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ABSTRACT

We prove the first separation in the approximation guarantee

achievable by truthful and non-truthful combinatorial auctions with

polynomial communication. Specifically, we prove that any truthful

auction guaranteeing a (3/4 − 1/240 + ϵ )-approximation for two

buyers with XOS valuations overm items requires exp(Ω(ε2 ·m))

communication whereas a non-truthful auction by Feige [J. Comput.

2009] is already known to achieve a 3/4-approximation in poly(m)

communication.

We obtain our lower bound for truthful auctions by proving

that any simultaneous auction (not necessarily truthful) which

guarantees a (3/4−1/240+ε )-approximation requires communication

exp(Ω(ε2 ·m)), and then apply the taxation complexity framework

of Dobzinski [FOCS 2016] to extend the lower bound to all truthful

auctions (including interactive truthful auctions).

CCS CONCEPTS

• Theory of computation→ Algorithmic mechanism design.

KEYWORDS

Combinatorial Auctions, Simultaneous Communication, Lower

Bounds

ACM Reference Format:

Sepehr Assadi, Hrishikesh Khandeparkar, Raghuvansh R. Saxena, and S.

Matthew Weinberg. 2020. Separating the Communication Complexity of

Truthful and Non-truthful Combinatorial Auctions. In Proceedings of the

52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC ’20),

June 22ś26, 2020, Chicago, IL, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3357713.3384267

∗Part of this work was done while the first author was a postdoctoral researcher
at Princeton University and was supported in part by the Simons Collaboration on
Algorithms and Geometry. The third author is supported by the National Science
Foundation CAREER award CCF-1750443. The fourth author is supported by the
National Science Foundation NSF CCF-1717899.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC ’20, June 22ś26, 2020, Chicago, IL, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6979-4/20/06. . . $15.00
https://doi.org/10.1145/3357713.3384267

1 INTRODUCTION

Combinatorial auctions have been at the forefront of Algorithmic

Game Theory since the field’s inception, owing both to their rich

algorithmic theory and their economic relevance. In a combinatorial

auction, there are n bidders and a seller selling a set M of items.

Each bidder i has a ‘value’ for all possible subsets of the items.

These values are given by a valuation function vi : 2
M → R+. The

seller’s goal is to find a partition of theM items into disjoint sets

S1, · · · , Sn such that the welfare,
∑

i ∈[n]vi (Si ), is maximized.

The main difficulty faced by the seller in computing this partition

is the lack of knowledge of the bidders’ valuation functions. Indeed,

in a combinatorial auction, the seller needs to communicate with

the bidders in order to obtain information about their valuation

functions. The number of bits communicated between the seller

and the bidders is called the communication complexity of the

combinatorial auction, and is the main focus of this paper (and

many prior works, e.g., [LS05, NS06, Dob07, DN11, MSV08, Fei09,

DNS10, KV12, Dob16a, BMW18, EFN+19, AS19])

The actual communication complexity of a combinatorial auction

depends on whether the bidders are willing to report information

about their valuation functions to the seller truthfully or not. If not,

then, in order to compute anything meaningful, the seller needs to

appropriately incentivize the bidders so that they report truthfully.

When the bidders are incentivized to tell the truth, then the auction

is said to be truthful. Observe that truthful auctions are at least as

complex (require at least as much communication) as non-truthful

(or general) auctions where the bidders always report truthfully

(even without incentivization).

The main question we study in this paper is the following:

Are there instances where truthful combinatorial auctions require

strictly more communication than general auctions?

The VCG Mechanism: A Partial Answer. A partial answer to

the above question is given by the VCG mechanism due to

Vickrey [Vic61], Clarke [Cla71], and Groves [Gro73]. The VCG

mechanism implies that if there is a general auctionwith polynomial

(in |M |) communication that maximizes the welfare exactly, then,

there is also a truthful mechanism with polynomial communication

that does the same.

It turns out, that in most settings of interest, there are no

general auctions with polynomial communication that provide the

maximum possible welfare, and thus, the above result is vacuously

true. Naturally, therefore, researchers turned their attention to

auctions that approximate the optimal welfare, and studied the

above question in this case. The VCG mechanism was powerful
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enough to rule out some extreme cases (where the valuation

functions may be arbitrary) of the approximation-version of

the problem as well, and łVCG-basedž schemes were used to

show that general auctions require roughly the same amount of

communication as truthful auctions [Rag88, LOS02, LS05, NS06] in

these cases.

Other than these extreme cases, the problem remains wide open.

Beyond VCG: Gaps in Relevant Cases. As soon as one stops

considering arbitrary valuation functions, and restricts attention

to a subclass (say submodular, XOS, or subadditive), the state of

affairs is drastically different. Not only are there huge gaps in the

state of the art approximation guarantees provided by general and

truthful auctions [Dob07, Fei09, DNS10, FV10, AS19], but, despite

these huge gaps, there are no known (even small constant factor)

separations between the approximation guarantees provided by

general and truthful auctions.

Our main result provides the first such separation:

Main

Result (Informal). No poly-communication, deterministic

truthful auction for two bidders with XOS valuations achieves

an approximation guarantee better than 179
240 , whereas general

deterministic auctions can do so.

We note that the part of our main result that deals with general

auctions is well known and due to [Fei09]. Our contribution is the

lower bound for deterministic truthful auctions. In fact, our result

generalizes and even covers randomized auctions, but we defer the

formal statement to Theorem 3.12.

1.1 Other Related Work

Communication complexity separations. As mentioned above,

there are no known separations between the approximation

guarantees provided by general and truthful auctions. However,

some limited results in this direction are known.

For example, due to works of [DN11, BDF+10, DSS15], we

have a separation between general auctions and truthful łVCG-

basedž auctions when the valuation functions are from subclasses

such as submodular, XOS, or subadditive. Recall that VCG-based

auctions also show that there is no such separation from general

valuation functions [Rag88, LOS02, LS05, NS06]. On similar lines,

the work of [DN15] establishes that a separation between general

and truthful łscalablež auctions when valuation functions are from

a subclass called multi-unit valuations.

As both the above separations hold only for a subclass

of truthful auctions, they are weaker than our unconditional

separation. We note that the separation of [DN15] is also weaker

as it only separate guarantees achievable with poly-logarithmic

communication where as we separate guarantees achievable with

polynomial communication.

Other complexity measures. We conclude this related work

section with a brief overview of the line of work on the

computational complexity of combinatorial auctions. In this setting,

the resource of interest is the running-time of the bidders and

the seller during the auction. The story here is similar. The VCG

mechanism again shows that poly-time truthful auctions for the

optimal welfare are as powerful as general auctions. Again, optimal

welfare maximization is computationally hard except in very

restricted settings and it makes sense to consider approximations.

For approximate welfare maximization, just like before, VCG-

based schemes show that truthful and general auctions are equally

powerful for various ‘extreme’ cases [DNS10] (unless P = NP).

When it comes to approximate welfare maximization outside

these extreme cases, there is an interesting distinction between

the communication and computational complexity regimes. In the

computational complexity model, a strong separation between

truthful and general auctions is known when the valuation

functions are submodular (unless NP ⊆ RP). Details about this

separation can be found in the line of work due to [Von08, MSV08,

Dob11, DV11, DV12a, DV12b, DV16].

One can reasonably debate whether the computational or

communication model is more relevant, but most researchers tend

to view both models as extremely relevant (and the vast amount

of prior work in both models supports this view). If anything,

we argue that the communication model might be more relevant,

owing to odd technicalities associated with evaluating ‘demand

queries’ in ‘posted-price auctions’. We refer the reader to [CTW20]

or [BMW18] for a deeper comparison of the models, but will not

further belabor this comparison and take the position that major

open problems in both the communication and computational

models are extremely relevant.

1.2 Our Techniques

Our main result is an exponential lower bound on the

communication complexity of truthful auctions with two bidders

and XOS valuation functions, and we use the framework proposed

in the beautiful work of [Dob16b].

In [Dob16b], the authors show that for two bidders and XOS

valuations, the existence of a truthful auction with polynomial

communication implies the existence of a ‘simultaneous’ general

auction with polynomial communication. An auction is called

simultaneous if it involves the bidders sending exactly one message

to the seller. Furthermore, the messages sent by the two bidders are

not allowed to depend on each other. This is opposed to general

auction where the the bidders may send messages to the seller

across many rounds, where each message may depend on the

messages in all the previous rounds.

This theorem of [Dob16b] constitutes the first step in our result,

essentially converting the task of separating truthful auctions from

general auctions to the task of separating simultaneous general

auctions from general auctions. However, the latter task is still

highly non-trivial, and as the work [BMW18] shows, there are

provable barriers that such a separation must overcome.

Startlingly, we are able to turn some of the ideas used

by [BMW18] to show these barriers into a construction that

gets around the same barriers! At a super-high level, our

actual construction maintains two copies of the construction

of [BMW18] and argues about them simultaneously. A lot of

new ideas are needed, as, in particular, simply maintaining two

independent copies of the [BMW18] construction does not work,

and these copies need to be suitably correlated. Furthermore, these

correlations need to be precisely controlled, in order to deal with
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the ‘cross-terms’ originating from having two copies. In fact, these

cross-terms are the reason why the parameter 179
240 that we obtain

is slightly weaker than the one in [BMW18].

Describing all these additional ideas that go into our proof would

require, at least, a detailed overview of the work of [BMW18],

and we defer this to next section, where we give a step by step

construction of our lower bound.

