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ABSTRACT

We prove the first separation in the approximation guarantee
achievable by truthful and non-truthful combinatorial auctions with
polynomial communication. Specifically, we prove that any truthful
auction guaranteeing a (3/4 — 1/240 + €)-approximation for two
buyers with XOS valuations over m items requires exp(Q(e? - m))
communication whereas a non-truthful auction by Feige [J. Comput.
2009] is already known to achieve a 3/4-approximation in poly(m)
communication.

We obtain our lower bound for truthful auctions by proving
that any simultaneous auction (not necessarily truthful) which
guarantees a (3/4—1/240+ ¢)-approximation requires communication
exp(Q(e? - m)), and then apply the taxation complexity framework
of Dobzinski [FOCS 2016] to extend the lower bound to all truthful
auctions (including interactive truthful auctions).
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1 INTRODUCTION

Combinatorial auctions have been at the forefront of Algorithmic
Game Theory since the field’s inception, owing both to their rich
algorithmic theory and their economic relevance. In a combinatorial
auction, there are n bidders and a seller selling a set M of items.
Each bidder i has a ‘value’ for all possible subsets of the items.
These values are given by a valuation function v; : 2M — R, The
seller’s goal is to find a partition of the M items into disjoint sets
S1,+ -+, Sn such that the welfare, 3’ ;c[n) vi(S:), is maximized.

The main difficulty faced by the seller in computing this partition
is the lack of knowledge of the bidders’ valuation functions. Indeed,
in a combinatorial auction, the seller needs to communicate with
the bidders in order to obtain information about their valuation
functions. The number of bits communicated between the seller
and the bidders is called the communication complexity of the
combinatorial auction, and is the main focus of this paper (and
many prior works, e.g., [LS05, NS06, Dob07, DN11, MSV08, Fei09,
DNS10, KV12, Dob16a, BMW18, EFN*19, AS19])

The actual communication complexity of a combinatorial auction
depends on whether the bidders are willing to report information
about their valuation functions to the seller truthfully or not. If not,
then, in order to compute anything meaningful, the seller needs to
appropriately incentivize the bidders so that they report truthfully.
When the bidders are incentivized to tell the truth, then the auction
is said to be truthful. Observe that truthful auctions are at least as
complex (require at least as much communication) as non-truthful
(or general) auctions where the bidders always report truthfully
(even without incentivization).

The main question we study in this paper is the following:
Are there instances where truthful combinatorial auctions require
strictly more communication than general auctions?

The VCG Mechanism: A Partial Answer. A partial answer to
the above question is given by the VCG mechanism due to
Vickrey [Vic61], Clarke [Cla71], and Groves [Gro73]. The VCG
mechanism implies that if there is a general auction with polynomial
(in [M|) communication that maximizes the welfare exactly, then,
there is also a truthful mechanism with polynomial communication
that does the same.

It turns out, that in most settings of interest, there are no
general auctions with polynomial communication that provide the
maximum possible welfare, and thus, the above result is vacuously
true. Naturally, therefore, researchers turned their attention to
auctions that approximate the optimal welfare, and studied the
above question in this case. The VCG mechanism was powerful



STOC 20, June 22-26, 2020, Chicago, IL, USA

enough to rule out some extreme cases (where the valuation
functions may be arbitrary) of the approximation-version of
the problem as well, and “VCG-based” schemes were used to
show that general auctions require roughly the same amount of
communication as truthful auctions [Rag88, LOS02, LS05, NS06] in
these cases.

Other than these extreme cases, the problem remains wide open.

Beyond VCG: Gaps in Relevant Cases. As soon as one stops
considering arbitrary valuation functions, and restricts attention
to a subclass (say submodular, XOS, or subadditive), the state of
affairs is drastically different. Not only are there huge gaps in the
state of the art approximation guarantees provided by general and
truthful auctions [Dob07, Fei09, DNS10, FV10, AS19], but, despite
these huge gaps, there are no known (even small constant factor)
separations between the approximation guarantees provided by
general and truthful auctions.

Our main result provides the first such separation:

MaiN
ResuLT (INFORMAL). No poly-communication, deterministic
truthful auction for two bidders with XOS valuations achieves
an approximation guarantee better than %, whereas general
deterministic auctions can do so.

We note that the part of our main result that deals with general
auctions is well known and due to [Fei09]. Our contribution is the
lower bound for deterministic truthful auctions. In fact, our result
generalizes and even covers randomized auctions, but we defer the
formal statement to Theorem 3.12.

1.1 Other Related Work

Communication complexity separations. As mentioned above,
there are no known separations between the approximation
guarantees provided by general and truthful auctions. However,
some limited results in this direction are known.

For example, due to works of [DN11, BDF*10, DSS15], we
have a separation between general auctions and truthful “VCG-
based” auctions when the valuation functions are from subclasses
such as submodular, XOS, or subadditive. Recall that VCG-based
auctions also show that there is no such separation from general
valuation functions [Rag88, LOS02, LS05, NS06]. On similar lines,
the work of [DN15] establishes that a separation between general
and truthful “scalable” auctions when valuation functions are from
a subclass called multi-unit valuations.

As both the above separations hold only for a subclass
of truthful auctions, they are weaker than our unconditional
separation. We note that the separation of [DN15] is also weaker
as it only separate guarantees achievable with poly-logarithmic
communication where as we separate guarantees achievable with
polynomial communication.

Other complexity measures. We conclude this related work
section with a brief overview of the line of work on the
computational complexity of combinatorial auctions. In this setting,
the resource of interest is the running-time of the bidders and
the seller during the auction. The story here is similar. The VCG
mechanism again shows that poly-time truthful auctions for the
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optimal welfare are as powerful as general auctions. Again, optimal
welfare maximization is computationally hard except in very
restricted settings and it makes sense to consider approximations.
For approximate welfare maximization, just like before, VCG-
based schemes show that truthful and general auctions are equally
powerful for various ‘extreme’ cases [DNS10] (unless P = NP).

When it comes to approximate welfare maximization outside
these extreme cases, there is an interesting distinction between
the communication and computational complexity regimes. In the
computational complexity model, a strong separation between
truthful and general auctions is known when the valuation
functions are submodular (unless NP C RP). Details about this
separation can be found in the line of work due to [Von08, MSV08,
Dob11, DV11, DV12a, DV12b, DV16].

One can reasonably debate whether the computational or
communication model is more relevant, but most researchers tend
to view both models as extremely relevant (and the vast amount
of prior work in both models supports this view). If anything,
we argue that the communication model might be more relevant,
owing to odd technicalities associated with evaluating ‘demand
queries’ in ‘posted-price auctions’. We refer the reader to [CTW20]
or [BMW18] for a deeper comparison of the models, but will not
further belabor this comparison and take the position that major
open problems in both the communication and computational
models are extremely relevant.

1.2 Our Techniques

Our main result is an exponential lower bound on the
communication complexity of truthful auctions with two bidders
and XOS valuation functions, and we use the framework proposed
in the beautiful work of [Dob16b].

In [Dob16b], the authors show that for two bidders and XOS
valuations, the existence of a truthful auction with polynomial
communication implies the existence of a ‘simultaneous’ general
auction with polynomial communication. An auction is called
simultaneous if it involves the bidders sending exactly one message
to the seller. Furthermore, the messages sent by the two bidders are
not allowed to depend on each other. This is opposed to general
auction where the the bidders may send messages to the seller
across many rounds, where each message may depend on the
messages in all the previous rounds.

This theorem of [Dob16b] constitutes the first step in our result,
essentially converting the task of separating truthful auctions from
general auctions to the task of separating simultaneous general
auctions from general auctions. However, the latter task is still
highly non-trivial, and as the work [BMW18] shows, there are
provable barriers that such a separation must overcome.

