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Abstract

We consider the manipulability of tournament rules, in which n teams play a round robin tournament

and a winner is (possibly randomly) selected based on the outcome of all
(

n

2

)

matches. Prior work

defines a tournament rule to be k-SNM-α if no set of ≤ k teams can fix the ≤
(

k

2

)

matches among

them to increase their probability of winning by > α and asks: for each k, what is the minimum

α(k) such that a Condorcet-consistent (i.e. always selects a Condorcet winner when one exists)

k-SNM-α(k) tournament rule exists?

A simple example witnesses that α(k) ≥ k−1

2k−1
for all k, and [22] conjectures that this is tight (and

prove it is tight for k = 2). Our first result refutes this conjecture: there exists a sufficiently large

k such that no Condorcet-consistent tournament rule is k-SNM-1/2. Our second result leverages

similar machinery to design a new tournament rule which is k-SNM-2/3 for all k (and this is the

first tournament rule which is k-SNM-(< 1) for all k).

Our final result extends prior work, which proves that single-elimination bracket with random

seeding is 2-SNM-1/3 [22], in a different direction by seeking a stronger notion of fairness than

Condorcet-consistence. We design a new tournament rule, which we call Randomized-King-of-the-Hill,

which is 2-SNM-1/3 and cover-consistent (the winner is an uncovered team with probability 1).
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1 Introduction

Consider n teams vying for a single championship via pairwise matches. A Tournament Rule

maps (possibly randomly) the outcome of all
(

n
2

)

matches to a single winner. A successful

tournament rule should on one hand be fair, in that it selects a team that could reasonably be

considered the best. For example, a tournament rule is Condorcet-consistent if whenever an

undefeated team exists, that team is selected as the winner with probability 1. On the other

hand, a successful tournament rule should also incentivize teams to win their matches. For

example in a monotone tournament rule, no team can unilaterally increase their probability

of winning by throwing a match.

While numerous rules satisfy the two specific properties mentioned above, these hardly

suffice to call a tournament both fair and incentive compatible. Consider for example a

single-elimination tournament, which is Condorcet-consistent and monotone. One might

reasonably argue that single-elimination is unfair in the sense that a covered team may win.

That is, some team x, who is beaten by y, and for which all z who beat y also beat x,

could be crowned the champion (Observation 19), even though y is in some sense clearly a

superior team. When multiple teams come from the same organization (e.g. in the Olympics

where multiple teams from the same country participate, or in eSports where the same

organization sponsors multiple teams), one could also argue that single-elimination is not

incentive compatible: two teams from the same organization may wish to fix the match

between them so that the team with the best chance of winning gold advances.

Prior work establishes, however, that this stronger notion of incentive compatibility

(termed 2-Strongly Nonmanipulable by [1], and previously Pairwise Nonmanipulable in [2])

is incompatible even with the basic notion of Condorcet-consistency: no 2-SNM tournament

rule is Condorcet-consistent (recapped in Lemma 17). This motivated [1] to seek instead

tournaments that were 2-SNM and approximately Condorcet-consistent (i.e. guaranteed to

pick an undefeated team with probability at least α > 0, whenever one exists), and later [22]

to seek tournaments which were Condorcet-consistent and approximately 2-SNM (i.e. the

maximum probability with which two teams can improve their joint probability of winning

by fixing a match is α < 1, termed 2-SNM-α).

Like [22], we find it more reasonable to seek a tournament which is only approximately

strategyproof rather than one which is only approximately Condorcet-consistent: it is hard

to imagine a successful sporting event which sends an undefeated team home empty-handed.

The main result of [22] proves that a Single-Elimination Bracket with Random seeding (RSEB,

formally defined in Section 2) is both Condorcet-consistent and 2-SNM-1/3. This is tight,

as no Condorcet-consistent tournament is 2-SNM-α for any α < 1/3. They also define a

tournament to be k-SNM-α if no set of ≤ k teams can fix the ≤
(

k
2

)

matches between them

and improve their joint probability of winning by α, establish that no Condorcet-consistent

tournament rule is k-SNM-α for α < k−1
2k−1 (recapped in Lemma 17), and conjecture that this

is tight. The main open problem posed in their work is to prove this conjecture (recapped in

Question 18). The main results of this paper extend [22] in three different directions:

First, we resolve the main open problem posed in [22] by refuting their conjecture

(including two weaker forms): There exists a sufficiently large k such that no Condorcet-

consistent tournament rule is k-SNM-1/2 (and therefore not k-SNM- k−1
2k−1 either).

Second, we develop a new Condorcet-consistent tournament rule which is k-SNM-2/3 for

all k. All tournament rules are trivially k-SNM-1 for all k, and this is the first tournament

rule known to be k-SNM-α for all k, for any α < 1.

Finally, we develop a new cover-consistent tournament rule which is 2-SNM-1/3, which

we call Randomized King-of-the-Hill (RKotH).
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1.1 Theorem Statements, Roadmap, and Technical Highlights

After overviewing related work in Section 1.3, and establishing preliminaries in Section 2,

we develop machinery related to our first two results in Section 3. Specifically, consider

the following: there are two kinds of manipulations which may cause a set S of teams to

improve their joint probability of winning under a Condorcet-consistent tournament rule r(·).

First, perhaps S contains i and every team which beats i (for some i). Then S can make

i a Condorcet winner, and improve their joint probability of winning to 1 (the maximum

possible). Or, perhaps every team in S loses to at least one team outside S, but S can

increase their joint probability of winning anyway.

If, for a particular tournament graph T , we wish to ensure that no set S can improve their

joint probability of winning by more than α under r(·) by creating a Condorcet winner in S,

this is a fairly simple linear constraint: we must only ensure that for each team i, the joint

probability of winning (under r(T )) of i and all teams that beat i in T is at least 1− α. For

each tournament graph T , this reasoning gives a feasibility linear program (with n variables

corresponding to the probability that each team wins under r(T ), and n linear constraints

which depend on T ) that every winning-probability vector r(T ) must satisfy in order for r(·)

to possibly be k-SNM-α. Note that these constraints are by no means sufficient to guarantee

k-SNM-α, however, as we have completely ignored the second type of constraints.

Inspired by this feasibility LP, we study a similar LP in Section 3, which we call the

Special Linear Program (SLP). In particular, we show that SLP has a unique solution, and

therefore well-defines a tournament rule (if the outcome of the matches is T , solve the

SLP parameterized by T and select according to these probabilities). Surprisingly, this LP

and its unique optimal solution have been studied decades ago [16, 10] (see Section 1.3 for

further discussion of this – the LP describes the unique Nash equilibrium of a generalized

rock-paper-scissor game). In Section 4, we explain why the SLP Tournament Rule is special:

if any tournament rule is k-SNM-1/2 for all k, then the SLP Tournament Rule

is k-SNM-1/2 for all k. The remainder of Section 4 is then just a simple six team example

witnessing that the SLP Tournament Rule is not 3-SNM-1/2 (and therefore not k-SNM-1/2

for all k), yielding our first main result:

◮ Theorem 1. There exists k < ∞ such that no Condorcet-consistent tournament rule is

k-SNM-1/2.

Note that Theorem 1 implies that (a) no Condorcet-consistent tournament rule is sim-

ultaneously k-SNM- k−1
2k−1 for all k, (b) there exists a k for which no Condorcet-consistent

tournament rule is k-SNM- k−1
2k−1 , and (c) no Condorcet-consistent tournament rule is k-

SNM-1/2 for all k, thereby refuting the main conjecture of [22] along with two weaker

conjectures.

We also wish to emphasize the following: in principle, if one wishes to determine whether

a particular tournament rule is k-SNM-α for tournaments of n teams, one could do an

exhaustive search over all 2(n

2) tournament graphs (with some savings due to isomorphism),

and all
(

n
k

)

possible manipulating sets. This is a feasible search for small values of n, k. If one

wishes to determine whether there exists a rule that is k-SNM-α for tournaments of n teams,

one could still imagine an exhaustive search. But observe that the space of tournament rules

for n teams lies in n2(n

2)-dimensional space, and it is hard to imagine a successful exhaustive

search beyond n = 10 (and even that is likely impossible).

Our proof establishes that no 939-SNM-1/2 tournament rule exists for n = 1878 teams,

and there is no hope of discovering this via exhaustive search. Indeed, our own exhaustive

searches found numerous candidate rules which were k-SNM-1/2 on n teams for k, n ≤ 7

ITCS 2020
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(indicating that large parameters are provably necessary before the conjecture is false). Yet,

the SLP Tournament Rule is already not 3-SNM-1/2 even for 6 teams (which we found via

exhaustive search), and the machinery of Sections 3 and 4 allows us to use this tiny example

to conclude that no 939-SNM-1/2 tournament rules exist for n = 1878 teams.

In Section 5, we show how to use the machinery developed in Section 3 to propose new

tournament rules. The main idea is the following: the SLP Tournament Rule, by design,

does a great job discouraging manipulations that produce a Condorcet winner. In fact, no

such manipulation benefits the manipulators by more than 1/2. Unfortunately, the rule

itself may still be only k-SNM-1 (due to manipulations which don’t produce a Condorcet

winner). However, we show that a convex combination of the SLP Tournament Rule with

the simple rule which selects a Condorcet winner when one exists, or a uniformly random

winner otherwise can leverage the SLP properties to be less manipulable:

◮ Theorem 2. There exists a Condorcet-consistent tournament rule that is k-SNM-2/3 for

all k.