2 DETAILED PROOF SKETCH

Our main result is an exponential lower bound on the

communication complexity of truthful auctions for two bidders with

XOS valuations that achieve an approximation guarantee better

than 179
240 . In this section, we gradually build various aspects of this

lower bound highlighting the roles they play. It should be noted that

the parameter 179
240 is not critically important, only that 179

240 <
3
4 , as

any number < 3
4 suffices to separate truthful auctions from general

auctions [Fei09].

In the rest of this text, we will use Alice and Bob to refer to the

two bidders and denote bym = |M |, the number of items on sale.

Often, we will refer to a subclass of XOS functions called binary

XOS (or BXOS) functions. A valuation function v is called binary

XOS if there exists a set C ⊆ 2M of subsets of M such that for all

subsets S ⊆ M , it holds that v (S ) = maxC ∈C |C ∩ S |. The set C is

called the set of clauses of v and each element C ∈ C is called a

clause. We shall sometimes refer to v simply by its set of clauses.

As mentioned in subsection 1.2, using the framework

of [Dob16b], to show our lower bound, it is sufficient to show

the same lower bound for simultaneous (possibly non-truthful)

auctions. In other words, it suffices to show that at the end of a

simultaneous auction with less than exponential communication,

the Seller cannot compute an allocation of items to Alice and Bob

with welfare within a factor of 3
4 of the optimal welfare.

2.1 The [BMW18] Construction

In the beautiful work of [BMW18], the authors consider the related

question of determining the optimal welfare up to a factor of 3
4 . In

general, for simultaneous auctions1, the question of determining

the optimal welfare is incomparable to the question of computing

an allocation with welfare close to the optimal. Thus, [BMW18]

does not directly imply anything about our problem. However, their

construction does serve as a starting point for ours.

In the construction of [BMW18], the valuation functions of Alice

and Bob are BXOS with exponentially many regular clauses but

may or may not include one special clause. It holds that the union of

a regular clause of Alice and a regular clause of Bob has size < 3
4m

whereas the union of the special clause of Alice with the special

clause of Bob has sizem. This means that determining the optimal

welfare up to a factor of 3
4 amounts to determining whether or not

Alice and Bob have the special clauses.

However, in the construction of [BMW18], the special clauses

of Alice and Bob are indistinguishable from the regular clauses.

Thus, determining whether or not one of their exponentially many

clauses is special requires exponential communication and the

desired lower bound follows.

1As is argued in [BMW18], this is true only for simultaneous auctions.

1 2 3 4 5 6

✓ ✓ ✓S :

✓ ✓ ✓T :

✓ ✓ ✓A :

✓ ✓ ✓B :

Figure 1: The construction of [BMW18]. Each of the

numbers 1 to 6 represents a group of m
6 items.

The structure of the clauses in [BMW18]. We now describe how

the clauses in [BMW18] are constructed more formally.

Call a pair of sets (S,T ) a basis if the sets S and T are of size m
2

and their intersection is of size m
3 . In [BMW18], a basis is sampled

uniformly at random from all possible bases, and the set S is told to

Alice and set T is told to Bob. We provide an illustration of a basis

in Figure 1 where each of the six blocks in a row represents a group

of m6 items.

Next, Alice’s regular clauses are constructed by uniformly

sampling sets of size m
2 that intersect S in m

3 places and Bob’s

regular clauses are constructed by uniformly sampling sets of size
m
2 that intersect T in m

3 places. Constructing the regular clauses

this way satisfies the two main properties needed for the argument

in [BMW18] to work:

• Firstly, it holds that the union of a regular clause of Alice

and a regular clause of Bob has size strictly less than 3
4m.

We explain why. As all regular clauses have size m
2 , it is

equivalent to describe why the intersection of a regular

clause of Alice and a regular clause of Bob has size strictly

more than m
4 . This is because if the sets S,T in the basis had

an intersection of size m
4 , the expected size of the intersection

of two independently random sets of size m
2 , then, as the

regular clauses of Alice and Bob are chosen independently

of each other, they will also behave like independently

chosen random sets and have an intersection of size m
4 in

expectation. In actuality, the sets S,T in the basis have an

intersection of size m
3 , more than the expected size of the

intersection of two independently random sets of size m
2 .

Thus, the regular clauses of Alice and Bob also intersect

more than random sets, i.e., in more than m
4 places.

• Secondly, such a sampling procedure allows one to ‘hide’ a

special clause inside the exponentially many regular clauses

sampled by Alice and Bob.

To see an illustration of how a special clause is hidden

amongst the regular clauses, observe the rows corresponding

to the special clausesA and B in Figure 1. The special clauses

for Alice and Bob are disjoint and their union is of size

m. Additionally, note that A intersects S in m
3 places and

similarly B intersects T in m
3 places, just like all the other

regular clauses. As the size of their intersections with S and
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T (respectively) are the same, Alice and Bob cannot tell the

special clauses (if they are present) apart from the regular

clauses.

A small generalization. In the presented construction, we thought

of each of the blocks from 1 to 6 in Figure 1 as representing a group

of m6 items. However, the exact same arguments (with numerically-

different calculations) would also apply to any construction where

blocks 1 and 2 represented u items, and blocks 3 through 6

represented v items (for any u,v).

With these additional parameters, it turns out (we omit the

calculations), that the size of the intersection of a regular clause of

Alice and a regular clause of Bob is:

2v3 + 2u2v + 3uv2

(u + 2v )3
·m.

The expression above is maximized when u = v (as observed

in [BMW18]) but is strictly larger than m
4 for all u,v such that

u < 2v (to get intuition for the breakpoint: when u = 2v ,

|S ∩T | = m
4 , and S,T behave like independently chosen sets). We

will use this idea later in our construction.

2.2 From the Decision Problem to the
Allocation Problem

The crucial difference between [BMW18] and our work is

that [BMW18] show that the problem of ‘deciding’ whether or

not the optimal welfare is close tom is hard while we wish to show

that the problem of ‘computing’ an allocation with welfare close

to the optimal is hard. As [BMW18] emphasize, these problems are

incomparable for simultaneous auctions.

Our lower bound is based on the following approach of going

from a lower bound for the decision problem to a lower bound

for the computation/allocation problem: Consider two copies of

the [BMW18] construction, where (a uniformly chosen) one is such

that Alice and Bob have the special clauses and the other one is

such that Alice and Bob do not have the special clauses. Suppose

further that the Seller can only allocate items in one of the two

copies.

We claim that the decision lower bound for [BMW18] implies an

allocation lower bound for this system. Indeed, the optimal welfare

of the copy with the special clauses is much larger than the optimal

welfare of the copy without the special clauses. Thus, any allocation

that allocates items in only one of the two copies and gets welfare

close to optimal must allocate items in the copy with the special

clause. But, this requires the Seller to at least determine which copy

has the special clause, which is hard owing to [BMW18].

Cross-terms. It remains now to transform the system with two

copies and a restriction on the Seller to only allocate items in one

of the two copies to a standard unrestricted combinatorial auction.

A first approach may be two have two bases (S1,T 1) and (S2,T 2)

on the same set of items and give Alice and Bob regular clauses

generated from both the bases together with a special clause from

(a uniformly random) one of the bases.

One would then hope that just like the system described above,

computing a good allocation for this system would require the

Seller to implicitly determine which basis does the special clause

1 2 3 4 5 6 7 8 9 10 11 12

✓ ✓ ✓ ✓ ✓ ✓S1 :

✓ ✓ ✓ ✓ ✓ ✓S2 :

✓ ✓ ✓ ✓ ✓ ✓T 1 :

✓ ✓ ✓ ✓ ✓ ✓T 2 :

✓ ✓ ✓ ✓ ✓ ✓A1 :

✓ ✓ ✓ ✓ ✓ ✓A2 :

✓ ✓ ✓ ✓ ✓ ✓B1 :

✓ ✓ ✓ ✓ ✓ ✓B2 :

Figure 2: An illustration of two correlated bases. Each

column denotes a group of m
12 items. This construction

works even if columns 1 through 8 denote groups of u items,

and columns 9 through 12 denote groups of v items, for any

u,v (see subsection 2.3).

come from, and maybe we can show that determining this is hard

a la [BMW18].

A little more thought reveals that this is not actually the case,

and the reason is that having two bases on the same set of items

gives rise to ‘cross-terms’. Specifically, if we have two bases on the

same set of items, then not only do we have to argue about the size

of the union of regular clauses from basis 1 of Alice and regular

clauses from basis 1 of Bob, but we also need to argue about the

size of the union of regular clauses from basis 1 of Alice and regular

clauses from basis 2 of Bob.

These additional unions, which we call the cross-terms, imply

that the two bases must necessarily be correlated in order to avoid

the issues described in subsection 2.1. Namely, if the two bases are

independent, then S1 and T 2 intersect in m
4 places in expectation

(like sets of size m
2 chosen independently), implying in turn that

the size of the union of regular clauses from basis 1 of Alice and

regular clauses from basis 2 of Bob is 3
4m in expectation. This is

too large for our lower bound, as we need the union to be of size

strictly less than 3
4m in expectation.

2.3 Finding the Right Correlations

As motivated in the foregoing section, it is essential to have the

two bases be suitably correlated to deal with the cross-terms. What

is the right way to correlate these bases? It would be ideal if the

cross terms coming from the ‘cross-pairs’ S1,T 2 and S2,T 1 behave

exactly like the terms coming from two bases (S1,T 1) and (S2,T 2).

If we can make this happen, then the argument that shows why

the size of the union of regular clauses from basis 1 of Alice and

regular clauses from basis 1 of Bob is < 3
4m would extend to also

show that the size of the cross-terms is < 3
4m.

In order to show that sets S1,T 2 and S2,T 1 behave like bases, we

need to ensure that their intersections, namely S1 ∩T 2 and S2 ∩T 1

have size m
3 , just like the intersections of two sets in a basis. Is it

possible to have sets that behave in this way?

