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Abstract

We study the single-choice Prophet Inequality problem when the gambler is given access to samples.

We show that the optimal competitive ratio of 1/2 can be achieved with a single sample from each

distribution. When the distributions are identical, we show that for any constant ε > 0, O(n)

samples from the distribution suffice to achieve the optimal competitive ratio (≈ 0.745) within

(1 + ε), resolving an open problem of [9].
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1 Introduction

Consider the classic single-choice Prophet Inequality problem. Offline, there are n distribu-

tions D1, . . . ,Dn presented to a gambler. For i = 1 to n, a random variable Xi is drawn

independently from Di and revealed online. The gambler must then decide immediately and

irrevocably whether to accept Xi (and achieve reward Xi, ending the game), or reject Xi

(continuing the game, but never revisiting Xi again). The goal of the gambler is to devise a

stopping rule which maximizes their expected reward. The performance of potential stopping

rules is typically measured by their competitive ratio in comparison to a prophet (who knows

all Xi in advance and achieves expected reward E[maxi{Xi}]). Typically, prophet inequalities

are designed assuming that the distributions presented offline are fully known. This paper

focuses on the setting where the gambler is instead presented with offline samples from the

Di, rather than complete knowledge.

In the classic setting, seminal work of Krengel and Sucheston provides a strategy guar-

anteeing a competitive ratio of 1/2, which is the best possible [22].1 Samuel-Cahn later

proved that simply setting a threshold equal to the median of maxi{Xi} (i.e. a value T such

that Pr[maxi{Xi} > v] = 1/2) also achieves the optimal competitive ratio of 1/2 [25], and

1 To see that no better than 1/2 is possible, consider an instance where X1 is deterministically 1, and
X2 is 1/ε with probability ε, and 0 otherwise. The prophet achieves 2 − ε (taking X2 when it is large,
and X1 otherwise), while the gambler achieves only 1 (they must decide whether to take X1 without
knowing if X2 is large).
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it was later shown that a threshold of E[maxi{Xi}]/2 suffices as well [21]. These last two

thresholds are remarkably simple, but certainly require a non-trivial number of samples to

estimate well.

Our first result establishes that a single sample from each Di suffices to achieve the

optimal competitive ratio of 1/2. The algorithm is also exceptionally simple: if X̃1, . . . , X̃n

denote independent samples from D1, . . . ,Dn, simply set maxi{X̃i} as a threshold.

◮ Definition 1 (Single Sample Algorithm). Given as input X̃1, . . . , X̃n, set a threshold T =

maxi{X̃i} and accept the first random variable exceeding T .

◮ Theorem 2. The Single Sample Algorithm guarantees a competitive ratio of 1/2.

A subsequent line of works considers the special case where each Di is identical (which

we’ll refer to as D). Here, work of Hill and Kertz provided the first improved competitive

ratio (of 1− 1/e) [19], and this was recently improved to the optimal competitive ratio of

α ≈ 0.745 [10]. Our second result establishes that a linear number of samples from D suffices

to achieve the optimal competitive ratio, up to ε. Since our algorithm simply replaces the

quantile-based thresholds of [10] with samples, we call it Samples-CFHOV (the five authors

of [10]). The algorithm and analysis are fairly simple and we provide a formal description in

Section 4.

◮ Theorem 3. With O(n/ε6) samples, Samples-CFHOV achieves a competitive ratio of

α−O(ε).

1.1 Related Work

Over the past decade, prophet inequalities have been studied from numerous angles within the

TCS community [7, 3, 21, 17, 15, 23, 16, 24, 12, 14, 6, 2, 11, 4, 18, 13, 8]. All of these works

assume explicit knowledge of the given distributions. The limited prior work most related

to ours considers sample access to the underlying distributions. On this front, Azar et al.

consider prophet inequalities subject to combinatorial constraints, and establish that limited

samples suffice to obtain constant competitive ratios in many settings [5]. In comparison to

this work, our paper considers only optimal competitive ratios, and the simple single-choice

setting.

In the i.i.d. model (each value is drawn from the same D), a (1− 1/e)-approximation was

first shown in [19], and recent work achieved the same guarantee with n− 1 samples from

D [9]. This ratio was later improved to ≈ 0.738 [1], and then to α ≈ 0.745 [10], where α is

the optimal achievable competitive ratio [19, 20]. The most related work in this sequence to

ours is [9], who establish that a competitive ratio of α− ε is achievable with O(n2) samples

(for any constant ε), and that Ω(n) samples are necessary. They also establish a formal

barrier to achieving α− ε with o(n2) samples. In comparison, we circumvent their barrier to

achieve a competitive ratio of α− ε with O(n) samples, resolving one of their open problems.

