibility for MPH-1 =
XOS [DNS10]).
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APPENDIX

Proof of Lemma II1.2: Tt is clear that f£(X) is always
defined at least once. The only way in which f£(X) could
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be defined multiple times is if os(X) < £ (in which case
f5(X) = 0s(X)) and 05(X) < £ (in which case f5(X)
¢ — 0s(X)). So assume for contradiction that both events
hold, and let X C UY27'T;, and X C U%7'U;, where
each T;,U; € S. Note that 05(X),05(X) < £/2 implies
that such T}, U; must exist. But now consider that we can
write M = X U X as a union of < ¢ — 2 elements of S,
contradicting that S is /-sparse. [ ]

Proof of Lemma II.3: We show (1) similarly
to [BR11]. First, os(-) is monotone because if X is a
subset of U;cyS;, then X’ C X is also a subset of
Usey S; (and therefore, any subcollection of S that covers
X also covers X', and 05(X’') < 0s(X)). Otherwise if
X is not covered by S, then os(X) max{¢, k} and
certainly os(X’) < o05(X). Second, os is subadditive:
Note that at least one of X,W is not covered by S if
and only if X U W is not covered by S, and in this case
os(X UW) = max{l,k} < 05(X) + os(W). Otherwise,
consider the index sets Y, Z witnessing os(X) and os(W),
respectively (that is, X C U;eyS; and os(X) =
ditto for W and Z). Then X U W C U;cyuzS;, and
os(XUW) <|Y|+|Z] = 0s(X) + os(W).

(2) follows directly from the definition of f f;, and the fact
that it is well-defined: (2) clearly holds for any set X for
which f£(X) is defined in (a), and also for any set X for
which f5(X) is defined in (b) (as both f5(X) and f5(X)
are (/2).

(3) holds because if o5(X
definition. And if f5(X) <
(given the definition of f&(-
to be o5(X).

(4) holds again because if f5(X) > £, the only way this
is possible (given the definition of f5(-)) is if f5(X) is
defined to be £ — o5(X).

(5) holds because by definition of f5(-), one of three
possible cases must occur: either f&(X) os(X), or
f§(X) == 0s(X) < 0s(M) = 05(X) < 05(X) (using
the ¢-sparsity of S by which os(M) > ¢ (which holds even
if M is not covered by S) and subadditivity of ogs), or
f5(X) =1¢/2 and 05(X) > £/2. [ |

Proof of Corollary II1.4: (Monotonicity) Let X C T
and suppose for contradiction that f5(7) < f5(X). First
suppose that f&(T) < %. By part (3) of Lemma IIL.3, we
can conclude that o5(T) < 5, and therefore by part (1)
(specifically, monotonicity of 05( N, os(X) < £ Thus,
by another application of (3), we get: f5(X) = o5(X) <
os(T) = f5(T), a contradiction.

Next suppose that f(7) > ” . By assumption, this means
that f5(X) > sobypart(4) we have os(X) = (—f5(X).
Since T C X, by (1) we have 05(T) < o0s(X) =
0 — fE(X) < % So by applying parts (2) and (3) we
have ¢ — f§(T) = [§(T) = os(T) < £ — f§(X),
implying that f5(X) < f&(T), a contradiction. Therefore,
we have a contradiction in both cases, and we must have

fs(X) < f5(T).

£ then f4(X) = o5(X) by
the only way this is possible

) <
<t
) is if f4(X) is defined in (a)
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(Subadditivity) Suppose for contradiction that fﬁa(X U
T) > f5(X)+ f5(T). We first show that f§(XUT) > £.In-
deed, suppose that f£(XUT) < g. Then f5(X) and f5(7)
are both < £, so f4(X) = os(X) and f5(T) = os(T)
by (3). So by subadditivity of os(+), we have o5(X UT) <
FE(X)+f5(T). Note finally that f5(XUT) < 05(XUT) by
part (5). Thus, f&(XUT) < f5(X)+f4(T), a contradiction.

Now assume for contradiction that f5(X UT) > £. This
means that f&(X UT) = ¢ — o5(X UT) by (4). Observe
also that f§(X UT) < (. Since by assumption, f5(X U
T) > f5(X) + f5(T), at least one of f5(X) and f5(T) is
< g; without loss of generality, assume that fé(X) < %,
so f5(X) = o0s(X) by (3). Using what we’ve concluded
so far, we may rewrite f&(X UT) > f5(X) + f&(7) as
0 — O'S(X U T) > O'S(X) + fé(T), ie.,

0s(XUT) 4 0s(X) + f5(T) < ¢. (11)

We have that T C X UT U X (De Morgan), and
so 05(XUT) + 05(X) > o0s(T) by subadditivity of
os(+). Plugging this observation into Equation (11), we get
os(T)+ f5(T) < £. But by parts (1) and (5) of Lemma II1.3,
fE(X) =1—f5(X) > €—0s(X) for all X, a contradiction.
We therefore conclude that f£(-) must be subadditive as we
have derived contradictions Whether fEXuT) < £ (ﬁrst
paragraph) or f&(X UT) > £ (]ust now). [ ]

Proof of Lemma IV.3: Consider the following random-
ized construction of S: For each i € [k],j7 € M indepen-
dently, flip a fair coin. If heads, put j € .S;. Otherwise, don’t.
We wish to show that the probability that S is /-independent
is non-zero. We’ll again use S} := S;, and SY := §,.