The answer turns out to be yes, and one such construction is

described in Figure 2. In Figure 2, each of the 12 columns denotes

a group of m
12 items, making a total ofm items, and a ✓ in row S1

and column 1 means that the first m
12 items are present in the set

S1. Importantly, note that the tuples (S1,T 1) and (S2,T 2) behave
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like a [BMW18] basis, and have four columns in their intersection,

amounting to m
3 items, and so do the cross-terms (S1,T 2) and

(S2,T 1).

Thus, the construction in Figure 2 has fixed the issue with the

cross-terms described in the foregoing section, but there is one

more step needed to finish the proof.

Special cross-terms. Just like there are cross terms coming from

regular clauses from basis 1 of Alice and regular clauses from basis

2 of Bob, there are also cross terms coming from regular clauses

from basis 1 of Alice and special clauses from basis 2 of Bob (and

vice-versa)2.

Before we describe how we deal with these ‘special cross-terms’,

we first need to define the special clauses in our system. We omit

defining them precisely in this sketch but mention here that the

fact that the special clauses need to be indistinguishable from the

regular clauses impose a lot of constraints on their structure. In fact,

the special clauses need to more or less look like the setsA1,A2, B1,

and B2 in Figure 2, where again a ✓ in a given column indicates

that the corresponding group of m
12 items is in the set.

With this definition of special clauses, one can calculate the

expected intersection of the special cross terms and check if it is

> m
4 or not. It turn out that with the construction in Figure 2, this

size is exactly m
4 and work needs to be done to increase it. It is here

that we use the generalization of [BMW18] given in subsection 2.1,

and let the blocks of items have unequal size. We’ll assume that the

first 8 columns in Figure 2 denote groups of u items each, and the

last 4 columns denote groups of v items each. For general u, v , the

intersection of the regular cross terms has size:

5u2v + u3 + 6uv2 + 2v3

2(u + 2v )2 (2u +v )
·m.

On the other hand, the intersection of a special cross terms has

size:
16uv + 5u2 + 6v2

12(u + 2v ) (2u +v )
·m.

In fact, the parameter governing our lower bound is theminimum

of the two expressions above, and this is maximized when v
u =

1 +

√

3
2 . For simplicity sake, we present our main results assuming

v
u = 2when theminimumof the two expressions above is 61m

240 >
m
4 .

The value 61m
240 corresponds to the the parameter 179

240 in our main

result.

3 MODELS AND PRELIMINARIES

All logarithms are to the base 2, unless noted otherwise. We shall

denote sequences with a⃗ on top, e.g., S⃗ . We shall use S⃗ ∥S⃗ ′ to denote
the concatenation of the sequences S⃗ and S⃗ ′. Similarly, we shall

use S⃗ ∥S ′′ to denote the sequence formed by appending the single

element S ′′ to the sequence S⃗ . Let k > 0 and S⃗ = S1, S2, · · · , Sk
be a sequence of k sets. For a function f defined on sets, we shall

use f (S⃗ ) to denote the sequence f (S1), · · · , f (Sk ). Thus, |S⃗ | shall
denote the sequence |S1 |, · · · , |Sk | and S⃗∩A, for a setA, shall denote
the sequence S1 ∩A, · · · , Sk ∩A, etc.

2We do not have to deal with cross terms coming from special clauses from basis 1
of Alice and special clauses from basis 2 of Bob as only one of the bases will have a
special clause in our construction.

We will use Z to denote the set of integers and R to denote the

set of all real numbers. We also define R+ to denote the set of all

non-negative real numbers. If S is a set, then 2S will denote the

power set, i.e., the set of all subsets, of S . Additionally, we shall

denote using S∗ the set ∪i≥0Si , where Si , for i > 0, is the set of all

strings of length i that can be formed with elements of S , and S0 is

the set containing only ε , the empty string. The length of a string

σ will be denoted using len(σ ), e.g., len(ε ) = 0.

Let t ≥ 1 be an integer.We define [t] = {1, · · · , t }. For a tupleX =
(X1, · · · ,Xt ) and integer i ∈ [t], we define X<i = (X1, · · · ,Xi−1)
and X−i = (X1, · · · ,Xi−1,Xi+1, · · · ,Xt ).

We will use U (S ) to denote the uniform distribution over a

finite set S . If X is a random variable, then dist(X ) will denote the

distribution of the values taken by X .

Concentration inequalities. We use the following version of

Chernoff bound for negatively correlated random variables:

Definition 3.1 (Negatively Correlated Random Variables).

For n > 0, let X1, · · · ,Xn be random variables that take values in

{0, 1}. We say that the random variables X1, · · · ,Xn are negatively

correlated if for all subsets S ⊆ [n], we have Pr(∀i ∈ S : Xi = 1) ≤
∏

i ∈S Pr(Xi = 1).

Lemma 3.2 (Generalized Chernoff Bound; cf. [PS97]). For

n > 0, let X1, · · · ,Xn be negatively correlated random variables

that take values in {0, 1}. Then, for any ϵ > 0, we have (where

µ =
∑

i ∈[n] E[Xi ] ≤ n):

Pr
*.
,

∑

i ∈[n]
Xi > µ + ϵn

+/
-
≤ Pr

*.
,

∑

i ∈[n]
Xi > (1 + ϵ ) · µ+/

-
≤ exp(−ε2 ·

∑

i ∈[n]
µ/3).

3.1 Tools from Information Theory

This section includes a very brief summary of the tools from

information theory that we use in this paper. We refer the interested

reader to the text by Cover and Thomas [CT06] for an excellent

introduction to this field.

3.1.1 Entropy and Mutual Information.

Definition 3.3 (Entropy). The Shannon Entropy of a discrete

random variable X is defined as

H(X ) =
∑

x ∈supp(X )

Pr(X = x ) log
1

Pr(X = x )
,

where supp(X ) is the set of all values X can take and 0 log 1
0 = 0 by

convention.

Definition 3.4 (Conditional Entropy). LetX andY be discrete

random variables. The entropy of X conditioned on Y is defined as

H(X | Y ) = E
y∼dist(Y )

[H(X | Y = y)] .

Definition 3.5 (Mutual Information). Let X , Y , and Z be

discrete random variables. The mutual information between X and Y

is defined as

I(X ;Y ) = H(X ) − H(X | Y ).
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The conditional mutual information between X and Y conditioned on

Z is defined as:

I(X ;Y | Z ) = H(X | Z ) − H(X | YZ ).

We note that mutual information is symmetric in X and Y , i.e.

I(Y ;X | Z ) = I(X ;Y | Z ) and I(X ;Y ) = I(Y ;X ).

Fact 3.6. The following holds for discrete random variables

W ,X ,Y ,Z :

(1) We haveH(XY ) = H(X )+H(Y | X ) ≤ H(X )+H(Y ). Equality

holds if X and Y are independent.

(2) If the random variable X takes values in the set Ω, it holds

that 0 ≤ H(X ) ≤ log|Ω |.
(3) We have 0 ≤ I(X ;Y | Z ) ≤ H(X ) and I(X ;Y | Z ) = 0 if and

only if X is independent of Y given Z .

(4) If A, B, C , D are random variables, then

I(WX ;Y | Z ) = I(W ;Y | Z ) + I(X ;Y |WZ ).

We also use the following technical lemmas about mutual

information.

Lemma 3.7. For discrete random variablesW , X , Y , and Z , we

have

max(I(W ;X | YZ ), I(Y ;X | Z )) ≤ I(W ;X | Z ) + I(Y ;X |WZ ).

Proof. Observe that:

max(I(W ;X | YZ ), I(Y ;X | Z )) ≤ I(W ;X | YZ ) + I(Y ;X | Z )
(item 3, Fact 3.6)

= I(WY ;X | Z ) (item 4, Fact 3.6)

= I(W ;X | Z ) + I(Y ;X |WZ ).

(item 4, Fact 3.6)

□

Lemma 3.8. Let n > 0 and X = X1,X2, · · · ,Xn where

X1,X2, · · · ,Xn are independent and identically distributed discrete

random variables. Let I be a random variable distributed uniformly

over [n]. For all discrete random variablesY such thatX is independent

of Y and I is independent of (X ,Y ) and all functions f , we have:

I(XI ; f (X ,Y ) | Y , I ) ≤
1

n
· I(X ; f (X ,Y ) | Y ).

Proof. The proof of this lemma can be found in the full

version. □

3.1.2 Measures of Distance Between Distributions. We use two

main measures of distance (or divergence) between distributions,

namely the Kullback-Leibler divergence (KL-divergence) and the

total variation distance.

Definition 3.9 (KL-divergence). For two distributions µ and ν

over the same set Ω, the Kullback-Leibler divergence between µ and

ν , denoted by D(µ | | ν ), is defined as

D(µ | | ν ) =
∑

x ∈Ω
µ (x ) log

µ (x )

ν (x )
.

Definition 3.10 (Total Variation Distance). For two

distributions µ and ν over the same set Ω, the total variation distance

µ and ν is defined as

∥µ − ν ∥tvd := max
Ω′⊆Ω

∑

x ∈Ω′
µ (x ) − ν (x ).

These definitions satisfy the following properties:

Fact 3.11. The following hold:

(1) For discrete random variables X , Y , and Z , we have

I(X ;Y | Z )
= E

(y,z )∼dist((Y ,Z ))
[D(dist(X | Y = y,Z = z) | | dist(X | Z = z))] .

(2) (Pinsker’s inequality) For any distributions µ and ν , we have

∥µ − ν ∥tvd ≤
√

1
2 · D(µ | | ν ).