Startlingly, we are able to turn some of the ideas used
by [BMW18] to show these barriers into a construction that
gets around the same barriers! At a super-high level, our
actual construction maintains two copies of the construction
of [BMW18] and argues about them simultaneously. A lot of
new ideas are needed, as, in particular, simply maintaining two
independent copies of the [BMW18] construction does not work,
and these copies need to be suitably correlated. Furthermore, these
correlations need to be precisely controlled, in order to deal with
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the ‘cross-terms’ originating from having two copies. In fact, these
cross-terms are the reason why the parameter % that we obtain
is slightly weaker than the one in [BMW18].

Describing all these additional ideas that go into our proof would
require, at least, a detailed overview of the work of [BMW18],
and we defer this to next section, where we give a step by step
construction of our lower bound.

2 DETAILED PROOF SKETCH

Our main result is an exponential lower bound on the
communication complexity of truthful auctions for two bidders with
XOS valuations that achieve an approximation guarantee better
than %. In this section, we gradually build various aspects of this
lower bound highlighting the roles they play. It should be noted that
the parameter % is not critically important, only that % < %, as
any number < % suffices to separate truthful auctions from general
auctions [Fei09].

In the rest of this text, we will use Alice and Bob to refer to the
two bidders and denote by m = |M|, the number of items on sale.
Often, we will refer to a subclass of XOS functions called binary
XOS (or BXOS) functions. A valuation function v is called binary
XOS if there exists a set C € 2M of subsets of M such that for all
subsets S C M, it holds that v(S) = maxcec|C N S|. The set C is
called the set of clauses of v and each element C € C is called a
clause. We shall sometimes refer to v simply by its set of clauses.

As mentioned in subsection 1.2, using the framework
of [Dob16b], to show our lower bound, it is sufficient to show
the same lower bound for simultaneous (possibly non-truthful)
auctions. In other words, it suffices to show that at the end of a
simultaneous auction with less than exponential communication,
the Seller cannot compute an allocation of items to Alice and Bob

with welfare within a factor of % of the optimal welfare.

2.1 The [BMW18] Construction

In the beautiful work of [BMW 18], the authors consider the related
question of determining the optimal welfare up to a factor of %. In
general, for simultaneous auctions', the question of determining
the optimal welfare is incomparable to the question of computing
an allocation with welfare close to the optimal. Thus, [BMW18]
does not directly imply anything about our problem. However, their
construction does serve as a starting point for ours.

In the construction of [BMW 18], the valuation functions of Alice
and Bob are BXOS with exponentially many regular clauses but
may or may not include one special clause. It holds that the union of
a regular clause of Alice and a regular clause of Bob has size < %m
whereas the union of the special clause of Alice with the special
clause of Bob has size m. This means that determining the optimal
welfare up to a factor of % amounts to determining whether or not
Alice and Bob have the special clauses.

However, in the construction of [BMW18], the special clauses
of Alice and Bob are indistinguishable from the regular clauses.
Thus, determining whether or not one of their exponentially many
clauses is special requires exponential communication and the
desired lower bound follows.

1 As is argued in [BMW18], this is true only for simultaneous auctions.
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1 2 3 4 5 6
S: v v v
T: v v v
A: v v v
B: v v v

Figure 1: The construction of [BMW18]. Each of the
numbers 1 to 6 represents a group of 7 items.

The structure of the clauses in [BMW18]. We now describe how
the clauses in [BMW18] are constructed more formally.

Call a pair of sets (S, T) a basis if the sets S and T are of size
and their intersection is of size . In [BMW18], a basis is sampled
uniformly at random from all possible bases, and the set S is told to
Alice and set T is told to Bob. We provide an illustration of a basis
in Figure 1 where each of the six blocks in a row represents a group
of Z items.

Next, Alice’s regular clauses are constructed by uniformly
sampling sets of size % that intersect S in % places and Bob’s
regular clauses are constructed by uniformly sampling sets of size
7 that intersect T in %' places. Constructing the regular clauses
this way satisfies the two main properties needed for the argument
in [BMW18] to work:

o Firstly, it holds that the union of a regular clause of Alice
and a regular clause of Bob has size strictly less than %m.
We explain why. As all regular clauses have size %, it is
equivalent to describe why the intersection of a regular
clause of Alice and a regular clause of Bob has size strictly
more than %. This is because if the sets S, T in the basis had
an intersection of size %, the expected size of the intersection
of two independently random sets of size 2!, then, as the
regular clauses of Alice and Bob are chosen independently
of each other, they will also behave like independently
chosen random sets and have an intersection of size % in
expectation. In actuality, the sets S, T in the basis have an
intersection of size %!, more than the expected size of the
intersection of two independently random sets of size 7.
Thus, the regular clauses of Alice and Bob also intersect
more than random sets, i.e., in more than % places.
Secondly, such a sampling procedure allows one to ‘hide’ a
special clause inside the exponentially many regular clauses
sampled by Alice and Bob.

To see an illustration of how a special clause is hidden
amongst the regular clauses, observe the rows corresponding
to the special clauses A and B in Figure 1. The special clauses
for Alice and Bob are disjoint and their union is of size
m. Additionally, note that A intersects S in % places and
similarly B intersects T in % places, just like all the other
regular clauses. As the size of their intersections with S and
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T (respectively) are the same, Alice and Bob cannot tell the
special clauses (if they are present) apart from the regular
clauses.

A small generalization. In the presented construction, we thought
of each of the blocks from 1 to 6 in Figure 1 as representing a group
of & items. However, the exact same arguments (with numerically-
different calculations) would also apply to any construction where
blocks 1 and 2 represented u items, and blocks 3 through 6
represented v items (for any u, v).

With these additional parameters, it turns out (we omit the
calculations), that the size of the intersection of a regular clause of
Alice and a regular clause of Bob is:

20° + 2u?v + 3uv?
(u + 2v)3

The expression above is maximized when u = v (as observed
in [BMW18]) but is strictly larger than 7 for all u, v such that
u < 2v (to get intuition for the breakpoint: when u 20,
ISNT| =12, and S, T behave like independently chosen sets). We
will use this idea later in our construction.

2.2 From the Decision Problem to the
Allocation Problem

The crucial difference between [BMW18] and our work is
that [BMW18] show that the problem of ‘deciding’ whether or
not the optimal welfare is close to m is hard while we wish to show
that the problem of ‘computing’ an allocation with welfare close
to the optimal is hard. As [BMW 18] emphasize, these problems are
incomparable for simultaneous auctions.

Our lower bound is based on the following approach of going
from a lower bound for the decision problem to a lower bound
for the computation/allocation problem: Consider two copies of
the [BMW 18] construction, where (a uniformly chosen) one is such
that Alice and Bob have the special clauses and the other one is
such that Alice and Bob do not have the special clauses. Suppose
further that the Seller can only allocate items in one of the two
copies.

We claim that the decision lower bound for [BMW18] implies an
allocation lower bound for this system. Indeed, the optimal welfare
of the copy with the special clauses is much larger than the optimal
welfare of the copy without the special clauses. Thus, any allocation
that allocates items in only one of the two copies and gets welfare
close to optimal must allocate items in the copy with the special
clause. But, this requires the Seller to at least determine which copy
has the special clause, which is hard owing to [BMW18].

Cross-terms. It remains now to transform the system with two
copies and a restriction on the Seller to only allocate items in one
of the two copies to a standard unrestricted combinatorial auction.
A first approach may be two have two bases (S', T!) and (52, T?)
on the same set of items and give Alice and Bob regular clauses
generated from both the bases together with a special clause from
(a uniformly random) one of the bases.

One would then hope that just like the system described above,
computing a good allocation for this system would require the
Seller to implicitly determine which basis does the special clause
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Figure 2: An illustration of two correlated bases. Each
column denotes a group of {} items. This construction
works even if columns 1 through 8 denote groups of u items,
and columns 9 through 12 denote groups of v items, for any
u, v (see subsection 2.3).

come from, and maybe we can show that determining this is hard
a la [BMW18].

A little more thought reveals that this is not actually the case,
and the reason is that having two bases on the same set of items
gives rise to ‘cross-terms’. Specifically, if we have two bases on the
same set of items, then not only do we have to argue about the size
of the union of regular clauses from basis 1 of Alice and regular
clauses from basis 1 of Bob, but we also need to argue about the
size of the union of regular clauses from basis 1 of Alice and regular
clauses from basis 2 of Bob.

