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We consider optimal (revenue maximizing) mechanism design in the interdimensional setting, where one
dimension is the ‘value’ of the buyer, and the other is a ‘type’ that captures some auxiliary information. A
prototypical example of this is the FedEx Problem, for which Fiat et al. [10] characterize the optimal mechanism
for a single agent. Another example of this is when the type encodes the buyer’s budget [DW17]. The question
we address is how far can such characterizations go? In particular, we consider the setting of single-minded
agents. A seller has heterogenous items. A buyer has a valuation v for a specific subset of items S, and obtains
value v if and only if he gets all the items in S (and potentially some others too).
We show the following results.

(1) Deterministic mechanisms (i.e. posted prices) are optimal for distributions that satisfy the “declin-
ing marginal revenue” (DMR) property. In this case we give an explicit construction of the optimal
mechanism.

(2) Without the DMR assumption, the result depends on the structure of the minimal directed acyclic

graph (DAG) representing the partial order among types. When the DAG has out-degree at most 1, we

characterize the optimal mechanism & la FedEx; this can be thought of as a generalization of the FedEx
characterization since FedEx corresponds to a DAG that is a line.

Surprisingly, without the DMR assumption and when the DAG has at least one node with an out-degree

of at least 2, then we show that there is no hope of such a characterization. The minimal such example

happens on a DAG with 3 types. We show that in this case the menu complexity is unbounded in that
for any M, there exist distributions over (v,S) pairs such that the menu complexity of the optimal

mechanism is at least M.

(4) For the case of 3 types, we also show that for all distributions there exists an optimal mechanism of
finite menu complexity. This is in contrast to the case where you have 2 heterogenous items with
additive utilities for which the menu complexity could be uncountably infinite [DDT15, MV07].
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In addition, we prove that optimal mechanisms for Multi-Unit Pricing (without a DMR assumption) can
have unbounded menu complexity as well, and we further propose an extension where the menu complexity
of optimal mechanisms can be countably infinite, but not uncountably infinite.

*iam@nikhildevanur.com.

Tkgoldner@cs.columbia.edu. Supported in part by NSF CCF-1420381 and by a Microsoft Research PhD Fellowship. Supported
in part by NSF award DMS-1903037 and a Columbia Data Science Institute postdoctoral fellowship.
*rrsaxena@princeton.edu.

Yacohenca@princeton.edu. Supported by NSF CCF-1717899.

lﬂsmweinberg@princeton.edu. Supported by NSF CCF-1717899.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EC 20, July 13-17, 2020, Virtual Event, Hungary

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7975-5/20/07...$15.00

https://doi.org/10.1145/3391403.3399454

193



EC’20 Session 2e: Revenue Maximization

Taken together, these results establish that optimal mechanisms in interdimensional settings are both
surprisingly richer than single-dimensional settings, yet also vastly more structured than multi-dimensional
settings.
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1. Introduction

Consider the problem of selling multiple items to a unit-demand buyer. The fundamental problem
underlying much of mechanism design asks how the seller should maximize their revenue. If the
items are identical, then the setting is considered single-dimensional. In this case, seminal work
of Myerson [22] completely resolves this question with an exact characterization of the optimal
mechanism. The optimal mechanism is a simple take-it-or-leave-it price, and the fact that there
are multiple items versus just one is irrelevant. In contrast, if the items are heterogenous, then the
setting is multi-dimensional and, unlike the single-dimensional setting, optimal mechanisms suffer
from numerous sources of intractability (including computational intractability, non-monotonicity,
high description complexity, and others): [2, 6, 7, 14, 15, 20].

Very recently, Fiat et al. [10] identify a fascinating middle-ground. Imagine that the items are
neither identical nor heterogeneous, but are instead varying qualities of the same item. To have an
example in mind, imagine that you’re shipping a package and the items are one-day, two-day, or
three-day shipping. You obtain some value v for having your package shipped, but only if it arrives
by your deadline (which is one, two, or three days from now). We can think of the input as being a
(correlated) two-dimensional distribution over (value, deadline) pairs.

The FedEx Problem is a special case of single-minded valuations: a buyer has a valuation v for a
specific subset of items S, and obtains value v if he gets any superset of S, and 0 otherwise. To have
an example in mind, imagine that a company offers internet, phone service, and cable TV. You have
a value, v, and are interested in getting internet service. So you value options such as exclusively
internet service, internet/phone service, or internet/cable, and so on, at v. For any option that
does not include internet you get a value of zero (so we again think of the input distribution as a
two-dimensional distribution over (value, interest) pairs).

An alternative perspective to single-minded valuations is that there is a partial order on the set of
possible interests a buyer may have. The partial order is just the one induced by set inclusion. The
FedEx problem has totally-ordered items: one-day shipping is at least as good as two-day shipping
is at least as good as three-day shipping, and every buyer agrees. In fact, any partial order can be
induced from set inclusion, so the two settings are equivalent (see Observation 2 in Appendix G). It
turns out that the partial order view is more useful from a mechanism design perspective, therefore
we will use that view for the rest of the paper.

The following problem can also be interpreted as a partially-ordered setting: Suppose that each
buyer has a publicly visible attribute which the seller can use to price discriminate. E.g., the buyer
could be a student, a senior, or general-admission. Or, the buyer could be a “prime member” or a
“non-prime member” However, buyers with certain attributes can disguise themselves as having
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other attributes, given by a partial order. For example, a prime member could disguise as a non-
prime member, but not vice-versa. Then if item i is a movie ticket redeemable by anyone who can
disguise themselves as having attribute i, the items are partially-ordered.

1.1. Main Results

Fiat et al. [10] give a characterization of an optimal mechanism for the FedEx problem, and our goal
is to understand the generalizability of this characterization, in particular to the partially ordered
setting. Towards this, we first describe the FedEx characterization and what a generalization could
look like. A deterministic mechanism sets a posted price p; for each shipping option, and the buyer
picks the option he prefers (if any). Clearly, it makes sense for the prices to be non-increasing in
i-day shipping. The FedEx solution is recursive: start with the price on day 1 (as a variable), and
constrain the price on day 2 to be weakly lower, and so on. When the distributions satisfy the
Declining Marginal Revenue (DMR)! property, this strategy actually results in deterministic prices
that are optimal. Without any distributional assumption, one might have to resort to lotteries: the
buyer gets the item only with some probability. The first day price is still deterministic, but for the
second day, the mechanism offers a lottery such that the expected price for full service is weakly
lower. It turns out that we only need to randomize between two options. Recursively, every option
on day i may split into two options on day i + 1, so we might have at most 2™~! options on day m,
and 2™ — 1 options overall (and examples exist where 2™ — 1 options are necessary [23]).

So our starting point is a hope that similar recursive ideas can characterize optimal auctions
beyond the totally-ordered FedEx setting. Some terminology is useful here to understand precisely
what this might mean. We use the directed acyclic graph (DAG) representation of a partial order:
an edge from i to j implies j is preferred over i. The DAG is minimal: if (i,j) and (j, k) are edges then
(i,k) is not an edge. The DAG for the FedEx problem goes right to left, i.e., it has edges (i + 1,i)
for i from 1 to m — 1. A recursive approach for a DAG would look like this: start with a sink, set a
deterministic price, and use this to constrain the prices (either deterministically or in expectation,
based on the distributional assumption) for its predecessors and so on. The goal of this paper is to
understand Will something like this work for partially-ordered items?

DMR: Under the DMR assumption, this strategy for pricing works in any DAG (Theorem C.1
in Appendix C). We start from the sink nodes and recursively constrain the price of a node to be
at most the minimum among the prices of all its successors. Our proof that this procedure works
employs LP duality, and a significantly more involved procedure to set appropriate dual variables
than in [FGKK16]. The fact that optimal mechanisms are deterministic subject to DMR matches
prior work for totally-ordered settings [Che and Gale 2000, DHP17, DW17, FGKK16].

Out-degree 1: The FedEx strategy still works when the minimal DAG has out-degree at most 1,
without any distributional assumptions (Theorem D.1 in Appendix D). Compared to the DMR case,
we now have to deal with lotteries but when we process a node, there is exactly one successor that
constrains the lotteries for this node, in exactly the same way as in FedEx.

3 node DAG: The minimal example where the out-degree is 2 is a three-node DAG with nodes
A, B, and C, and edges (C, A) and (C, B). One might hope that the following recursive strategy would
work (after all, the graph is still a DAG, and should be amenable to recursive arguments): set prices

1A one-dimensional distribution F satisfies Declining Marginal Revenues if v(1 — F(v)) is concave. Note that this is an
incomparable condition to Regularity (in the Myersonian sense), and also Monotone Hazard Rate (MHR). There exist
distributions which are DMR, but not Regular (and therefore not MHR). There also exist distributions which are MHR
but not DMR. See [8] for examples and more discussion. For example, uniform distributions are DMR, along with any
distribution of bounded support and monotone non-decreasing density.
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Known Menu Complexity Results for Optimal Mechanisms with One Buyer

One Item | FedEx | Single-Minded, 3 Items | Multi-Unit | Coordinated, 3 Items Additive
Det. under DMR N/A v v v X N/A
Lower Bound 1 2m -1 unbounded unbounded | countably infinite | uncountable
Upper Bound 1 2m—1 finite — countably infinite | uncountable

Bold results are from this paper.

deterministically for A and B and use the minimum of the two to constrain the expected price for
C. Note that if there were no item B, this would match precisely the FedEx solution.

It turns out that this idea fails horribly, for the following (very high-level) reason. With just two
items (C and A), the price of A transparently constrains what prices we can set for C (the expected
price for C must be lower). So when optimizing the price of A, we can take this into account. With
three items, it’s no longer clear how the price of A constrains the price of C. Certainly, the expected
price for C must be lower, but perhaps a stronger constraint is already implied by the price of B.
Therefore, one cannot separately optimize the price of A without knowing the price of B.

Indeed, this intuition actually manifests into a lower bound: it is not only challenging to jointly
optimize the prices of A, B together, but the optimum may no longer be deterministic at all! Specifi-
cally, for any integer M, there exist value distributions for this 3-node DAG for which the unique
optimal mechanism presents M different lotteries to the buyer (Theorem 4.1). Essentially, there is
no hope for a FedEx style solution even for this minimal case. We focus the technical presentation of
our paper on this result.

Finiteness of menu complexity: The use of menu complexity lower bounds to ascertain complexity
of mechanisms is not new: Daskalakis et al. [7], Manelli and Vincent [20] show that the optimal
mechanism for the multi-dimensional setting might have uncountable menu complexity—this
holds even for just two items with additive valuations, and even when the item values are drawn
independently from absolutely bounded distributions. This dichotomy serves as one fundamental
difference between single-dimensional and multi-dimensional settings.

Within the context of these results, we ask if we can get an infinite (uncountable or countable)
menu complexity for the partially-ordered setting as well. A natural strategy is to take the limit
of our construction as the number of randomizations goes to infinity. Somewhat surprisingly, the
example then collapses and has a deterministic price as optimal. We show that this is no coincidence:
that the menu complexity for the three item case is always finite (Theorem 4.2).

Summary: The main technical takeaway from our results is a thorough understanding of optimal
mechanisms in interdimensional settings beyond FedEx through broadly applicable tools. Our
theorem statements use the language of menu complexity, but only to distinguish among mecha-
nisms with bounded, unbounded, or infinite menu complexity. The main conceptual takeaway is
that optimal auctions for single-minded valuations lie in a space of their own: significantly more
complex than optimal single-dimensional auctions, or even optimal auctions for totally-ordered
valuations, yet more structured than optimal multi-dimensional auctions.

1.2. Additional results

We postpone all details about our proofs to the technical sections, but highlight one result of
independent interest that we develop en route. Our problem can be phrased as a continuous linear
program, and all of our proofs require reasoning about the dual. In particular, developing our lower
bound construction (instances with unbounded menu complexity) consists of two parts: First, we
construct a candidate dual A for which a primal exists satisfying complementary slackness, and
for which every primal satisfying complementary slackness has menu complexity > M. Second,
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we prove that there exists a distribution for which 4 is a feasible dual (and combining these two
claims means that every optimal mechanism for this input has menu complexity > M). Analyzing
A through complementary slackness is technically interesting, and captures all of the insight one
would hope to gain from the construction. Reverse engineering an instance for which A is feasible,
however, is technically challenging yet unilluminating. On this front, we prove a “Master Theorem,”
stating essentially that every candidate dual is feasible for some input distribution (Theorem H.1).
More specifically, given desired properties of a dual A such as: A(x) = 0 forx € S, A(x) > 0forx € T,
etc. (see Theorem H.1 for formal statement), the Master Theorem asserts that there exists some
distribution for which there exists a feasible dual with the desired properties. This allows the user
(of the theorem) to reason exclusively about primals and duals, letting the Master Theorem map the
candidate pair back to an instance for which they are feasible. In some sense, the Master Theorem
formally separates the insightful analysis (reasoning about primals and duals using complementary
slackness) from the tedious parts (confirming that there exists an instance for which a dual with
particular desired properties even exists).

Of course, one should not expect this theorem to hold in general multi-dimensional settings
(in particular, one key property that enables our Master Theorem is a “payment identity,” which
general multi-dimensional settings notoriously lack—this is a further example of how our setting
lies in-between single- and multi-dimensional), but the Master Theorem is quite generally applicable
for problems in this intermediate range. In addition, because the Master Theorem takes care of
guaranteeing that distributions corresponding to some dual will exist, this result also emphasizes
the strength of reasoning about duals in similar settings.