3.2 Combinatorial Auctions

We now formally define the setting of two player combinatorial

auctions. Let m > 0 and V be a non-empty set of functions

from 2[m] to R. A deterministic,m-item,V-combinatorial auction

Π with two bidders and one seller is defined by five functions

Π = ( f A, f B, f S, alloc, price), of types

f A, f B : V × ({0, 1}∗)∗ → {0, 1}∗,

f S :
({0, 1}∗)∗ × ({0, 1}∗)∗ → ({0, 1}∗ × {0, 1}∗) ∪ {(⊥,⊥)},

alloc :
({0, 1}∗)∗ × ({0, 1}∗)∗ → 2[m] × 2[m],

price :
({0, 1}∗)∗ × ({0, 1}∗)∗ → R × R,

where ⊥ is a special symbol. Furthermore, we require that, for

any input to the function alloc, the pair of sets output by alloc are

disjoint.

Observe that the output of functions f S, alloc, price is a pair.

We shall use f S→A (respectively, f S→B) to denote the function,

that on every input, outputs the first (resp. second) element in

the pair output by f S on the same input. We define the functions

allocA, allocB, priceA, priceB analogously.

We define a randomized auction to be a distribution over

deterministic auctions.

Execution of an auction. A deterministic, m-item, V-

combinatorial auction Π = ( f A, f B, f S, alloc, price) takes place

as follows: At the beginning of the auction, the Seller hasm items

for sale and Alice and Bob have functions vA ∈ V and vB ∈ V
respectively as input. The auction takes place in multiple rounds,

where before round i , for i > 0, it holds that Alice has received

a transcript σA
<i ∈ ({0, 1}∗)i−1 from the Seller, Bob has received

a transcript σB
<i ∈ ({0, 1}∗)i−1 from the Seller, and the Seller has

received transcripts σA→S
<i ,σ

B→S
<i ∈ ({0, 1}∗)i−1 from Alice, Bob

respectively.

In round i , Alice and Bob send messages σA→S
i = f A (vA,σA

<i )

and σB→S
i = f B (vB,σB

<i ) to the Seller respectively. The Seller

appends these to the transcripts σA→S
<i ,σ

B→S
<i respectively to get

transcripts σA→S
≤i ,σ

B→S
≤i ∈ ({0, 1}∗)i (respectively). Thereafter, the

seller sends a message σA
i = f S→A (σA→S

≤i ,σ
B→S
≤i ) to Alice and a

message σB
i = f S→B (σA→S

≤i ,σ
B→S
≤i ) to Bob.

If (σA
i ,σ

B
i ) , (⊥,⊥), then Alice (resp. Bob) append σA

i to σA
<i

(resp. σB
<i ) to get transcript σ

A
≤i (resp. σ

B
≤i ) and continue round i +1

of the auction. On the other hand, if (σA
i ,σ

B
i ) = (⊥,⊥), then the

auction terminates after round i and no further communication
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takes place. The Seller outputs an allocation (OA,OB) =

alloc(σA→S
≤i ,σ

B→S
≤i ), and prices (pA,pB) = price(σA→S

≤i ,σ
B→S
≤i ).

Observe that, if Π is deterministic, then, the values of (OA,OB)

and (pA,pB) are completely determined by Π and the inputs vA,vB

to Alice and Bob respectively. We sometimes denote these values

by (OA,OB) = allocΠ (v
A,vB) and (pA,pB) = priceΠ (v

A,vB). We

will also use the shorthand OA
= allocA

Π
(vA,vB), etc.

Relevant properties of an auction. In this paper, we will only

consider the following parameters of an auction:

• Rounds: For a deterministic auction Π, and vA,vB ∈ V ,

define RΠ (v
A,vB) = R if the execution of Π when Alice and

Bob have inputs vA,vB respectively terminates after round

R. If the execution does not terminate at all, then we define

RΠ (v
A,vB) = ∞.

We say that Π has R rounds if, for all vA,vB ∈ V , we have

RΠ (v
A,vB) = R. A randomized auction has R rounds if all

the deterministic auctions in its support have R rounds. If

a deterministic or randomized auction has exactly 1 round,

then, we say that the auction is simultaneous.

• Communication complexity: For a deterministic auction

Π, and vA,vB ∈ V , we define CCΠ (v
A,vB) = ∞ if

RΠ (v
A,vB) = ∞. On the other hand, if RΠ (v

A,vB) = R < ∞,
then we define

CCΠ (v
A,vB) =

∑

i≤R
len(σA→S

i )+len(σB→S
i )+

∑

i<R

len(σA
i )+len(σ

B
i ).

In the above equation, the values σA→S
i , σB→S

i , etc. denote

the corresponding values in an execution of Π when Alice

has input vA and Bob has input vB. These values are well

defined as Π is deterministic.

We define CC(Π) = maxvA,vB∈V CCΠ (v
A,vB). Finally we

define CC(Π′), for a randomized auction Π
′ to be the largest

value ofCC(Π) for all deterministic auctions Π in its support.

• Truthfulness: We say that a deterministic auction Π is

truthful if for all vA,vB,v ′ ∈ V , we have

vA (allocA
Π
(vA,vB)) − priceA

Π
(vA,vB)

≥ vA (allocA
Π
(v ′,vB)) − priceA

Π
(v ′,vB)

vB (allocB
Π
(vA,vB)) − priceB

Π
(vA,vB)

≥ vB (allocB
Π
(vA,v ′)) − priceB

Π
(vA,v ′)

We say that randomized auction is truthful if all the

deterministic auction in its support are truthful.

• Approximation guarantee:

For m,V as above and vA,vB ∈ V , define the function

opt(vA,vB) = maxSA,SB⊆[m]:SA∩SB
=∅v

A (SA)+vB (SB). Let ν

be a distribution over pairs drawn fromV and α ,p > 0. We

say that a deterministic auction Π is α-approximate over ν

with probability p if we have

Pr
(vA,vB )∼ν

(

vA (allocA
Π
(vA,vB)) +vB (allocB

Π
(vA,vB))

> α · opt(vA,vB)
)

≥ p.

On the other hand, we say that a randomized auction Π
′ is

α-approximate with probability p if for all vA,vB ∈ V , we

have:

Pr
Π

(

vA (allocA
Π
(vA,vB)) +vB (allocB

Π
(vA,vB))

> α · opt(vA,vB)
)

≥ p,

where the probability is over all deterministic auctions Π in

the support of Π′.

3.3 The Formal Statement of Our Main Result

We now formalize our main result. For m > 0, let BXOSm be

the class of all functions v : 2[m] → R such that for some

set of sets C ⊆ 2[m], it holds that, for all S ∈ 2[m], we have

v (S ) = maxC ∈C {|S ∩C |}. Also, define XOSm ⊇ BXOSm to be the

class of all functions v : 2[m] → R such that for a subset C ⊆ Rm
+
,

it holds that, for all S ∈ 2[m], we have v (S ) = maxc ∈C {
∑

i ∈S ci }.

Theorem 3.12 (Main Result). There exists a constant β > 0 such

that for all ϵ > 0, there is a constantm0 > 0 satisfying the following:

For all m > m0, any randomized, m-item, XOSm-combinatorial

auction Π with two bidders and one seller that is truthful and
(

3
4 −

1
240 + ϵ

)

-approximate with probability 1
2 + exp(−βϵ2 · m)

satisfies

CC(Π) ≥ exp(βϵ2 ·m).

To show Theorem 3.12, we use the framework due to [Dob16b].

Formally, we use the following theorem from [Dob16b].

Theorem 3.13 ([Dob16b]). There exists a polynomial P (·) such
that for all m,p,α > 0 and all randomized, m-item, XOSm-

combinatorial auction Π with two bidders and one seller that is

truthful and α -approximate with probability p, there is a randomized,

m-item, XOSm-combinatorial auction Π
′ with two bidders and one

seller that is simultaneous and α -approximate with probability p, and

satisfies CC(Π′) ≤ P (max(CC(Π),m)).

It follows from Theorem 3.13 that the following theorem implies

Theorem 3.12. We include a proof below for completeness.

Theorem 3.14. For all ϵ > 0, and allm > 1010

ϵ 2
, any randomized,

m-item, BXOSm-combinatorial auction Π with two bidders and one

seller that is simultaneous and
(

3
4 −

1
240 + ϵ

)

-approximate with

probability 1
2 + exp

(

− ϵ 2m500
)

satisfies

CC(Π) ≥ exp

(

ϵ2m

500

)

.

Proof of Theorem 3.12 assuming Theorem 3.14. Proof by

contradiction. Suppose that Theorem 3.14 is true and Theorem 3.12

is not. Let P (·) be the polynomial promised by Theorem 3.13 and

let d be the degree of P . Define β = 1
500(d+1)

. Let ϵ⋆ > 0 be the

constant promised by the negation of Theorem 3.12 for this value

of β (recall that we assume that Theorem 3.12 is false). Let m1

to be large enough so that (1) P (m′) ≤ m′d+1 for all m′ > m1,

(2) exp(βϵ2
⋆
·m′) ≥ m′ for allm′ > m1, (3)m1 >

1010

ϵ 2
⋆

.

Using our assumption that Theorem 3.12 is false, we get that

there is anm > m1, and a randomized,m-item, XOSm -combinatorial

auction Π with two bidders and one seller that is truthful, is
(

3
4 −

1
240 + ϵ⋆

)

-approximate with probability 1
2 + exp(−βϵ2

⋆
·m),

and satisfies CC(Π) < exp(βϵ2
⋆
·m).