Roadmap

In Section 2, we provide brief preliminaries. Section 3 contains our 2-approximation with a

single sample. Section 4 contains our (α− ε)-approximation with linearly many samples.
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2 Preliminaries

There are n distributions, D1, . . . ,Dn. Online, a gambler sees a random variable Xi drawn

from Di one at a time, and must immediately and irrevocably decide whether to accept (and

get reward Xi) or reject (and see Xi+1, throwing away Xi forever). Strategies for a gambler

are often termed stopping rules, and the competitive ratio of a stopping rule is the worst-case

ratio (over all possible n, and D1, . . . ,Dn) between its expected reward and E[maxi{Xi}].

Our algorithms will not have knowledge of any Di, but instead will have access to samples.

Our algorithms will treat these samples as the only offline input, and decide whether to

accept or reject an element based only on the value of that element and the samples.2 Here,

we will count the number of samples from each distribution as our sample complexity.

We will also consider the i.i.d. setting, where each Di = D. Here, we will count the total

number of samples from D as our sample complexity. In this setting, we will let α ≈ 0.745

denote the optimal competitive ratio for an algorithm with knowledge of D.

Continuous versus Discrete Random Variables

All of our algorithm definitions are straight-forward for continuous distributions. For

distributions with point masses, the following “reduction” to continuous is needed. Instead of

thinking of D as a single-variate distribution, we will (overload notation and) think of D as

a bivariate distribution with the first coordinate drawn from D, and the second “tie-breaker”

coordinate drawn independently and uniformly from [0, 1]. Then (X1, t1) > (X2, t2) if either

X1 > X2, or X1 = X2 and t1 > t2. Observe that because the tie-breaker coordinate is

continuous, the probability of having (X1, t1) = (X2, t2) for any two values during a run of

any algorithm is zero. Therefore, if we define FD(X, t) := Pr(Y,u)←(D,U([0,1]))[(Y, u) < (X, t)],

we have that FD(X, t) < FD(Y, u) ⇔ (X, t) < (Y, u). We will not explicitly reference this

tie-breaker random variable in the definition of our algorithms, but simply refer to X ← D

as the pair (X, t).

Adversaries

Prophet Inequalities are typically studied against an offline adversary. That is, the adversary

simply picks the distributions D1, . . . ,Dn (and their indices), which is all presented to the

gambler offline. Some prophet inequalities hold against the stronger almighty adversary,

which selects the set of distributions {D1, . . . ,Dn} offline, then decides in which order to

reveal the random variables X1, . . . , Xn based on their realization. Note that previous

competitive ratios of 1/2 in the non-i.i.d. setting hold against an almighty adversary, and

Theorem 2 does as well. Previous competitive ratios of α in the i.i.d. setting hold against

the offline adversary (and are impossible to achieve against the almighty adversary), so

Theorem 3 holds against the offline adversary as well.

3 The Non-I.I.D. Case: Optimal Ratio with a Single Sample From Di

The Single Sample Algorithm proceeds as follows. It takes as input X̃i drawn independently

from each Di, sets a threshold T = maxi{X̃i}, and accepts the first element exceeding T .

Our goal in this section is to prove Theorem 2 that this algorithm obtains 1
2 the reward, in

expectation, of the omniscient prophet that always selects the highest value.

2 In principle, sample-based algorithms might also consider previously viewed elements, but our algorithms
don’t.

ITCS 2020



60:4 Optimal Single-Choice Prophet Inequalities from Samples

Our analysis will use the principle of deferred decisions: instead of first drawing the

samples X̃, and then revealing the actual draws X, we will jointly draw 2n samples

Y1, . . . , Yn, Z1, . . . , Zn, and then for each i randomly decide which of {Yi, Zi} is equal to X̃i

and which is equal to Xi. Formally, consider the following Deferred-Decisions procedure for

drawing X, X̃:

1. Draw Y1, . . . , Yn and Z1, . . . , Zn independently each from D1, . . . ,Dn.

2. For ease of notation later, for all i, relabel so that Yi > Zi.

3. Independently, flip n fair coins. If coin i is heads, set Xi := Yi and X̃i := Zi. Otherwise,

set Xi := Zi and X̃i := Yi.