◮ Observation 3. The rule referred to in Theorem 2 is not monotone. We provide an

example of its non-monotonicity in Appendix B for completeness.

Finally, in Section 6, we shift gears and extend the results of [22] in a different direction.

Specifically, we design a new tournament rule called Randomized King-of-the-Hill (RKotH)

which is cover-consistent and 2-SNM-1/3. Each round, the rule checks if there is a team

that is a Condorcet winner. If there is one, it declares that team the winner and terminates.

Otherwise, it selects a uniformly random “prince” among the remaining teams, and then

removes it and every team which the prince beats. When there is only one team left, that

team is crowned champion. It is not hard to see that RKotH is cover-consistent, so the main

result of this section is that RKotH is 2-SNM-1/3. The main idea in the proof is that the

joint winning probability of {u, v} when v beats u is only higher than when u beats v if u is

selected as a prince while v still remains in contention, and at least one team which beats

either u or v remains in contention as well. We are then able to show that the probability of

this event is at most 1/3, and therefore the rule is 2-SNM-1/3.

◮ Theorem 4. Randomized King-of-the-Hill is cover-consistent and 2-SNM-1/3.

In fact, RKotH satisfies a property stronger than cover-consistency. It will provably pick

teams that belong to the Banks set of the tournament, which may be strictly smaller than

the set of uncovered teams. We defer the definition of the Banks and related proofs set to

Section 6 but point out that the support of RKotH is exactly the Banks set of a tournament.

◮ Lemma 5. A team v is in the Banks set of a tournament T if, and only if, RKotH declares

v as the winner with non-zero probability.

1.2 Extensions and Brief Discussion

While the main appeal of our results is clearly theoretical (it is hard to imagine a 939-

team coalition manipulating a real tournament), the events motivating a deep study of fair

and incentive compatible tournament rules are not purely hypothetical. In the popular

“group stage” format, strategic manipulations have occurred on the grandest stage, including

Badminton at the 2012 Olympics and the “disgrace of Gijón” in the 1982 World Cup.

But narrowing one’s focus exclusively to incentives (and, e.g., running a single-elimination

bracket) may have negative consequences for the quality of winner selected. For example in
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the 2010 World Cup, eventual winners and second seed Spain lost their opening match to

Switzerland, who didn’t advance out of the group stage (the implication being that Spain

could be considered a “high quality winner” who would have been immediately eliminated

in a single-elimination bracket). So while our particular results are valuable mostly for

their theoretical contributions, the surrounding literature provides valuable insight on the

tradeoff between incentive compatibility of the winner selection process and quality of the

winner selected.

We also wish to briefly note that while we formally define SNM only for deterministic

tournaments (i.e. the teams try to manipulate from a fixed tournament graph T to an-

other fixed tournament graph T ′), [22] establishes that all results extend to (arbitrarily

correlated) distributions over tournament graphs as well (where the “real” outcomes may

be a distribution T over tournament graphs, and the coalition may try to manipulate to

a different distribution T ′). We refer the reader to [22] for a formal statement, but the

main idea is that any lower bounds immediately carry over, while for every rule the largest

possible manipulation occurs on a deterministic instance anyway (so positive results carry

over as well).

1.3 Related work

The most related works have already been discussed above: [2] first introduces the terminology

used for these problems (and establishes that no deterministic tournament rule is 2-SNM), [1]

first considers randomized tournament rules and designs tournament rules which are 2-SNM

but only approximately Condorcet-consistent. [22] is the most closely related, which also

considers rules which are Condorcet-consistent and approximately incentive compatible. Our

work can most appropriately be viewed as extending [22] in multiple directions (including

resolving their main open problem) as detailed in Section 1.

Also related are some recent works which rigorously analyze the manipulability of specific

tournament formats (most notably, the World Cup and related qualifying procedures) [20, 7].

Incentive compatibility of voting rules has an enormous history, dating back at least to

seminal works of [3, 11, 21, 12]. While there are obvious conceptual connections between

voting rules and tournament rules (e.g. any tournament rule can be used as a voting rule: call

the “match” between alternatives x and y won by x if more voters prefer x to y), the notions

of manipulability are quite different. For one, voters have preferences over alternatives

whereas teams in tournaments only care about their collusion’s joint probability of winning.

Moreover, in a voting rule, a voter has a tiny role to play in every single “match,” whereas

in a tournament, the teams themselves can manipulate only matches that involve them. So

there is little technical (and even conceptual) similarity between works which study incentives

in voting rules versus tournament rules.

The linear program we introduce in Section 3 has been studied in a related context by two

independent works [16, 10]. They consider the following two player zero-sum game. Given a

tournament T the players must pick a team to represent them and reveal it simultaneously. If

they pick the same team, no one wins. Otherwise, the winner is determined by the edge that

they jointly query from T . The two works showed that, for any given tournament T , there

is a unique mixed strategy Nash equilibrium which can be computed in polynomial time

through linear programming (and this LP is exactly our SLP(T )). Some proof techniques are

similar, but our interest in SLP(T ) is a means to drastically different end. For more on the

history and properties of the solution to these LPs, known as maximal lotteries, see [8, 5].

The notion of uncovered teams is also extremely well-studied in computational social

choice theory (see, e.g., [6, 17], the latter attributes the concept’s introduction to [9] and [19]

independently). Additionally, an uncovered team is equivalent to the notion of a “king” [23]

ITCS 2020
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(a team x such that for all teams y, either x beats y or there exists a z who beats y

such that x beats z – not to be confused with the kings of our hill) in works which study

how a single-elimination bracket designer can rig the seeding to make a particular team

win [24, 15, 25] or sufficient conditions under which a covered team can be crowned winner

of a single-elimination bracket [14]. The volume of these works certainly helps establish that

cover-consistence is a valuable endeavor beyond Condorcet-consistence, but otherwise bear

no technical similarity to our work. To the best of our knowledge, this is the first paper to

consider cover-consistence jointly with a notion of incentive compatibility.

Another related notion is that of the Banks set of a tournament [4], which is stricter

than the set of uncovered teams. While it is NP-Complete to decide if a given team is in the

Banks set of a tournament [26], there exist algorithms that can efficiently output an element

from the Banks set [13]. It is worth pointing out that the algorithm we propose to sample

teams from the Banks set, Algorithm 1, has a different implementation from that of [13]

even if they will output the same set of teams.

2 Preliminaries

In this section we introduce notation, and develop some concepts that will be relevant

throughout the paper, consistent with prior work [22, 1].

◮ Definition 6 (Tournament). A (round robin) tournament T on n teams is a complete,

directed graph on n vertices whose edges denote the outcome of a match between two teams.

Team i beats team j if the edge between them points from i to j. Tn denotes the set of all

n-team tournaments.

◮ Definition 7 (Tournament Rule). A tournament rule r is a function r : Tn → ∆([n]) that

maps n-team tournaments T ∈ Tn to a distribution over teams, where ri(T ) = Pr(r(T ) = i)

denotes the probability with which team i is declared the winner of tournament T under

rule r. We will often abuse notation and refer to r as a collection of tournament rules

{r1(·), . . . , rn(·), . . .}, of which exactly one operates on Tn (for all n).

Like prior work, we will be interested in tournaments which satisfy natural properties.

For instance, [22] concerned tournaments which always select a Condorcet winner, when one

exists. Below are the main properties we consider in this paper.

◮ Definition 8 (Condorcet-consistency). Team i is a Condorcet winner of a tournament T if

i beats every other team according to T . A tournament rule r is Condorcet-consistent if for

every tournament T with a Condorcet winner i, ri(T ) = 1 (i.e. the tournament rule always

declares the Condorcet winner as the winner of T ).

◮ Definition 9 (cover-consistency). Team i covers team j under T if (a) i beats j and (b)

every k /∈ {i, j} which beats i also beats j. A team is covered if it is covered by at least one

team. A tournament rule r is cover-consistent if for all T , rj(T ) = 0 when j is covered.

◮ Observation 10. Every cover-consistent rule is Condorcet-consistent.

Proof. If T has no Condorcet winner, then a Condorcet-consistent rule can be aribtrary

on T . If T has a Condorcet winner i, then i is the only uncovered team. Therefore, any

cover-consistent rule will have ri(T ) = 1, and is Condorcet-consistent as well. ◭

Intuitively, one should think of i covering j to mean that any reasonable evaluation should

declare team i better than team j. Cover-consistence proposes that no team should win if

they are inferior to another by any reasonable evaluation, but does not always propose who
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the winner should be. Condorcet-consistence can therefore be interpreted as a relaxation of

cover-consistence, which only binds when cover-consistence would propose a unique winner.

The following lemma establishes this formally.

◮ Lemma 11 (Restated Theorem 4 from [18]). Whenever tournament T has a unique uncovered

team i, i is a Condorcet winner in T .