Finally, beyond our main results, we prove two additional results using the same tools. First, we
apply our lower bound techniques to show that the menu complexity of the Multi-Unit Pricing
problem [DHP17] is also unbounded (Theorem L1 in Appendix I). Multi-Unit Pricing is also a
totally-ordered setting, where the items correspond to copies of a good (item one is one copy, item
two is two copies, item three is three copies). The difference from FedEx is that if the buyer is
interested in two copies but gets one, they get half their value (versus zero). Second, we propose
a generalization beyond totally-ordered settings which we call coordinated valuations, and again
characterize the menu complexity of optimal mechanisms for one instance of three items (which
can be countably infinite, but not uncountable, see Appendix J).

1.3. Related Work

Single-minded valuations are a well-known model (e.g. [18]). Most work in this model pertains
to welfare maximization in more complex settings, such as combinatorial auctions. Other work
assumes that the buyer’s interest is publicly known; in this case, the buyer is single-parameter, and
a single-buyer revenue maximization problem reduces to Myerson.

The most related line of works has already mostly been discussed. The FedEx Problem considers
totally-ordered items (in our language), as does Multi-Unit Pricing and Budgets [5, 8—10]. The
present paper is the first to consider partially-ordered items. In terms of techniques, we indeed
draw on tools from prior work. All three prior works employ some form of duality. Our approach
is most similar to that of Devanur and Weinberg [9] in that (1) both are the only works to use the
analysis from [CDW16] to characterize optimal mechanisms rather than obtain approximations,
and (2) we also perform “dual operations” rather than search for a closed form. However, as the
single-minded setting is much more complicated, we extend the techniques to handle this setting.

Also related is a long line of work which aims to characterize optimal mechanisms beyond single-
dimensional settings. Owing to the inherent complexity of mechanism design for heterogeneous
items, results on this front necessarily consider restricted settings [6, 7, 11, 13, 17, 19, 21]. From this
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set, the most related are [13, 19], who also considered settings where all consumers prefer (e.g.)
item a to item b, but there are no substantial technical connections.

There is also a quickly growing body of work regarding the menu complexity of multi-item
auctions. Much of this work focuses on settings with heterogeneous items [1, 2, 7, 12, 14, 24]. Very
recent work of [SSW18] considers the menu complexity of approximately optimal mechanisms for
the FedEx Problem (for which [FGKK16] already characterized the menu complexity of exactly
optimal mechanisms). On this front, our work places partially-ordered items (where the menu
complexity is finite but unbounded) distinctly between totally-ordered items (where the menu
complexity is bounded) [FGKK16], and heterogeneous items (uncountable) [DDT15]. Previously,
no settings with this property were known.

1.4. Roadmap
Our paper contains four main results, although we view the primary contributions as (3) and (4):

(1) In Appendix C, we prove Theorem C.1, which explicitly constructs a deterministic optimal
auction for partially-ordered items when all marginals are DMR.

(2) In Appendix D, we prove Theorem D.1, which extends the recursive FedEx algorithm for
totally-ordered items to partially-ordered items when minimal DAGs with outdegree at most
one.

(3) We focus our technical presentation on the ideas necessary for Theorem 4.1, which establishes
that any partially-ordered instance for which some node in the minimal DAG has outdegree
at least two, the menu complexity of the optimal mechanism may be unbounded. In Section 2
we provide the minimal preliminaries to understand the main ideas behind our proof of
this result (full preliminaries in Appendix A). In Section 3 we overview the key duality
aspects. In Section 4 we give a brief overview of the proof of Theorem 4.1. The full proof is
in Appendix E.

(4) Finally, we also establish that the menu complexity of optimal mechanisms for this minimal
3-item instance is always finite. The main ideas appear in Section 4, and a full proof of
Theorem 4.2 appears in Appendix F.

Outside of our main results, Appendix H presents our “Master Theorem” (Theorem H.1), which
is of independent interest for future work on mechanism design with totally- or partially-ordered
items. In Appendix I and Appendix J we display the applicability of our techniques for related
settings such as Multi-Unit Pricing (Theorem I.1) and coordinated values (Theorems J.2, J.4, ].5),
respectively. Section 5 presents our conclusions and discusses future work.

2. Preliminaries

In the interest of presentation, we’ll provide the minimum preliminaries here for the reader to
understand the key ideas. In Appendix A, we provide full preliminaries, including additional
intuition, and covering prior work (such as [DW17, FGKK16]). Many of the facts we will use are
stated here without proof (proofs are given in Appendix A).

2.1. A Minimal Instance

We focus on the three-item case with items G = {A,B,C} where A > C and B > C, but A # B and
B # A. That is, if a buyer is interested in item C, they are content with A or B. If they are interested
in A, they are content only with A (ditto for B). There is a single buyer with a (value, interest) pair
(v,G), who receives value v if they are awarded an item > G (that is, G’ > G or G’ = G). This is
the minimal non-trivial example of a partially-ordered setting. A menu-complexity lower bound
for this example applies to any partially-ordered setting that contains an item G with at least two
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incomparable items that dominate G (which includes every single-minded valuation setting with at
least 3 items).

An instance of the problem consists of a joint probability distribution over [0,H] X G, where H
is the maximum possible value of any bidder for any item.? We will use f to denote the density of
this joint distribution, with fs(v) denoting the density at (v, G). We will also use Fs(v) to denote
fov fo(w)dw, and g¢ to denote the probability that the bidder’s interest is G.

We'll consider (w.l.o.g.) direct truthful mechanisms, where the bidder reports a (value, interest)
pair and is awarded a (possibly randomized) item. Further, as observed in Fiat et al. [10], it is
without loss of generality to only consider mechanisms that award bidders their declared item of
interest with probability in [0,1], and all other items with probability 0. For a direct mechanism,
we’ll define ag(v) to be the probability that item G is awarded to a bidder who reports (v, G). Our
goal is to find the revenue-optimal allocation rule—ag(v) defined for all G € G,v € [0,H] with
payment determined by the allocation rule—such that the mechanism is incentive-compatible. The
menu complexity of a direct mechanism refers to the number of distinct pairs (G, q) such that there
exists a v with ag(v) = q.

2.2. Incentive Compatibility, Revenue Curves, and Ironing

As observed in [FGKK16], it is without loss of generality to only consider mechanisms that award
bidders their declared item of interest with probability in [0,1], and all other items with probability
0. Also observed in [FGKK16] is that Myerson’s payment identity holds in this setting as well,
and any truthful mechanism must satisfy pg(v) = vag(v) — fov ac(w)dw (this also implies that

the bidder’s utility when truthfully reporting (v,G) is ug(v) = fov ac(w)dw). This allows us to
drop the payment variables, and follow Myerson’s analysis. Fiat et al. observe that many of the
truthfulness constraints are redundant, and in fact it suffices to only make sure that when the
bidder has (value, interest) pair (v,G) they:

o Prefer to tell the truth rather than report any other (v’,G). This is accomplished by constrain-
ing ag(-) to be monotone non-decreasing (exactly as in the single-item setting).

e Prefer to tell the truth rather than report any other (v,G’ € N*(G)). By N*(G), we mean
all items G’ such that G’ > G, but there does not exist a G’ with G’ > G”” > G. This is
accomplished by constraining fov ac(w)dw > fov ac’(w)dw (as the LHS denotes the utility
of the buyer for reporting (v,G) and the RHS denotes the utility of the buyer for reporting
(v,G’)). Note that this is equivalent to saying that the area under G’s allocation curve should
be at least as large at every v as the area under G”’s allocation curve.

All of these constraints together imply that (v, G) also does not prefer to report any other (v’,G’).*
We conclude this section with some standard definitions and observations.

DEFINITION 2.1 (REVENUE CURVE). The revenue curve for an item G with CDF Fg is a function
R that maps a value v to the revenue obtained by posting a price of v, for a single item, when buyer

2Note that the multi-dimensional instances with uncountable menu complexity are also supported on a compact set: [0, H]%.
So our results are not merely a product of compactness.

3To see this, observe that the bidder is just as happy to get nothing instead of an item that doesn’t dominate their interest.
See also that they are just as happy to get their interest item instead of any item that dominates it. It will also make this
option no more attractive to any bidder considering misreporting. So starting from a truthful mechanism, modifying it to
only award the item of declared interest or nothing cannot possibly violate truthfulness. Note also that this modification
maintains optimality, but could impact the menu complexity up to a factor of # items. As we only consider distinctions
between bounded, unbounded, and infinite, this is still w.Lo.g.

4 For example, if (v, G) prefers truthful reporting to reporting (v, G’) where G’ > G, and (v, G’) prefers truthful reporting
to reporting (v’, G’), then since (v, G) gets the same utility for reporting (v, G’) as type (v, G") does for truthfully reporting,
(v, G) prefers truthful reporting to reporting (v’, G’).
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values are drawn from the distribution Fg. Formally, Rg(v) := v - [1 — Fg(v)] - qG. We say that a
revenue curve is feasible if there exists a distribution that induces it. The monopoly reserve price rg
of the revenue curve isrg € arg max, Rg(p).

DEFINITION 2.2 (VIRTUAL VALUE). Myerson’s virtual valuation function ¢(-) is defined so that

pc(v) :=v— 1}5‘("3) Observe that R;;(v) = 1 - Fg(v) — vfG(v) = —9G(v) fc (v). When clear from

context we will omit the subindex G.

DEeFINITION 2.3 (DMR). We say that a marginal distribution of values Fg satisfies declining
marginal revenues (DMR) if Rg(v) is concave, or equivalently, if ¢c(v)fc(v) is monotone non-
decreasing.

When the marginal distributions do not all satisfy the DMR assumption, we instead need to iron
the distribution, an analogue to Myersonian ironing.

DEFINITION 2.4 (IRONING). The ironed revenue curve denoted R(-) for a revenue curve R(-) is the
least concave upper bound on the revenue curve R(-).> A point v is ironed if R(v) # R(v). We say that
[a,b] is an ironed interval lffZ(a) = R(a), R(b) = R(b), and R(v) # R(v) forallv € (a,b), where if
v € (a,b), then a and b are the lower and upper endpoints of the ironed interval, respectively.

An ironed revenue curve is depicted in Figure 1. By the definition of concavity, if z is ironed,
then R(z) = BR(a) + (1 — B)R(b) where z € (a,b), fa + (1 — )b = z, and a,b are unironed.
Importantly, observe that setting price z to a consumer drawn from Fg yields revenue R(z) < R(z).
Yet, if we set price a with probability f and b with probability (1 — ), we will get revenue

N

BR(a) + (1 — B)R(b) = R(z). One can check that this is precisely the allocation and payment

0 v<a 0 v<a
a(v) =4p wvelab) and p(v) =4 fa v € [a,b) .
1 v=>b fa+(1-pb v=b
R(v)

R(v)

0 a b H

Fig. 1. For some implicit distribution F, the revenue curve R(v) = v - [1 — F(v)] is depicted, as is the ironed
revenue curve, or the revenue curve’s least concave upper bound.

3. Duality

In this section, we briefly overview the bare minimum duality preliminaries required. Full duality
preliminaries are provided in Appendix A.3-A.5.

3.1. Dual Terminology.

In this section, we introduce pictorial representations (Figures 2 and 3) of key aspects of a dual
solution and define terminology relevant to the dual.

SWe emphasize that this work irons the revenue curve with values on the x-axis. Classical one-dimensional ironing (to
yield Myersonian ironed virtual values) is done on the revenue curve with quantiles on the x-axis.
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+ (2) = ag(v) =1forv <T7g
TG
& 6) 2e(®) =0
(x6) Ag@)>0 (4= ac(v) = ag(xe)
(5,6 26(x6) =0
Tc
0- 3)= ag(w) =0forv <r1;
fe@)Pe(v)

Fig. 2. A pictorial interpretation of virtual values fG(v)Qéa(v) and the dual variable Ag(v), in addition to
the concepts of endpoints of the zero region, ironing, an ironed interval, and the allocation in response.

The primal variables are ag(v) forall G € G, v € [0,H]. Recall that we use ug(v) = fov ag(w)dw
to refer to the utility of (v,G). The dual variables are Ag(v), ag,c(v) for all G,G" € G, and
v € [0,H]. We first explain the role of these dual variables, and then describe the Lagrangian
relaxation obtained using these dual variables.

Dual Variable A. The A dual variables correspond to incentive constraints between types of the
same interest but different value. This dual controls ironing, as explained below. This really does
correspond to ironing in the classical Myerson sense, only in value space.

An oval (as depicted in Figure 2) represents an ironed interval, a region where the dual variable
Ac(+) is non-zero.

o (Ironing) We say a type (v,G) is ironed, or that v is ironed in item G, if Ag(v) > 0.

e (Ironed Intervals) For any type (x,G), the ironed interval containing x in G is defined by
the bottom end point x;, = sup{v < x | Ag(v) = 0} and the top end point X = inf{v > x |
Ac(v) = 0}. Then for all v € (x;,%c), type (v,G) is ironed, ¢ = X, and v; = x;.

As we will see later, dual best response (condition (4)) requires that if A6 (v) > 0 then ag;(v) = 0.
In other words, the allocation rule ag must be constant over ironed intervals. For any value x, an
optimal allocation must satisfy that ag(x) = ac(x).

Dual Variable .. The a dual variables correspond to incentive constraints between types of the
same value but different interest.

Item A Item B
H » H »
(5) = Jy aa(dx = f ac()dx L e O =@ = [ac@dx
aca(v) ac,z (V)
e )
0- 0

fa@)P4(v) fz(w)Pp(v)

Fig. 3. A pictorial representation of the dual variable , in addition to the concepts of flow, preferable items,
and equally preferable items. Flow is assumed to be coming from item C.
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In Figure 3, a horizontal arrow into item A (or B) at v indicates that ac 4(v) (or ac,p(v)) is
non-zero. We write the following statements for G € {A, B}.

o (Flow) We will call the value of ag.(v) the “flow into (v,G)” or the “flow into G at v” When
we focus on the minimal partial-order example, we infer that flow into A or B comes from C
in our figure.