Plugging Π into Theorem 3.13, we get a randomized, m-item,

XOSm -combinatorial auctionΠ′with two bidders and one seller that
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is simultaneous and
(

3
4 −

1
240 + ϵ⋆

)

-approximate with probability

1
2 + exp(−βϵ

2
⋆
·m) > 1

2 + exp
(

− ϵ
2
⋆
m

500

)

and satisfies (usingm > m1)

CC(Π′) < P (max(exp(βϵ2⋆ ·m),m)) ≤ exp *
,

ϵ2
⋆
m

500
+
-
.

This contradicts Theorem 3.14 and we are done. □

The rest of this paper is devoted to showing the lower bound in

Theorem 3.14. By Yao’s minimax principle, in order to a lower bound

CC(Π) for randomizedm-item simultaneous auctions Π that are

α-approximate with probability p (for somem,α ,p), it is sufficient

to show a distribution ν over pairs of functions in BXOSm , such that

all deterministic simultaneous auctions Π′ that are α-approximate

over ν with probability p have large CC(Π′). We construct ν in

section 4 and analyze it in section 5.

4 OUR CONSTRUCTION

For the purposes of this section, we fixm > 0. We denote the set

[m] using the letterM . If S is a subset ofM , then we use S to denote

M \ S , i.e., the set of items inM that are not in S .

We give a formal definition of our lower bound instance.

In our proof below, we omit the proof of some of the lemmas.

The interested reader can find them in the full version of our paper.

4.1 Partitions

Let k > 0. We say that a sequence P⃗ = P1, P2, · · · , Pk of subsets

of M forms a partition of M into k sets if the sets P1, · · · , Pk are

pairwise disjoint and their union isM . Formally, it should hold that

Pi ∩ Pj = ∅ for all i , j ∈ [k] and ∪i ∈[k]Pi = M . For a partition

P⃗ = P1, P2, · · · , Pk of M into k sets, and an element z ∈ M , we

define P⃗[z] to be the unique i ∈ [k] such that z ∈ Pi . Observe that
our definition of a partition above ensures that P⃗[z] is well-defined

for all z.

Definition 4.1. We say that a tuple (k, P⃗ , p⃗) is a partition

parameter if k > 0, P⃗ = P1, · · · , Pk is a partition ofM into k sets, and

p⃗ = p1,p2, · · · ,pk is a sequence of integers satisfying 0 ≤ pi ≤ |Pi |
for all i ∈ [k].

For a partition parameter (k, P⃗ , p⃗), we define PC(k, P⃗ , p⃗) to be the

uniform distribution over all setsU satisfying

|P⃗ ∩U | = p⃗.
Furthermore, define PC-ally(k, P⃗ , p⃗) to be the distribution over

subsets of M such that we have PrU∼PC-ally(D ) (z ∈ U ) =
p
P⃗ [z]

|P
P⃗ [z]
|

independently for all z ∈ M .

We will need the following technical lemmas about partition

parameters

Lemma 4.2. For any subset S ⊆ M and any partition parameter

(k, P⃗ , p⃗), it holds that

Pr
U∼PC(k, P⃗,p⃗ )

(U ∩ S = ∅) ≤ Pr
U∼PC-ally(k, P⃗,p⃗ )

(U ∩ S = ∅).

Corollary 4.3. For any partition parameter (k, P⃗ , p⃗) and any

distribution D∗ over subsets ofM , it holds that

Pr
U∼PC(k, P⃗,p⃗ )

U ∗∼D∗

(U ∩U ∗ = ∅) ≤ Pr
U∼PC-ally(k, P⃗,p⃗ )

U ∗∼D∗

(U ∩U ∗ = ∅).

Lemma 4.4. For any partition parameters (k, P⃗ , p⃗) and (k ′, P⃗ ′, p⃗′),
it holds for all ϵ > 0 that

Pr
U∼PC(k, P⃗,p⃗ )

U ′∼PC(k ′, P⃗ ′,p⃗′)

( |U ∩U ′ | < ∆ − ϵm) ≤ exp(−ϵ2 (m − ∆)/3),

where

∆ =

∑

i ∈[k]: |Pi |>0

∑

i′∈[k ′]: |P ′
i′ |>0

pip
′
i′
|Pi ∩ P ′i′ |
|Pi | · |P ′i′ |

.

4.2 The Function Part

Let k > 0. For any sequence S⃗ = S1, · · · , Sk of k subsets of M and

any sequence b⃗ = b1, · · · ,bk of bits, we define the set

Part
S⃗
(b⃗) = {z ∈ M | ∀i ∈ [k] : 1(z ∈ Si ) = bi } .

We use Part
S⃗
to denote the sequence of sets {Part

S⃗
(b⃗)}

b⃗ ∈{0,1}k

ordered lexicographically according to b⃗. Observe that the sequence

Part
S⃗
forms a partition ofM into 2k sets. Wewill need the following

result about Part.

Lemma 4.5. Let k,k1,k2 > 0 and consider a⃗j ∈ Z2
k+kj

for

j ∈ {1, 2}. Let S⃗ be a sequence of k subsets of M . For j ∈ {1, 2},
define µ j to be the uniform distribution over all sequences S⃗j of kj
subsets ofM satisfying |Part

S⃗ ∥S⃗j | = a⃗j .

For any a⃗ ∈ Z
2k+k1+k2 such that

Pr
S⃗1∼µ1, S⃗2∼µ2

(

|Part
S⃗ ∥S⃗1 ∥S⃗2 | = a⃗

)

> 0, we have for all j ∈ {1, 2}

and all sequences Z⃗ of subsets ofM ,

Pr
S⃗j∼µ j

(

S⃗j = Z⃗
)

= Pr
S⃗1∼µ1
S⃗2∼µ2

(

S⃗j = Z⃗ | |Part
S⃗ ∥S⃗1 ∥S⃗2 | = a⃗

)

.

Corollary 4.6. Let k > 0 and a⃗1, a⃗2 ∈ Z2
k
be arbitrary. Let S⃗

be a sequence of k subsets of M . For j ∈ {1, 2}, define µ j to be the
uniform distribution over all sets A ⊆ M satisfying |Part

S⃗
∩A| = a⃗j .

For any a⃗ ∈ Z
2k such

that PrA1∼µ1,A2∼µ2
(

|Part
S⃗
∩A1 ∩A2 | = a⃗

)

> 0, we have for all

j ∈ {1, 2} and all subsets Z ⊆ M ,

Pr
Aj∼µ j

(

Aj = Z
)

= Pr
A1∼µ1
A2∼µ2

(

Aj = Z | |Part
S⃗
∩A1 ∩A2 | = a⃗

)

.

4.3 Bases and Clauses

We next define the notion of a basis.

Definition 4.7 (Basis). A pair S = (S1, S2) of subsets ofM forms

a basis if

|PartS | =
(

5m

16
,
3m

16
,
3m

16
,
5m

16

)

.

We reserve the letters S and T to denote bases. Note that if

S = (S1, S2) is a basis, then the pair Sr ev = (S2, S1) is also a basis.

For notational convenience, we will treat bases as a sequence of

two sets, and omit the⃗ sign. We have the following definition:

Definition 4.8 (Compatible Bases). We say that basis S is

compatible with basis T if

|PartS ∥T | =
(

4m

16
,
m

16
, 0, 0, 0,
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m

16
,
2m

16
, 0,

m

16
, 0,

m

16
,
m

16
, 0,

m

16
, 0,

4m

16

)

= ⃗cmp, say.

An example of a basis S that is compatible with T is depicted in

Figure 3. We note that Definition 4.8 is not symmetric, i.e., basis S

may be compatible with T without basis T being compatible with

S . However, it holds that if basis S is compatible with T , then basis

T r ev is compatible with basis Sr ev .

We will use ξsinдle to denote the uniform distribution over all

bases and ξ to denote the uniform distribution over pairs of bases

S,T such that S is compatible with T .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓S1 :

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓S2 :

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓T 1 :

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓T 2 :

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓A1
⋆
:

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓A2
⋆
:

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓B1
⋆
:

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓B2
⋆
:

Figure 3: A basis S = (S1, S2) that is compatible with another

basis T = (T 1,T 2). Also pictured: a pair of sets (A1
⋆
,A2

⋆
)

special with respect to (S,T ) (see subsubsection 4.3.2).

Observe that (B2
⋆
,B1

⋆
) = (A2

⋆
,A1

⋆
) is special with respect to

(T r ev , Sr ev ). Here, the blocks inside each column correspond

to the samem/16 elements.

4.3.1 Regular Clauses. We next define:

Definition 4.9 (Clause). Let S = (S1, S2) be basis. We say that

a set A ⊆ M is a clause with respect to S if

|PartS ∩A| =
(

2m

16
,
m

16
,
2m

16
,
3m

16

)

= ⃗reg, say.

We define µsinдle (S ) to be the uniform distribution over all

clauses with respect to S . Observe that the distribution µsinдle (S ) =

PC(4,PartS , ⃗reg). We also define:

Definition 4.10 (The distribution µ (·)). Let S = (S1, S2) be

a basis. A pair (A1,A2) of subsets of M is called a clause pair with

respect to S if A1 be a clause with respect to S , A2 be a clause with

respect to Sr ev and we have

|PartS ∩A1 ∩A2 | =
(

0, 0,
m

16
,
m

16

)

= ⃗regpair, say.

We define µ (S ) to be the uniform distribution over all clause pairs

with respect to S .

Observation 4.11. Observe that for any basis S , the fact that a

pair of sets (A1,A2) is a clause pair with respect to S implies that

|PartS |, |PartS ∩A1 |, |PartS ∩A2 |, and |PartS ∩A1 ∩A2 | are all

fixed functions ofm. This means that there exist a vector ⃗pair such

that (A1,A2) is a clause pair with respect to S if and only if

|PartS ∥A1 ∥A2 | = ⃗pair.