Proof. We first claim that the covering relation is transitive: if i covers j and j covers k,

then i covers k. Indeed, let S(k) denote the teams that k defeats, S(j) for j, and S(i) for

i. Then as j covers k and i covers j, we have S(k) ∪ {k} ⊆ S(j) ⊆ S(i), meaning that i

covers k.

Therefore, if we draw the directed graph G(T ) with an edge from j to k iff j covers k,

the graph must be acyclic. If not, then the work above establishes that a path from j to k

implies that j covers k, while a path from k to j implies that k covers j, a contradiction (as

we cannot have both that j beats k and k beats j). Uncovered teams are exactly those with

indegree 0 in G(T ). If there is a unique such team i, then there must be a path from i to

every other team j (follow edges backwards starting from j. This process must terminate,

and can only terminate at a team with indegree 0, which must be i). Therefore, i covers every

other team j, which in particular implies that i beats every other team j and is therefore a

Condorcet winner. ◭

The above conditions concern natural properties of the winner selected, and essentially say

that good tournament rules should never select obviously inferior teams as their winner. We

are also concerned with properties regarding the procedure by which the winner is selected,

and in particular how manipulable this procedure is. We formalize these properties below

(which are proposed in [1, 22]).

◮ Definition 12 (S-Adjacent Tournaments). Two tournaments T, T ′ ∈ Tn are S-adjacent

when the outcomes of all matches in T, T ′ are identical, except for the matches between two

teams in S ⊆ [n]. Formally, for all i, j ∈ [n], if |{i, j} ∩ S| < 2, then the edge between i and

j in T is identical to the one in T ′. Less formally, T and T ′ are S-adjacent if teams in S

can manipulate the outcomes of matches only between pairs of teams in S and cause the

tournament results to change from T to T ′.

◮ Definition 13 (k-SNM-α). A tournament rule r is k-strongly non-manipulable at probability

α (henceforth k-SNM-α) if for all subsets S ⊆ [n] with |S| ≤ k, and all pairs T, T ′ of S-

adjacent tournaments,
∑

i∈S(ri(T )− ri(T
′)) ≤ α. Informally, if a set S of ≤ k teams decide

to manipulate their pairwise matches, they cannot improve the probability that the winner is

in S by more than α. We abuse notation and use ∞-SNM-α to refer to a tournament rule

which is k-SNM-α for all k.

2.1 Technical Recap of Prior Work

Finally, let’s recap [22], which serves as the starting point for our work. Their main

result establishes that the Random Single-Elimination Bracket (formally defined below) is

2-SNM-1/3.

ITCS 2020
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◮ Definition 14 (Random Single-Elimination Bracket). The Random Single-Elimination

Bracket (RSEB) rule places n teams uniformly at random among 2⌈log2 n⌉ seeds 1 (and

fills the remaining seeds with byes)2. Then, a single-elimination tournament is played with

these seeds to determine the winner. That is, whenever i meets j in the bracket, T determines

which team advances to the next round, and the other team is eliminated. Note that the only

randomness in the rule is in the seeding.

◮ Theorem 15 ([22]). RSEB is 2-SNM-1/3 and Condorcet-consistent.

The following explicit tournament was also used in [22] for lower bounds:

◮ Definition 16 (Balanced Tournament). The k-balanced tournament is the tournament

T Bal ∈ T2k−1 where team i beats exactly the k − 1 teams in {i + 1, i + 2, ..., i + k − 1

mod (2k − 1)}.

◮ Lemma 17 ([22]). No Condorcet-consistent Tournament rule is k-SNM-α for any α <
k−1

2k−1 .

Proof Sketch. Consider r(T Bal). There exists some adjacent set of teams S = {i − k + 1

(mod 2k − 1), . . . , i} of size k which together win with probability at most k
2k−1 in r(T Bal).

These teams can make i into a Condorcet winner, which necessarily wins with probability 1.

Therefore, for any r(·), some set of size k can gain at least k−1
2k−1 by manipulating when the

original tournament is T Bal. ◭

Inspired by the tightness of Theorem 15 with the simple balanced tournament T Bal, [22]

conjectured that same simple tournament would be the worst-case tournament for larger k:

◮ Open Question 18 ([22]). Does there exist a tournament rule that is Condorcet-consistent

and k-SNM- k
2k−1 for all k? What about a family of rules F such that for all k, Fk is

k-SNM- k−1
2k−1 ? What about a rule that is k-SNM-1/2 for all k?

The first results of this paper refute all three conjectures from [22] and resolve Ques-

tion 18. The following results concern the difference between Condorcet-consistence and

cover-consistence, as the following observation shows that RSEB is not cover-consistent.

◮ Observation 19. RSEB is not cover-consistent.

Proof. Consider a tournament with eight teams A, B, C, D, E, F, G, H, where A beats exactly

{B, C, E}, and H beats exactly {A, B, C, E}. C beats D, E beats F , E beats G. Any matches

not explicitly stated can be arbitrarily decided. Consider the seeded bracket shown in Figure 1.

This bracket shows A can win with non-zero probability. But H covers A. Therefore, RSEB

is not cover-consistent. ◭

2.2 Linear Algebra Preliminaries

Some of our proofs require linear algebra. Below are facts that we use, both proofs are in

Appendix A.

◮ Definition 20 (Unit Skew Symmetric Matrix). An n × n matrix A ∈ R
n×n is unit skew

symmetric if |Aij | = 1 ∀i 6= j, and Aij = −Aji ∀i, j.

1 A seed is a position in the tournament bracket associated to a specific number.
2 A bye is a dummy team that loses to all non-bye teams.
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Figure 1 In this example there exists a bracket where a covered team A (covered by H) may

still be declared the winner.

◮ Proposition 21. If A is a unit skew symmetric matrix and n is even, rank(A) = n. If n

is odd rank(A) = n− 1.

◮ Proposition 22. Let ε ∈ R≥0, A ∈ R
m×n, and ~b ∈ R

m and denote by Pε := {~x ∈

R
n, A · ~x ≥ ~b − ε~1} ∩ [0, 1]n. Then for all δ > 0, there exists a sufficiently small ε > 0

such that:

max
~y∈Pε

{dℓ1
(P0, ~y)} ≤ δ,

where dℓ1
(S, ~x) = min~y∈S{|~x− ~y|1}.

3 A Special Linear Program SLP (T )

In this section we present a linear program SLP (T ) and characterize its optimal solutions.

The analysis of SLP (T ) is the main tool which allows us to conclude both the non-existence

of rules which are ∞-SNM-1/2 (Section 4) and the existence of a rule which is ∞-SNM-2/3

(Section 5). The main result of this section is Proposition 26, which states that SLP (T )

has a unique solution, and therefore yields a well-defined tournament rule. In Section 4 we

show that a tournament rule that is ∞-SNM-1/2 exists if and only if the SLP (T ) rule is

k-SNM-1/2 (and subsequently show that this rule is not k-SNM-1/2 via Proposition 26). Let

T be a tournament graph and let δ−
T (v) denote the set of teams that beat v in T (and δ+

T (v)

the set that v beats). Then SLP (T ) is the following:

SLP (T ):

minimize

n
∑

i=1

pi

subject to
∑

j∈δ−

T
(i)

pj +
1

2
pi ≥

1

2
∀i ∈ [n]

pi ≥ 0 ∀i ∈ [n]
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Before further proceeding, let’s get some (informal) intuition for why SLP (T ) is possibly

related to Question 18. Starting from a tournament rule r, if we define pi := ri(T ),

then
∑

i pi = 1, pi ≥ 0 for all i. Moreover, if r is ∞-SNM-1/2, it must be that for all i,
∑

j∈δ−

T
(i) pj +pi ≥ 1/2. If not, then i together with δ−

T (i) could collude to make i a Condorcet

winner, and i would win with probability 1. So the initial probability of winning for i together

with δ−
T (i) must have been at least 1/2.

Of course, the afore-described constraints seem very weak in comparison to all of the

constraints imposed by k-SNM-1/2. In particular, they only guarantee that no coalition can

gain by making one of their members into a Condorcet winner (but do not guarantee that no

coalition can otherwise gain by manipulating their matches). Notice now that the constraints

in SLP (T ) are slightly stronger than this (because they have a multiplier of 1/2 instead

of 1 in front of pi in the constraint for i). In particular, the constraints in SLP (T ) imply

Condorcet-consistence (while the afore-mentioned do not): if i is a Condorcet winner, then

δ−
T (i) = ∅ and the constraint reads pi/2 ≥ 1/2 as desired. Of course, we’ve yet to establish a

formal relationship, but at this point the reader may have some intuition for a connection

between a profile of solutions to SLP (T ) with
∑

i pi ≤ 1 (for all T ) and Condorcet-consistent

tournament rules which are ∞-SNM-1/2.

We postpone a formal discussion of this connection (as this connection is the entire focus

of Section 4), but note here that it is not particularly direct. For example, a profile of

solutions to SLP (T ) for all T ∈ Tn does not imply a tournament rule for n teams which is

∞-SNM-1/2. Similarly, an ∞-SNM-1/2 tournament rule for n teams does not imply a profile

of solutions to SLP (T ) for all T ∈ Tn. However, we show that ∞-SNM-1/2 rules exist for all

n if and only if for all n, the rule defined via profiles of solutions to SLP (T ) is ∞-SNM-1/2

(i.e. we will relate this LP on n teams to tournament rules for ≫ n teams).