Dual best response (condition (5)) requires that for G € {A, B}, if ac.g(v) > 0 then fov ag(x)dx =

fov ac(x)dx, or equivalently, ug(v) = uc(v): a type with value v should have the same utility in C
and G. Sending flow across interests forces the corresponding utilities to be the same.

Virtual Values. We will define a new variable, ®*%(v) for all v € [0,H], and we will call the
product f(v)®*%(v) the virtual value® Once again, this is a generalization of Myerson’s virtual
value function to this more general setting.

Figure 2 has a vertical axis ranging over values from 0 (at the bottom) to H (at the top), with a
label of the item of focus G at the top. The point on the axis for any v represents the virtual value
fo(@)P5% (v).

of partlcular interest to us is the region where the virtual value is 0 because this is the region (and
the only region) for which a primal satisfying complementary slackness can have a randomized
allocation. This is an interval if ( fG‘I)’é’O’)(-) is monotone in v (our solution ensures it is; details in
Appendix A.5).

¢ (Endpoints of Zero Region) We define the bottom end point of the zero virtual value region in
Gbyr, =inf{v | fG(v)dDé’a(v) > 0} and the top end point 7 = sup{v | fG(U)dDé’“(v) < 0}.
In Figure 2 the horizontal black lines and signs indicate where the virtual values shift from positive

sign to zero, 7, and from zero to negative sign, r ;. Primal best response requires the allocation to
satisfy ag(v) = 0 for v < r; (condition (2)) and ag(v) = 1 for v > ¥ (condition (3)).

3.2. The Lagrangian Dual.

The quality of a primal solution is measured by how well it solves the following Lagrangian
relaxation induced by (A4, ). The quality of a dual solution is measured by the value of its induced
Lagrangian relaxation. A dual is better if the value of its induced Lagrangian relaxation is smaller.

Variables: ag(v) YGe G, ve[0,H]
Maximize f fe(@) - ag(v) - A (v)dv
GeGg
subject to ag(v) € [0,1]
1-Fg(v) A
where V) =v—- ——— and where 2% (v
060 = v 0
H H
=06(0) + 7o | As) + 3 f G, (w)dw - f ae.c(wdw| . (1)

fe G'EN*(G) G':GEN*(G)

Before continuing, lets parse the Lagrangian relaxation. The only remaining constraints are that
ag(v) € [0,1], and the objective is a linear function of these variables. This immediately implies
that the solution to this LP relaxation will set ag(v) = 1 whenever @é’“(v) > 0, and ag(v) = 0
whenever @é“(v) < 0. This implies that if there is any randomization, i.e., ag(v) € (0,1) then it

® Whether we refer to ® as the virtual value or ®f reflects whether we iron in the quantile space or the value space.
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must be that CIJé’“(U) = 0. The details of the definition of ® are not so important here. (However,
note that in the definition of ®, the term A’ refers to the derivative of 1.)

3.3. Complementary Slackness.

Under strong duality, a (primal, dual) pair is optimal if and only if the primal and dual satisfy
complementary slackness. In addition, if a dual (A,«) is optimal, i.e. satisfies complementary
slackness with some primal, then any primal is optimal if and only if it satisfies complementary
slackness with (A, ). Let’s review complementary slackness in our setting. A primal a and dual
(A, @) satisfy complementary slackness if and only if:’

(Primal best response) @éa(v) >0 = ag(v) =1 (2)
L% (v) <0 = ag(v) =0 3)
(Dual best response) Ag(©) >0 = ag(v) =0 (4)

ag,c(v) >0 = fv ag(x)dx — fv ag/(x)dx =0  (5)
0 0

That is, a primal is a best response to a dual if all (v,G) with positive virtual value are awarded
the item, and all (v,G) with negative virtual value are not. A dual is a best response to a primal
if whenever a dual variable is non-zero, the corresponding local IC constraint is tight. The entire
technical aspect of this paper is using the constraints imposed by complementary slackness in (2-5)
to reason about optimal mechanisms and their menu complexity.

4. Menu Complexity

We provide here the key ideas behind the construction that forms our lower bound and the proof
of our upper bound. Full details are provided in Appendix E and Appendix F respectively.

4.1. Menu Complexity is Unbounded: A Gadget and Candidate Instance

In this section, we provide a gadget that will be used in our menu complexity lower bound, and
successively chain copies of it together to build our full construction. For one instance of our gadget,
we provide a concrete potential dual, and prove that any allocation rule satisfying complementary
slackness with it must have two distinct allocation probabilities. In order for this example to
establish a menu complexity lower bound of two, we must additionally:

e Establish that there exists a distribution F for which our dual is feasible. This is not covered
in this section, and is deferred to our Master Theorem (Theorem H.1).

e Establish that there exists an allocation rule which satisfies complementary slackness with
this dual, thereby establishing that the dual is optimal (and any optimal allocation rule must
satisfy complementary slackness with it). This is also not covered in this section, and is
deferred to Appendix F.

We begin below with our gadget, then successively chain copies together to establish a menu
complexity lower bound of M for any M > 0. We use graphics and recall the following facts
established in the previous section:

7One can interpret these conditions as saying that the primal is an optimal solution to the Lagrangian relaxation, and the
dual is the worst possible Lagrangian relaxation for the primal.
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(1) A “+” in any graphics at (x,G) represents a strictly positive Virtual Value, which implies that
as(x) = 1in any allocation rule satisfying CS. A “~” in any graphics at (x,G) represents a
strictly negative Virtual Value, which implies that ag(x) = 0. (CS2-3)

(2) A “<” in any graphics into A at x represents flow in. When there is flow into both A and B
at the same point x, this implies that u4(x) = ug(x). (CS5)

(3) A point x in the middle of an oval in any graphics represents that x is contained in the interior
of an ironed interval, and implies that a(x) = a(y) where y is the bottom of the oval. (CS4)

1>
=
Q

1 ap(v)

a,(v)

ull
[s+]
Il
1=
w
Il
=

1=
kS
Il
1=
S

Ta x x Ty v

Fig. 4. Left: Our first example that requires randomizing on A, containing an ironed interval [r 4,7] (so
aa(x1) = aa(ry)) and flow into both A and B at x1 (so ua(x1) = ug(x1)). Right: Primal best response dictates
a price of x for item B, while A’s allocation is 0 until r , and 1 after 7 4. Equal preferability at x; forces u4(x1)
(the red area) equals ug(x1) (the blue area); the ironed interval [r 4,7 4] requires a4(-) to be constant in this
region, hence we must have a(r,) € (0,1).

4.1.1.  Step One: the base gadget and a lower bound of M = 2. Our base case example is depicted in
Figure 4. We note each feature, and how it ties our hands with respect to the allocation rule via
complementary slackness.
e In item B, there is a single point x < 74 for which fB(x)QDg’a(x) = 0. Thatis, 7g = rp = x.
Then (CS2) implies that ag(v) = 1 for v > x.
o There is flow into both items A and B at x; > x. That is, ¢ a(x1),@c.s(x1) > 0. (CS5) implies
that A and B must be equally preferable at xi, that is, foxl as(w)dw = foxl ag(w)dw. Note

that ag(w) > 0 for w € (x,x;], hence foxl ag(w)dw > 0. Then to have foxl as(w)dw > 0,
because a4 (+) is monotone, it must be the case that a4(x;) > 0.

e The point x; has fA(x1)<I>g’“(x1) = 0 and is in an ironed interval [r ,,7 4] where r , < x, that
is, this ironed interval is the entire region of values that have virtual value zero in item A
and it contains both x; and x. Because x; is in an ironed interval in A, then the allocation is
constant, so as(r 4) = aa(x;), which we have already established must be positive.

e For whatever value that as(r ,) takes on, because r , < x, to satisfy equal preferability at x,
(again, that foxl ap(w)dw = foxl ag(w)dw, or equivalently as(r ,)- (x1—r,) = ap(x)- (x;—x)),
we must have ag(x) > aa(r,)(> 0), resulting in at least two distinct non-zero probabilities
of allocation.

To complete the example, (1) there is no other flow: for all v # x1, ac a(v) = ac,g(v) =0, and
(2) item C is unironed everywhere: A¢(v) = 0 for all v. This base gadget forces randomization for
the allocation of item A because the utility of x; must be equal at A and B, but the allocation of
item B must be zero below x, while the allocation of item A must be non-zero.

4.1.2.  Step Two: two chains and a lower bound of M = 3. Our second example (see Figure 5) contains
the relevant features from the first example, but extends it to add an additional constraint: we
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>
=
S

ag(rp)

ay(ra)

Fig. 5. Left: Our second example, which requires randomization on both A and B.
Right: If aa(r,) < ap(rg), then ua(xz2) < up(xz) (the blue region is smaller than the red), which violates
complementary slackness.

replace the condition 7 = r; = x with an ironed interval [rj,7p] wherer, <r, <rp <74 We
claim that this example requires us to randomize on both items. Intuitively, this is because we now
have two constraints on utilities that must be satisfied, so two degrees of freedom seems necessary.

First we observe that the construction requires the allocation rules to be non-zero in the relevant
regions, so there is no trivial solution.

o There is flow into both items A and B at x; € (T,74): ac,a(x1),ac.B(x1) > 0. (CS2) implies
that ag(v) = 1 for v > 7, so to satisfy equal preferability, we must have a4(x;) > 0.
e The point x; has fA(xl)Qj’:’a(xl) = 0 and is in an ironed interval [r ,,74] where r , < 7p. As
x1 is in an ironed interval in A, then the allocation is constant, so aa(r ) = aa(x;) > 0.
e There is flow into both items A and B at x; € (r ,,7B): ac,a(xz2),ac,B(x2) > 0. Since aa(xz) >
0—it lies in the ironed interval in A, so as(x2) = aa(r ,)—then to satisfy equal preferability at
X2, we must have ag(xz) > 0.
e The point x; has fp (x2)<I>é’a(x2) = 0 and is in an ironed interval [rj,7g] wherer, <r,. As
x3 is in an ironed interval in B, then the allocation is constant, so ag(rg) = ap(x2) > 0.
Now we observe that each of these points’ allocations (which we have observed to be non-zero)
must be unique.

e For whatever value that ag(r) takes on, because r < r,, then to satisfy equal preferability
at x; (that [[™ ax(w)dw = [ ag(w)dw), we must have as(r,) > aa(ry)(> 0).

e For whatever value that a(r ,) takes on, becauser , < 7, then to satisfy equal preferability at
X1 (fox1 as(w)dw = foxl ag(w)dw), we must have ag(rp) > aa(r,)(> aa(ry) > 0), resulting
in at least three distinct non-zero probabilities of allocation.

Again, (1) there is no other flow: for all v # x1,x3, ¢ a(v) = ac,g(v) = 0, and (2) item C is unironed
everywhere: A¢(v) = 0 for all v.

Observe that in both examples, we reason from where we have one item with positive virtual
value and the other with virtual value zero downward that, in order to satisfy a number of equal
preferability constraints, because ironed intervals force the allocation to be constant, then at every
point, the allocation must be non-zero. Then, we reason upward that, because the ironed intervals
are interleaving between the items and never aligned, the allocation must strictly increase at each
point of interest in order to satisfy equal preferability. This is precisely the reasoning we will use
to construct and prove an arbitrarily large instance and menu.

4.1.3. Step Three: four chains and a lower bound of M = 4. In this section, we take one more step
towards our general construction. The first example presents our base gadget, and the second
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example chains two copies together. In this section, we simply confirm how the gadgets interact as
we chain more and more together, bouncing back and forth from A to B.

A B 2
+
TA - + ~
T j-ﬁ
SA — xs3 ap(rs)
z4 ;I 4 (ta)
Ta
+ Ty
T 0

s:] Ta X v

Fig. 6. Left: An optimal dual for our example distributions, which will require at least 4 distinct allocation
probabilities.

Right: If as(r4) < ap(rg), then us(x2) < up(xz) (the blue region is smaller than the red), which violates
complementary slackness via Fact 2 at x4.

Nonzero allocation probabilities. First, we see that the allocation at every ironed value v such that
<I>é’“(v) = 0 must be nonzero: ag(v) > 0. The argument holds for each of (x1,A), (x2,B), (x3,A4),
and (x4,B). Below we reiterate the same argument made in the two previous sections, skipping
some details.

e Note that ag(x;) > 0 by Fact 1, and thus ug(x;) > 0.

e By Fact 2, us(x;) = ug(x1) > 0. Then as(x1) > 0.

e By Fact 3, as(sa) = as(x1) > 0. This also implies that u4(x2) > 0.

e Now, again by Fact 2, ug(xz) = ua(x2) > 0, so ag(xz) > 0.

e Now, again by Fact 3, ag(x3) = ap(xz) > 0, so ug(x3) > 0.

e Again by Fact 2, us(x3) = up(xs) > 0, so aa(xs) > 0.

e By Fact 3, aa(x4) = aa(xs) > 0, s0 usa(xg) > 0.

e Finally by Fact 2, ug(x4) = ua(xs) > 0.

Essentially, if any of these allocations must be positive, it forces the rest of them, working

downwards, to be positive. And, by Fact 1, ag(x;) = 1, so ug(x;) > 0. Hence the rest of the
implications follow, so the allocation must be nonzero throughout this region.

Distinct allocation probabilities. Now, given that the allocation must be nonzero at every point
in this range, we argue that it must be distinct at all of the points of interest. Fix some nonzero
ap(ry), and note by Fact 3 that ag(v) = ap(ry) for all v € [rg,sp]. By Fact 1, ag(v) = 0 forv < r.