So fix any set Y of £ indices, and any vector y € {0,1}*
(for simplicity of notation, index these ¢ bits using the
indices of Y). We wish to consider the probability that
Uiey SY° M. If there exists a single Y,y such that
UieySf” = M, then S is not (-independent. But if for all
Y,y Uiey SY" # M, then S is {-independent. So we simply
wish to analyze the probability that this occurs for a fixed
Y,y and take a union bound.

For a fixed Y, y, observe that each element j € M is in
each SY* independently with probability 1/2. So the proba-
bility that j is in some SY* is just 1 — 1/2°. Moreover, these
events are independent across items j, so U;eySY" = M
with probability (1 —1/2¢)™. Now we wish to take a union
bound over all 2¢ choices of y times (’z) choices of Y
to get that the probability that S is nor ¢-independent is
upper bounded by (the final two steps use our choice of

¢ =logy(m) — logy(x) and k = e®/%);
k 1\ 20 k* 1\"
e —_— —_— —_—
() () < T g)
—-m
< ke exp (2£>

exp (¢ - In(k) —z) = 1.

As the probability that S is not /-independent is < 1, we
are guaranteed the existence of some S that is /-independent
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by the probabilistic method. [ |

Proposition A.1. Every monotone and subadditive function
over a set of m items is MPH-["3].

Proof: Let f be a monotone subadditive function. For
every set S C [m] we construct a positive hypergraph Gg
with weights wg, as follows: Let S’ be an arbitrary subset of
S of size min(|S|, [%]). Set ws(S") = f(S') and ws(S\
S’y = f(S) — f(S). All other hyperedges have weight 0.
Observe that in our construction, every hyperedge with a
non-zero weight has size at most [ ]. For every set T', let
fs(T') denote the value of T"in G'g; so fs(-) is PH-[ % ]. We
argue that f(7") = maxg{fs(7)} and so f(-) is MPH-[ % |.
It is sufficient to show that for every set S the following two
properties hold: (1) fs(S) = f(S): 2) fs(T) < f(T) for
every set 7.

The first property holds since fs(S) = wg(S") +ws(S\
S = f(S") + f(S) — f(S") = f(S). The proof of the
second property is divided into four cases:

1) If S C T then fo(T) =w(S")+w(S\S)=f(5)<

F(D).

2)IfS € T and S C T then S\ S € T, therefore
fs(T) = w(8") = f(5') < f(T).

IS ZTand S\ S C T then S ¢ T, therefore
fs(T) = w(S\S5) = f(5) = f(5) < f(S\ ) <
f(T), where the first inequality is due to the subaddi-
tivity of f.

4) If S\ 8", 8" T then fs(T) =0< f(T).

|

Proof of Lemma V.2: Suppose that for some ¢,
|X;NY;| = 2. Consider the allocation that awards Y; to
Alice and Y; to Bob. Then Bob clearly has value ¢ — 1,
as f5(Y;) = £ — 1. Also, as |Y;| = |X;| = m/2 + 1 and
| X;NY;| = 2, we necessarily have X;UY; = M. This implies
that Y; O X, and therefore v (V;) > vx(X;) = £ — 1. So
welfare 2¢—2 is achievable (and again, optimal, as no bidder
can achieve value ¢ without receiving all of M).

Now suppose that for all i, |X;AY;| = 2, and further
suppose for contradiction that total welfare > ¢ + 1 is
achievable, by giving S to Alice and S to Bob. Then one
of the players (without loss of generality, say it is Bob) has
value > £, so it must have been the case that f5(S) was
defined to be £ — oy(S), and 0y(S) < £.

Now, observe that because |X;AY;| = 2 for all ¢ that
ox(S) <oy(9)+1. Indeed, let S = Y;, U-- ‘UYi, s - Then
there is exactly one element in Y, that is not also in X,
and we therefore conclude that |S'\ (X, U-- ~UX¢W(S))| <
oy (S) < £/2. By criterion (4) of ¢-compatibility, there is
some X; that contains all of these elements, and so S C
X;UX; U UX,, ), witnessing that oy (S) < oy(5)+1.

Finally, if o4 (S) < £ then f5(S) = ox(S) < oy (S)+1,
so the total welfare is at most ¢ + 1, a contradiction.
Otherwise, ox(S5) = % which we claim implies that
f4(S) < €/2. Indeed, if f%(S) > ¢/2, then it is because

ox(S) < £/2. But then we would have ox(S)+ox(S) < ¥,
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implying a cover of M with < ¢ and contradicting ¢-sparsity
of X. Observe that in both cases we may conclude that

15(8) < 0%(S).

Now we may conclude that the total welfare is f4 (S) +
f5(S) < ox(S)+L—0y(S) < £+1, again a contradiction.
We have now reached a contradiction from all branches start-
ing from the assumption that welfare > ¢ + 1 is achievable,
and may now conclude that the maximum possible welfare
is indeed < ¢ + 1, as desired. [ |
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