◮ Observation 4. The output of the Deferred-Decisions procedure correctly generates

X̃1, . . . , X̃n and X1, . . . , Xn as independent draws from D1, . . . ,Dn.

Our analysis will proceed by directly comparing, for any fixed Y1, . . . , Yn, Z1, . . . , Zn, the

expected reward of the gambler over the randomness in the coin flips of step three to the

expected reward of the prophet over the randomness in the coin flips of step three. We note

that this analysis is similar to that of the rehearsal algorithm of [5] for k-uniform matroids

(whose competitive ratio is asymptotically optimal for large k), and that prior to this it was

folklore knowledge that the Single Sample Algorithm achieves a competitive ratio of at least

1/4. The novelty in our analysis is precisely nailing down the tight competitive ratio.

3.1 Analysis Setup

For a fixed Y1, . . . , Yn, Z1, . . . , Zn, sort the values into descending order, and relabel them as

W1, . . . , W2n. If Wj is equal to Yi (or Zi), we say that Wj comes from i, and denote this

with index(Wj) = i. Call the pivotal index j∗ the minimum j such that there exists an ℓ > j

with index(Wℓ) = index(Wj). That is, the pivotal index j∗ is such that there are exactly

j∗ − 1 Y random variables exceeding the largest Z random variable.

Our analysis will make use of the following concept: for each W1, . . . , Wj∗−1, let Cj

denote the outcome of the coinflip for index(Wj) (which assigns either Yi or Zi to arrive as

a sample and the other to arrive as a real value). Observe, importantly, that the random

variables C1, . . . , Cj∗−1 are independent (because they are independent coin flips for different

indices). Also importantly, observe that the random variable Cj∗ is deterministic conditioned

on C1, . . . , Cj∗−1 (because it is exactly the same coin flip as one of the earlier indices).

3.2 The Prophet’s Expected Reward

◮ Proposition 5. For fixed W1, . . . , W2n and pivotal index j∗, the prophet’s expected reward,

over the randomness in the coin flips of step three, is
∑j∗

−1
j=1 Wj/2j + Wj∗/2j∗

−1.

Proof. Observe that the prophet achieves expected reward equal to maxi{Xi}, so we just

want to compute the probability that this is W1, . . . , W2n. For each j < j∗, Wj is equal to

maxi{Xi} if and only if Cj is heads, and Cℓ is tails for all ℓ < j (recall that all Wj ’s are Y

random variables for j < j∗). Because each of the coin flips are independent, this occurs

with probability precisely 1/2j .

For j∗, Wj∗ is equal to maxi{Xi} if and only if Cℓ is tails for all ℓ < j∗, and coin Cj∗ is

tails. Observe, however, that by definition of the pivotal index j∗, that when Cℓ is tails for

all ℓ < j∗ we have Cj∗ as tails as well (because it is the same coin as one of the first j∗ − 1).

Therefore, whenever all of the first j∗− 1 coins are tails, maxi{Xi} = Wj∗ (and this happens

with probability 1/2j∗

−1).
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As the first j∗−1 coins either contain some heads, or are all tails (and we have counted the

prophet’s reward in all such cases), we have now fully accounted for the prophet’s expected

reward over the randomness in the coin flips. ◭

3.3 The Single Sample Algorithm’s Expected Reward

◮ Proposition 6. For fixed W1, . . . , W2n and pivotal index j∗, the gambler’s expected reward,

over the randomness in the coin flips of step three, is at least
∑j∗

−2
j=1 Wj/2j+1 + Wj∗−1/2j∗

−1.

Proof. Consider the case where C1 is tails. In this case, the gambler gets no reward because

the threshold is higher than all revealed elements. For j < j∗ − 1, consider next the case

where C1, . . . , Cj are heads, but Cj+1 is tails. In this case, the gambler gets reward at least

Wj (because the gambler will accept the first non-sample random variable exceeding Wj+1,

and these random variables have values W1, . . . , Wj). The probability that this occurs is

exactly 1/2j+1.