We now begin our analysis of SLP (T ) by taking the dual, and refer to it as DSLP (T ).

Below, we use ri as the dual variable for the constraint corresponding to team i. On the

left-hand side, we’ve taken the dual directly. On the right hand side, we did a change of

variables and redefined qi := ri/2 (so the two programs below are identical).

DSLP (T ):

maximize
n

∑

i=1

ri/2 maximize
n

∑

i=1

qi

subject to
∑

j∈δ+

T
(i)

rj +
1

2
ri ≤ 1 ∀i ∈ [n] subject to

∑

j∈δ+

T
(i)

qj +
1

2
qi ≤

1

2
∀i ∈ [n]

ri ≥ 0 ∀i ∈ [n] qi ≥ 0 ∀i ∈ [n]

We now prove that the optimal value of SLP (T ) is always 1. This is stated in Corollary 24,

which uses Lemma 23 as a building block.

◮ Lemma 23. Suppose there exists a feasible solution ~p to SLP (T ) with
∑

i∈[n] pi = c. Then

~q with qi := pi ·
1

2c−1 is a feasible solution to DSLP (T ) with value c
2c−1 . Likewise, if there

exists a feasible solution ~q to DSLP (T ) with
∑

i∈[n] qi = c, then ~p with pi := qi ·
1

2c−1 is a

feasible solution to SLP (T ) with value c
2c−1 .

Proof. Consider any solution ~p with
∑

i pi = c. First, we observe that we must have c > 1/2.

If not, there certainly exists some i with
∑

j∈δ−

T
(i) pj + pi/2 < 1/2, and a constraint is

violated (to see this, observe that maybe c = 0, in which case all the constraints are violated.

Or 0 < c ≤ 1/2, in which case we can take i to be any i with pi > 0). Then because
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∑

j∈δ−

T
(i) pj + pi/2 ≥ 1/2, we must have

∑

j∈δ+

T
(i) pj + pi/2 ≤ c− 1/2. As qi := pi/(2c− 1),

we immediately conclude that
∑

j∈δ+

T
(i) qj +qi/2 ≤ c−1/2

2c−1 = 1/2. Also, as c > 1/2, each qi ≥ 0

(and is well-defined). Therefore, ~q is feasible for DSLP (T ), and it’s clear that
∑

i qi = c
2c−1 .

The other direction follows from identical calculations. ◭

◮ Corollary 24. SLP (T ) always has an optimal solution with value 1.

Proof. It is clear that SLP (T ) is feasible for all T , since setting pi = 1 for all i is a feasible

solution. Suppose we had a primal solution ~p with value c < 1. Applying Lemma 23, we can

conclude ~q would be a dual solution with value c
2c−1 > c. By weak LP duality, the existence

of such a dual would verify that there are no primal solutions with value c, a contradiction.

Similarly, suppose we had an optimal primal solution ~p with value c > 1. This implies

there is an optimal dual solution ~q with value c > 1. Applying the opposite direction of

Lemma 23 we can conclude there is a primal solution with value c
2c−1 < c, a contradiction. ◭

Now that we know the optimal value of SLP (T ), we wish to understand its optimal

solution. We now begin taking steps towards characterizing the solution (and in particular,

that it is unique).

◮ Corollary 25. Let ~p be an optimal solution to SLP (T ). Then for all i s.t pi > 0 and for

all optimal solutions ~w to SLP (T ),
∑

j∈δ−

T
(i) wj + 1

2 wi = 1
2 .

Proof. If we apply Lemma 23 to ~p (which has |~p|1 = 1 by Corollary 24), we conclude ~p is

also a feasible dual solution. Hence, ~p is an optimal dual solution (as it has equal value

in both the primal and the dual). Now consider applying the complementary slackness

conditions for the alternative optimal primal ~w, and optimal dual solution ~p. If pi > 0, we

know that the corresponding primal constraint in ~w must be tight. This exactly states that
∑

j∈δ−

T
(i) wj + 1

2 wi = 1
2 whenever pi > 0. ◭

◮ Proposition 26. The optimal solution ~p to SLP (T ) is unique.

Proof. By Corollary 24, we know that all solutions to SLP (T ) have value 1. Assume toward

contradiction there exist two distinct solutions, ~p and ~q to SLP (T ) such that |~p|1 = 1 and

|~q|1 = 1. Let P = {i : pi > 0} and let Q = {i : qi > 0}. Let A be the unit skew symmetric

matrix where Aij = 1 if i beats j in T and −1 otherwise, with Aii = 0. By Corollary 25, we

know for all i in P ∪Q that

∑

j∈δ−

T
(i)

qj +
1

2
qi = 1/2

which implies for those same i ∈ Q ∪ P that (because
∑

j qj = 1)

(A · q)i =
∑

j∈δ+

T
(i)

qj −
∑

j∈δ−

T
(i)

qj = 0.

Now, let A′ denote the submatrix A restricted only to rows and columns in P ∪Q. Let ~p′

and ~q′ be the vectors ~p and ~q (respectively) restricted also to the entries in P ∪Q. Observe

now that (A′ · ~p′)i = (A · ~p)i = 0 for all i, and also that (A′ · ~q′)i = (A · ~q)i = 0 (both of these

follow because we have simply deleted all non-zero entries of A · ~p and A · ~q by restricting

to P ∪Q).
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Now we are ready to derive our contradiction. The above paragraph concludes that

both ~p′ and ~q′ are in the null space of A′, which is a unit skew symmetric matrix. But also

|~p|1 = |~q|1, meaning that the null space of A′ must have dimension at least 2. But this

contradicts Proposition 21, which claims that the dimension can be at most 1. We therefore

conclude that no such distinct ~p, ~q can exist. ◭

Now that we know the solution to SLP (T ) is unique, and has
∑

i pi = 1, it yields a

well-defined tournament rule, which is the main takeaway from this section:

◮ Definition 27 (SLP Tournament Rule). Let ~p(T ) denote the (unique, by Proposition 26)

solution to SLP (T ). Define the SLP Tournament Rule to select i as the winner with probability

pi(T ) on input T .

4 No Condorcet-consistent ∞-SNM-1/2 Rule Exists

In this section we leverage our analysis of SLP to prove Theorem 1. First, we make the

connection between rules that are k-SNM-α and SLP, by introducing a series of linear

programs and relaxations.

Recall that for a Condorcet-consistent tournament rule r to be k-SNM-α, it must be that

no coalition of size k can gain more than α probability of winning by manipulating the pairwise

matches between them. In particular, if |δ−
T (v)| < k, it must be that rv(T )+

∑

j∈δ−

T
(v) rj(T ) ≥

1− α. Otherwise the set δ−
T (v) ∪ {v} can collude to make v a Condorcet winner. Formally,

any k-SNM-α rule must satisfy the following feasibility LP0(T, α, k) for all tournaments T .

LP1(T, α, z):

pi +
∑

j∈δ−

T
(i)

pj ≥ 1− α ∀i ∈ [n] such that |δ−
T (i)| ≤ k − 1

∑

∀v

pi = 1

pi ≥ 0 ∀i ∈ [n]

Note that any k-SNM-α rule certainly satisfies LP0(T, α, k) for all T , but that a profile

of solutions to LP0 for all T ∈ Tn does not necessarily imply a rule which is k-SNM-α (as

the LP only considers deviations which produce a Condorcet winner). Note also that the

k-balanced tournament witnesses that no rule satisfies LP0(T, α, k) for any α < k−1
2k−1 . We

will also consider the case where k →∞ (and therefore, all i ∈ [n] have |δ−
T (i)| ≤ k − 1, and

refer to this LP simply as LP0(T, α) := LP0(T, α,∞)).

Our first step will be switching from LP0(T, α) to LP1(T, α, z) for z ≥ 1. Below, observe

that we have made two changes. The first is insignificant: we’ve phrased LP1(T, α, z) as a

minimization LP instead of a feasibility LP. The second is a strengthening: we’ve changed

the multiplier of pi in the constraint corresponding to i from 1 to z
2z−1 ≤ 1 (so the space of

feasible solutions is smaller).
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Figure 2 A tournament T (top) and its associated construction T ′ (bottom), as described in the

proof of Lemma 28 for z = 3. The outcomes of the games between teams in different components of

T ′ mimic the outcomes of the games between the representative nodes in T .

LP1(T, α, z):

minimize

n
∑

j=1

pj

subject to
∑

j∈δ−

T
(i)

pj +
z

2z − 1
pi ≥ 1− α ∀i ∈ [n]

pi ≥ 0 ∀i ∈ [n]

Observe that LP1(T, 1/2, z) is a relaxation of SLP (T ) (the only difference is a multiplier

of z
2z−1 > 1/2 in front of pi in the constraint corresponding to i). The main step in this

section is Lemma 28 below, which formally connects LP1(T, 1/2, z) to k-SNM-α rules.