These additional unions, which we call the cross-terms, imply
that the two bases must necessarily be correlated in order to avoid
the issues described in subsection 2.1. Namely, if the two bases are
independent, then S! and T? intersect in % places in expectation
(like sets of size 77 chosen independently), implying in turn that
the size of the union of regular clauses from basis 1 of Alice and
regular clauses from basis 2 of Bob is %m in expectation. This is
too large for our lower bound, as we need the union to be of size
strictly less than %m in expectation.

2.3 Finding the Right Correlations

As motivated in the foregoing section, it is essential to have the
two bases be suitably correlated to deal with the cross-terms. What
is the right way to correlate these bases? It would be ideal if the
cross terms coming from the ‘cross-pairs’ S 172 and $2, T! behave
exactly like the terms coming from two bases (S!, T!) and (2, T?).
If we can make this happen, then the argument that shows why
the size of the union of regular clauses from basis 1 of Alice and
regular clauses from basis 1 of Bob is < %m would extend to also
show that the size of the cross-terms is < %m.

In order to show that sets S, T2 and S2, T! behave like bases, we
need to ensure that their intersections, namely S' N T2 and 5 N T'!
have size % just like the intersections of two sets in a basis. Is it
possible to have sets that behave in this way?

The answer turns out to be yes, and one such construction is
described in Figure 2. In Figure 2, each of the 12 columns denotes
a group of 2 items, making a total of m items, and a v in row S
and column 1 means that the first £ items are present in the set

S1. Importantly, note that the tuples (!, T!) and (S?, T?) behave
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like a [BMW 18] basis, and have four columns in their intersection,
amounting to % items, and so do the cross-terms (81, T?) and
(8%, Th).

Thus, the construction in Figure 2 has fixed the issue with the
cross-terms described in the foregoing section, but there is one
more step needed to finish the proof.

Special cross-terms. Just like there are cross terms coming from
regular clauses from basis 1 of Alice and regular clauses from basis
2 of Bob, there are also cross terms coming from regular clauses
from basis 1 of Alice and special clauses from basis 2 of Bob (and
vice-versa)?.

Before we describe how we deal with these ‘special cross-terms’,
we first need to define the special clauses in our system. We omit
defining them precisely in this sketch but mention here that the
fact that the special clauses need to be indistinguishable from the
regular clauses impose a lot of constraints on their structure. In fact,
the special clauses need to more or less look like the sets Al A2 B!,
and B? in Figure 2, where again a v’ in a given column indicates
that the corresponding group of f% items is in the set.

With this definition of special clauses, one can calculate the
expected intersection of the special cross terms and check if it is
> % or not. It turn out that with the construction in Figure 2, this
size is exactly 2! and work needs to be done to increase it. It is here
that we use the generalization of [BMW18] given in subsection 2.1,
and let the blocks of items have unequal size. We’ll assume that the
first 8 columns in Figure 2 denote groups of u items each, and the
last 4 columns denote groups of v items each. For general u, v, the
intersection of the regular cross terms has size:

5u%0 + ud + 6uv? + 203
2(u + 20)2(2u + v)
On the other hand, the intersection of a special cross terms has
size:

16uv + 5u? + 602
T m

12(u + 20)(2u + v)
In fact, the parameter governing our lower bound is the minimum
of the two expressions above, and this is maximized when %

1+ \/g . For simplicity sake, we present our main results assuming

61m m

2 = 2 when the minimum of the two expressions above is %5 s
61m 179 : :
The value %55 corresponds to the the parameter 575 in our main

result.

3 MODELS AND PRELIMINARIES

All logarithms are to the base 2, unless noted otherwise. We shall
denote sequences with a” on top, e.g., S. We shall use S]|S” to denote
the concatenation of the sequences Sand . Similarly, we shall
use S||S” to denote the sequence formed by appending the single
element S”’ to the sequence S Lletk>0andS = 8,5, , Sk
be a sequence of k sets. For a function f defined on sets, we shall
use f(§) to denote the sequence f(S1), -+, f(Sk). Thus, S| shall
denote the sequence |S1],- - -, |Sg| and §DA, for a set A, shall denote
the sequence S1 NA,--- , S5 N A, etc.

2We do not have to deal with cross terms coming from special clauses from basis 1
of Alice and special clauses from basis 2 of Bob as only one of the bases will have a
special clause in our construction.

o o o
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We will use Z to denote the set of integers and R to denote the
set of all real numbers. We also define R, to denote the set of all
non-negative real numbers. If S is a set, then 25 will denote the
power set, ie., the set of all subsets, of S. Additionally, we shall
denote using S* the set UiZOSi, where S, for i > 0, is the set of all
strings of length i that can be formed with elements of S, and S° is
the set containing only ¢, the empty string. The length of a string
o will be denoted using len(o), e.g., len(e) = 0.

Lett > 1be aninteger. We define [t] = {1,--- ,t}.Foratuple X =
(X1, ,X;) and integer i € [t], we define X<; = (X1, -+, Xi-1)
and X_; = (X1, , Xi—1, Xi+1, -+, Xp).

We will use U(S) to denote the uniform distribution over a
finite set S. If X is a random variable, then dist(X) will denote the
distribution of the values taken by X.

Concentration inequalities. We use the following version of
Chernoff bound for negatively correlated random variables:

DEFINITION 3.1 (NEGATIVELY CORRELATED RANDOM VARIABLES).
Forn > 0, let X1,--- , Xy be random variables that take values in
{0, 1}. We say that the random variables X1, - - - , X, are negatively
correlated if for all subsets S C [n], we havePr(Vi e S : X; = 1) <

[Ties Pr(X; = 1).

LEMMA 3.2 (GENERALIZED CHERNOFF BOUND; CF. [PS97]). For
n > 0, let X1,---,Xn be negatively correlated random variables
that take values in {0,1}. Then, for any € > 0, we have (where

1= Xie[n) E[Xi] <n):

Pr ZX,—>,u+en <Pr ZX,‘>(1+6)'[J

i€[n] i€[n]

< exp(—£2~ Z 1/3).

i€[n]

3.1 Tools from Information Theory

This section includes a very brief summary of the tools from
information theory that we use in this paper. We refer the interested
reader to the text by Cover and Thomas [CT06] for an excellent
introduction to this field.

3.1.1 Entropy and Mutual Information.

DEFINITION 3.3 (ENTROPY). The Shannon Entropy of a discrete
random variable X is defined as

1
H(X) = Z Pr(X—x)log m,
x esupp(X)

where supp(X) is the set of all values X can take and 0log % =0by
convention.

DEFINITION 3.4 (CONDITIONAL ENTROPY). Let X and Y be discrete

random variables. The entropy of X conditioned on 'Y is defined as
HX|Y)= E [HXI[Y=y)].
y~dist

DEFINITION 3.5 (MUTUAL INFORMATION). Let X, Y, and Z be
discrete random variables. The mutual information between X and Y
is defined as

I(X;Y) = H(X) -H(X | ).
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The conditional mutual information between X andY conditioned on
Z is defined as:
I(X;Y | Z) =

H(X | Z) - H(X | YZ).

We note that mutual information is symmetric in X and Y, i.e.
I(V;X|Z)=1I(X;Y | Z) and I(X;Y) = I(Y; X).

Fact 3.6. The following holds for discrete random variables
W,X,Y,Z:

(1) We have H(XY) = H(X)+H(Y | X) < H(X)+H(Y). Equality
holds if X and Y are independent.

(2) If the random variable X takes values in the set Q, it holds
that 0 < H(X) < log|Q|.

(3) Wehave0 < I(X;Y | Z) < H(X) and I(X;Y | Z) = 0 if and
only if X is independent of Y given Z.

(4) If A, B, C, D are random variables, then

IWX;Y | Z) =I(W;Y | 2) +I(X; Y | WZ).

We also use the following technical lemmas about mutual
information.