Consider also the case where C1, . . . , Cj∗−1 are all heads. Then the threshold is set at Wj∗ ,

and the gambler will get at least Wj∗−1. This occurs with probability exactly 1/2j∗

−1. ◭

3.4 Proof of Theorem 2

Proof. We can immediately see that:

j∗

−2
∑

j=1

Wj/2j+1 + Wj∗−1/2j∗

−1 ≥

j∗

−1
∑

j=1

Wj/2j+1 + Wj∗/2j∗

=
1

2
·





j∗

−1
∑

j=1

Wj/2j + Wj∗/2j∗

−1



 .

By Propositions 5 and 6, the right-hand side is exactly half the prophet’s expected reward,

conditioned on W1, . . . , W2n and j∗, and the left-hand side is exactly the gambler’s expected

reward (again conditioned on W1, . . . , W2n and j∗). As the gambler achieves half the prophet’s

expected reward for all W1, . . . , W2n and j∗, the guarantee holds in expectation as well. ◭

4 The I.I.D. Case: Optimal Ratio with Linear Samples From D

We begin with a brief overview of the algorithm from [10] and its main features, followed by

a formal specification of our algorithm.

4.1 Overview of [10] and Samples-CFHOV

The algorithm of [10] (with one slight modification due to [9]) proceeds as follows. We’ll

refer to this algorithm as Explicit-CFHOV.

1. As a function only of n, and independently of D, define monotone increasing probabilities

0 ≤ p1 ≤ . . . pn ≤ 1.

2. For all i such that pi ≤ δ = ε2/n, update pi := 0 (this is the [9] modification).

3. Accept Xi if and only if FD(Xi) > 1− pi. Observe that this is identical to accepting Xi if

and only if Xi > σi = F−1
D

(1− pi). Also observe that Xi exceeds σi with probability pi.

◮ Theorem 7 ([10, 9]). In the i.i.d. setting, Explicit-CFHOV has competitive ratio α− ε.3

3 Without step two, the algorithm achieves a competitive ratio of α.

ITCS 2020
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That is, Explicit-CFHOV sets, for each i ∈ [n], a probability pi independent of D, and

sets a threshold σi for accepting Xi which is exceeded with probability exactly pi.

If instead of explicit access to D, we’re given m i.i.d. samples from D, the challenge

is simply that we can no longer compute FD(Xi) exactly and run Explicit-CFHOV. The

algorithm of [9] observes that m = O(n2) samples suffices to estimate the quantiles sufficiently

well. Our algorithm observes that in fact m = O(n) samples suffice (which is asymptotically

tight, by a lower bound in [9]). Our algorithm proceeds as follows, which we call Samples-

CFHOV.

1. As a function only of n, and independently of D, define monotone increasing

probabilities 0 ≤ p1 ≤ . . . pn ≤ 1, exactly as in Explicit-CFHOV.

2. Round down each pi to the nearest integer power of (1 + ε); we denote the rounded value

by ⌊pi⌋ ∈ {(1 + ε)−1, (1 + ε)−2 . . . }.

3. Set p̃i := ⌊pi⌋/(1 + ε) (that is, we have rounded down each pi, then further divided by

(1 + ε)).

4. From our m samples, let τi denote the value of the (p̃i ·m)-th highest sample.

5. Accept Xi if and only if Xi > τi.

That is, Samples-CFHOV provides an estimate τi of σi via the m samples. Intuitively,

we are trying to overestimate σi so that it is unlikely that Samples-CFHOV will ever choose

to accept an element that Explicit-CFHOV would not. We’ll prove Theorem 3 as a corollary

of Theorem 8:

◮ Theorem 8. For any distribution D, with m = O(n/ε6) samples, the expected value

achieved by Samples-CFHOV is at least a (1−O(ε))-fraction of that of Explicit-CFHOV.

We briefly remark that our proof of Theorem 8 actually holds for any choice of pi’s (all

/∈ (0, δ)). That is, if Explicit-CFHOV achieves a competitive ratio of γ(~p) with a particular

choice of ~p, Samples-CFHOV achieves a competitive ratio of γ(~p)−O(ε) (as long as each

pi /∈ (0, δ)).

4.2 Brief Comparison to [9]

The algorithm employed by [9] using O(n2) samples is conceptually similar in that they

also wish to set thresholds τi such that FD(τi) ≈ 1 − pi. The main difference is that we

target a multiplicative (1− ε)-approximation to each, whereas they target an additive 1/n-

approximation for each threshold. That is, they aim to ensure that for each pi, the threshold

τi has |FD(τi) − pi| ≤ 1/n. They prove, using the Dvoretzky-Kiefer-Wolfowitz Inequality,

that O(n2) samples suffice for this, then further argue that these small additive errors in the

CDF don’t cost much.