In our lower bound construction, Alice’s regular clauses are

drawn from the distribution µ (S ) while Bob’s regular clauses are

drawn from the distribution µ (T ), where S and T are bases such

that S is compatible with T . The following lemma shows that the

intersection of a regular clause of Alice and a regular clause of Bob

has size at least 51m
200 >

m
4 (with high probability).

Lemma 4.12. Consider ϵ > 0 and bases S,T such that S is

compatible with T . For all i, j ∈ {1, 2}, we have

Pr
(A1

,A2 )∼µ (S )
(B2

,B1 )∼µ (T r ev )

(

|Ai ∩ B j | < 51m

200
− ϵm

)

≤ exp(−ϵ2m/20).

4.3.2 Special Clauses.

Definition 4.13 (Special clauses). Let S,T be bases such that

S is compatible with T . We say that a set A⋆ ⊆ M is 1-special with

respect to (S,T ) if:

|PartS ∥T ∩A⋆ | =
(

2m

16
, 0, 0, 0, 0,

m

16
, 0, 0,

m

16
, 0,

m

16
, 0, 0,

m

16
, 0,

2m

16

)

= ⃗spec1, say.

Similarly, we say that A⋆ is 2-special with respect to (S,T ) if:

|PartS ∥T ∩A⋆ | =
(

2m

16
, 0, 0, 0, 0, 0,

2m

16
, 0,

m

16
, 0, 0, 0, 0,

m

16
, 0,

2m

16

)

= ⃗spec2, say.

For i ∈ {1, 2}, we define µi
⋆,sinдle

(S,T ) to be the uniform

distribution over all sets that are i-special with respect to (S,T ).

Observe that µi
⋆,sinдle

(S,T ) = PC
(

16,PartS ∥T , ⃗speci

)

for i ∈
{1, 2}. Next, define:

Definition 4.14 (The distribution µ⋆(·)). Let S,T be bases

such that S is compatible with T . We say that a pair of sets (A1
⋆
,A2

⋆
)

is special with respect to (S,T ) ifA1
⋆
is 1-special with respect to (S,T )

and A2
⋆
is 2-special with respect to (S,T ) and

|PartS ∥T ∩A1
⋆ ∩A2

⋆ | = (0, 0, 0, 0, 0, 0, 0, 0,

m

16
, 0, 0, 0, 0,

m

16
, 0, 0

)

= ⃗specpair, say.

We define µ⋆(S,T ) to be the uniform distribution over all pairs of

sets that are special with respect to (S,T ).

Observation 4.15. Observe that for bases S,T such that S

is compatible with T , the fact that a pair of sets (A1
⋆
,A2

⋆
) is

special with respect to (S,T ) implies that |PartS ∥T |, |PartS ∥T ∩A1
⋆
|,

|PartS ∥T ∩A2
⋆
|, and |PartS ∥T ∩A1

⋆
∩A2

⋆
| are all fixed functions of

m. This means that there exist a vector o⃗pt such that (A1
⋆
,A2

⋆
) is

special with respect to (S,T ) if and only if

|PartS ∥T ∥A1
⋆
∥A2

⋆

| = o⃗pt.

We reserve o⃗pt to denote this vector for the rest of this document.

Furthermore, observe that any pair (A1
⋆
,A2

⋆
) that is special with

respect to (S,T ) is a clause pair with respect to S . Thus, for all

Z 1,Z 2 ⊆ M , we have that

Pr
(A1

⋆
,A2

⋆
)∼µ⋆ (S,T )

(

(A1
⋆,A

2
⋆) = (Z 1,Z 2)

)

= Pr
(A1,A2 )∼µ (S )

(

(A1,A2) = (Z 1,Z 2) | |PartS ∥T ∥A1 ∥A2 | = o⃗pt
)

.

Recall that if S is compatible with T , then T r ev is compatible

with Sr ev . It can be verified from Definition 4.14 that (A1
⋆
,A2

⋆
)

is special with respect to (S,T ) if and only if (A2
⋆
,A1

⋆
) is special
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with respect to (T r ev , Sr ev ). See Figure 3 for a depiction of such a

configuration of sets.

Next, we show, in Lemma 4.16, an analogue of Lemma 4.12 for

special sets. Just like Lemma 4.12 shows that the intersection of a

regular clause of Alice and a regular clause of Bob has size > m
4

with high probability, Lemma 4.16 shows that if (A1
⋆
,A2

⋆
) is special

with respect to (S,T ), then, intersection ofA1
⋆
with any clause with

respect to T r ev and the intersection of A2
⋆
with any clause with

respect to T has size > m
4 with high probability.

We note that Lemma 4.16 does not make similar claims regarding

the intersection of A1
⋆

and clauses with respect to T and the

intersection of A2
⋆
and clauses with respect to T r ev . This is no

coincidence, as these intersections have size < m
4 (with high

probability).

Lemma 4.16. Consider ϵ > 0 and bases S,T such that S is

compatible with T . For all i ∈ {1, 2}, we have

Pr
(A1

⋆
,A2

⋆
)∼µ⋆ (S,T )

(B2
,B1 )∼µ (T r ev )

(

|Ai⋆ ∩ B3−i | <
61m

240
− ϵm

)

≤ exp(−ϵ2m/20).

4.4 The Distribution ν

We now define a distribution ν over pairs of functions (vA,vB) ∈
BXOSm (recall the definition of BXOSm from subsection 3.3) that we

will use to show Theorem 3.14. Fix ϵ > 0 and define n = exp
(

ε2 ·m
100

)

.

We assume for simplicity that n is an integer.

• Sampling (vA,vB) ∼ ν :
(1) Sample bases (S,T ) ∼ ξ .

(2) Sample i⋆ ∼ U ([n]) and construct sequences A⃗1, A⃗2, B⃗1, B⃗2

of n subsets ofM as follows (where A⃗1
= A1

1, · · · ,A
1
n , etc.):

(a) For i , i⋆ ∈ [n], sample (A1
i ,A

2
i ) ∼ µ (S ) and (B2i ,B

1
i ) ∼

µ (T r ev ) independently.

(b) Sample (A1
⋆
,A2

⋆
) ∼ µ⋆(S,T ) and set

(A1
i⋆
,A2

i⋆
,B1i⋆
,B2i⋆

) = (A1
⋆
,A2

⋆
,A1

⋆
,A2

⋆
).

(3) Sample θ ∈ U ({1, 2}), and sequences r⃗A = rA1 , · · · , r
A
n ∈

{1, 2}n and r⃗B = rB1 , · · · , r
B
n ∈ {1, 2}n uniformly at random

subject to rAi⋆ = r
B
i⋆
= θ .

(4) Define vA (Z ) = maxF ∈F A |Z ∩ F | and vB (Z ) =

maxF ∈F B |Z ∩ F | where, for all Z ⊆ M ,

F A
= {Ar

A
i

i | i ∈ [n]} and F
B
= {Br

B
i

i | i ∈ [n]}.

For notational convenience, it will be easier to consider ν as

the distribution of a random

variable ϒ = (S,T , i⋆, A⃗
1, A⃗2, B⃗1, B⃗2,θ , r⃗A, r⃗B) and consider vA,vB

as functions of ϒ. We will also need shorthand for certain entries

of ϒ. We will use A to denote the pair (A⃗1, A⃗2), B to denote the

pair (B⃗1, B⃗2), ϒA to denote (S,A, r⃗A), ϒB to denote (T ,B, r⃗B), and
finally ϒ−θ to denote (ϒA, ϒB, i⋆). Next, using ϒ, we define random

variables vAj ,v
B
j ∈ BXOSm for j ∈ {1, 2}. To simplify notation, we

omit ϒ from these random variables even though they are functions

of ϒ. We define, for j ∈ {1, 2} and Z ⊆ M :

vAj (Z ) = max
F ∈F A

j

|Z ∩ F | vBj (Z ) = max
F ∈F B

j

|Z ∩ F |,

where

F A
j = {A

j′

i | i ∈ [n], j
′ ∈ [2]} \ {A3−j

i⋆
}

F B
j = {B

j′

i | i ∈ [n], j
′ ∈ [2]} \ {B3−ji⋆

}.

Lemma 4.17 and Lemma 4.18 below capture what we need

from the distribution ν . We mention that the proof of item 3 of

Lemma 4.17 uses the observation that |Aj
i | = |B

j
i | =

m
2 for all

i ∈ [n], j ∈ [2]. It also crucially leverages the fact that we are taking
the minimum over j ∈ {1, 2} (as is captured by ∀). In particular, the

same statement with the minimum replaced by an average over j is

not true. This should be expected, as otherwise it would contradict

the auction of [BMW18].

Recall the definition of opt(·) from subsection 3.2 and that ϒ

defines vA,vB.

Lemma 4.17. We have:

(1) For all ϒ ∼ ν , we have opt(vA,vB) =m.

(2) For all ϒ ∼ ν and Z ⊆ M , we have vA (Z ) ≤ vA
θ
(Z ) and

vB (Z ) ≤ vB
θ
(Z ).

(3) It holds that:

Pr
ϒ∼ν

(

∃Z ⊆ M : ∀j ∈ {1, 2} : vAj (Z ) +v
B
j (Z ) >

179m

240
+ ϵm

)

≤ 12n2 · exp
(

−ϵ
2m

20

)

.

Proof. We show each part in turn:

(1) For the first part, is is enough to show that opt(vA,vB) ≥ m.

We have opt(vA,vB) ≥ vA (Aθi⋆
) + vB (Aθi⋆

) = vA (Aθi⋆
) +

vB (Bθi⋆
) =m.