LEMMA 3.7. For discrete random variables W, X, Y, and Z, we
have

max(I(W: X | YZ),1(Y;X | 2)) < I(W;X | Z) + I(Y; X | WZ).

Proor. Observe that:
max(I(W; X | YZ),I(Y;X | 2)) < I(W;X | YZ) + (Y;X | Z)
(item 3, Fact 3.6)
=I(WY;X | Z) (item 4, Fact 3.6)
=I(W;X | Z) + I(Y;X | WZ).
(item 4, Fact 3.6)
|

LEmMMA 38. Let n > 0 and X X1,X2,- -+, X, where
X1,X2,- -+, Xy are independent and identically distributed discrete
random variables. Let I be a random variable distributed uniformly
over [n]. For all discrete random variables Y such that X is independent
of Y and 1 is independent of (X, Y) and all functions f, we have:

IXp f(X,Y) 1 Y,]) < % I f(XL,Y) | Y).

Proor. The proof of this lemma can be found in the full

version. O

3.1.2  Measures of Distance Between Distributions. We use two
main measures of distance (or divergence) between distributions,
namely the Kullback-Leibler divergence (KL-divergence) and the
total variation distance.

DEFINITION 3.9 (KL-DIVERGENCE). For two distributions yi and v
over the same set Q, the Kullback-Leibler divergence between y and
v, denoted by D(u || v), is defined as

D(ullv) = ), plx)log

xeQ

p(x)

v(x)’

DEFINITION 3.10 (ToTAL VARIATION DISTANCE). For two
distributions p and v over the same set Q, the total variation distance
p and v is defined as

-v ::maxz x) — v(x).
= vliroa = max ) | p(x) = v(x)

T oxeQy
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These definitions satisfy the following properties:

Fact 3.11. The following hold:

(1) For discrete random variables X, Y, and Z, we have

I(X;Y | 2)

[D(dist(X | Y =y, Z =z) || dist(X | Z = 2))].

E
(y,z)~dist((Y, 2))
(2) (Pinsker’s inequality) For any distributions y and v, we have

D(p || v).

e =vlroa <

3.2 Combinatorial Auctions

We now formally define the setting of two player combinatorial
auctions. Let m > 0 and ‘V be a non-empty set of functions
from 2[™ to R. A deterministic, m-item, V-combinatorial auction
IT with two bidders and one seller is defined by five functions

I = (fA, B, £S5, alloc, price), of types
ARV x (o) - (0,1,
£2 07" x (10.1))" > (f0,1)
alloc : ({0,1}%)* x ({0,1}")* — 2[m] x 2[m],
price : ({0,1}*)* x ({0,1}*)* > R xR,

x {0, 1)) U {(L, L)},

where L is a special symbol. Furthermore, we require that, for
any input to the function alloc, the pair of sets output by alloc are
disjoint.

Observe that the output of functions 3, alloc, price is a pair.
We shall use 5 (respectively, f37B) to denote the function,
that on every input, outputs the first (resp. second) element in
the pair output by f S on the same input. We define the functions
alloc?, allocB, price?, price® analogously.

We define a randomized auction to be a distribution over
deterministic auctions.

Execution of an auction. A deterministic, m-item, V-
combinatorial auction IT = (fA, fB8, £3, alloc, price) takes place
as follows: At the beginning of the auction, the Seller has m items
for sale and Alice and Bob have functions v € V and v® € V
respectively as input. The auction takes place in multiple rounds,
where before round i, for i > 0, it holds that Alice has received
a transcript oA € ({0,1}*)"! from the Seller, Bob has received
€ ({0,1}*)*"! from the Seller, and the Seller has

5 O'El._’s € ({0,1}%)*"! from Alice, Bob

a transcript oB <i

received transcripts UA_’
respectively.

In round i, Alice and Bob send messages 0'
B—S

= AR 0h)
= fBB, a ;) to the Seller respectrvely The Seller
appends these to the transcripts UA_’S, O'B—>S respectively to get
A_’S B_>S € ( {0, 1)) (respectlvely) Thereafter, the
fs_’A(O'A_>s B_’5) to Alice and a
message cr B_’S) to Bob.

If (cr a; By % (1, 1), then Alice (resp Bob) append O'A to O'A
(resp. 0 ;) to get transcript 0 ;) and continue round i+ 1
of the auction. On the other | hand if ((7 o; B) = (1, 1), then the
auction terminates after round i and no further communication

and o;

transcripts o,

seller sends a message a
fS—>B(O.A—>S

; (resp. 0
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takes place. The Seller outputs an allocation (O*,0B)
alloc(aA_)S B_’S) and prices (p*, pB) = = price(c? A_’S B_)S)

Observe that, if II is deterministic, then, the Values of (OA, OB)
and (p”, pB) are completely determined by IT and the inputs v*, vB
to Alice and Bob respectively. We sometimes denote these values
by (0*,08) = alloc(v?,vB) and (p*, pB) = priceH(vA vB). We
will also use the shorthand O* = aIIocﬁ (o™, 0B), ete.

Relevant properties of an auction. In this paper, we will only
consider the following parameters of an auction:

e Rounds: For a deterministic auction II, and v*, 0B € V,
define Ry (v*, vB) = R if the execution of IT when Alice and
Bob have inputs v, vB respectively terminates after round
R. If the execution does not terminate at all, then we define
R (o™, vB) = co.

We say that IT has R rounds if, for all o™, 0B € V, we have
R (v™,vB) = R. A randomized auction has R rounds if all
the deterministic auctions in its support have R rounds. If
a deterministic or randomized auction has exactly 1 round,
then, we say that the auction is simultaneous.
Communication complexity: For a deterministic auction
II, and vA, B € YV, we define CCH(UA, vB) = oo if
RH(’UA, DB) = o0. On the other hand, ifRn(vA,UB) =R < o0,
then we define

CCH(’UA UB) = Z Ien(g;\_’s)+|en(gl!3_)s)+z Ien(alA)+len(0iB).
i<R i<R
In the above equation, the values O'IAHS, UiB”S, etc. denote

the corresponding values in an execution of IT when Alice

has input v” and Bob has input v®. These values are well

defined as IT is deterministic.

We define CC(II) = max a e CCr(v®, vB). Finally we

define CC(IT"), for a randomized auction I1” to be the largest

value of CC(II) for all deterministic auctions IT in its support.
e Truthfulness: We say that a deterministic auction II is

truthful if for all v, 0B, v’ € V, we have
A/ A B)

vA(aIIocIAI(vA,vB)) — price; (v, v
> vA(allocﬁ(U', WB)) - priceﬁ(v',vB)
vB(allocFI (o, ’UB)) - price%(vA, vB)
> UB(allocIB](vA, v’)) - priceIBI(vA,v')
We say that randomized auction is truthful if all the
deterministic auction in its support are truthful.

e Approximation guarantee:
For m,V as above and v™, 0B € V, define the function
opt(vA, vP) = maxg gecim)ganspp " () + 0B (SP). Let v
be a distribution over pairs drawn from V and «, p > 0. We
say that a deterministic auction II is ¢-approximate over v
with probability p if we have

Pr (’UA(aHOCH( vP)) + 0B (allock (M, 0B))
(o7, vB)~v

>a- opt(vA,vB)) > p.
On the other hand, we say that a randomized auction IT’ is
a-approximate with probability p if for all v*, 8 € V, we
have:

Il’_lr (vA(allocﬁ(vA, oB) + vB(alloc%(vA, B))
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>a- opt(vA,vB)) >p,

where the probability is over all deterministic auctions IT in
the support of IT.

3.3 The Formal Statement of Our Main Result

We now formalize our main result. For m > 0, let BX0S,, be
the class of all functions v : 2[™ — R such that for some
set of sets C C 2[’"], it holds that, for all S € 2['"], we have
v(S) = maxcec{l|S N C|}. Also, define X0S,;, 2 BXOS;, to be the
class of all functions v : 2[™ — R such that for a subset C C R7,
it holds that, for all S € 2l™], we have v(S) = maxcec{Yies cil-

THEOREM 3.12 (MAIN RESULT). There exists a constant 8 > 0 such
that for all € > 0, there is a constant mg > 0 satisfying the following:
For all m > my, any randomized, m-item, X0S,-combinatorial
auction II with two bidders and one seller that is truthful and
(% - ﬁ + e)—approximate with probability % + exp(—pe? - m)
satisfies

C(IT) > exp(fe? - m

To show Theorem 3.12, we use the framework due to [Dob16b].
Formally, we use the following theorem from [Dob16b].