◮ Lemma 28. If for all n there exists a tournament rule r(·) which is ∞-SNM-α, then for

all z ∈ N+ and all n, there exists a tournament rule w(·) which is ∞-SNM-α and for which

w(T ) is a feasible solution to LP1(T, α, z) with
∑

i pi = 1 for all T .

Similarly, if for all n there exists a tournament rule r(·) which is k-SNM-α, then for all

z ∈ N+ and all n, there exists a tournament rule w(·) which is k
2z−1 -SNM-α 3 and for which

w(T ) is a feasible solution to LP1(T, α, z) with
∑

i pi = 1 for all T .

Proof. Consider an arbitrary tournament T with n teams, and consider a related tournament

T ′ with n(2z − 1) teams, labeled vij , for i ∈ [n] and j ∈ [2z − 1]. Conceptually, think that

we have split each original team into a group of 2z − 1 copies. For i 6= j, and x, y ∈ [2z − 1],

have vix beat vjy in T ′ if and only if vi beat vj in T (that is, match results in T are preserved

3 We abuse notation throughout this section to define k

2z−1
-SNM-α as ⌊ k

2z−1
⌋-SNM-α when the first term

may not be an integer.
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between different groups in T ′). Within each group, have vix beat viy in T ′ iff x < y < x + z

(mod 2z − 1) (so each group is isomorphic to the z-balanced tournament, recall Definition 16

and see Figure 2 for a small example). Let G(i) denote i’s group, G(i) := {vij , j ∈ [2z − 1]}.

Now, we wish to claim that if r(·) is a rule that is ∞-SNM-α (respectively, k-SNM-α)

for n(2z − 1) teams, and we define w(T ) so that wi(T ) :=
∑2z−1

j=1 rij(T ′), then w(·) is a rule

that is ∞-SNM-α (respectively, k
2z−1 -SNM-α) for n teams, and w(T ) is a feasible solution to

LP1(T, α, z) for all T .

Let’s first confirm that w(T ) is a feasible solution to LP1(T, α, z) with
∑

i pi = 1. The

latter statement is clear: as r(·) is a tournament rule, we have
∑

i pi =
∑

i wi(T ) =
∑

ij ri,j(T ) = 1. Next, it is also clear that pi ≥ 0 for all i, so we just need to check that
∑

j∈δ−

T
(i) pj + z

2z−1 pi ≥ 1− α.

To this end, we know that there exists some adjacent set of z teams in G(i) such that the

total probability that these teams win is at most z
2z−1 · pi. Call this set Sx and let vix denote

the team in this set which loses to the others. Then the set of teams ∪j∈δ−

T
(i)G(j) ∪ Sx

together can create a Condorcet winner (vix) in T ′. Therefore, we get that this set of teams

must have won with probability at least 1 − α under r(·), and by definition of w(·) (and

the choice of Sx above), we immediately get that
∑

j∈δ−

T
(i) wj(T ) + z

2z−1 wi(T ) ≥ 1 − α,

as desired.

So now we know that w(·) satisfies LP1(T, α, z) with
∑

i pi = 1 for all T . We now need to

confirm that it is also ∞-SNM-α (respectively, k
2z−1 -SNM-α). But suppose for contradiction

that w(·) was not k-SNM-α for some k (respectively, k
2z−1 -SNM-α). This would imply the

existence of tournaments T1 and T2 that are S-adjacent for some set S ⊆ [n] (respectively,

S ⊆ [n], with |S| ≤ k
2z−1 ) where

∑

i∈S wi(T1) −
∑

i∈S wi(T2) > α. If we let T ′
1 and T ′

2

represent the corresponding tournaments that determined the values of T1 and T2 from

r(·) respectively, and let S′ = ∪i∈SG(i), we can conclude
∑

i∈S′ ri(T
′
1)−

∑

i∈S′ ri(T
′
2) > α,

contradicting the fact that r is∞-SNM-α (respectively, that r is k-SNM-α, as |S′| = |S|·(2z−1)

and |S| ≤ k
2z−1 ). ◭

With Lemma 28 in hand, we’re very close to our goal. In particular, we’ve now shown that

∞-SNM-α rules exist for all n if and only if ∞-SNM-α rules exist for all n which additionally

satisfy the constraints in LP1(T, α, z) for all z ∈ N+. Note that as z →∞, the constraints

of LP1(T, 1/2, z) approach those of SLP (T ). So one might reasonably expect that SLP (T )

can be used in place of LP1(T, 1/2, z) above, specifically when α = 1/2. Indeed, this is the

case (and the only place where we use Proposition 22).

◮ Theorem 29. There exists an ∞-SNM-1/2 tournament rule for all n if and only if the

SLP Tournament Rule is ∞-SNM-1/2 for all n.

Moreover, if the SLP Tournament Rule is not ∞-SNM-1/2 for all n, there exists a pair

of integers k, n <∞ such that no k-SNM-1/2 Tournament Rule exists on n teams.

Proof. The proof follows from a proper application of Lemma 28 and Proposition 22. Suppose

towards contradiction that the SLP Tournament Rule is not k-SNM-1/2 for some k, n. This

implies that there must be some tournaments T, T ′ ∈ Tn and manipulating set S which verify

this fact by gaining probability c > 1
2 . Call A(T ), b(T ) be the constraint matrix and vector of

SLP (T ), respectively, when written in standard form (i.e. A(T ) has n rows, corresponding

to the n non-trivial constraints in SLP (T ). b(T ) is just the n-dimensional vector of all 1/2s).

Now apply Proposition 22 with A := A(T ) and b := b(T ), with δ =
c− 1

2

4 , and let ε(T ) be

the promised ε. Do the same for T ′, and set ε = min{ε(T ), ε(T ′)}. Pick now a sufficiently

large z such that z
2z−1 −

1
2 ≤ ε (such a z exists as ε > 0).
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Now, observe that any feasible solution ~x for LP1(T, 1/2, z) satisfies A(T ) ·~x ≥ ~b−ε~1 (and

any feasible solution ~y for LP1(T ′, 1/2, z) satisfies A(T ′) · ~y ≥ ~b− ε~1). If there is an ∞-SNM-

1/2 tournament rule (respectively, k-SNM-1/2 tournament rule, for k to be chosen later),

Lemma 28 tells us that there exists an∞-SNM-1/2 (respectively, k
2z−1 -SNM-1/2) tournament

rule y such that y(T ) is feasible for LP1(T, 1/2, z) and y(T ′) is feasible for LP1(T ′, 1/2, z).

So we know A(T ) · y(T ) ≥ ~b− ε · ~1, and also that A(T ′) · y(T ′) ≥ ~b− ε · ~1. Proposition 22

then allows us to conclude that |y(T )− w(T )|1 ≤ δ, and also that |y(T ′)− w(T ′)|1 ≤ δ. But

now we are ready to derive a contradiction and claim that in fact y(·) is not ∞-SNM-1/2.

Indeed, we know that

∑

v∈S

wv(T )− wv(T ′) ≥ c,

by definition of S, T, T ′. But from the triangle inequality, we get that:

∑

v∈S

wv(T )− yv(T ) ≤
∑

v∈S

|wv(T )− yv(T )| ≤ |w(T )− y(T )|1 ≤ δ,

∑

v∈S

yv(T ′)− wv(T ′) ≤
∑

v∈S

|wv(T ′)− yv(T ′)| ≤ |w(T ′)− y(T ′)|1 ≤ δ.

Summing these three equations then yields:

∑

v∈S

y(T )v − y(T ′)v + 2δ ≥ c ⇒
∑

v∈S

y(T )v − y(T ′)v ≥
c + 1

2

2
>

1

2
.

This contradicts that y(·) was ∞-SNM-1/2 (and contradicts that y(·) is k
2z−1 -SNM-1/2, as

long as |S| ≤ k
2z−1 , or k ≥ |S|(2z − 1). Note that k can indeed be defined after z and S), as

now S can manipulate from T ′ to T and gain > 1/2. ◭

To briefly recap the entire proof of Theorem 29: we first showed that the existence of

∞-SNM-α rules imply the existence of specific kinds of ∞-SNM-α rules (those which satisfy

LP1(T, α, z) for all z ∈ N+). Note that we relied on the existence of ∞-SNM-α rules for

n′ ≫ n in order to show the existence of our specialized ∞-SNM-α rules for n. Then, we

showed that for α = 1/2, the existence of specialized rules implies that a particular rule

(the SLP Tournament Rule) is ∞-SNM-1/2 (and the fact that the SLP Tournament Rule is

well-defined is the focus of Section 4).

Now, we make use of Theorem 29 by proving that the SLP Tournament Rule is not

∞-SNM-1/2.

◮ Lemma 30. The SLP Tournament Rule is not ∞-SNM-1/2.

Proof. See Figure 3 where two {B, C, E}-adjacent tournaments are evaluated under the SLP

Tournament Rule. The three teams {B, C, E} together have probability 4/9 under T , but 1

under T ′, and therefore gain 5/9 > 1/2 by manipulating. So the rule is not ∞-SNM-1/2.