(2) For the second part, we only argue forvA (Z ) ≤ vA
θ
(Z ) as the

other argument is symmetric. This follows by the definition

of vA and vA
θ
and the fact that F A ⊆ F A

θ
.

(3) For the third part, we define the following events over the

randomness in ϒ.

Er eд ≡ ∃i, i ′ , i⋆, j, j ′ ∈ {1, 2} : |Aj
i ∩ B

j′

i′ | <
51m

200
− ϵm.

EA
special

≡ ∃i , i⋆, j ∈ {1, 2} : |Aj
i⋆
∩ B3−ji | <

61m

240
− ϵm.

EB
special

≡ ∃i , i⋆, j ∈ {1, 2} : |A3−j
i ∩ B ji⋆ | <

61m

240
− ϵm.

Finally, define the event E = Er eд ∨ EAspecial ∨ E
B
special

. We

claim that

Claim. Pr(E) ≤ 12n2 · exp
(

− ϵ 2m20
)

.

Proof. By the union bound, we have Pr(E) ≤ Pr(Er eд ) +

Pr(EA
special

) + Pr(EB
special

). We next show that each one

of Pr(Er eд ), Pr(E
A
special

), Pr(EB
special

) is at most 4n2 ·

exp
(

− ϵ 2m20
)

.
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We start by showing Pr(Er eд ) ≤ 4n2 ·exp
(

− ϵ 2m20
)

. We derive

using Lemma 4.12:

Pr(Er eд ) ≤
∑

i,i′,i⋆

∑

j, j′∈{1,2}
Pr

(

|Aj
i ∩ B

j′

i′ | <
51m

200
− ϵm

)

≤ 4n2 · exp
(

−ϵ
2m

20

)

.

We next show that Pr(EA
special

) ≤ 4n2 · exp
(

− ϵ 2m20
)

. We

derive using Lemma 4.16:

Pr(EA
special

) ≤
∑

i,i⋆

∑

j ∈{1,2}
Pr

(

|Aj
i⋆
∩ B3−ji | <

61m

240
− ϵm

)

≤ 4n2 · exp
(

−ϵ
2m

20

)

.

Finally, we show that Pr(EB
special

) ≤ 4n2 · exp
(

− ϵ 2m20
)

. For

this part, recall that if a basis S is compatible with T , then

T r ev is compatible with Sr ev . Furthermore, a pair(A1
⋆
,A2

⋆
)

is special with respect to (S,T ) if and only if (A2
⋆
,A1

⋆
) is

special with respect to (T r ev , Sr ev ). We apply Lemma 4.16

on T r ev , Sr ev to get:

Pr(EB
special

) ≤
∑

i,i⋆

∑

j ∈{1,2}
Pr

(

|A3−j
i ∩ B ji⋆ | <

61m

240
− ϵm

)

≤ 4n2 · exp
(

−ϵ
2m

20

)

.

This finishes the proof that Pr(E) ≤ 12n2 · exp
(

− ϵ 2m20
)

. □

We next claim that whenever we have a Z ⊆ M such that

vAj (Z )+v
B
j (Z ) >

179m
240 +ϵm for all j ∈ {1, 2}, then E happens.

This finishes the proof of the lemma as it follows that:

Pr
ϒ∼ν

(

∃Z ⊆ M : ∀j ∈ {1, 2} : vAj (Z ) +v
B
j (Z ) >

179m

240
+ ϵm

)

≤ Pr(E)

≤ 12n2 · exp
(

−ϵ
2m

20

)

.

We now prove the claim. Let Z ⊆ M be such that vAj (Z ) +

vBj (Z ) >
179m
240 + ϵm for all j ∈ {1, 2}. Using the definition of

vAj and vBj , we get that for all j ∈ {1, 2}, we have F
A
j ∈ F

A
j

and FBj ∈ F
B
j such that |FAj ∩ Z | + |F

B
j ∩ Z | >

179m
240 + ϵm.

We proceed via a case analysis on FAj , F
B
j for j ∈ {1, 2}.

• ∃j ∈ [2] : FA
j
, A

j

i⋆
∧ FB

j
, B

j

i⋆
: Let j⋆ be such a j. We

use the identity |Z ′ ∩ Z | + |Z ′′ ∩ Z | ≤ |Z ′ ∪ Z ′′ | for any
sets Z ,Z ′,Z ′′ to get:
179m

240
+ ϵm < |FAj⋆ ∩ Z | + |F

B
j⋆
∩ Z | ≤ |FAj⋆ ∪ FBj⋆ |.

Next, as FAj⋆ ∈ F
A
j⋆

and FBj⋆
∈ F B

j⋆
, we have that |FAj⋆ | =

|FBj⋆ | =
m
2 and we get |FAj⋆ ∩ FBj⋆

| < 61m
240 − ϵm. As

FAj⋆
, A

j⋆
i⋆

and FBj⋆
, B

j⋆
i⋆
, this means that Er eд and thus,

E happens.

• If ∃j ∈ [2] : FA
j
∈ A⃗

3−j
∨ FB

j
∈ B⃗

3−j
: Let j⋆ be such a

j and assume that FAj⋆ ∈ A⃗3−j⋆ . The proof is symmetric

when FBj⋆
∈ B⃗3−j⋆ . We begin by showing that A⃗1 and A⃗2

are disjoint. Indeed, all elements of A⃗1 are clauses with

respect to S whereas all elements of A⃗2 are clauses with

respect to Sr ev (Observation 4.15). By Definition 4.9 no

set can be a clause with respect to both S and Sr ev and

thus, A⃗1 and A⃗2 must be disjoint.

As A⃗1 and A⃗2 are disjoint, we have that FAj⋆ ∈ A⃗
3−j⋆ =⇒

FAj⋆
< A⃗j⋆ =⇒ FAj⋆

, A
j⋆
i⋆
. If FBj⋆ , B

j⋆
i⋆
, then we are done

by the previous part, so we assume that FBj⋆ = B
j⋆
i⋆
.

Using the definition of F A
j⋆
, we have that FAj⋆ < A⃗

j⋆ =⇒
FAj⋆
= A

3−j⋆
iA

for some iA , i⋆. We use the identity

|Z ′ ∩ Z | + |Z ′′ ∩ Z | ≤ |Z ′ ∪ Z ′′ | for any sets Z ,Z ′,Z ′′

to get:
179m

240
+ ϵm < |A3−j⋆

iA
∩ Z | + |B j⋆i⋆ ∩ Z |

≤ |A3−j⋆
iA
∪ B j⋆i⋆ |.

Next, as |A3−j⋆
iA
| = |B j⋆i⋆ | =

m
2 and we get |A3−j⋆

iA
∩ B j⋆i⋆ | <

61m
240 − ϵm. As iA , i⋆, this means that EB

special
and thus,

E happens.

• Otherwise: As we are not in case 2, we can assume that

for all j ∈ [2], we have an iAj and an iBj such that FAj = A
j

iAj

and FBj = B
j

iBj
. We have that:

|A1
iA1
∩ Z | + |B1

iB1
∩ Z | + |A2

iA2
∩ Z | + |B2

iB2
∩ Z |

> 2 ·
(

179m

240
+ ϵm

)

.

By an averaging argument, this means that there exists

j⋆ ∈ [2] such that |Aj⋆

iAj⋆

∩ Z | + |B3−j⋆
iB3−j⋆

∩ Z | > 179m
240 + ϵm.

Using |Z ′ ∩ Z | + |Z ′′ ∩ Z | ≤ |Z ′ ∪ Z ′′ | for any sets

Z ,Z ′,Z ′′ and the fact that |Aj⋆

iAj⋆

| = |B3−j⋆
iB3−j⋆
| = m

2 , we

get that

|Aj⋆

iAj⋆

∩ B3−j⋆
iB3−j⋆
| < 61m

240
− ϵm.

If iAj⋆ , i⋆ and iB3−j⋆ , i⋆, then the above inequality

implies that Er eд , and therefore E happens. If iAj⋆ = i⋆ and

iB3−j⋆ , i⋆, then the above inequality implies that EA
special

,

and therefore E happens. If iAj⋆ , i⋆ and iB3−j⋆ = i⋆, then

the above inequality implies that EB
special

, and therefore

E happens. Finally, one of these three cases must hold as

otherwise, we have iAj⋆ = i
B
3−j⋆ = i⋆, implying

m

2
− |A1

i⋆
∩A2

i⋆
| = m

2
− |Aj⋆

i⋆
∩A3−j⋆

i⋆
|

= |Aj⋆
i⋆
∩ B3−j⋆i⋆

| < 61m

240
− ϵm,

contradicting Definition 4.14.

□

Lemma 4.18. For the random variable ϒ = (ϒA, ϒB, i⋆,θ ), it holds

that:

(1) The marginal i⋆ is independent of the marginal ϒA.
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(2) The marginal i⋆ is independent of the marginal ϒB.

5 THE PROOF OF THEOREM 3.14

In this section, we present our proof of Theorem 3.14. Our proof

crucially relies on Lemma 4.17 and Lemma 4.18 from section 4.

Proof of Theorem 3.14. Let ϵ > 0 andm > 1010

ϵ 2
be arbitrary.

By Yao’s minimax principle, in order to show Theorem 3.14,

it is sufficient to show a distribution ν over pairs of functions

from BXOSm such that any deterministic combinatorial auction

that is simultaneous and
(

3
4 −

1
240 + ϵ

)

-approximate over ν with

probability 1
2 + exp

(

− ϵ 2m500
)

satisfies CC(Π) ≥ exp
(

ϵ 2m
500

)

.