Because r, < r,, then to have ua(x4) = up(xs), since ua(xy) = f;: ap(w)dw = (x4 —r,)aa(r,)

and ug(x4) = f:: ag(w)dw = (x4 — rg)ap(ry), then we must have a distinct a4 (r ,) > ap(ry). This
is depicted on the right side in Figure 6. Then, by Fact 3, aa(x3) = aa(r,) > ap(rp).

The argument extends inductively for (x3, B), (x2,A), and (x1, B): we show it with (x3, B). Note that
ua(xs) = up(xs4) and suppose the inductive hypothesis of a4 (x4) > ag(x4), where as(x3) = as(xs)
and ap(x4) = ap(ry) by Fact 3. Hence ua(sp) > up(sp). Then in order to have us(x3) = up(x3), we
must have ag(x3) > aa(x3).

The result is four distinct allocation probabilities in these four regions, and five in total (including
the deterministic option to get the item w.p. one). Essentially, this example only has two ironed
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Fig. 7. Our candidate dual instance: a top chain that spans the entire region of zero virtual values for both A
and B with no gaps between the ironed intervals that comprise the chain. There is flow into A and B at every
point x; in the chain.

intervals in A and B each with four points of interest. Our full construction below allows the
number of ironed intervals to grow with M.

4.14. Final Step: M chains and a lower bound of M. 1t is possible to extend the examples above
by continuing to interleave ironed intervals with flow coming in. The combination of the equal
preferability constraints and the inability to increase the allocation in the middle of an ironed
interval is what requires us to randomize differently within each interval, forcing any number of
menu options. Details are given in Appendix E, where we formally define this “top chain" structure
(Definition E.1) and construct the candidate dual instance, which is depicted in Figure 7. For example,
our first example has a top chain of length one, the second of length two, and the third of length
four. Theorem 4.2 proves that there exists a primal instance that satisfies complementary slackness
with the defined dual. This proves both that our dual is optimal, and thus any optimal primal must
satisfy complementary slackness with it, giving us Theorem 4.1.

THEOREM 4.1. Mechanisms that satisfy complementary slackness with a dual containing a top
chain of length M have menu complexity at least M. Moreover, for all M, there exists a distribution F
over three partially-ordered items for which a dual with top chain of length M is feasible.

The “Moreover, ...” part of the theorem is due to our Master Theorem (Theorem H.1). The formal
statement is a bit technical, and can be found in Appendix H.

4.2. For Three Items, Menu Complexity is Finite: Brief Highlight

In Appendix F, we discuss our approach for characterizing the optimal mechanism for our 3-
item minimal instance. We prove essentially that the interleaving of ironed intervals used in the
construction of the previous section is the worst case (in terms of menu complexity). We do this
by specifying a subclass of optimal duals (that we call best duals) using two new dual operations,
double swaps and upper swaps. We then leverage the structure of the best duals to give an algorithm
that recovers the optimal primal from any best dual, and prove that the resulting mechanism has
finite menu complexity.

THEOREM 4.2. For any best dual solution, the primal recovery algorithm returns a primal with finite
menu complexity that satisfies complementary slackness (and is therefore optimal).
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We conclude with one vignette regarding how the menu complexity can be unbounded but not
infinite. Two crucial aspects of the “top chain” structure from our examples (generalized in Figure 7)
are that: (1) the ironed intervals for A and B are interleaving—this is what “keeps the chain going”
and (2) the sequences for A and B terminate at different bottom endpoints. The latter is a bit subtle,
but the idea is that if the two chains terminate at the same bottom endpoint v, then this entire
process can be aborted and simply setting v as the reserve for all items satisfies complementary
slackness. So while in principle, this top chain structure could indeed be countably infinite, it cannot
also satisfy (1) and (2). This is because the monotone convergence theorem states that both chains
do indeed converge to some bottom endpoint, and interleaving then guarantees that this bottom
endpoint must be the same.

4.3. One Last Example

In this section, we construct an example by applying the Master Theorem (Theorem H.1) to the dual
in Figure 6. The customer prior distribution in the example consists of the marginal distributions
depicted in Figure 8. The distributions for A and B do not satisfy DMR, and, using the ideas from
the previous subsections, we will see that the optimal mechanism is randomized.

- Ra(v)
A [ c = R(v)
Re@)

fa(v)
fa(v)
fe(v)

(a) Probability densities
(b) Revenue curves

Fig. 8. The value distributions for items A, B, and C, that do not satisfy DMR.

We can use the revenue curve procedure from Appendix B to determine the optimal pricing for
this example. It produces the curves in Figure 8, telling us that the optimal price to set on item C is
8, which will result in prices of 9 on item A and 8 on item B. This gives R4pc(8) = 3.155. However,
as we have seen in Section 4.1, for the dual in Figure 6 (which corresponds to this distribution)
to satisfy complementary slackness with a mechanism, the mechanism must have a good deal of
randomization.

In Section 4.1, we reasoned that the allocation probability must be distinct at each of the points
(x1,A), (x2,B), (x3,A), and (x4, B). We also saw that if we fixed the allocation at (x4, B), there was
only one way to satisfy the rest of the complementary slackness constraints, forming a system
of equations. The primal recovery algorithm described in the proof of Theorem 4.2 goes through
solving this system of equations, ensuring that any other additional complementary slackness
constraints are met, and that no pathological structures that might prevent a solution from existing
can arise. Applying this algorithm to our example results in the following optimal randomized
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mechanism:
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The mechanism achieves a revenue of 3.2, which is slightly more than that of the best deterministic
mechanism.

5. Conclusions

We study optimal mechanisms for single-minded bidders, and show that the menu complexity of
optimal mechanisms is unbounded but finite for three items. Recall that for three identical items,
the menu complexity is 1, for totally-ordered items the menu complexity is at most 7, and for
heterogeneous items the menu complexity is uncountable. So our setting fits nicely “in between”
totally-ordered and heterogeneous by this measure. By fuzzier measures of complexity, the same
is true too: for identical items, the optimal mechanism has a clean closed-form description. For
totally-ordered items, the optimal dual has a closed form, and the primal can be recovered by a
simple algorithm as a function of this dual. For partially-ordered items, the optimal dual is unlikely
to have a closed form, but can be characterized in terms of properties it must satisfy, and the
primal can still be recovered algorithmically® as a function of this dual. For heterogeneous items,
optimal mechanisms are pure chaos. And, like other settings that can be placed fundamentally in
between single- and multi- dimensional settings (e.g., FedEx and MUP), we prove that the optimal
mechanism is deterministic under DMR in the partially-ordered setting.

We also provide extensions—menu complexity of MUP (Theorem 1.1, Appendix I) and of coordi-
nated values (Theorems J.2, J.4, J.5, Appendix J)—proving the usefulness of our techniques beyond
our setting.

Many interesting open directions remain. First, general menu complexity upper bounds—for
the single-minded setting, the Multi-Unit Pricing setting, and the coordinated valuations setting.
The techniques we use in this paper focus on characterizing the optimal dual and recovering the
optimal mechanism for the three-item single-minded setting; this approach appears to be far too
detailed and focused on characterizations to be extended. We expect new ideas to be needed.

Second, the question of menu-complexity lower bounds for any of these three settings for
approximately-optimal mechanism are wide-open. Is the separation from FedEx still as large when
we only require approximately-optimal revenue?

Both directions of research would further fill out this rich spectrum, which until only recently
was but thought to be a dichotomy between single-dimensional and heterogenous.
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A. Full Preliminaries

While this paper focuses on the three-item case, it’s illustrative (and perhaps cleaner) to provide
notation for general partially-ordered items. In general, there are m partially-ordered items. Item
G can be better than, worse than, or incomparable to item G’, and we’ll use the relation G > G’
to denote that G is better than G’. We refer to the set of items as G, and use N*(G) to denote
the set of items G’ € G for which G’ > G, but there is no G” with G’ > G” > G (i.e. the items
“immediately better” than G, or the 1-out-neighborhood of G in a graphic representation). There
is a single buyer with a (value, interest) pair (v,G), who receives value v if they are awarded an
item > G. An instance of the problem consists of a joint probability distribution over [0,H] X G,
where H is the maximum possible value of any bidder for any item. We will use f to denote the
density of this joint distribution, with f;(v) denoting the density at (v, G). We will also use Fg(v)
to denote fov fo(w)dw, and g¢ to denote the probability that the bidder’s interest is G. Note that
Fc(H) = g6 < 1, so Fg(+) is not the CDF of a distribution (although F(-)/qc is the CDF of the
marginal distribution of v conditioned on interest G).

We'll consider (w.l.o.g.) direct truthful mechanisms, where the bidder reports a (value, interest)
pair and is awarded a (possibly randomized) item. For a direct mechanism, we’ll define ag(v) to be
the probability that item G is awarded to a bidder who reports (v,G), and pg(v) to be the expected
payment charged. Then a buyer’s utility for reporting any (v’,G’) where G” doesn’t dominate G is
—pe (v’), and the utility for reporting any (v’,G’) where G’ dominates G is v - ag (v’) — pe (v’).

At this point, one can write a primal LP that maximizes expected revenue subject to incentive
constraints, manipulate the LP, and consider a Lagrangian relaxation (and all of this is done
in Devanur and Weinberg [9], Fiat et al. [10]).

A.1. Formulating the Optimization Problem

The “default” way to write the continuous LP characterizing the optimal mechanism would be to
maximize },Geg fOH fo(v)ps(v)dvu (the expected revenue) such that everyone prefers to tell the
truth than to report any other type. As observed in Fiat et al. [10], it is without loss of generality
to only consider mechanisms that award bidders their declared item of interest with probability
in [0,1], and all other items with probability 0.° Also observed in Fiat et al. [10] is that Myerson’s
payment identity holds in this setting as well, and any truthful mechanism must satisfy pg(v) =
vag(v) — fov ag(w)dw (this also implies that the bidder’s utility when truthfully reporting (v,G)

isug(v) = fov ac(w)dw). This allows us to drop the payment variables, and follow Myerson’s

analysis to recover:!’

E[revenue] = Z fH fo(@) - pe(v)dv = Z foG(U)aG(U) (v 1= FG(U)) do

Geg Vo Geg VO fa(v)
The experienced reader will notice that v — 1}5—‘&5;’) is exactly Myerson’s virtual value for the

conditional distribution Fg(-)/qg, which we’ll denote by ¢g(v). At this point, we still have a
continuous LP with only allocation variables, but still lots of truthfulness constraints. Fiat et al.

9To see this, observe that the bidder is just as happy to get nothing instead of an item that doesn’t dominate their interest.
See also that they are just as happy to get their interest item instead of any item that dominates it. It will also make this
option no more attractive to any bidder considering misreporting. So starting from a truthful mechanism, modifying it to
only award the item of declared interest or nothing cannot possibly violate truthfulness.

0For the familiar reader, this derivation is routine, so we omit it. The unfamiliar reader can refer to [16, 22] for this
derivation.
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[10] observe that many of these constraints are redundant, and in fact it suffices to only make sure
that when the bidder has (value, interest) pair (v,G) they:

e Prefer to tell the truth rather than report any other (v’,G). This is accomplished by constrain-
ing ac(-) to be monotone non-decreasing (exactly as in the single-item setting).

e Prefer to tell the truth rather than report any other (v,G’ € N*(G)). This is accomplished by
constraining fov ag(w)dw > fov ac'(w)dw (as the LHS denotes the utility of the buyer for
reporting (v,G) and the RHS denote the utility of the buyer for reporting (v,G’)).

All of these constraints together imply that (v, G) also does not prefer to report any other (v/,G’).1!
Below, we will now formulate the Primal LP and its Lagrangian relaxation. This derivation is not a
new result, but important to understanding our approach. So we’ll go through some of the steps to
help provide some intuition for the reader, but omit any calculations and proofs.

A.2. The Primal

With the above discussion in mind, we can now formulate our primal continuous LP.

Variables: ag(v), VG € G, v € [0,H]
Maximize f fo()ag(v)es(v)dv
GeGg
subject to ag(v) =0 VYG € G Yv € [0,H] (dual variables Ag(v) > 0)

f ag(x)dx —f ac'(x)dx 20 VG e @G, G’ € N*(G) Vv € [0,H] (dual vars ag,g (v) = 0)
0 0
ag(v) € [0,1] YG € G, Yu € [0,H] (no dual variables)

The first constraint requires that ag(-) is monotone non-decreasing for all G. If an allocation
rule is not monotone, it cannot possibly be part of a truthful mechanism. As discussed above,
Myerson’s payment identity combined with monotonicity guarantees that (v, G) will always prefer
to report (v,G) instead of (v’,G). The second constraint directly requires that the utility of (v,G)
for reporting (v,G) is at least as high as for reporting (v,G’) (also discussed above). The final
constraint simply ensures that the allocation probabilities lie in [0, 1].