THEOREM 3.13 ([DoB168B]). There exists a polynomial P(-) such
that for all m,p,a > 0 and all randomized, m-item, X0Sy,-
combinatorial auction I1 with two bidders and one seller that is
truthful and a-approximate with probability p, there is a randomized,
m-item, X0S,, -combinatorial auction I1’ with two bidders and one
seller that is simultaneous and a-approximate with probability p, and
satisfies CC(II") < P(max(CC(II), m)).

It follows from Theorem 3.13 that the following theorem implies
Theorem 3.12. We include a proof below for completeness.

THEOREM 3.14. Foralle > 0, and allm > 10 , any randomized,

m-item, BXOS,,,-combinatorial auction I1 wzth two bidders and one
seller that is simultaneous and (3 - ﬁ + e) -approximate with

probability 1 5+ exp( %00 ) satisfies
ccm) > em
X .
=P 500

PROOF OF THEOREM 3.12 ASSUMING THEOREM 3.14. Proof by
contradiction. Suppose that Theorem 3.14 is true and Theorem 3.12
is not. Let P(-) be the polynomial promised by Theorem 3.13 and
let d be the degree of P. Define f§ = m. Let ex > 0 be the
constant promised by the negation of Theorem 3.12 for this value
of f (recall that we assume that Theorem 3.12 is false). Let my
to be large enough so that (1) P(m’) < m’4* for all m’ > my,
(2) exp(Be2 - m’) = m’ for all m’ > my, (3) my > M

Using our assumption that Theorem 3.12 is false we get that
there is an m > my, and a randomized, m-item, X0S,,-combinatorial
auction II with two bidders and one seller that is truthful, is
(% - ﬁ + e*)-approximate with probability % + exp(—fe2
and satisfies CC(IT) < exp(ﬁei

Plugging II into Theorem 3.13, we get a randomized, m-item,
X0S;,,-combinatorial auction IT” with two bidders and one seller that
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is simultaneous and (% - ﬁ + @)—approximate with probability

1

2
5+ exp(—ﬁei -m) > % + exp (_?ng) and satisfies (using m > my)

2
Exm

CC(IT') < P(max(exp(Be2 - m), m)) < exp( 500

This contradicts Theorem 3.14 and we are done. O

The rest of this paper is devoted to showing the lower bound in
Theorem 3.14. By Yao’s minimax principle, in order to a lower bound
CC(1I) for randomized m-item simultaneous auctions II that are
a-approximate with probability p (for some m, a, p), it is sufficient
to show a distribution v over pairs of functions in BX0S ,, such that
all deterministic simultaneous auctions I1’ that are a-approximate
over v with probability p have large CC(II’). We construct v in
section 4 and analyze it in section 5.

4 OUR CONSTRUCTION

For the purposes of this section, we fix m > 0. We denote the set
[m] using the letter M. If S is a subset of M, then we use S to denote
M\ S, i.e., the set of items in M that are notin S.

We give a formal definition of our lower bound instance.

In our proof below, we omit the proof of some of the lemmas.
The interested reader can find them in the full version of our paper.

4.1 Partitions

Let k > 0. We say that a sequence P = Py, Py, -+, Py of subsets
of M forms a partition of M into k sets if the sets Py, - , Py are
pairwise disjoint and their union is M. Formally, it should hold that
PinPj=0foralli# je€ [k] and U;er)P; = M. For a partition
P = Py,Py,---,Pr of M into k sets, and an element z € M, we
define ﬁ[z] to be the unique i € [k] such that z € P;. Observe that
our definition of a partition above ensures that ﬁ[z] is well-defined
for all z.

DEFINITION 4.1. We say that a tuple (k, f’,ﬁ) is a partition
parameter ifk > 0, P=pp,--- , Py is a partition of M into k sets, and
P =p1.p2, + »Pk is a sequence of integers satisfying 0 < p; < |P;|
foralli € [k].

For a partition parameter (k, ﬁ,ﬁ) we define PC(k, f’,ﬁ) to be the
uniform distribution over all sets U satisfying

PAU|=p.
Furthermore, define PC-ally(k, f’ﬁ) to be the distribution over
subsets of M such that we have Pry pcaiypy(z € U) = PPlz)
y |P}~,[z] |

independently for all z € M.

We will need the following technical lemmas about partition
parameters

LEMMA 4.2. For any subset S C M and any partition parameter
(k, P,ﬁ), it holds that

Pr  (UNnS=0)<
U~PC(k,B,p)

Pr

. UnsS=0).
U~PC-ally(k,P,p)

COROLLARY 4.3. For any partition parameter (k, Ij,ﬁ) and any
distribution D* over subsets of M, it holds that

Pr  (UNnU"=0)< Pr _ (UNnU"=0).
U~PC(k,P,p) U~PC-ally(k, P, p)
U*~D* U*~D*

Sepehr
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LEmMMA 4.4. For any partition parameters (k, ﬁ,ﬁ) and (k’, ﬁ’,j;’),
it holds for all € > 0 that

Pr  (JUNU'|<A-em) < exp(—€2(m — A)/3),
U~PC(k,P,p)
U'~PC(K', P, p")
where
Ao oip! |P; N P
TR

ie[k]:|P;|>0 i’e[k’]:lPlf, |>0

4.2 The Function Part

Let k > 0. For any sequence S=8,--- , Sk of k subsets of M and
any sequence b = by, - - -, by of bits, we define the set

Part(b) = {z € M | Vi€ [k] : 1(z € S) = by}
We use Part¢ to denote the sequence of sets {Part§(l;)}ge{0’1}k
ordered lexicographically according to b. Observe that the sequence
Part z forms a partition of M into 2k sets. We will need the following
result about Part.

k+k;
LEMMA 4.5. Let k,k1,ko > 0 and consider d; € 72 for

j € {1,2}. Let Sbea sequence of k subsets of M. For j € {1,2},
define pij to be the uniform distribution over all sequences §J of k;j
subsets of M satisfying |Part§”§j| =dj.

€

-

k+ky+ky
a 72

For
Pr§1~,u1,§z~,uz (lPart§ll§1||§2| = a) > 0, we have for all j € {1,2}

any such  that

and all sequences Z of subsets of M,

Pr (§=2)= Pr (Sj=Z1IPartg g 51 =a).
Sj~pj §1~ﬂ1
So~piz

COROLLARY 4.6. Letk > 0 and d1,ds € 72" be arbitrary. LetS
be a sequence of k subsets of M. For j € {1,2}, define y; to be the
uniform distribution over all sets A C M satisfying |Partz N Al = dj.

For any € 72 such
that Pra,pu, Ay~ps (IPart§ NA;LNAy| = E) > 0, we have for all
j €11,2} and all subsets Z C M,

Pr (Aj = Z) = Pr (Aj =Z | Partg N Ay N Ay| = a’).

Aj~Hy gl ~t
2~ H2

-

a

4.3 Bases and Clauses

We next define the notion of a basis.

DEFINITION 4.7 (BAsIs). A pair$S = (S, $%) of subsets of M forms
5m 3m 3m 5Sm

a basis if
16167 16" E) '

We reserve the letters S and T to denote bases. Note that if
S = (S, 52) is a basis, then the pair $™¢¥ = (52, S!) is also a basis.
For notational convenience, we will treat bases as a sequence of
two sets, and omit the” sign. We have the following definition:

|Partg| =(

DEFINITION 4.8 (COMPATIBLE BASES). We say that basis S is
compatible with basis T if

|Partg 7 (4m ™ 0,0,0
ar =7 7—,0,0,0,
SIT 16° 16
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s s s s

m 2m m m m m m 5
-, —,0,—,0,—, —,0, — ,—) = cmp, say.
16 16 16 16 16 16 16

An example of a basis S that is compatible with T is depicted in
Figure 3. We note that Definition 4.8 is not symmetric, i.e., basis S
may be compatible with T without basis T being compatible with
S. However, it holds that if basis S is compatible with T, then basis
T"¢? is compatible with basis S"¢°.