The same paper also establishes a barrier to moving beyond Ω(n2) samples. Specifically,

they establish that Ω(n2) samples are necessarily just to guarantee for a single i with pi ≈ 1/2

that |FD(τi)− pi| ≤ 1/n. Our approach circumvents this bound by seeking a significantly

weaker guarantee for such i (only that |FD(τi)− pi| ≤ O(εpi) – see Equation (1)). So the

two key differences in our approach is (a) we show that O(n) samples suffice to learn the

thresholds up to a multiplicative (1 + ε) error in the CDF and (b) establishing that this

(significantly weaker) estimation suffices for a good approximation.
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4.3 Proof of Theorem 8

Our proof breaks down into two simple claims. The first establishes that with high probability,

our sample-based thresholds are “good.” The second establishes that “good” thresholds yield

a good approximation. Below, recall that δ = ε2/n.

◮ Lemma 9. With m = 12 ln(1/ε)/(ε3δ) = O(n/ε6) samples, with probability at least 1− ε,

we have that for every i (simultaneously),

pi

(1 + ε)3
≤ Pr

x∼D
[x > τi] ≤ pi. (1)

Note that Equation (1) does not reference the values of the actual elements X1, . . . , Xn

at all – it is just a claim about the thresholds ~τ being set. That is, the probability 1 − ε

is taken only over the randomness in drawing the samples (and in particular independent

of the values of the actual elements). We will call a set of thresholds “good” if they satisfy

Equation (1).

Proof. Recall that τi is set by first rounding down pi to ⌊pi⌋, then further dividing by (1 + ε)

to p̃i, then set equal to the (p̃i ·m)-th highest of m samples. To proceed, let Li be such that

Pr
x∼D

[x > Li] = ⌊pi⌋.

Similarly, let Hi be such that

Pr
x∼D

[x > Hi] = (1 + ε)−2⌊pi⌋.

Then (1) certainly holds whenever Li < τi < Hi. The remainder of the proof establishes that

we are likely to have Li < τi < Hi for all i.

Indeed, observe that we expect to see ⌊pi⌋m samples greater than Li. We say that ⌊pi⌋

is bad if the number of samples greater than Li is not in the range
[

(1 + ε)−1(⌊pi⌋m), (1 +

ε)(⌊pi⌋m)
]

. Note that whenever neither ⌊pi⌋ nor (1 + ε)−2⌊pi⌋ is bad, then we indeed have

Li < τi < Hi.

Because the number of samples greater than p is an average of m independent {0, 1}

random variables with expectation p, the multiplicative Chernoff bound implies that the the

probability that a particular p is bad is upper bounded by:

Pr[p is bad] < e−ε2pm/3.

If all p ∈ {(1 + ε)−1, . . . , δ} are not bad, then our desired claim holds. Taking union

bound over this (1 + ε)-multiplicative net, we have that the probability that some p ∈

{(1 + ε)−1, (1 + ε)−2 . . . , δ} is bad is bounded by:

O(ln(1/δ)/ε)
∑

i=0

e−ε2(1−ε)−iδm/3 ≤

∞
∑

i=0

e−ε2(1−ε)−iδm/3 ≤

∞
∑

i=0

e−ε3iδm/6 ≤ e−ε3δm/12

Above, the first term is simply a union bound over all p in this net. The second inequality

follows as (1− ε)−i ≥ εi/2 for all ε ∈ (0, 1) and i ≥ 0. The final inequality holds (at least)

when m ≥ 6/(ε3δ). Therefore, setting m = 12 ln(1/ε)/(ε3δ) satisfies the desired claim. ◭

Next, we wish to show that whenever the thresholds are “good”, the algorithm performs

well in expectation. Below, let t1 denote the stopping time of Explicit-CFHOV (i.e. the

random variable denoting the element it chooses to accept), and let t2 denote the stopping

time of Samples-CFHOV.

ITCS 2020
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⊲ Claim 10. Conditioned on (1) holding for every i, t2 ≥ t1. That is, Samples-CFHOV

selects an element later than Explicit-CFHOV.