Note that in order to verify that we have computed the SLP Tournament Rule correctly

on T and T ′, the reader need only verify (in each graph) that the probabilities sum to 1,

and the SLP constraints: for all i,
∑

j∈δ−

T
(i) pj + pi/2 ≥ 1/2. By Proposition 26, any such

solution is the unique optimum, and therefore output by the SLP Tournament Rule. ◭

Proof of Theorem 1. The proof of Theorem 1 now follows immediately from Theorem 29

and Lemma 30. ◭
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Figure 3 The tournaments T, T ′ are {B, C, E} adjacent. The distribution of winners as prescribed

by SLP is provided below each tournament, where the teams are presented alphabetically. Note that

under T , the collusion wins with chance 4/9 but in T ′ they win with probability 1, gaining 5/9.

4.1 Concluding Thoughts on Lower Bounds

We emphasize again that our lower bounds reduce the problem of determining existence

of Condorcet-consistent ∞-SNM-1/2 tournament rules for large n′ ≫ n to the problem

of determining whether the specific SLP Tournament Rule is ∞-SNM-1/2 for small n. In

particular, now that we have a specific n, k for which the SLP Tournament Rule is not

k-SNM-1/2 on n teams, we can backtrack through Theorem 29 and recover a specific k′, n′ for

which no k′-SNM-1/2 (and therefore no k′-SNM- k′−1
2k′−1 ) Tournament Rule exists on n′ teams:

In our example, there are n = 6 teams, and the SLP Tournament Rule is not better

than 3-SNM-5/9. So we may take c = 5/9 in the proof of Theorem 29, which results in

δ = 1/72. Note that ε is now a function of δ via Proposition 22, and is ≈ 0.0016, so we’d

set z := ⌈ 1/2+ε
2ε ⌉ = 157. This therefore rules out the possibility of a tournament rule that is

939-SNM-1/2 for 1878 teams. While of course portions of the proof of Theorem 29 could be

optimized to yield a smaller k′, n′, the point we are trying to make is that there could very

well be k-SNM-1/2 tournament rules for n teams for quite large values of k, n, and there

is virtually no hope of uncovering the non-existence for extremely large k via exhaustive

search – recall that the space of tournament rules is all functions from the 2(n

2) different

complete directed graphs on n teams to the n-dimensional simplex (indeed, the authors

had no luck via exhaustive search, and numerous rules appeared k-SNM-1/2 for small n

in simulations). However, the machinery developed in this section allows us to brute-force

search for manipulations of a single tournament, which happened to resolve for k = 3, n = 6

and conclude our desired claim, which would have required a significantly larger exhaust for

significantly larger k′, n′.

Finally, we note that it may be tempting to use our machinery, almost as is, to rule out

Condorcet-consistent ∞-SNM-α rules for α > 1/2. In particular, it is tempting to conclude

that because Figure 3 exhibits that the SLP Tournament Rule is no better than 3-SNM-5/9,

that there should not be an ∞-SNM-5/9 tournament rule for all n. Note, however, that the

SLP is really special for α = 1/2. Indeed, if we were to replace 1/2 with 4/9 in the SLP, we

would (for instance) no longer have a unique solution. Therefore, we’d lose the well-defined

SLP Tournament Rule, and still have to do a broad exhaustive search, and significantly

new ideas would be needed to get leverage out of this. Still, while our current tools only
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preclude rules which are ∞-SNM-1/2 (and ever so slightly more: ∞-SNM-.50016 via similar

reasoning to the previous paragraph), it is reasonable to expect that our general approach

(e.g. Lemma 28) may help rule out the existence of SNM-α tournament rules for α > 1/2.

5 Less Manipulable Tournament Rules via SLP

In this section we prove Theorem 2: an ∞-SNM-2/3 tournament rule exists (for all n).

Fortunately, a lot of the work has been done in Sections 3 and 4 in the form of our

understanding of how feasible solutions to SLP (T ) and LP0(T, β, k) relate. We first show

how any k-SNM-α rule that is a valid solution to LP0(T, β, k) (for some β) can be transformed

into a k-SNM- α
α−β+1 rule. This transformation yields a stronger tournament rule if α ≥ β.

Our proof then exploits the fact that an optimal solution to SLP (T ) satisfies LP0(T, 1/2, k)

by design and, trivially, is ∞-SNM-1. The naive upper bound of α ≤ 1 suffices to yield a

∞-SNM-2/3 rule (previously no ∞-SNM-< 1 rule is known). Moreover, this reduction now

allows any improved bounds (even if ≫ 2/3) on the manipulability of the SLP Tournament

Rule to imply tournament rules which are ∞-SNM-α for α < 2/3. Below is the main lemma

of this section.

◮ Lemma 31 (Augmentation Lemma). Let tournament rule r(·) be such that r(T ) satisfies

LP0(T, β, k) for all tournaments T , and be k-SNM-α. Then a tournament rule w(·) exists

which is k-SNM- α
α−β+1 .

Proof. Consider the following rule: pick a c ∈ [0, 1] (to be chosen later). Set wi(T ) =

ri(T ) · c + 1−c
n , if T does not have a Condorcet winner. If T has a Condorcet winner, allocate

probability 1 to the Condorcet winner.

To evaluate the manipulability of this rule, first consider a manipulating set which creates

a Condorcet winner. The total probability gained is at most β · c + (1 − c). To see this,

observe that because the set can create a Condorcet winner, they must have total probability

at least β under r(·) (and therefore at least β · c after scaling down by c).

Now consider a manipulating set that does not create a Condorcet winner. Then there

is certainly no Condorcet winner in T ′, and so the extra (1 − c) probability mass is still

allocated uniformly (and the set gains nothing here). So the set can only gain what they

would by manipulating under r(·) (scaled down by c), which is at most α · c.

To minimize max{αc, βc + (1− c)}, set c := 1
α−β+1 . This results in w(·) being k-SNM-

α
α−β+1 . ◭

Proof of Theorem 2. By construction the SLP Tournament Rule is Condorcet-consistent,

and is feasible for LP0(T, 1
2 , k) for all k. Thus the SLP Tournament Rule satisfies the

requirements of the augmentation lemma for β = 1
2 and α = 1 (as all rules are k-SNM-1 for

all k) for all k, so Lemma 31 results in an ∞-SNM-2/3 rule. ◭

At this point the experienced reader may wonder about other useful properties of the SLP

Tournament Rule. In Appendix B we show that the SLP Tournament Rule is not monotone.

6 Cover-Consistent Tournament Rules

In this section we shift gears and return to 2-SNM-α tournaments. We extend the results

of [22] not in the direction of larger k or smaller α, but towards a more stringent requirement

than Condorcet-consistence (cover-consistence). The main result of this section is Theorem 4,

which develops a new tournament rule which is cover-consistent and 2-SNM-1/3 (the smallest

α possible, by Lemma 17). We call our rule Randomized-King-of the Hill and define it below.
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Algorithm 1 Pseudocode for the Randomized-King-of-the-Hill Tournament Rule.

Input: A tournament graph T = (V, E) on n teams.

Output: A winning team i ∈ V .

repeat

Choose a team j ∈ V uniformly at random ;

if (j is a Condorcet winner);

then

return j;

end

V ← V \ {j ∪ δ+
T (j)};

until;

◮ Definition 32 (Randomized-King-of-the-Hill). The Randomized-King-of-the-Hill Tourna-

ment Rule (RKotH) starts every step by first checking whether there is a Condorcet winner

among the remaining teams. If so, that team is declared the winner. If not, it picks a

uniformly random remaining team i (which we’ll call the prince) and removes team i and all

teams which lose to i. Algorithm 1 provides pseudocode.

The main distinction we’ll emphasize between RSEB and RKotH is that RKotH is cover-

consistent (Lemma 33 below), while RSEB is not (Observation 19). We later show that

RKotH is also 2-SNM-1/3, just like RSEB.

◮ Lemma 33. RKotH is cover-consistent.

Proof. Consider any two teams u, v where u covers v. If RKotH is to possibly output v, the

team u must be removed at some round where team x is selected. If at the start of this

round, v has already been removed, then v will clearly not be declared the winner. If at the

start of this round, v has not already been removed, then v is removed this round because

v loses to x (as x beats u and u covers v). Therefore, v can never be declared the winner

by RKotH. ◭

In fact, RKotH satisfies an even stronger property than cover-consistency. Before stating

this we need to introduce some definitions.

◮ Definition 34 (Sub tournament). A sub tournament of a tournament T with respect to a

set of teams S is the tournament induced by the games between teams in S.

◮ Definition 35 (Transitive tournaments). A tournament T is transitive if there are no

directed cycles.

◮ Definition 36 (Banks set). Team v is a Banks winner of tournament T if there exists

a maximal (with respect to inclusion) transitive sub tournament T ′ of T where v is the

Condorcet-winner. The Banks set of a tournament T is the set of Banks winners of the

tournament.

⊲ Claim 37. The Banks set of a tournament is a subset of the set of uncovered teams of the

tournament.

Proof. We will show the contrapositive. Consider a team v that is covered by some other team

u. No maximal transitive sub tournament of T can have v as its Condorcet-winner because

u beats v and everyone v beats and hence can always be added on top of v, contradicting

the maximality of the sub tournament. ⊳
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We can now prove Lemma 5, which states that the Banks set of a tournament T is exactly

the set of teams RKotH can declare as winner.