We will use £5;41e to denote the uniform distribution over all
bases and ¢ to denote the uniform distribution over pairs of bases
S, T such that S is compatible with T.

UHLHEYLE DEHE

H\H\H\H*
| ST 0=

v
v
v
v
v

=7 |

AL

2
A

[
<=

BL:

B :

Figure 3: A basis S = (S', 5?) that is compatible with another
basis T = (T!,T?). Also pictured: a pair of sets (Al ,Ai)

special w1th respect to (S T) (see subsubsection 4.3.2).

Observe that (B2 Bl) = (A2 , *) is special with respect to
(T"€?,S7€?). Here, the blocks inside each column correspond
to the same m/16 elements.

4.3.1 Regular Clauses. We next define:

DEFINITION 4.9 (CLAUSE). LetS = (S',S?) be basis. We say that
a set A C M is a clause with respect to S if

2m m 2m 3m N
|Partg N Al = (— —,—, —) = reg, say.

16 716" 16° 16

We define fi5ing1¢(S) to be the uniform distribution over all
clauses with respect to S. Observe that the distribution p;pn g7 (S) =
PC(4, Partg, rég). We also define:

DEFINITION 4.10 (THE DISTRIBUTION f(-)). Let S = (S!,5%) be
a basis. A pair (A!, A%) of subsets of M is called a clause pair with
respect to S if Al be a clause with respect to S, A? be a clause with
respect to STV and we have

[Partg N Al N A%| = (0 0, —

= regpair, say.
16’ 16) &P Y

We define 1i(S) to be the uniform distribution over all clause pairs
with respect to S.

OBSERVATION 4.11. Observe that for any basis S, the fact that a
pair of sets (Al, A%) is a clause pair with respect to S implies that
|Partg|, |Partg N Al|, |Parts N A2|, and |Parts N A' N A?| are all
fixed functions of m. This means that there exist a vector pair such
that (Al, A%) is a clause pair with respect to S if and only if

[Partg) 41 42| = pair.
In our lower bound construction, Alice’s regular clauses are

drawn from the distribution x(S) while Bob’s regular clauses are
drawn from the distribution u(T), where S and T are bases such
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that S is compatible with T. The following lemma shows that the
intersection of a regular clause of Alice and a regular clause of Bob

t 3 > 2 (with high probability).

has size at least =57

LEMMA 4.12. Consider € > 0 and bases S,T such that S is
compatible with T. For all i, j € {1, 2}, we have

.51
Pr (lA’ NnB| < 2m_ em) < exp(—ezm/ZO).
(A A%)~pu(S) 200

(BZ,BI)~;I(Trev)
4.3.2  Special Clauses.

DEFINITION 4.13 (SPECIAL CLAUSES). Let S, T be bases such that
S is compatible with T. We say that a set Ay, C M is 1-special with
respect to (S, T) if:

2m
|Parts 7 N Ax| = ( o 00:0,0, 0,0,

16’

m m m02m) 5
—,0, — —,0, — | = spec,, say.
167 16 16”16 pecy, say

Similarly, we say that Ay is 2-special with respect to (S, T) if:

s Vs s U Uy

[Parts) N Ayl (2m000002m0

ar =17—9,0,0,0,0, —, 0,

SIT 7% 16 16
moooomo—zm) Y
—,0,0,0,0, —, 0, = SpecC,, say.
16 167 16 pecy, say

For i € {1,2}, we define ,ui Sl.ngle(S,T) to be the uniform
distribution over all sets that are i-special with respect to (S, T).
Observe that 'ufk,single(s’ T) = PC (16, Part5||T,sp%ci) fori €
{1, 2}. Next, define:

DEFINITION 4.14 (THE DISTRIBUTION [ (-)). Let S,T be bases
such that S is compatible with T. We say that a pair of sets (AL, A2)
is special with respect to (S, T) zfAL is 1-special with respect to (S, T)
andAi is 2-special with respect to (S, T) and

|Part5”T nAL nA%| =(0,0,0,0,0,0,0,0,

,0,0,0,0, — OO)=s ecpair, say.
16° 16° pecp Y

We define 1% (S, T) to be the uniform distribution over all pairs of
sets that are special with respect to (S, T).

OBSERVATION 4.15. Observe that for bases S,T such that S
is compatible with T, the fact that a pair of sets (AL, A%) is
special with respect to (S, T) zmplles that |Partg 7|, [Partg T N A* l,
[Partg) T N A |, and |Parts T N A N A2 | are all fixed functions of
m. This means that there exist a vector opt such that (A1 A? %) is
special with respect to (S, T) if and only if

IPartsra; jaz | = ot
We reserve opt to denote this vector for the rest of this document.
Furthermore, observe that any pair (A}, A? %) that is special with
respect to (S,T) is a clause pair with respect to S. Thus, for all
ZY, 72 C M, we have that
Pr (4. 4%) = (2",2%)
(AL AL)~pa (S,T)
= Pr AI,A2 = Zl,Z2 Part = opt) .
(AL AP (S) ((A'.4%) = (21, 2%) | Partgry a1y 2] = opt)

Recall that if S is compatible with T, then T"¢? is compatible

with S"¢?. It can be verified from Definition 4.14 that (AL,Ai)

is special with respect to (S, T) if and only if (A_Z, E) is special
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with respect to (T"¢Y, S"€?). See Figure 3 for a depiction of such a
configuration of sets.

Next, we show, in Lemma 4.16, an analogue of Lemma 4.12 for
special sets. Just like Lemma 4.12 shows that the intersection of a
regular clause of Alice and a regular clause of Bob has size > 7
with high probability, Lemma 4.16 shows that if (AL, A2 ) is special
with respect to (S, T), then, intersection of AL with any clause with
respect to T"¢Y and the intersection of A2 with any clause with
respect to T has size > 2! with high probability.

We note that Lemma 4.16 does not make similar claims regarding
the intersection of Al and clauses with respect to T and the
intersection of A2 and clauses with respect to T"¢. This is no
coincidence, as these intersections have size < Z (with high
probability).

LEMMA 4.16. Consider € > 0 and bases S,T such that S is
compatible with T. For all i € {1, 2}, we have

Pr
(AL AL )~pa (S.T)
(BZ,Bl)NII(TrEU)

~ 61
(IAI* NB7 < TIS - em) < exp(—€2m/20).

4.4 The Distribution v

We now define a distribution v over pairs of functions (v, vB) €
BX0S,, (recall the definition of BX0S,, from subsection 3.3) that we

-m
100

will use to show Theorem 3.14. Fix € > 0 and define n = exp (

We assume for simplicity that n is an integer.

e Sampling (", 0B) ~ v:
(1) Sample bases (S, T) ~ &.
(2) Sample iy ~ U ([n]) and construct sequences Al A2 Bl B?
of n subsets of M as follows (where A = A1 oo AL ete):
(a) Fori # ix € [n], sample (A},A%) ~ u(S) and (B2 Bl) ~
p#(T"¢?) independently.
(b) Sample (A1 ,AZ) _ Hx (S, T)
(A}*, 32 ) = (AL, A%, Al AZ 2).
(3) Sample 0 € 71( 1,2 }), and sequences rA =r
{1,2)"
subject to ri =6.
(4) Define 0*(2) maxpega |ZNF| and 0B(2)
maxgpegs |Z N F| where, for all Z C M,

FA= (A 'we[]umde {’|ze[n

and set

AL
1’

P -+, rB € (1,2} uniformly at random
B
Iy

A
sTp

€
and 78 =
=r!