Proof. For every i, we have that by (1), the threshold used by Samples-CFHOV is at least

the threshold used by Explicit-CFHOV. Therefore, the first time they deviate (if any) is

when Explicit-CFHOV accepts an element but Samples-CFHOV does not. ⊳

◮ Lemma 11. Conditioned on (1) holding for every i, the following holds for every v:

Pr[Xt2
> v] ≥

1

(1 + ε)3
Pr[Xt1

> v]. (2)

Proof. We prove that (2) holds uniformly for every i ∈ [n], i.e.

Pr[(Xt2
> v) ∧ (t2 = i)] ≥

1

(1 + ε)3
Pr[(Xt1

> v) ∧ (t1 = i)]. (3)

The event (Xtb
> v) ∧ (tb = i) (for either b ∈ {1, 2}) occurs if and only if the corresponding

algorithm doesn’t stop before i, and Xi is larger than both v and the threshold set (by

the corresponding algorithm). Of course, whether or not an algorithm stops before i is

completely independent of Xi. We claim that the following holds on the probability that the

two algorithms accept Xi (conditioned on making it to Xi). Intuitively, Claim 12 establishes

that, even though the threshold τi is stricter than σi, we are still roughly as likely to accept

an Xi exceeding v using τi versus σi, for all v.

⊲ Claim 12. Conditioned on (1) holding for every i, then for every v and i such that pi ≥ δ:

(1 + ε)3 Pr[(Xi > v) ∧ (Xi > τi)] ≥ Pr[(Xi > v) ∧ (Xi > σi)].

Proof. We consider the following three cases: perhaps v > τi, or perhaps v ∈ (σi, τi), or

perhaps v < σi. We claim that the following three inequalities hold:

v ≥ τi ⇒

Pr[(Xi > v) ∧ (Xi > τi)] = Pr[Xi > v] = Pr[(Xi > v) ∧ (Xi > σi)].

v ∈ (σi,τi)⇒

Pr[(Xi > v) ∧ (Xi > σi)] ≤ Pr[Xi > σi] ≤
Pr[Xi > τi]

(1 + ε)3
=

Pr[(Xi > v) ∧ (Xi > τi)]

(1 + ε)3
.

v < σi ⇒

Pr[(Xi > v) ∧ (Xi > σi)] = Pr[Xi > σi] ≤
Pr[Xi > τi]

(1 + ε)3
=

Pr[(Xi > τi) ∧ (Xi > v)]

(1 + ε)3
.

Indeed, the first implication follows as v exceeds both σi and τi. The second implication

follows as v > σi, and then by condition (1). The third implication follows from condition (1).

⊳

Claim 12 is the heart of the proof, and we can now wrap up. Observe that Pr[(Xt2
>

v) ∧ (t2 = i)] = Pr[t2 ≥ i] · Pr[(Xi > v) ∧ (Xi > τi)]. Similarly, Pr[(Xt1
> v) ∧ (t1 = i)] =

Pr[t1 ≥ i] ·Pr[(Xi > v) ∧ (Xi > σi)]. By the work above, (1 + ε)3 Pr[(Xi > v) ∧ (Xi > τi)] ≥

Pr[(Xi > v) ∧ (Xi > σi)]. By Claim 10, Pr[t2 ≥ i] ≥ Pr[t1 ≥ i]. Therefore, we’ve proven the

desired claim for every i ∈ [n]. As Pr[Xtb
> v] =

∑

i Pr[(Xtb
> v) ∧ (tb = i)], this completes

the proof of Lemma 11. ◭
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Proof of Theorem 8. The proof of Theorem 8 now follows as a direct corollary of Lemmas 9

and 11. Lemma 11 asserts that whenever the thresholds are “good”, Samples-CFHOV

achieves at least a 1/(1 + ε)3 fraction of the expected reward of Explicit-CFHOV (this is

because the expected reward of Samples-CFHOV is simply
∫

∞

0
Pr[Xt2

> v]dv ≥
∫

∞

0
Pr[Xt1

>

v]dv/(1 + ε)3, and the expected reward of Explicit-CFHOV is precisely
∫

∞

0
Pr[Xt2

> v]dv).

Lemma 9 asserts that the thresholds are good with probability at least 1− ε. So together,

Samples-CFHOV achieves at least a 1−ε
(1+ε)3 of the expected reward of Explicit-CFHOV. ◭
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