Proof of Lemma 5. First, we argue that any Banks winner can be output by RKotH with

non-zero probability. Indeed, consider any Banks winner v, and let T ′ denote the maximal

transitive subtournament in which v is the Condorcet winner. Name the teams in T ′ \ {v}

as u1, . . . , uk, where ui beats uj for all j < i (and v beats ui for all i). Now, because T ′

is a maximal transitive subtournament, there does not exist any w which beats all teams

in T ′ (otherwise we could add w to the subtournament, witnessing non-maximality). Now,

consider an execution of RKotH which first selects princes in order of ui (u1, then u2, etc.)

and then finally v. First, observe that each ui has not yet been eliminated by the time we

hope they are selected (by definition of ui). Second, observe that every team w /∈ T ′ must be

eliminated by the end, because they lose to some team in T ′. Therefore, after this execution,

v is the only remaining team, and crowned champion.

It remains to show that any team in the support of RKotH is always a Banks winner.

Out of all the executions of RKotH where v wins, consider one that goes through the most

princes before v is picked. We claim this will be a maximal transitive sub tournament. Let

P = {p1, ..., pk} be the set of princes used by the algorithm in that order. Since v wins under

those princes, it must beat every team in P . Moreover, since the algorithm first picks p1,

then p2, and so on, it must be the case that pi beats pj for i > j. Otherwise pi would be

eliminated on the step where pj was selected as the prince. Therefore, the sub tournament

v ∪ P is transitive, and has v as its Condorcet-winner.

Consider any team x 6∈ v ∪ P . If x beat teams p1, ..., pi and lost to teams pi+1, ..., v for

some i ∈ {0, ..., k + 1}, then an execution that places x between pi, pi+1 would be feasible.

It would still output v but run for one more step than P , contradicting the maximality of

P . Therefore, v ∪ P is a maximal transitive sub tournament where v is a Condorcet-winner,

implying v is in the Banks set. ◭

We will also use the fact that RKotH is monotone in our remaining proof. Below (and for

the remainder of this section), we’ll refer to a prince as the most recently selected remaining

team, and we’ll refer to an execution of RKotH as simply an ordering over potential princes

(to be selected if they haven’t yet been eliminated when their turn comes).

◮ Lemma 38. RKotH is monotone. That is, if T, T ′ are {u, v}-adjacent and u beats v in T ,

then ru(T ) ≥ ru(T ′).

Proof. Consider any execution of RKotH and consider the first time that either u or v is

prince (observe that prior to this, the edge between u and v is never queried, so the execution

on T and T ′ is identical). If either u or v is already eliminated, then it doesn’t matter

whether u beats v or vice versa, and the outcome is the same. Otherwise, if u is the prince

and u beats v, then there is a chance that u wins. If u loses to v, then u is eliminated

immediately. If v is the prince and u beats v, then there is a chance that u wins. If u loses

to v, then u is eliminated immediately. Therefore, for every execution, if u wins in T ′, u also

wins in T , and the lemma holds. ◭

The rest of this section is devoted to proving that RKotH is 2-SNM-1/3. The key approach

of our proof is the following: consider any round in which both u and v still remain. The

next team selected as prince might beat both u and v (in which case the outcome between u

and v is never queried), lose to both u and v (in which case the outcome has not yet been

queried), or beat exactly one of {u, v} (in which case again the outcome between u and v is
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never queried). The only event in which we ever query the outcome of the match is when

one of {u, v} is selected as prince while the other remains (and even then, the outcome only

matters if some teams remain which beat exactly one of {u, v}). So the key approach in the

proof is a coupling argument between different possible executions of RKotH (some of which

make the match between u and v irrelevant, and some of which cause {u, v} to prefer the

match turn one way or the other).

Proof of Theorem 4. In order to show the rule is 2-SNM-1/3, consider two teams u, v who

are trying to collude in a given tournament T . Suppose wlog that u beats v in T and let T ′

be the {u, v}-adjacent tournament to T where v beats u.

To begin the analysis, we first introduce some notation. Let S be the subset of teams

which either beat at least one of u or v, or are u or v. For a given execution of RKotH let x

denote the first prince in S on tournament T . Observe first that there must be a prince in

S at some point (otherwise neither u nor v is ever eliminated), and also that x is the first

prince in S on tournament T ′ as well (for the same execution). Let also X denote the set of

princes strictly before x was chosen, and Y (X) denote the set of un-eliminated teams after

the set X of princes. We first observe that, conditioned on X, the next prince is a uniformly

random element of Y (X) ∩ S.

◮ Lemma 39. For all X ⊂ [n] \ S, conditioned on the set X being princes so far, and

the next prince being an element of S, the next prince is a uniformly random element of

Y (X) ∩ S.

Proof. For all X ⊆ [n] \ S, conditioned on the set X being princes so far, the next prince is

a uniformly random element of Y (X), so each element of Y (X) ∩ S is selected with equal

probability. ◭

The main step in the proof is the following lemma, which claims that after conditioning

on X, the difference between T and T ′ in terms of whether one of {u, v} wins under RKotH

is small.

◮ Lemma 40. For all X, let ru,v(T, X) denote the probability that RKotH selects a winner

in {u, v}, conditioned on X being exactly the set of princes before the first prince in S. Then

for all X, |ru,v(T ′, X)− ru,v(T, X)| ≤ 1/3.

Proof. We consider a few possible cases, conditioned on the structure of Y (X) ∩ S, and

which team is the next prince. To aid in formality, we’ll use the notation ru,v(T, X|E) to

denote the probability that RKotH selects a winner in {u, v} on tournament T conditioned

on exactly the set X of princes before the first prince in S and event E.

Case One: Y (X) ∩ S = {u, v}. In this case, certainly u or v will win in tournament T

and T ′. This is because all remaining teams lose to both u and v, so whoever wins

the match between u and v is a Condorcet winner among the remaining teams and

will therefore win. So if E1 denotes the event that Y (X) ∩ S = {u, v}, we have that

ru,v(T, X|E1) = ru,v(T ′, X|E1).

Case Two: |Y (X) ∩ S| > 2, next prince /∈ {u, v}. In this case, at least one of {u, v} are

eliminated immediately, and the match result is never queried. Therefore, the result is

the same under T and T ′. So if E2 denotes the event that |Y (X) ∩ S| > 2 and the next

prince is not in {u, v}, we have that ru,v(T, X|E2) = ru,v(T ′, X|E2).
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Case Three: |Y (X) ∩ S| > 2, next prince is u. In this case, we claim it is always better

for {u, v} to be in T ′ (v beats u) versus T . To see this, first consider that maybe some

remaining element of Y (X)∩S beats u. Then u certainly will not win. If u beats v, then

v also will certainly not win. But if v beats u, then maybe v can win. If no remaining

element of Y (X) ∩ S beats u, then either u will win in T , or v will win in T ′ (because all

teams aside from u and v are eliminated). So if E3 denotes the event that |Y (X)∩S| > 2

and the next prince is u, we have that ru,v(T ′, X|E3) ≥ ru,v(T, X|E3).

Case Four: |Y (X) ∩ S| > 2, next prince is v. This case is symmetric to the above, and

it is always better for {u, v} to be in T versus T ′. So if E4 denotes the event that

|Y (X) ∩ S| > 2 and the next prince is v, we have that: ru,v(T, X|E4) ≥ ru,v(T ′, X|E4).

So to conclude, we’ve seen that if |Y (X) ∩ S| = 2, then the outcome is the same under T

and T ′, so the lemma statement clearly holds for any X with |Y (X)∩S| = 2. If |Y (X)∩S| > 2,

then there is exactly one choice for the next team which may cause {u, v} to prefer T to

T ′ (and vice versa). By Lemma 39, the next prince is drawn uniformly at random from

|Y (X) ∩ S|, so this element is selected with probability at most 1/3. Formally, for any X

with |Y (X) ∩ S| > 2 we have:

ru,v(T, X)− ru,v(T ′, X) = Pr[E2] · (ru,v(T, X|E2)− ru,v(T ′, X|E2))

+ Pr[E3] · (ru,v(T, X|E3)− ru,v(T ′, X|E3))

+ Pr[E4] · (ru,v(T, X|E4)− ru,v(T ′, X|E4))

≤Pr[E2] · 0 + Pr[E3] · 0 + Pr[E4] · 1 ≤
1

|Y (X) ∩ S|
≤ 1/3.

Similar inequalities hold for ru,v(T ′, X)− ru,v(T, X) but with the role of E3 and E4 swapped,

allowing us to conclude that indeed |ru,v(T, X)− ru,v(T ′, X)| ≤ 1/3. ◭

The rest of the proof now follows easily. Below, if ru,v(T ) denotes the probability that

either u or v wins under RKotH for tournament T , and p(X) denotes the probability that X

is exactly the set of princes before the first prince in S is selected (under tournament T ),

we have:

|ru,v(T )− ru,v(T ′)| ≤
∑

X

p(X) · |ru,v(T, X)− ru,v(T ′, X)| ≤ 1/3. ◭

While RKotH and RSEB are optimal tournament rules against collusions of size 2, their

effectiveness disappears as the collusions become larger. In particular, in Appendix B we

show a specific tournament against both rules for which large collusions can increase their

odds of winning up to close to 1.