For notational convenience, it will be easier to consider v as
the distribution of a random
variable Y = (S, T, i*,gl,gz,ﬁl, B2, 0,7A, #8) and consider v*, vB
as functions of Y. We will also need shorthand for certain entries
of Y. We will use A to denote the pair (A)l,gz), B to denote the
pair (EI,EZ), TA to denote (S, A, 7*), YB to denote (T, B, 78), and
finally Y_g to denote (YA, 1B, ix). Next, using Y, we define random
variables v?, va € BXO0S;, for j € {1, 2}. To simplify notation, we
omit Y from these random variables even though they are functions

)
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of Y. We define, for j € {1,2} and Z C M:
B

v}N(2) = ;Ielz;?wmﬂ 0P (2) = Q%meﬂ,
where
FA=14] ie ). 2\ (A7)
78 = (B] lienl.j €2\ (B ).

Lemma 4.17 and Lemma 4.18 below capture what we need
from the distribution v. We mention that the proof of item 3 of
Lemma 4.17 uses the observation that IAjl.I = |le.| = % for all

€ [n],j € [2]. It also crucially leverages the fact that we are taking
the minimum over j € {1, 2} (as is captured by V). In particular, the
same statement with the minimum replaced by an average over j is
not true. This should be expected, as otherwise it would contradict
the auction of [BMW18].

Recall the definition of opt(-) from subsection 3.2 and that Y

defines vA, oB.

LEMMA 4.17. We have:

(1) For all Y ~ v, we have opt(v”,v8) = m.

(2) For allY ~ v and Z C M, we have v*(Z) < v/g(Z) and
W8(2) < ’US(Z).

(3) It holds that:

(HZCM Vje{1,2} A(Z)+vB(Z) > m +em)
< 12n% - ex _62_m
< P2y )
Proor. We show each part in turn:
(1) For the first part, is is enough to show that opt(v?, %) > m.

We have opt(v®, vB) > UA(A?*) + UB(A?*) = vA(A?*) +
UB(BZ) =m

(2) For the second part, we only argue for WA 2Z) < vg\ (Z) as the
other argument is symmetric. This follows by the definition
of v and vg and the fact that FA TQA.

(3) For the third part, we define the following events over the
randomness in Y.

Ereg = 30,1 # ix,juf’ €11,2) : |4} N B)| < 5217': —em.
E peiar = 3 # ixnj € (1,2) 1 14] NB]7| < E —em.
Epecml_ﬂliz*je {1,2} |A3jﬂBj | < %—em
Finally, define the event E = Eyeq V Especml Epecial' We
claim that
CraiM. Pr(E) < 12n? - exp (— 626” )

Proor. By the union bound, we have Pr(E) < Pr(Eyeq) +
Pr(EA ) + Pr(EB ). We next show that each one
special special

of Pr(Ereq), Pr(EA l) Pr(EB

)

l) is at most 4n?

specia specia

e’m

exp (— 20
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We start by showing Pr(Eyeq) < 4n?-exp (—G;—Om ) We derive
using Lemma 4.12:

>y Pr(|Amef|<——e)

i,i'#ix j,j'€{1,2}

9 e?m
<4n”-exp|—-———|.
20

Pr(Ereg

elm

exp( 20

o

We next show that Pr(E n?

derive using Lemma 4.16:

J 3-Jj
PrES i) < 2, > Pr(14], B} <

i#ix je{1,2}

<4n? - ex _ez_m
< P 20 )

specml) - ) We

Finally, we show that Pr(E ) < 4n? - exp (_z_) For
special
this part, recall that if a basis S is compatible with T, then

T"¢? is compatible with §"¢?. Furthermore, a palr(A1 , )

is special with respect to (S, T) if and only if (A2 ,Al ) is
special with respect to (T"¢%,57¢?). We apply Lemma 4.16
on TT€Y ST€Y to get:

3—j J im
PES ) < D D Pr(Al7 B < S8 - em)

i#ix jE{1,2}

< 4n? - ex _ez_m
< P 20

This finishes the proof that Pr(E) < 12n? - exp (— 6;6” ) m]
We next claim that whenever we have a Z C M such that
v?(Z) +v]f.3 2) > 1;26” +emforallj € {1, 2}, then E happens.
This finishes the proof of the lemma as it follows that:

— 179m
P (HZgM:V'el,Z:AZ+BZ > 4 )
£ j € (1,2} :05(2) + v} (2) a0 T €M

< Pr(E)
9 e?m
<12n®-exp|——].
20
We now prove the claim. Let Z C M be such that v/f\ (Z) +
v]B @) > 1326" + em for all j € {1, 2}. Using the deﬁnltlon of

v;.\ and vj , we get that for all j € {1, 2}, we have FA € T.A
B B A B l79m
andFj € 7‘} such that |Fj NZl + |Fj Nzl > a0 T €em.

We proceed via a case analysis on FJA, F]B for j € {1, 2}.
; . FA J B J
c e[ FH#A] AFF#B] ]
use the identity |[Z' N Z| + |Z”" N Z| <
sets Z,Z',Z" to get:

: Let jx be such a j. We
|Z” U Z"| for any

179m —=
—  tem<|FANnZ|+|FB nZ| < |F* UFB).
240 J* J* Jx Jx
Next, as FA € F/ and FB € FB, we have that |[FA | =
B ;]rt Ix I A j*B 6lm Ix
|Fj*| 2 and we gét IFj* ﬂFj*I < 330 — €m. As
FA # A’ and FB # B/*, this means that Eyeg and thus,
J* Ly J* Ly
E happens.

»3—j >3—j
o If 35 € [2] :F'}GA JVF?GB j:Letj*besucha

Jj and assume that FJ’.i € A3Jx_ The proof is symmetric
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when F]B* € B3 7J*. We begin by showing that A! and A2
are disjoint. Indeed, all elements of A! are clauses with
respect to S whereas all elements of A? are clauses with
respect to $"¢Y (Observation 4.15). By Definition 4.9 no
set can be a clause with respect to both S and S7¢? and
thus, A! and A2 must be disjoint.

As A! and A? are disjoint, we have that FjA*

A Al A Jx B
Fj* ¢ A = Fj* #Ai*.IfFj*

€ A =
* Bi: , then we are done
by the previous part, so we assume that F }3* = Bf:

Using the definition of 7—;’3 we have that F]'f: ¢ A —

F]/.i = A?;j* for some i # i,. We use the identity
1Z'NZ|+ 12" nZ| < |Z’uZ"”| for any sets Z,Z’,Z"
to get:

179m

+em < |A** nz|+|B* nZ|
i Ly

240
<1A%7" UB.

Next, as |A3 j*I = IBJ*I = 7 and we get |A3 ~Jx ﬂBj*I <

olm _ oy Ag A 2 I, thls means that EB . and thus,
240 ecial
E happens.

Otherwise: As we are not in case 2, we can assume that
for all j € [2], we have an i? and an i]B such that FJA = AJl_A
] J
and FJB =p - We have that:
L
J
|AlA N Z| +1Bjs N Z| + 1A% N Z| + B N Z|
1 1 2 2

179m
>2- (— +em).

By an averaging argument, this means that there exists

Jjx € [2] such that IAJ* NZ|+ IB? ~Jx Nzl > % +em.
Vi 3—Jx%
Using |Z'NZ| + 12" nZ| < IZ’UZ"l for any sets

Z,7',7" and the fact that |A’f‘ | = |B ‘f*| = o

o , We
3—J%

Jx

get that

—€Em.

|Af* nBL7* | < 22
240

J* 3
Isz il*andl 3-j,

1mphes that Ey g, and therefore E happens. If iA

—Jx

# iy, then the above inequality
= iy and

B
is_j, #ix then the above inequality implies that Especm P

and therefore E happens. If i i, #ixandi 13_] = iy, then

the above inequality implies that EB , and therefore
special

E happens. Finally, one of these three cases must hold as
otherwise, we have if* = ig’_j* = ix, implying

— - Al nAL — A A AT
2 Iy Iy

61m
240

|AJ:* N B3._j*| < —em,
ix Ix

contradicting Definition 4.14.