A.3. Derivation of the Partial Lagrangian Dual

Moving the first two types of constraints from the primal to the objective function with multipliers
Ac(v) and ag,c (v) respectively gives the partial Lagrangian primal:

min L(a; A, @)
a:ag(v)€l0,1] VGEQ Yoe[0,H] A, a>0
where
L(a;A,a) =
Z f fe(@)ag(v)ps(v) + ac,c (v) - [f ag(x)dx — f aG/(x)dx] + Ag(v)ag(v)| dv.
Geg G’EN*(G)

11 For example, For example, if (v, G) prefers truthful reporting to reporting (v, G’) where G’ > G, and (v, G’) prefers truthful reporting
to reporting (v’, G’), then since (v, G) gets the same utility for reporting (v, G’) as type (v, G") does for truthfully reporting,
(v, G) prefers truthful reporting to reporting (v, G’).
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This gives the corresponding partial Lagrangian dual of

min max L(a; A, a).
Aa>0 a:ag(v)€[0,1] VGeG,Yve[0,H]

Note however that we can rewrite £(a; A,a) by using integration by parts on the aj,(v) term to
get ag(v) terms, using that ag(0) = 0 and Ag(H) = 0 without loss:

H H H
f Ag()ag(v)dv = Ag(v)ag(v) Ié{ —f Ag()ag(v)dv = —f Ag()ag(v)do
0 0 0

As in [FGKK16], this uses the facts that Ag(-) is continuous and equal to 0 at any point that
ag;(v) = oo, which occurs at only countably many points. Then, collecting the ag(v) terms gives:

L da) f [fc (v)ac(©)p6 ()
Geg

+ Z ag.c (v) - [fo a(;(x)dx—f0 aGr(x)dx] —xl'G(v)aG(v)]dv

G'eN*(G)

= Zf fe(v)ag(v)® G *(v)dv

Geg

where we define

> [ > [ ]
G5 (@) = pc(v)+ ag,c(x)dx — ag,¢(v)dx —/1’ (v).
f( ) G’'eN*(G) V' ? G':GeN*+(G") V¥

Then we can write that the Lagrangian dual problem is

min v)ag(v)® )
ALa>0  aag(v)e [01 GEQVUG[OH Zf fo()ag(v) G “(v)dv

Geg

A.4. More Dual Terminology

Minimal dual terminology is first introduced in subsection 3.1. Here, we add a few additional terms.
Dual best response (condition (5)) implies the following.

o (Preferable Items) To satisfy complementary slackness, for any x such that ag g (x) > 0,
we must have ug (x) > ugr(x) YG” € N*(G). This is because (a) ug(x) = ug (x) by
complementary slackness and (b) ug(x) = ug»(x) VYG” € N*(G) by incentive compatibility.

e (Equally Preferable Items) By the above, to satisfy complementary slackness with any dual
with ag ¢ (x) > 0 and ag g~ (x) > 0, we must have ug (x) = ugr (x).

A.5. Review of Dual Properties

o (Rerouting Flow Among N*(G)) If G',G” € N*(G) and we decrease ag,c (v) by ¢ and
increase ag,g”(v) by ¢, then v’ < v, f& (v’)CDé’,a(v’) decreases by ¢ and fG//(v’)CI)’é’f’ (v")
increases by ¢. All other virtual values, including all of those within G, remain the same.

o (Utility based on the dual) We can often simplify how utility is written in terms of the dual
and complementary slackness constraints. If x; < x < y < X, then allocation in ironed
intervals implies ug(y) = ug(x) + ac(y)(y — x).

e (Allocation to Nonzero Virtual Values) As shown above in Subection 3.2, the dual variables (1)
determine the virtual welfare functions ®»%(-) and (2) are chosen to minimize the maximum
virtual welfare under ®*%(-). For an optimal dual solution, the optimal mechanism will simply
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be the corresponding virtual welfare maximizer that satisfies complementary slackness. Parts
of this mechanism are easy to predict if the virtual value functions are sign-monotone, which
we will later ensure that they are. Assuming this, we can talk about the virtual values in
terms of three regions: positives, negatives, and zeroes.

(Ironing and Proper Monotonicity.) We say that a dual satisfies proper monotonicity if fg -
CIJé’a (+) is monotone non-decreasing (note the multiplier of ;). As shown in [DW17, FGKK16],
for all a, there exists a A such that (4, @) is properly monotone.

(Boosting can only improve the dual.) Given any dual with properly monotone virtual

values, if there exists v such that f; (v)@é’a(v) < 0, then for any G’ € N*(G), incrementing

ac,c(v) by fo (v)cbé’“(v) only improves the dual. By proper monotonicity, for all v* < v,
fg(v’)q)’é’“(v’) < fe (v)d%’“(v) < 0, hence increasing ag ¢ (v) will not create any positives
within G, not hurting the dual objective. Sending flow into an item G’ can only help by
making positives less so, and does not increase any virtual values (but it’s possible that it
doesn’t strictly help). This operation is coined boosting in [DW17]. While it is clear that G
should send the flow, the remaining question is which G’ € N*(G) should the flow be sent to.
This is the bulk of our analysis.

e By sign monotonicity, v > 7 has a positive virtual value, and thus the allocation rule must
set ag(v) = 1, otherwise it is not maximizing virtual welfare.

e Similarly, for values with negative virtual values, that is, v < T, it must be that ag(v) = 0.

From these observations, we can conclude that the flow out of C is identical to the flow out of
the root node (day n) in the FedEx solution. That is,
0 v >Te

-RI(v)/fe(v) v < Fe.

where Re(+) is defined as in Definition 2.1, Re(-) is the least concave upper bound on Re(+), and
R{(") is the second derivative of this function with respect to v.
We conclude with a fundamental result from [FGKK16].

ac,a(v) + ac,p(v) = {

THEOREM A.1 (PROPER IRONING [FGKK16]). Given all dual variables a, suppose Ag(v) = 0 for
all (v,G). Then fg(v)fbé’a(v) is defined for all (v,G). We define Ig(v) = — fov fG(x)d?‘é’a(x)dx, and
I (:) is the least concave upper bound on this function. Then setting Ag(v) = I6(v) = Tg(v) defines
a continuous and differentiable A (-) that, with the update of@é’a(') based on Ag(-), results in the

proper monotonicity offg(-)q)é’a(').

B. Three lllustrative Examples

In this section, we use three example instances to understand how the optimal mechanisms become
increasingly complex, blowing up from deterministic prices to unbounded randomization. We begin
with some intuition before diving into examples.

Intuition: Why is single-minded more complex? Consider first a one-item setting that only sells
2-day shipping. Myerson’s seminal work proves that the optimal way to sell 2-day shipping in
isolation is to post the monopoly reserve price for it. Consider next retroactively adding 1-day
shipping into the mix, perhaps because some customers demand 1-day shipping and aren’t satisfied
with 2-day shipping. Perhaps the distribution of customers demanding 1-day shipping has a higher
Myerson reserve than the initial 2-day shipping distribution, in which case it is consistent to set
both optimal reserves. Note, however, that a customer who wants their package within 2 days would
be content with 1-day shipping. So if instead the 1-day shipping distribution has a lower Myerson
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reserve than 2-day shipping, posting the pair of Myerson reserves is no longer incentive compatible.
This complexity arises in the FedEx problem [10], and requires considering the constraints imposed
on 2-day shipping by 1-day shipping (or vice versa).

Now consider the simplest single-minded valuation setting. The internet service provider (ISP)
sells three options: wifi, wifi/cable, and wifi/phone, where wifi/cable and wifi/phone dominate wifi
but are incomparable with each other. If it happens to be that the distribution of consumers who
are interested in wifi/cable or wifi/phone both have a higher Myerson reserve than the distribution
of consumers who are interested in only wifi,!? then again the seller can simply offer all three
options at their Myerson reserve. However, if this is not the case, further optimization must be done.
Importantly, in contrast to the FedEx setting, there’s a circular dependency involving these three
options which doesn’t arise in the totally-ordered case (see examples for further detail). In this way,
the IC constraints that govern the mechanism are much more complex in the single-minded setting
than in the FedEx setting, and are the reason both for developing much richer techniques and for
the much higher degree of randomization that is seen in our results.

Now, we explain what the optimal mechanism looks like for (1) the minimal partially-ordered
(single-minded) instance under DMR, (2) the minimal totally-ordered (FedEx) instance without
DMR, and (3) the minimal partially-ordered instance without DMR.

Three Partially-Ordered Items under DMR. We begin with the special case where the marginal
distributions for each item satisfy DMR. Recall that this implies that the marginal revenue curves
for each item are concave, and thus do not require ironing. We show how to derive the optimal item
pricing (but a proof that this is indeed optimal is deferred to Appendix C as part of the general DMR
case). Our instance is again that where C is the worst item (e.g. wifi) and A and B are incomparable
(e.g. wifi/cable and wifi/phone).

Let’s start by considering what price we would set for item A if we had already set price pc for
item C. (Note that whatever price we set for item B has no effect, as A and B are incomparable.)
Observe that our revenue from setting any price p4 is just pa - [1 — Fa(pa)], so ideally we would
just set price r4 := argmax,{p - [1 — Fa(p)]}. If ra 2 pc, this doesn’t violate any IC constraints.
Indeed, consumers with interest C will prefer to pay pc < ra to get item C rather than item A. If
ra < pc, however, setting price r4 will violate IC, as now consumers with interest C would strictly
prefer to report interest in item A instead. This constrains us to set a price for A that is at least
pc. Observe that, because R4(+) is concave, the revenue-maximizing price to set that is at least p¢
(which is > r4) is pa := pc. Hence, we can define the revenue curve R (+) to describe the revenue
we can get from selling item A as a function of pc¢:

Ra(ra) pc <ra

falpe) = {RA(PC) pc>ra’

The same definition holds for Rp(-). Now, we can find the price to set for item C that optimizes
the impact on all three items by simply finding the p maximizing R4pc (p) := Re(p) + Ra(p) + Rp(p)
(depicted in Figure 9). Picking pc as such, and then setting p4 := max{ra,pc}, pp := max{rg,pc} is
the optimal pricing. The (challenging) remaining step is to prove that in fact this is optimal even
among randomized mechanisms. The duality theory previously hinted at is key in this step, but we
postpone these details for now. Importantly, note that this claim requires the DMR assumption (so

12Recall that a one-dimensional distribution D can stochastically dominate D’ yet have a lower Myerson reserve. For
example, if D is uniform over the set {1, 10}, the Myerson reserve is 10. If D is uniform over the set {9, 10}, the Myerson
reserve is 9.
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proving it will certainly be technically involved)—without it, there might be a better randomized
mechanism.

Re(w)
— Ry (v)
T R)
= Rapc@)
= = Ry(rp)
= = Ry(m)

Fig. 9. The construction of R4gc with R4,R4,Rp,Rp, and R illustrated as well.

Two Items without DMR (FedEx). In this example, there are only two items, A and C with A > C.
In this case, we’ll think about first setting the price for A, and understanding how it constrains
our choices for C. If we set price p4 for item A, then we are constrained to give every type (v,C)
interested in item C utility at least v — p4. Again, if rc < pa, we should just set price rc on
item C. However, if rc > pa, without the DMR assumption, it’s unclear what the best price to
set should be. Indeed, it could be that some price pc < pa generates more revenue than p4 as
Rc(+) is not necessarily concave. Note, however, that the ironed revenue curve Re () is concave. So
arg maxp. <p A{Rc (pc)} = min{re,pa}. It’s unclear exactly what to make of this, but one hope (that
turns out to be correct), is that the optimal scheme for item C, conditioned on py, is to set expected
price pc = min{rc,pa} via the allocation rule defined as in Definition 2.4. It is not obvious that
such an allocation rule satisfies IC, but straight-forward calculations confirm that indeed it does.
Similarly to the previous example, we can now define:

Re(pa) pa<rc

Re(re) pa > re and  Rac(pa) = Ra(pa) + Re(pa).

Re(pa) = {
This construction is depicted in Figure 10. Figure 11 gives some intuition as to why it is indeed
incentive compatible to set the proposed allocation rule for item C (but the goal of this section is
not to provide complete proofs). It is now clear that, among all options which set a deterministic
price for item A, and implement an expected price on the ironed revenue curve for item C, the
above procedure is optimal. What is not clear is why this procedure is optimal over all possible
menus for item C, or even why a randomized menu for item A can’t perform better. Indeed, the
same duality theory referenced previously takes care of this.
This example perhaps also gives intuition for the menu complexity upper bound of 2™ — 1 for
FedEx. Repeating this process for another totally-ordered item, each option offered to buyers with

interest C could be “split” into at most two new options to be offered to buyers with interest D < C.
Three Partially-Ordered Items without DMR. In our first example, we reasoned about how our

decision for item C constrains which prices to set for items A and B. In our second example, we
reasoned about how our decision for item A constrains prices to set for item C. We presented the
opposite direction (1) to present both types of arguments and (2) because this direction is necessary
without the DMR assumption. For partially-ordered items, however, we really can only reason about
how decisions for item C constrain prices for A and B. The reason is that in order to know how
pa constrains our options for item C, we also need to know pg. Indeed, only min{pa,pp} matters
for constraining C. So we would need to know pp to know whether a proposed p4 is imposing a
new constraint or not. This results in an impasse for this approach: this partial order requires us to
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a a,(v)
ac(v)
P P 2 v
Fig. 10. A worse-to-better item revenue Fig. 11. Utility for items A and C are equal forv < p
curve for the FedEx setting that determines and v > p, but for v € (p,p), the randomized option
the optimal mechanism even without DMR. provides more utility.

reason about C’s price first, but without DMR, we must reason about A and B first. However, this is
only intuition as to why this setting becomes more complicated. In Section 4.1, we explain why it
is that the IC constraints can cause the randomization to get so unwieldy, and Section 4.3 cements
this with an example.

Note, however, that we can still reason as we previously did about the optimal item pricing. If, as
in the first example, we define R4(pc) to be the revenue from selling item A at the optimal price
that exceeds pc, and Rp(pc) similarly for item B, then Rapc(pc) := Re(pe) + Re(pe) + Ra(pc)
accurately defines the revenue we get from all three items by setting price pc on item C, and setting
the optimal prices for A and B conditioned on this.

C. An Exact Characterization Under the Assumption of DMR

Recall from Subsection 2.2 that when the distributions satisfy DMR, Ag(v) = 0 for all (v,G). Our
main result in this section is the following:

TaEOREM C.1. Consider any partially-ordered preferences for items G, >. If the marginal distribution
for each item satisfies DMR, the optimal mechanism is deterministic.

For a deterministic mechanism, we will set a take-it-or-leave-it price p for each item G.