7 Conclusion

We extend work of [22] in three different directions: First, we refute their main conjecture

(Theorem 1, Sections 3 and 4). Next, we design the first Condorcet-consistent tournament rule

which is ∞-SNM-(< 1) (Theorem 2, Sections 3 and 5). Finally, we design a new tournament

rule (RKotH) which is 2-SNM-1/3 (just like RSEB), but which is also cover-consistent

(Theorem 4, Section 6).

Reiterating from Section 1, the main appeal of our results is clearly theoretical, and some

of this appeal comes from the process itself. For example, Theorem 29 reduces the search for

a Condorcet-consistent ∞-SNM-1/2 rule to determining whether or not the SLP Tournament

Rule is ∞-SNM-1/2. Additionally, the same tools developed in Section 3 proved useful both

for proving lower bounds and designing new tournament rules, suggesting that these tools

should be useful in future works as well.

ITCS 2020



3:22 Approximately Strategyproof Tournament Rules

One clear direction for future work, now that the main conjecture of [22] is refuted, is to

understand what the minimum α is such that an ∞-SNM-α tournament rule exists. It is

also interesting to understand how large k needs to be in order for the [22] conjecture to be

false. Our work does not rule out the existence of a 3-SNM-2/5 tournament rule, yet we also

do not know of any 3-SNM-2/5 rule (nor even a 3-SNM-1/2 rule). More generally, our work

contributes to the broad agenda of understanding the tradeoffs between incentive compatibility

and quality of winner selected in tournament rules, and there are many interesting problems

in this direction.
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A Missing proofs from Section 2.2

To prove Proposition 21, we first need some additional machinery.

◮ Definition 41 (Pfaffian). The Pfaffian of an n × n skew-symmetric matrix A (when

n = 2k is even) is defined as follows. First, let Π be the set of all partitions of [2k] into

pairs without regard to order. If we write an element α ∈ Π as {(i1, j1), (i2, j2), · · · (ik, jk)}

with iℓ < jℓ for all ℓ and i1 < i2 < . . . < ik, then let πα denote the permutation with

πα(2ℓ − 1) = iℓ and πα(2ℓ) = jℓ (i.e. πα sorts elements in the order i1, j1, i2, j2, . . .).

Let Aα := sgn(πα)
∏k

ℓ=1 Aiℓ,jℓ
.4 Then the Pfaffian of A, denoted by Pf(A), is equal to

∑

α∈Π Aα.

◮ Theorem 42. When n is even, any n× n skew-symmetric matrix A satisfies Det(A) =

(Pf(A))2.

Proof of Proposition 21. We will first prove the case when n is even, using Theorem 42.

We first observe that as A is unit skew-symmetric, |Aij | = 1 for all i 6= j. Therefore, for

all α ∈ Π, |Aα| = 1. So the Pfaffian of A is the sum of |Π| terms, each of which are ±1.

Therefore, if we can show that |Π| is odd, the Pfaffian must be non-zero, Theorem 42 implies

that Det(A) 6= 0 as well (meaning that A has full rank).

4 Recall that the sign of a permutation π, denoted here by sgn(π) is equal to the number of inversions in
π (that is, the number of pairs i < j with π(i) > π(j)).
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It is straight forward to count the number of elements in Π: first, there are n− 1 choices

for the partner of 1. Then, there are n− 3 choices for the partner of the smallest unpartnered

element. After choosing the first ℓ pairs, there are n− 2ℓ− 1 choices for the partner of the

smallest unpartnered element. So there are (n− 1) · (n− 3) . . . 5 · 3 elements of Π, which is

an odd number.

Now we consider the case where n is odd. Observe first that the submatrix of A created by

removing the last row and last column is a unit skew symmetric matrix with even dimension,

and therefore has rank n− 1. Therefore, the rank of A is also at least n− 1. By Jacobi’s

theorem, all skew symmetric matrices of odd dimension have determinant zero (and are

therefore not of full rank). Therefore, the rank must be exactly n− 1. ◭

Proof of Proposition 22. For a given δ > 0, let Y be the set of all vectors in the unit

hypercube with ℓ1 distance strictly less than δ from some element of P0 (i.e. there exists an

element in P0 within ℓ1 distance strictly less than δ). It is easy to see that Y is an open set.

Now let S = [0, 1]n \ Y . Note that S is closed and bounded, and therefore compact.

Definte now the function f(~y) = max{0, maxi∈[n]
~bi − (A · ~y)i}. First observe that f(·)

is continuous, as it is a composition (via maximums, subtractions, etc.) of affine functions.

Observe also that ~y ∈ Pε for all ε ≥ f(~y), and that ~y /∈ Pε for all ε < f(~y). We now consider

two possible cases for inf~y∈S{f(~y)}, and find our desired ε.

Case 1: inf~y∈S{f(~y)} = 0. As S is compact, f achieves its infimum over S. Therefore,

there exists a ~y ∈ S with f(~y) = 0. Let’s parse what this means. First, as f(~y) = 0, we

know that ~y ∈ P0. But also, P0 ⊆ Y , and S ∩ Y = ∅. So any ~y ∈ S cannot also be in P0,

which means f(~y) > 0 for all ~y ∈ S, meaning that we can’t have inf~y∈S{f(~y)} = 0 after

all.

Case 2: inf~y∈S{f(~y)} = c > 0. Then let ε = c/2. Now, observe that all elements of S are

not in Pε, as they all have f(~y) > ε.

So to wrap up, we must have inf~y∈S{f(~y)} = c > 0, and if we set ε = c/2, then S∩Pε = ∅.

Therefore, as S ∩ Y = [0, 1]n, it must be the case that all of Pε is contained in Y . But this is

exactly the desired statement: all elements of Pε have some point in P0 within distance δ.

So take this to be our desired ε. ◭

B Further properties of the proposed tournament rules

In this section we analyze further properties of the two main tournament rules discussed on

this paper. First we show that the SLP tournament rule fails to satisfy monotonicity, a very

natural and desirable property from the point of view of a tournament designer.

⊲ Claim 43. SLP is not a monotone tournament rule.

Proof. Consider the tournament T and it’s {3, 5}-adjacent tournament T ′, both depicted

in Figure 4. In T , 5 beats 3 originally and the SLP tournament rule awarded team 5 a .2

chance of winning. If instead 5 purposely throws its game to 3, the SLP tournament rule

rewards team 5 by increasing its chance of winning to 1/3. Therefore the SLP tournament

rule is not monotone. ⊳

Next we show that the optimality of RSEB, RKotH against collusions of size 2 fails to

translate to larger collusions. In particular, we show that the manipulability of both rules

tends to 1 as the size of the collusion increases, ruling both of them out as candidates for

∞-SNM-α for constant α < 1. First we define a family of tournaments that will be useful in

showing lower bounds for both rules. These tournaments were introduced in [22].



A. Schvartzman, S. M. Weinberg, E. Zlatin, and A. Zuo 3:25

Figure 4 The tournament T can be unilaterally manipulated by team 5 to become the tourna-

ment T ′.

◮ Definition 44 (Kryptonite Tournament [22]). A kryptonite tournament T on n teams has

a superman team (wlog label it 1) who beats everyone except a kryptonite team (wlog label

it n). Moreover, team n loses to every other team except 1. The outcomes of the matches

between the remaining teams may be arbitrary.

We now proceed with the main claim of this section.

⊲ Claim 45. RKotH is no better than k-SNM-(k − 1)/(k + 1) for any k. RSEB is no better

than k-SNM-(k − 1)/k when k + 1 is a power of 2.

Proof. Consider k and let n = k + 1. Let T be any kryptonite tournament on n teams, with

team 1 as the superman team and team n as the kryptonite team. In order for team 1 to

win under RKotH, the rule must avoid selecting teams 1 and n. Under any other first choice

of prince, RKotH will declare team 1 the winner. Therefore it declares team 1 the winner

with probability (k − 1)/(k + 1). However, if all teams but the superman collude they can

make the kryptonite a Condorcet-winner. The collusion’s combined odds of winning before

were exactly 2/(k + 1), so RKotH is at least k-SNM-(k − 1)/(k + 1).

Now let k + 1 be a power of two and consider the same T as before. In order for the

superman team to win under RSEB it must avoid the kryptonite team in the first round.

Therefore RSEB crowns the superman team winner with probability (k − 1)/k. However, all

other teams can form a collusion and turn the kryptonite team into a Condorcet-winner,

increasing their winning mass by (k − 1)/k. Therefore, RSEB is at least k-SNM-(k − 1)/k

when k + 1 is a power of 2. ⊳

ITCS 2020


	Introduction
	Theorem Statements, Roadmap, and Technical Highlights
	Extensions and Brief Discussion
	Related work

	Preliminaries
	Technical Recap of Prior Work
	Linear Algebra Preliminaries

	A Special Linear Program SLP(T)
	No Condorcet-consistent infty-SNM-1/2 Rule Exists
	Concluding Thoughts on Lower Bounds

	Less Manipulable Tournament Rules via SLP
	Cover-Consistent Tournament Rules
	Conclusion
	Missing proofs from Section 2.2
	Further properties of the proposed tournament rules