[m]

LEMMA 4.18. For the random variable Y = (YA, B i, ), it holds
that:

(1) The marginal i is independent of the marginal Y.
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(2) The marginal iy is independent of the marginal YB.

5 THE PROOF OF THEOREM 3.14

In this section, we present our proof of Theorem 3.14. Our proof
crucially relies on Lemma 4.17 and Lemma 4.18 from section 4.

10
PROOF OF THEOREM 3.14. Let € > 0 and m > 1% be arbitrary.
By Yao’s minimax principle, in order to show Theorem 3.14,
it is sufficient to show a distribution v over pairs of functions
from BX0S, such that any deterministic combinatorial auction
Lo + e)—approximate over v with

=00 ) satisfies CC(II) > exp ( =00 )

We let v denote the distribution defined in subsection 4.4 for
m, € and let Y be a random variable denoting a sample from v as in
subsection 4.4. Recall how Y defines the valuation functions v, vB,
and also v;\, UJB for j € [2]. Fix IT to be a simultaneous deterministic

that is simultaneous and (§ -

probability % + exp (

auction that is (% - Tio + e)—approximate over v with probability

1

5 texp ( 5200 ) We have from subsection 3.2 that

YPr (UA(allocﬁ(vA, WB)) + UB(alloc%(vA, vB))
~v

(179
>

— +e

240 ) ‘ Opt(UA’UB)) @

ezm

> =2).

+ ex -
2 P ( 500

To simplify notation, we will henceforth omit Y ~ v with the
understanding that all the probabilities and expectations are over
the randomness in Y ~ v. We use item 1 and item 2 of Lemma 4.17,
the fact that the functions v” and vB are monotone, and that
allocﬁ(vA, oP) and allocIBI(vA, vB) are disjoint to get the following
from Equation 1:

1

A ) > (12 +¢)m) = Lo exp - )
Pr (UG(Z(Y)) +vg(Z(Y)) > (240 +€)-m| = 5 + exp =00 )’
@
where Z(Y) = alIocI/'.\I(vA,vB). Let
. - 179
Epga =3Z S M :Vje(1,2}: vf\(Z) +’U]-B(Z) > (% +e)m,

be the event from item 3 of Lemma 4.17. By the law to total
probability we have

Pr (vg\(Z(r)) + 0B (Z(D) > (% + e) . m)
< Pr(Epyq) + Pr (m AUAZ(T) +0B(Z() > (% + e) m)
2m

%)

+PrEpad A 0p(Z(D) + v (Z(X)) >

)

(z/g Z(Y)) + 05 (Z(X)) > vl H(Z(Y)) + 05

< 12n%. exp (—

(179 ) )
— +e€|-m
240

< 12n%. exp [—

+ Pr

0(Z(1))),

®)
using item 3 of Lemma 4.17 in the penultimate step. Now, we
focus on the second term in the expression above. For every
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value o that the tuple (A, B,ix) can take, we define the event
E, = (A, B,ix) = w. By the law of total probability, we have

Pr (vy (Z(Y)) + v (Z(Y)) > vh_o(Z(X)) + 08 _,(Z(X)))
<y Z > Pr(Ey A Z() = 2)Pr(0 = ] | Eo, Z(Y) = 2)
@ Zc[m] je[2]
X Pr (v (Z(Y)) + vy (Z(X)) > v}y (Z(X)) + v5_o(Z(Y))
| E, Z(X) =Z,0 =j).

Observe that conditioning on E,,,Z(Y) = Z fixes the value of
oMNZ (X)) +0P (Z(Y)) and v)) (Z(X)) +v8 (Z(X)). Thus, the last factor
in the summand above is either 0 or 1 and it can be 1 for at most
one value of 6. We conclude:

Pr (v (Z(X)) + vy (Z(X)) > v},
Y) =

<Z Z Pr(E, A Z(

@ Zc[m)

(Z() +08_,(z(Y)))

Z) mfﬁ Pr(0 =j| Ew, Z(Y) = Z).
4
Next, we concentrate on upper bounding the term max; () Pr(0 =
Jj | Ew,Z(Y) = Z). Since 0 is chosen independently of A, B, iy in
the distribution v, we have

Z(Y)

max Pr(0 =j | Eg, Z)
jel2]

+ max (Pr(@ =jlEw,Z(Y)=2Z) - l)
jelz] 2

m [ﬁ(me 1 B Z(0) = 2) = Pr(6 = j | Eu)

+ ||dist(6 | Ee,, Z(X) = Z) = dist(0 | Ex)llzoa

(Definition 3.10)

2
1
P
1
2

IA

1 1
L \/ L D@ist0 | Ea. Z(X) = 2) 11 dist® | Ex)
(Fact 3.11, item 2)

Plugging into Equation 3 and Equation 4 and using concavity of /-,
we get

Pr (vg‘(zm) +oB(Z M) > (% + e) : m)

2

1 )
) + \/5 I0; Z(Y) | A, B, ix).
To finish the proof, we claim that

Lemma 5.1. It holds that 1(6; Z(X) | A, B, i) < 4 SEM.

We prove Lemma 5.1 later but assuming it for now, we can
combine Equation 2 and Equation 5 as

e?m 2 eZm CcCc(m)
exp(——)SlZn cexpl——— | ++/2 - ——,
500 n
. 2
and Theorem 3.14 follows using n = exp (610'61 ) o

We finish this section by showing Lemma 5.1.

PROOF OF LEMMA 5.1. Let TI* and TIP be random variables
denoting the message sent by Alice and Bob to the Seller in the
first round of IT when inputs to Alice and Bob are drawn from the
distribution v. AsIT is simultaneous, it has only one round and Z(Y)
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is a function of II* and IB. We get, invoking Lemma 3.7 multiple
times:
16; Z(Y) | A, B, ix)

<16; 1'% | A, B, ix)

=I(6; T | A, B, ix) + 1(6;TI® | A, B, i, TTY)
(item 4 of Fact 3.6)

<UO;TN | A, B,ix) +1O:; T8 | A, B, i) + 1IN | A, B, iy, 0)
<IO;II | A, ix) + 1(0;TIB | B,i4)
+ (BTN | A, i, 0) + [(A;TI® | B,ix,0)

+ (AN T8 | A, B iy, 0)

We now show that the last 3 terms are all 0. To show this, we go
term by term using the fact that IT* is a function of Alice’s input
", and therefore a function of A, A, Similarly, 118 is a function of
Bob’s input vB, and therefore a function of B, 78. For the term
I(B:IA | A, ix,0), we get (B;IA | A,ix,0) < [(B; AFA |
A ix,0) = (B, | Aix,0) = 0as 0 = r} and 7, s
sampled independently of A, B, ix, 0. Recall that Féi* denotes 7
with the coordinate iy removed. Similarly, we can deduce that
]I(ﬂ;HB | B,ix,0) = 0.Finally, for the term]I(HA;HB | A, B,ix,0),
we get I(IIATIB | A, B,ix,0) < (AP BB | A, B,ix,0) =
]I(?’_\l.*; F_Bi* | A, B,ix,0) =0as ?/_\i* is sampled independently of
7§i*, A, B, ix, 0. Combining, we get

L(6; Z(Y) | A, B,ix) <O | A, ix) +1(0; 118 | B, ix).
We next show that I(6; oA | A ix) < 2- %(H) A similar argument
shows that ]I(G;HB | Bix) < 2- %(H) finishing the proof of
Lemma 5.1. As 6 = rl{i, A is a function of A and FA, and iy is
sampled from U ([n]), we have by Lemma 4.18,

I(0; 1M | A, i) = LR ;T | A, i)

¥

1
< —~I[(rA;HA|_7I) (Lemma 3.8)
n
1 CC(IT) +1 CcCc(I1
< Logarry < SEDEL, CCOD
n n

We note that we lose an extra ‘+1” in the argument only because,
in our model in subsection 3.2, the length of Alice’s and Bob’s
messages can be anywhere from 0 to CC(IT). Thus, the total number

of possible messages can be upper bounded by 2CCID+1 Byt not
2CC(I)

]
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