C.1. Intuition

It will turn out that the optimal mechanism is analogous to that in FedEx and will set prices as
follows:

e For items G that are sink nodes in the DAG, set pg = rg.

e Starting from the sink nodes and visiting nodes in reverse depth, we will define a least
upper bound on each node’s price based on the prices set for nodes that dominate it. We
define pg = ming en+(G) Po’ to be the least upper bound on G’s price. Then set a price of
PG = min{ﬁG,rG} for G.

In our pricing algorithm, nodes G are limited by the smallest r4 for any A that they have a
directed path to. From complementary slackness, every r4 that a node G has a path to is an upper
bound on the price that can be set for G, so the smallest of these upper bounds is the most limiting.
We define p¢ to be this smallest upper bound, and we define L to be the nodes from N*(G) who
are also constrained by this upper bound. Thus, if we follow the sets Lg, we will find all of the
limiting nodes with r4 = pg.

When we send flow out of G, we aim to send it along the paths to the nodes that limit G’s price
the most. We do this recursively, sending from G to the most limiting neighbor, and from there to
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that node’s most limiting neighbor, splitting the flow equally if there are several limiting neighbors.
This raises the limiting reserve and never lowers it. We update regularly to ensure that we are
always sending flow to the now-limiting reserve, raising it, and thus relaxing the constraints on G.
This is almost exactly the construction: the only caveat is that we should never send flow out of an
item B at v where fB(v)CI)g’“(v) > 0. If we send into a B along the path where this is the case, we
instead send flow out at rg < v.

C.2. Formal Pricing Algorithm

Formally, we set the dual variables according to the following algorithm:

Dual variable construction:
Base case: For sink nodes A, there is nowhere to send flow. Set p4 = ra.
for all nodes A starting from the sink nodes and in increasing reverse depth '* do
pa = mingen+(4) PB
For all v from r4 down to 0, determine the minimal amount of flow out o4 such that ¢4(v) = 0.
for v from 0 to r4 do
Update(A,v,04(v))

Update(A,v,y):
Let Ly := {argminBeN+(A)ﬁB}.
forallBe Ly do
Send a4, 5(v) = ﬁy.
Update(B, min{v,rg},y).

The key idea is that the price of a node G is limited by the smallest r4 where A is some item
better than G (i.e. there is a path from G to A in the DAG). As we send flow along the path to A, we
raise r4 and it becomes less limiting. Let Sg be the set of the items that limit G the most, which are
precisely the items A such that r4 = pg. Since we are in the continuous setting, sending flow is a
continuous process. This means that the most limiting item never discretely jumps up higher and
becomes no longer limiting. Instead, all limiting items stay in the set Sg and this set grows as the
upper bounds raise and become less limiting.

Let Lg € N*(G) to be the items such that, for all B € Lg, there exists v such that ag g(v) > 0.
What this means is that p6 = pg, and B is on the path (if not the end of the path) from G to a
limiting item A € Sg. We will use the variable r to keep track of the updated pg. If A € S, then
fA(r)(I’I’}\’a(r) = 0, and if B is on a path to some limiting A, then fB(r)Qg’“(r) < 0. In every step we
decrease the amount of flow to send and the algorithm will terminate when there is no flow left to
send. Throughout this process the point r and the set Sg both only increase.

First, we set the flow out of G:

Z (0) = 0 v >Tg
T Ry ) fow) v <7,

AEN*(G)

Lemma C.2. For every G, we can always send o out of G distributed among N*(G) such that
(1) If ag,g(x) > 0 for any x, then B € Lg.
(2) If B € Lg, then f5(r)®5%(r) = 0.

13ie. # edges from sink nodes
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(3) IfBe N*(G) \ Lg, thenr < rg and thus fB(r)él’;’“(r) <0.

Proor. Suppose we have oG (v) flow to send at v. Let Z = argmingn+(G). 1, Pp be the next
possible upper bound to hit.

Let ¢ be such that by sending o flow along paths to all items in S with correct proportions, we
will maintain S and raise r by e. That is,

Z falr + )04 (r + ) = 0.

A€eSg
If r + € < p,, we can send this flow without growing Sg. Let (G, A) denote the edges forming
every path from G to A. For every (C,D) € P(G,A) for some A € Sg, we set

ac.p(v) = D fa(r +e)@5%(r+6) VA€ L.
A€eSG:(C,D)eP(G,A)

This will ensure that after this update, fa(r + s)@i’a(r +¢) =0forall Ae Sg. Update r < r + ¢.
Note that (2) holds by construction, and (3) holds since r < p,, < py forall B€ N*(G) \ Lg.
Otherwise, suppose r + ¢ > p, and v > p,. Then we instead choose ¢ = p, — r and make the
same update described above, add Z to L and add the item Y that is limiting Z, that is, Y such that
D, = Ry, to Sg. Note that we have sent positive flow, but the flow sent is < o. After the update, we
will have r < r+ ¢ =p, and fA(r)Cbi’a(r) = 0 for all A € Sg, including Y. Then again (2) holds,
and (3) holds since r = p, < pg forall Be N*(G) \ Lg.
Finally, (1) holds in both cases as we only send flow to elements of S and Sg is non-decreasing.
O

LemMA C.3. For every v and G, our choice of ag a(w) for allw € [0,H], A € N*(G) maintains
Ag(v) =0 forallv.

Proor. Since the flow out of G is chosen exactly to bring all virtual values to 0 below 7, no
non-monotonicities are caused. m]

LEmMA C.4. For every v and G, any choice of aa.g(w) for allw € [0,H], A € N™(G) maintains
Ag(v) = 0 forall v.

Proor. Suppose we get flow « into G at x. Every value v < x has fG(v)CIDé’“(v) decrease by «
while this remains unchanged for v > x, causing no non-monotonicities.
]

We are now ready to prove the main result of this section.

Proor oF THEOREM C.1. We claim the the following deterministic allocation rule always satisfies
complementary slackness with the dual: set pg = min{rg,ra : A € Sg}.

From DMR and our setting of A, we will have Ag(v) = 0 for all (v, G), automatically satisfying
complementary slackness for these variables. Further, even after sending « flow, fg()cbéa() will
be properly monotone for all G by Lemma C.3 and Lemma C.4.

First, we verify that the when we set a price, the virtual values are 0 at that price, so we have
the freedom to do so. By Lemma C.2, fA(r)d)j;a (r) = 0 for all A € Si. Of course, by definition of 7,
fA(FA)CDi’a(FA) = 0. In addition, by definition of the flow out of G, fG(v)CI)é’a(v) =0forallv < 7g
S0 fg(r)fl)?;’a(r) = 0. Then all of the prices posted are viable.

It remains to choose a mechanism that satisfies complementary slackness with the « variables. If
ag,p(v) > 0 for some v then we know that (1) B € Lg and (2) v < 7g. By Lemma C.2, the variable
ac,g(v) > 0 for any v if and only if v € L, a monotone increasing set as v increases. In this case,
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then pp = p; and both are set at this price, satisfying ug(v) = ug(v) for all v and automatically
satisfying complementary slackness. O

D. An Extension of FedEx: DAGs with Out-Degree At Most 1

In this section, we consider DAGs with out-degree at most 1. That is, partial orders that are tree-like,
where each item has at most one item that minimally dominates it. In this case, we see that the
FedEx solution applies.

THEOREM D.1. Consider any partially-ordered preferences for items G,> such that for any G,
there exists at most one G”’ that minimally dominates G: that is, G'’ > G and there does not exist
any G’ where G” > G’ > G. Then a nearly identical construction to the FedEx Problem with a
minor modification for partial orderings yields closed-form optimal dual variables and the optimal
mechanism.

We use the notation and methods of [FGKK16]. The proof is almost identical, provided for
completeness, and much of the following is duplicated from their paper, with a slight modification
to allow for the DAG structure with out-degree at most 1. The key difference is the change in
definition of the I's s curves.

We recall the following definitions from their paper:

e Let y5(v) = ¢ (v) fo(v). Recall that ¢pg(-) = v — 1}5‘(’5;})

e LetIs(v) = fov v (x)dx. As shown in [FGKK16], this function is the negative of the marginal
revenue curve for item G. Thus, I'5(0) = I(H) = 0 and I'5(v) < 0 for v € [0,H].

e For any function T, define I'(-) to be the lower convex envelope ' of I'(-). We say that I'(-) is
ironed at v if I'(v) # T'(v).
Since I'(-) is convex, it is continuously differentiable except at countably many points and its
derivative is monotone (weakly) increasing.

e Let y(-) be the derivative of I'(-) and let y(+) be the derivative of T'(:).

As shown in [FGKK16], the following facts are immediate from the definition of lower convex
envelope:

o I'(v) <T(v) VYo.

® I'(Umin) = I'(Umin) Where vpin = argmin, I'(v). (This implies that there is no ironed interval
containing vmin.)

o 7(v) is an increasing function of v and hence its derivative y’(v) > 0 is non-negative for all
.

e If '(v) is ironed in the interval [¢,h] , then (v) is linear and }’(v) = 0 in (£, h).

Now, we redefine the functions I's;, which are used to set all of the FedEx dual variables, and
can be interpreted as negative combined revenue curves for deadlines i through m. Instead, we
redefine them for an item G and all dominated items. In a DAG, we let the set of all source nodes,
that is, items that dominate no other items in the partial order, be the set S. Similarly, we call the
set of sinks, items that are dominated by no other items, as the set T.

Note that, by assumption, every item has out-degree at most 1. Then the set of items that
minimally dominate an item G, N*(G), is of size 0 or 1. If it is of size 0, then G € T: G is a sink
node. That is:

OBSERVATION 1. ForallG ¢ T, |N*(G)| = 1.

14 The lower convex envelope of function f(x) is the supremum over convex functions g(-) such that g(x) < f(x) for all x.
Notice that the lower convex envelope of I'(+) is the negative of the ironed revenue curve R(v).
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For this reason, we define the following notation.

DErFINITION D.1. For G ¢ T, let D(G) refer to the single item that minimally dominates G: G’ €
N*(G).

Now, for any source node G € S, define I's¢ = [\5. We will define the curves I's for G e G\ G
inductively. Let define r»¢ := max arg minI'> g(v). Then define

Foo(o) = o)  v<rsg
=ev Iog(rsg) v 2rsc.

Now, for all G that are not source nodes, we can inductively define

L) = To(@) + Y o).

G'eN-(G)

Note then that

_ V=c v <r:c _
Y>6 = {? 8 and Y>6 =Y+ Z 720 (v).
v >I=6 G'EN-(G)

D.1. Primal, Dual, and Complementary Slackness

We use the following primal and dual formulations with the noted complementary slackness
conditions. They are virtually identical to FedEx, modified for the DAG, and much of it is copied
from [FGKK16].

The Primal
Variables: ag(v), for all G € G, and all v € [0,H].

Maximize Z f c(@)yc(v)d

Subject to

v %
f ag(x)dx — f ag (x)dx <0 YG e G\S,G e N (G) VYvel0,H] (dual variables ag g (
0 0

ac(v) <1 YGeG VYuel0,H] (dual variables bg(v))
—ag(v) <0 YGeG VYuel0,H] (dual variables Ag(v))
ag(v) =0 YGeG VYvel0,H].

Note that a;,(v) denotes diva(;(v).

The Dual

Variables: bg(v),Ag(v), forall G € G, and all v € [0,H], ag/.g(x) for G € G\ S,G’ € N™(G) and
all x € [0,H].
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H
Minimize f bg(v)dv
PG

Geg

Subject to

bg(v) + Ag(v) +

H

f ac,c(x)dx = yg(v)
G'eN-(G)Y'?

bg(v) + A5 (v) +

H
f 0.6 (x)dx
G'eN-(G) VY

H
. f a6.p(6)(*)dx > 75(0)

H
be(v) + A5 (0) - f a6.p(6)(*)dx = 76(0)
AG(H) = 0
OZGf’G(U) >0
bg(U),AG(”U) >0

Note that A, (v) denotes %AG(‘U).

D.2. Conditions for strong duality

Yov € [0,H],G € S (primal var ag(v))

Yu € [0,H],i€e G\ S,T

(primal var ag(v))

Yov € [0,H],G € T (primal var ag(v))

VGegG
Yov € [0,H],G € G\ S,G' € N (G)
VG € GYv € [0,H].

As long as there are feasible primal and dual solutions satisfying the following conditions, strong
duality holds. Theorem 3 from [FGKK16] proves that these conditions are sufficient.

ag(v) >0 =
ac(v) <1 =
ag(v) >0 =
fac(x)dx<f ag(x)dx =
0 0
H
bg(v) + A5 (v) + f ac.c(x)dx
G'eN-(G) V7Y
H
- f 2600 (x> o) =
H
bo(v) + 5@+ f ae.o(x)dx > yo(v) =
G'eN-(G) Y'Y
H
bo(o) + 150) - [ acpo()dx > re®) =

Ag(v) continuousatv Ge G (6)
bg(v) =0 Geg (7)
Ag(v) =0 Geg ®)

ag.c(v) =0 G e G\S,G € N (G)9)

ag(v) =0 GeG\ST (10)
ag(v) =0 GeT (11)
ag(v) =0 GeS (12)

We allow a(;(v) € R U {+0co}. It may have (countably many) discontinuities. However, the proof

of optimality in [FGKK16] handles this.
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D.3. Optimal Primal Variables
We determine the allocation rules inductively, from sink nodes all the way to source nodes. First,
for sink nodes G € T, set

ag(v) =

0 v<rsg
1 1127'20.