We let ν denote the distribution defined in subsection 4.4 for

m, ϵ and let ϒ be a random variable denoting a sample from ν as in

subsection 4.4. Recall how ϒ defines the valuation functions vA, vB,

and alsovAj ,v
B
j for j ∈ [2]. Fix Π to be a simultaneous deterministic

auction that is
(

3
4 −

1
240 + ϵ

)

-approximate over ν with probability

1
2 + exp

(

− ϵ 2m500
)

. We have from subsection 3.2 that

Pr
ϒ∼ν

(

vA (allocA
Π
(vA,vB)) +vB (allocB

Π
(vA,vB))

>

(

179

240
+ ϵ

)

· opt(vA,vB)
)

≥ 1

2
+ exp

(

− ϵ2m

500

)

.

(1)

To simplify notation, we will henceforth omit ϒ ∼ ν with the

understanding that all the probabilities and expectations are over

the randomness in ϒ ∼ ν . We use item 1 and item 2 of Lemma 4.17,

the fact that the functions vA and vB are monotone, and that

allocA
Π
(vA,vB) and allocB

Π
(vA,vB) are disjoint to get the following

from Equation 1:

Pr
(

vA
θ
(Z (ϒ)) +vB

θ
(Z (ϒ)) >

(

179

240
+ ϵ

)

·m
)

≥ 1

2
+ exp

(

− ϵ2m

500

)

,

(2)

where Z (ϒ) = allocA
Π
(vA,vB). Let

Ebad = ∃Z ⊆ M : ∀j ∈ {1, 2} : vAj (Z ) +v
B
j (Z ) >

(

179

240
+ ϵ

)

m,

be the event from item 3 of Lemma 4.17. By the law to total

probability we have

Pr
(

vA
θ
(Z (ϒ)) +vB

θ
(Z (ϒ)) >

(

179

240
+ ϵ

)

·m
)

≤ Pr (Ebad ) + Pr
(

Ebad ∧vAθ (Z (ϒ)) +v
B
θ
(Z (ϒ)) >

(

179

240
+ ϵ

)

·m
)

≤ 12n2 · exp
(

−ϵ
2m

20

)

+ Pr
(

Ebad ∧vAθ (Z (ϒ)) +v
B
θ
(Z (ϒ)) >

(

179

240
+ ϵ

)

·m
)

≤ 12n2 · exp
(

−ϵ
2m

20

)

+ Pr
(

vA
θ
(Z (ϒ)) +vB

θ
(Z (ϒ)) > vA

3−θ (Z (ϒ)) +v
B
3−θ (Z (ϒ))

)

,

(3)

using item 3 of Lemma 4.17 in the penultimate step. Now, we

focus on the second term in the expression above. For every

value ω that the tuple (A,B, i⋆) can take, we define the event

Eω ≡ (A,B, i⋆) = ω. By the law of total probability, we have

Pr
(

vA
θ
(Z (ϒ)) +vB

θ
(Z (ϒ)) > vA

3−θ (Z (ϒ)) +v
B
3−θ (Z (ϒ))

)

≤
∑

ω

∑

Z ⊆[m]

∑

j ∈[2]
Pr(Eω ∧ Z (ϒ) = Z ) Pr(θ = j | Eω ,Z (ϒ) = Z )

× Pr
(

vA
θ
(Z (ϒ)) +vB

θ
(Z (ϒ)) > vA

3−θ (Z (ϒ)) +v
B
3−θ (Z (ϒ))

| Eω ,Z (ϒ) = Z ,θ = j ) .

Observe that conditioning on Eω ,Z (ϒ) = Z fixes the value of

vA1 (Z (ϒ))+v
B
1 (Z (ϒ)) andv

A
2 (Z (ϒ))+v

B
2 (Z (ϒ)). Thus, the last factor

in the summand above is either 0 or 1 and it can be 1 for at most

one value of θ . We conclude:

Pr
(

vA
θ
(Z (ϒ)) +vB

θ
(Z (ϒ)) > vA

3−θ (Z (ϒ)) +v
B
3−θ (Z (ϒ))

)

≤
∑

ω

∑

Z ⊆[m]

Pr(Eω ∧ Z (ϒ) = Z ) max
j ∈[2]

Pr(θ = j | Eω ,Z (ϒ) = Z ).

(4)

Next, we concentrate on upper bounding the term maxj ∈[2] Pr(θ =
j | Eω ,Z (ϒ) = Z ). Since θ is chosen independently of A,B, i⋆ in

the distribution ν , we have

max
j ∈[2]

Pr(θ = j | Eω ,Z (ϒ) = Z )

=

1

2
+ max

j ∈[2]

(

Pr(θ = j | Eω ,Z (ϒ) = Z ) − 1

2

)

=

1

2
+ max

j ∈[2]

(

Pr(θ = j | Eω ,Z (ϒ) = Z ) − Pr(θ = j | Eω )
)

=

1

2
+ ∥dist(θ | Eω ,Z (ϒ) = Z ) − dist(θ | Eω )∥tvd

(Definition 3.10)

≤ 1

2
+

√

1

2
· D(dist(θ | Eω ,Z (ϒ) = Z ) | | dist(θ | Eω ))

(Fact 3.11, item 2)

Plugging into Equation 3 and Equation 4 and using concavity of
√·,

we get

Pr
(

vA
θ
(Z (ϒ)) +vB

θ
(Z (ϒ)) >

(

179

240
+ ϵ

)

·m
)

≤ 1

2
+ 12n2 · exp

(

−ϵ
2m

20

)

+

√

1

2
· I(θ ;Z (ϒ) | A,B, i⋆).

(5)

To finish the proof, we claim that

Lemma 5.1. It holds that I(θ ;Z (ϒ) | A,B, i⋆) ≤ 4 · CC(Π)n .

We prove Lemma 5.1 later but assuming it for now, we can

combine Equation 2 and Equation 5 as

exp
(

− ϵ2m

500

)

≤ 12n2 · exp
(

−ϵ
2m

20

)

+

√

2 · CC(Π)
n
,

and Theorem 3.14 follows using n = exp
(

ϵ 2m
100

)

. □

We finish this section by showing Lemma 5.1.

Proof of Lemma 5.1. Let Π
A and Π

B be random variables

denoting the message sent by Alice and Bob to the Seller in the

first round of Π when inputs to Alice and Bob are drawn from the

distribution ν . As Π is simultaneous, it has only one round andZ (ϒ)
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is a function of ΠA and Π
B. We get, invoking Lemma 3.7 multiple

times:

I(θ ;Z (ϒ) | A,B, i⋆)

≤ I(θ ;ΠA
Π
B | A,B, i⋆)

= I(θ ;ΠA | A,B, i⋆) + I(θ ;ΠB | A,B, i⋆,ΠA)

(item 4 of Fact 3.6)

≤ I(θ ;ΠA | A,B, i⋆) + I(θ ;ΠB | A,B, i⋆) + I(ΠA;ΠB | A,B, i⋆,θ )

≤ I(θ ;ΠA | A, i⋆) + I(θ ;ΠB | B, i⋆)

+ I(B;ΠA | A, i⋆,θ ) + I(A;ΠB | B, i⋆,θ )

+ I(ΠA;ΠB | A,B, i⋆,θ )
We now show that the last 3 terms are all 0. To show this, we go

term by term using the fact that ΠA is a function of Alice’s input

vA, and therefore a function ofA, r⃗A. Similarly, ΠB is a function of

Bob’s input vB, and therefore a function of B, r⃗B. For the term

I(B;ΠA | A, i⋆,θ ), we get I(B;ΠA | A, i⋆,θ ) ≤ I(B;Ar⃗A |
A, i⋆,θ ) = I(B; r⃗A−i⋆ | A, i⋆,θ ) = 0 as θ = rAi⋆

and r⃗A−i⋆ is

sampled independently of A,B, i⋆,θ . Recall that r⃗A−i⋆ denotes r⃗A

with the coordinate i⋆ removed. Similarly, we can deduce that

I(A;ΠB | B, i⋆,θ ) = 0. Finally, for the term I(ΠA;ΠB | A,B, i⋆,θ ),
we get I(ΠA;ΠB | A,B, i⋆,θ ) ≤ I(Ar⃗A;Br⃗B | A,B, i⋆,θ ) =
I(r⃗A−i⋆ ; r⃗

B
−i⋆ | A,B, i⋆,θ ) = 0 as r⃗A−i⋆ is sampled independently of

r⃗B−i⋆ ,A,B, i⋆,θ . Combining, we get

I(θ ;Z (ϒ) | A,B, i⋆) ≤ I(θ ;ΠA | A, i⋆) + I(θ ;ΠB | B, i⋆).
We next show that I(θ ;ΠA | A, i⋆) ≤ 2 · CC(Π)n . A similar argument

shows that I(θ ;ΠB | B, i⋆) ≤ 2 · CC(Π)n finishing the proof of

Lemma 5.1. As θ = rAi⋆
, ΠA is a function of A and r⃗A, and i⋆ is

sampled fromU ([n]), we have by Lemma 4.18,

I(θ ;ΠA | A, i⋆) = I(rAi⋆ ;Π
A | A, i⋆)

≤ 1

n
· I(rA;ΠA | A) (Lemma 3.8)

≤ 1

n
· H(ΠA) ≤ CC(Π) + 1

n
≤ 2 · CC(Π)

n
.

We note that we lose an extra ‘+1’ in the argument only because,

in our model in subsection 3.2, the length of Alice’s and Bob’s

messages can be anywhere from 0 toCC(Π). Thus, the total number

of possible messages can be upper bounded by 2CC(Π)+1 but not

2CC(Π) .

□
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