Suppose that ag has been defined for G’ = D(G), with jumps at vy,. .., vk, and values 0 = ffy <
ﬁ1 Sﬂz... Sﬁk = 1. That is,

0 ifv<uo,
ag'(v) =4p; vij<v<uvy 1<j<k
1 v <o

Thus, we can write
k
ag(v) = ) (B = Bi-1)ac;(©)
j=1

where
0 ifv<u;
j
aG’,A V) =
j( ) {1 v 2 ;.
Next we define ag(v).
DEFINITION D.2. Let j* be the largest j such that v; < ry>. For any j < j*, consider two cases:
° fzg(vj) =TIy (v)), ie sz not ironed at v;: In this case, define

a6;(0) = {O ifv <

1 otherwise.

° sz(Uj) # Ing(vj): In this case, let

- ;= the largest v < v such that I.6(v) = Ing(v) ie., not ironed, and
- v; := the smallest v > v; such that IL6(v) = Ing(v) ie., not ironed.
Let 0 < § < 1 such that

vj = 52] + (1 - 5)51
Then T (+) is linear between v; andv;:
o6(v)) = 06(v) + (1 - 8)e()).
Define
0 ifv< Y,
ag,j(v) =16 v; <V < v;
1 otherwise.
Finally, set ag(v) as follows:
B Bac ) ifv <rsc,
ag(v) = (13)
1 v 2> r>G.

Remark: In order to continue the induction and define ag~(v) for G = D(G”), we need to rewrite
ac(v) in terms of functions ag, j(v) that take only 0/1 values. This is straightforward.
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D.4. Closed-Form Dual Variables and Proof of Optimality

The following dual variables and proofs are again almost verbatim from [FGKK16] with very small
modifications for the DAG structure.

A6 (v) =Ts6(v) - To6(v) (14)
0 V<TI>G
bg(v) = = 15
o(®) {)7>G(U) vV 2T>G (1)
)Pl v<re P
ag.g(v)y=4"%2 forGe G\ S,G' € N (G) (16)
0 v 2> r>g’
Taking the derivative of (14), and using the definition of ', we obtain:
o) = A6(©) = J26@) = Y. Ta0(0) forGe G\ 'S 17)
G’eN-(G)
Yo (@) — A5 (v) = j6(v) forGeS (18)
Also, using (16) and the fact that y>;.1(r>i+1) = 0, we get:
H ~
Vs (V) v<rsg
Agc(v) = f ac,g(x)dx = { Fzo0) *7 = jae(v) (19)
v 0 (2 oY

CramM. Conditions (10)—(12) and dual feasibility: For allG and v, ag(v) > 0 = the corresponding
dual constraint is tight, and the dual constraints are always feasible.

ProOF. Rearrange the dual constraint bg(v) + Y6 en-(6) Ac.6(v) —Ac,p(6) (V) + A5 (V) 2 Y6 (v)
to
bG(v) = Ac.p(6)(v) 2 Y6 (v) = A5 (v) - Z AG’ 6(v).
G'eN-
Fact 1: For G ¢ S, y6(v) — A;(v) = Xaren-(6) Ac.c (V) = ¥>6(v) for all v. To see this use (17) and
(19):
Y6(©) = A5@) = f20(0) = Y. Ta0(©) A,6(0) = V=0

G'eN-(G)

Fact 2: For G ¢ T, bg(v) — Ag,p(6)(v) = ¥>6(v) for all v.

0 v < Isg V>6(v) v <rsc
bg(v) = - A
@ {Yzc(v) v e = {o V2

Hence for G ¢ T, bg(v) — AG,p(6)(v) 2 Y6(v) — A5(v) = Xoren-(6) Ac.6(v) for all v.

For G € §, since y>G = yg, and yG(v) — A;;(v) = fG(v). Combining this with Fact 2 above, we
get that bg(v) — Ag,p(G)(v) + A5(v) = yg(v) for all v.

Finally, for G € T, using Fact 1, for v < ryg, we get

bo(v) =0 2 726(0) = y6(0) = 25() = D Ag.c(v)
G'eN~(G)
which is true for v < ryg. For v > r>g, we get
bo(©) = 126(0) = 6(©) = 15(0) = ), Ag.c(v),
G’eN—(G)

so the dual constraint is tight when ag(v) > 0 as this starts at r»¢. o
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The proofs of conditions Appendix D.2-Appendix D.2 are identical as in [FGKK16] using our
slightly modified dual variables:

Cramm. Condition (7): For all G and v, ag(v) <1 = bg(v) = 0.
Proor. If ag(v) < 1, then v < ryg, so by construction, bg(v) = 0. O
Cram. Condition (8): For all G and v, a;,(v) > 0 = Ag(v) = 0.

Proor. From Subsection 4.2 of [FGKK16], ag;(v) > 0 only for unironed values of v, at which
/1(;(0) =0. O

Cramm. Condition (9): For allG € G \ S,G’ € N~ (G) and v, fou ag(x)dx < fov ac'(x)dx =
ac,c(v) =0.

Proor. Asdiscussed at the end of the proof of Lemma 1 of [FGKK16], fov ag(x)dx = fOU ac (x)dx
unless I is ironed at v, or v > r». In both of these cases ag/,g(v) = 0 (by our fourth fact about
the lower convex envelope and equation Equation (16), respectively). ]

The above claims prove that this dual solution satisfies feasibility and all complementary slackness
and continuity conditions from Section D.2 hold.

E. Details from Section 4.1: Construction of a Candidate Dual Instance

We extend the above examples from Section 4.1 to require any number of menu options. As in the
two examples, we can reason from the top downward that the allocation at the bottom of every
ironed interval must be positive, and reason from the bottom upward that the allocation must
strictly increase for each new overlapping ironed interval we encounter, yielding all different menu
options. We formally define this interleaving structure and call it a “chain,” depicted in Figure 12.
As another sanity check: each new point in the chain induces a new equality that has to be satisfied.
So if the chain is of length M, intuition suggests that we should need M degrees of freedom to
possibly satisfy complementary slackness (but this is just intuition).

A B

+

EBA
no
flow
Up
—

Fig. 12. This is an example of a chain that consists of the points {(x,A), (y,B)}. It is a top chain as x > 7p.
Note that (y,B) is preceded by (x,A) as there is flow into B at y and y > x 4, and there is no flow into B for

any v € (y,7g]. The chain terminates at (y, B) since there is no flow into A for any v € [gB’gA]'

DErFINITION E.1 (Top CHAIN). A sequence (x1,A), (x2,B),(x3,A), -+ of points that switch between
items A and B is called a chain if the following hold:
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. @ia(x) = 0 for all (x,A) in the chain and @g’“(y) = 0 for all (y,B) in the chain.

® ac a(x) > 0 for all (x,A) in the chain and ac g(y) > 0 for all (y,B) in the chain.

® Aa(x) > 0 for all (x,A) in the chain and Ag(y) > 0 for all (y,B) in the chain.

® Xi, <Xis1 <X if (x;,A) is in the chain andﬁB < xi+1 < x; if (x;,B) is in the chain.
We call a chain the top chain if x; > 7p.

Note that if any of these conditions do not hold, the mechanism has an easier solution. If any
point v in the zero regions of both A and B were unironed, we could just set a price of v for both. If
the chains did not interleave with flow alternating in, our series of constraints would end. The top
chain structure (and it is key that it is a top chain) prevents this.

We now provide a complete proof of Theorem 4.1. First, we provide a construction of our candi-
date dual, which is depicted in Figure 7. The instance uses definition E.1 of a top chain.

Construction of candidate dual instance:

o Let there exist no point at which A and B both have virtual value zero and both are unironed,
that is, there is no v such that @j{a(v) = @é’“(v) =0and As(v) = Ag(v) = 0.

o Letry >x; >7p > x> x3 >+ >xy >rg >, The dual has a top chain of length M
defined by (x1,A), (x2,B),. . ., (xp, A).

¢ In addition, we have flow into the other item at each point in the chain: let ac g(x;) > 0 for
all (x;,A) in the chain as well as ac 4 (x;) > 0 for all (x;,B) in the chain.

e Let Ac(v) = 0 for all v, i.e, item C is unironed everywhere.

e For all v where « has not already been defined, let ac 4(v) = ac p(v) = 0.

We first make some remarks that follow directly from our construction. All the remarks below

(only) talk about our dual and any feasible primal that satisfies complementary slackness with our
dual.

REMARK 1. Foralli € {1,3,--- ,M — 2}, we have x;,X;4+1 € [)ﬁA,x_iA] = [x,-+1A,x,~+1A]. Since this
interval is ironed, we have A4(v) > 0 = a/;(v) = 0 for v in this interval. Thus, as(x;) = aa(Xi+1).

REMARK 2. Foralli € {2,4,--- ,M — 1}, we have x;,x;11 € [ﬁB’x_iB] = [x,-+1B,x,-+1B]. Since this
interval is ironed, we have Ag(v) > 0 = ap(v) = 0 forv in this interval. Thus, ap(x;) = ap(xi+1).

REMARK 3. Foralli € {1,2,--- ,M}, we have us(x;) = up(x;).
We now prove a lemma that forms the backbone of our inductive argument:

LEmMA E.1. Foralli € {1,2,--- ,M — 1}, we have as(x;) > ag(x;) & aa(xi+1) < ap(xi+1).
Similarly, we have as(x;) < ap(x;) & aa(xi+1) > ap(xis1)

Proor. Note that either as(x;) = aa(xj+1) or ag(x;) = ap(x;j+1) by Remark 1 and Remark 2. We
only prove a4 (x;) > ap(x;) & aa(xi+1) < ap(xis+1) for the case as(x;) = aa(x;+1) and omit the
other (symmetric) cases. Since a(x;) = aa(x;+1), we have

ua(xi) = ua(xis) + aa(x;) - (xi = xi41) = aa(xis1) - (ﬁB = Xis1) +aa(x;) - (x; —ﬁB)~

We also have, by the structure of the ironed intervals for the item B,

up(x;) = up(xiv1) + ap(xis1) - (X, — Xiv1) + ap(x;) - (% = xi )
Now, since the utilities at all points x; is the same for both items A and B (Remark 3), the fact
that a4 (x;) > ap(x;) is equivalent to a4 (x;) - (x; — ﬁB) > ag(x;) - (x; — ﬁB) which is equivalent to
aA(x,-H)-(ﬁB—x,-H) < ag (x,~+1)-(ﬁB—x,~+1) which, in turn, is equivalent to a4 (x;+1) < ap(x;41). O
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Finally, we prove Theorem 4.1.

Proor orF THEOREM 4.1. At xj;, we have that

ua(xnr) = aalear) - (ep —xar,)  and  up(xn) = ap(xnr) - (xear — Xar ).

Since x;, > XM, and as(xp) > 0, then to ensure that us(xa) = ug(xp) (Remark 3), we
must have ag(xpr) > aa(xpr). However, with this fact, Lemma E.1 says that ag(x;) > aa(x;) and
ap(xi+1) > aa(xi41) in alternation.

Since a,4(-) and ap(-) are non-decreasing sequences, they can only alternate if they have Q(M)
distinct elements.

By Theorem 4.2, there exists a feasible primal that satisfies complementary slackness. The primal
algorithm constructs a mechanism with menu complexity at least M and satisfies complementary
slackness, hence this dual is in fact optimal. m|

CoroLLARY E.2. This idea gives a lower bound for Multi-Unit Pricing as well.

We expand on this on Appendix L

F. Menu Complexity is Finite: Characterizing the Optimal Mechanism via Duality

In this section, we’ll characterize the optimal mechanism for three items {A, B,C} with structure
A>C,B > C,and A ¥ B,B # A. While our approach will be algorithmic, our focus isn’t to actually
run this algorithm or analyze its runtime. We’ll merely use the algorithms to deduce structure
of the optimal mechanism. We prove essentially that the interleaving of ironed intervals used in
the construction of the previous section is the worst case (in terms of menu complexity of the
optimal mechanism). Still, in order to possibly prove this, we need to at minimum find an optimal
mechanism for every possible instance.

Our approach is the following: we propose a primal recovery algorithm that, given a dual (1, ),
produces a primal solution that (1) satisfies complementary slackness with the dual and (2) has
finite menu complexity. Obviously, the algorithm can’t possibly succeed for every input dual (as
some duals are simply not optimal for any instance). But we show that whenever the algorithm
fails, the dual has some strange structure (elaborated below). We then show that the best dual
(which is optimal and always exists, definition below) never admits these strange structures, and
therefore the algorithm always succeeds when given the best dual as input.

DEeFINITION F.1 (BEST DUAL). We define the best dual of an instance with three partially-ordered
items to be the (A, ) satisfying the following:
(1) First, (A, a) is optimal: (A, a) € argmin{Y,Ge(a p.c) fOH fe(@) - max{O,tbé’a(v)}dv}.
(2) Among (A, a) satisfying (1), (A, ) has the fewest ironed intervals of virtual value zero. That is,
(A, @) minimizes |Z (A,a)| = l{x, | (x,G) € [0,H] X {A,B,C}, 5% (v) = 0}].
(3) Among (A, @) satisfying (2), (A, ) has the lowest positives (lexicographically ordered). That is,
(A, a) minimizes 74, followed by g, followed by Fc.

DEerINITION F.2. A double swap exists when there are consecutive points (x,A) and (y,B) in a
chain, and there is flow into A for v € [x,,y). See Figure 13.

DErINITION F.3. An upper swap occurs when there is flow into (x,A) and (y,B) wherex > 7g >
y > 7'g. See Figure 14.

ProrosiTION F.1. The best dual has no double swaps or upper swaps.
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The full proof of Proposition F.1 appears below. The high-level approach is that whenever a
double swap or upper swap exists, we can exploit this structure to modify the dual variables. This
creates a better dual solution (with respect to definition F.1) and proves that (2) or (3) respectively
must not have held for the original dual.

THEOREM 4.2. For any best dual solution, we can find a primal with finite menu complexity that
satisfies complementary slackness (and is therefore optimal).

A full proof appears below, but the high-level approach is explained in the following.

Proor SKETCH OF THEOREM 4.2. (No bad structures exist in best duals.) First, we try to satisfy
the necessary complementary slackness system of equations as in Appendix E, and identify all
possible barriers to solutions existing. These barriers are exactly double swaps or upper swaps,
which are not found in best duals by Proposition F.1.

(Inductive primal recovery algorithm.) Without these barriers, an inductive argument shows that
we can indeed find an allocation rule that satisfies all of the complementary slackness conditions.
Every dual has a (possibly empty) top chain, and each point in the chain has another set of
preferability constraints for that item, along with the constraint that the allocation is constant. We
use induction to handle one point in the chain at a time. (See Figure 17 in Appendix F.) We take
the partially-constructed allocation that satisfies the constraints for the chain so far, scale it down
(and thus continue to satisfy the constraints), and then solve for the allocation probability that will
satisfy the new constraints given by this point in the chain. As shown in Appendix E, this requires
choosing a different allocation probability at the bottom of each ironed interval in the chain, but
we show that this is sufficient, giving menu complexity at most the length of the chain + 1.

(Finite menu complexity.) The other interesting part not addressed in Appendix E is what to do
if there is a chain of countably infinite length (which can certainly exist). Naively following our
algorithm would indeed result in a primal of countably infinite menu complexity. But, because
the sequence of chain points is monotonically decreasing (and lower bounded by zero), they must
converge to some value v. If they converge, and the chain is indeed infinitely long, then neither A
nor B can possibly be ironed at v, and we can simply set price v for both items instead. O

We begin below by reviewing properties of the dual previously observed in [9, 10]. Throughout
this section we’ll reference the “best” dual. While multiple optimal duals might exist, we’ll be
interested in a specific tie-breaking among them (and refer to the one that satisfies these conditions
as “best").

THEOREM F.2 ([9]). The best dual (A, a) satisfies the following:
e (Proper monotonicity) (fc - CI)?}’“)(-) is monotone non-decreasing, for all v.
e (No-boosting) @é’a(v) > 0 for all G such that there exists a G’ > G.
o (No-rerouting) @é“(v) > 0= agc(v) =0 forall G
o (No-splitting) A\g(v) > 0 = ag.¢'(v) =0 forall G’.
Returning to our three-item example, prior work nicely characterizes the flow coming out of C in
the optimal dual: No-boosting tells us that we must always send flow out of (v,C) into somewhere
whenever dD)CL’”‘(v) < 0 (in order to bring it up to 0). No-rerouting tells us that we can never send

flow out of (v,C) if @’é’“(v) > 0. No-splitting tells us that we never send flow out of the middle of
an ironed interval. But, we still need to decide whether to send this flow into A or B. This is the
novel part of our analysis.

ProoF oF ProPosITION F.1. By Definition F.1, we know that a best dual has the minimum number
of ironed intervals amongst all optimal duals. Similarly, a best dual has the lowest positives amongst
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all optimal duals. We prove the proposition using two lemmas. The first lemma proves that a best
dual can’t have double swaps:

LemMma F.3. The optimal dual that has the minimal number of ironed intervals does not contain
any double swaps.

First, we discuss why this structure would cause a problem for how we’re used to satisfying
complementary slackness conditions. Complementary slackness forces that in the ironed intervals
[zg.zB] and [y ,Y 4], the allocation is constant, and thus utility in these regions is linear. However,
no linear utlhty functions can satisfy the preferability constraints of having utility that is higher
for item A, then B, then A, as illustrated on the left in Figure 13.

>

b U
uW uy(v)

ZB }_IA Zp )_’A v ‘ keep

——
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L

I4

w o JU)
s (1) Uua (V)

no
change ¢~V +a=0

Zg Yo Zg Yo Y

Fig. 13. Left: Complementary slackness forces linear utility in ironed intervals. For any choice of linear utility
functions, we cannot satisfy the preferability constraints imposed by the double swap for item A, then B,
then A in this region. The violated constraint corresponds to the circled arrow. Right: The operation used in
the proof of Lemma F.3, using a double swap to maintain virtual welfare and create fewer ironed intervals.

PRrOOF. Proof by contradiction. Suppose that somewhere in the top chain, some point in the
chain (x,A) is succeeded by (y,B) and ac a(z) > 0 for some z € (x,,y), creating a double swap.
We consider the following operation (depicted on the right in Figure 13) that pushes flow down
within the ironed interval [x ,,X4] and does the reverse on B, yet negates the change in flow at z to
maintain the virtual values below here. Move ¢ flow from (x, A) to (x,B). Move y flow from (y, B)
to (y,A). Move «a flow from (z,A) to (z,B). We will set

a:(x_y)s and y:(1+x_y)£
y-=z y-z

First, this ensures that ¢ — y + @ = 0, and thus for v < z, fi> () = (v) as well as CI>B (v) =

q)é’“(v). Second, this ensures that e(x — z) — y(y — z) = 0, keeping the average virtual value from z
to x the same for both items.

x N Yy x
[ n@itr@ao= [ pe@h e +e-ndos [ pE@ @ - o
z z Yy
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Fig. 14. The operation used in the proof of Lemma F.4, using a upper swap to maintain virtual welfare and
create lower positives.

X

= | fa@) @5 (@)dv +e(x —2) - y(y - 2)

z

However, the virtual values in [y, x] are increasing for item A and decreasing for item B, and
likewise those in [z,x) are decreasing for item A and increasing for item B. If we choose ¢ small
enough as to not uniron the interval [x ,,%4], the change gets spread around the interval and the
interval remains all zeroes. However, for item B, the interval [y ,7p] becomes positive while the
region above becomes negative. Since the average of both regi?)ns is the same and there is now a
non-monotonicity, the regions will be ironed together, creating a larger ironed interval with virtual
value zero.

Since the virtual welfare of the dual hasn’t changed, but we have reduced the number of ironed
intervals, then we did not start with an optimal dual with the fewest possible ironed intervals,
deriving a contradiction. m]

The second lemma proves that a best dual can’t have upper swaps:
LEMMA F.4. The optimal dual that has the lowest positives does not contain any upper swaps.

PRrOOF. Proof by contradiction. Suppose an upper swap exists. Then (as depicted on the right in
Figure 14) we can push up « flow from (y, B) to (x, B), causing fB(v)d%’“(v) = fB(v)QD;}’“(v) —a
for v € [y,x] and improving virtual welfare by a(x — y). To leave the flow out of item C un-
changed, we balance this out by pushing « flow down from (x, A) to (y,A), causing fA(v)dA)ﬁ’a(v) =
fA(v)CD;}a(v) + a for v € [y,x].

If y is unironed at A, that is, §j4 = y, or if j4 < 74, then by choosing « = —fA(gA)éf;“(gA), this
will cause 74 = 74, lowering the positives.

Alternatively, if y is ironed up to 74 such that §4 = 74, then we can choose a very small « to
keep the interval [y ,74] ironed, making the whole interval positive and causing 4 = Y, lowering

the positives. The dual will only increase by a(x — y), even when the values are ironed around, as
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ironing preserves virtual welfare. This is canceled out by the improvement in virtual welfare from
item B. Then we have maintained virtual welfare but lowered the positives, showing that this dual
solution could not have had the lowest positives. O

Lemma F.3 and Lemma F.4 comprise the proof of Proposition F.1. O

Now we prove that our primal recovery algorithm always succeeds in finding an optimal primal
(that satisfies complementary slackness) when given a best dual.

Proor oF THEOREM 4.2. First, consider the case where there exists some point v where @1’}"“(7)) =

fbé’a(v) = 0, and v is unironed both in A and in B. Then we simply set v as a price for both A and
B, automatically satisfying the complementary slackness conditions of flow into A or B, as both are
equally preferable. Since both items A and B, have the same allocation rule, the instance degenerates
into a FedEx instance. Thus, an optimal allocation rule for the item C can be determined.

Otherwise, the dual solution contains no point v as described in the first case, meaning that
ironed intervals interleave throughout the region of zero virtual values. This means that, if without
loss of generality 74 > Fp, that g = x must sit in an ironed interval [x ,,X4] on A.

If the top chain is empty, then we have 74 > 73 > x, with no flow into A for any v € [x,,%a].
Then, setting

1 V>34 1 o>F
- . v2Tp

aus(v) = :ﬁ—g v € [x,,%4) and ap(v) = {0 otherwise
0 otherwise

makes both options equally preferable for all v except for v € [x ,,%4], where reporting B is strictly
preferable, but this does not violate complementary slackness by the assumption that the top chain
is empty.

Otherwise, the top chain is non-empty. A dual gives a system of utility inequalities via comple-
mentary slackness which the allocation rule must satisfy. Instead, we can solve a system of utility
equalities given by the chain via induction on the length of the top chain, and this will imply a
solution that satisfies all of the inequalities. More specifically, the following will hold for top chains
of all lengths:

(1) The allocation rule will only increase at the bottom of ironed intervals in the chain. That
is, if the allocation rule increases at z, so a;l(z) > 0, then z must be the bottom of an ironed
interval for a point (x,A) in the top chain, thus z = x ,, and a4 (x) = aa(x ).

2) We will fully allocate to all positive virtual values. That is, as(F4) = ap(7g) = 1.

3) If (x,A) is followed by (y, B) in the chain, then aa(x) = aa(x,) > ap(y) = ap (23)'

4) At any point (x,A) in the top chain, we will have u4(x) = up(x).

5) An alternative solution can, for the first point in the chain (x, A), vary as(x ,) such that the
utility constraint is a strict inequality u4(x) > ug(x), and instead we have equality at 7a:
ua(Fa) = up(7a). This gives an equal expected price for the two items, and equal utility for
all values v > 74.

(
(
(
(

To satisfy complementary slackness, for any type (x,A) with flow in, it must be that u,(x) >
up(x). We now show why (3-4) imply that complementary slackness will be satisfied everywhere.
Consider a subsequence of points in the chain: (x,B), (y,A), (z,B), hence y > x; and z > Y,
Then ap(x) > aa(y) > ap(z) by (3). Since ug = up for every point in the chain and a larger
allocation rule implies a larger change in utility, we can deduce that us(v) > up(v) forallv € [z,y].
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e Foruv e (yA,EB), we have that a4 (v) > ag(v), and since u4(z) = ug(z), then us(v) > ug(v)
in this region.

e For v € (xg,y), we have that ag(v) > aa(v), and since ua(y) = up(y), then us(v) = up(v)
in this region.

e By definition of a double swap, there is no v € [yA,z) such that there is flow into (v,A).
Likewise, there is no v € [xg,y) such that there is flow into (v, B).

Hence all possible complementary slackness conditions are satisfied.

A B
_ a
as(v)
— x
—
—
ya
— Yy
— xR
_ aas(v
* ZB A( )
— z
Ya
ZB _ _ _
zZp Yy z Zp ZRY Ya T I v

Fig. 15. Left: A candidate dual (with no double or upper swaps); part of a chain. Right: An allocation that
satisfies complementary slackness up to value y, satisfying equal preferability at z and y and preferability at
all points with flow in.

We now show that these sufficient properties hold by induction. As a base case, consider when
there is one point in the top chain, which without loss is (x,A). By definition of the top chain,
Fa > x > g > x, and there is flow into item A at x, which is in ironed interval [x ,,%¥4]. We can

set as(x,) = ;‘__;B and set a4 (74) = ag(¥g) = 1. Then
=A
X—TB _
ua(x) = aalx,) - (x —x,) = “(x—x,) = Ux —7p) = up(x).
X=X,
Then conditions (1-4) are met. To satisfy (5), we can instead set as(x,) = rr;‘_;;B Then
=A
_ _ raA—Tp L _
ua(fa) = aalxy) - (Fa—x,) = < (Fa —x,) = 1(Fa — 7B) = up(Fa).
ra — EA

For the inductive hypothesis, suppose for any chain of length n, we have allocation rules such
that (1-5) hold.

Now consider a chain of length n + 1. Without loss of generality, let (x,A) be the top point in the
chain, where x sits in the ironed interval [x ,,%4], and this point is proceeded by (y, B) which sits
in [gB,gB], hence 74 > x > 7g and y > x , by definition of the chain.

By the inductive hypothesis, we can come up with allocation rules a4(-) and ag(-) that satisfy
complementary slackness to the same chain without the highest point (x, A), and will have aa(x ) =
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A B a ap(v)
+ _
TA
- xr
+ = aa(v)
B
—
Lp

Fig. 16. Left: The base case of a candidate dual with an empty chain. Right: An allocation that satisfies
complementary slackness.

ap(fg) = 1. We construct an allocation rule a for the top chain of size n + 1 as follows; this is

depicted in Figure 17.Let A = W;B)(ﬁry) < 1. Then let
1 >T 1 >
iA) = CETA and ap) = o=
Aaa(v) otherwise Aag(v) otherwise.

This clearly satisfies (1-3). To show that (4) holds, we observe that at any previous point of con-
cern v < g, we had ug(v) = up(v). Now at those points, we have ii4(v) = fov da(v)dv =

A fov aa(v)dv = Aug(v). This holds for @ig(v) = Aug(v) as well. Thus, complementary slackness is
still satisfied at all previous points v < 7g; we only need to check equal utility at x.

da(x) = 8a(y) +dalx,)(x —y) = dua(y) +1-1- (x —y)
up(x) = ap(y) +a(y,) (78 —y) + ap(re)(x = 7p) = Aup(y) + A-ap(y ) (rs —y) +1- (x —7p)
Then to have i4(x) = dp(x), since ua(y) = ug(y), we require that
Ax—y) = A-ap(y, )(rp —y) + 1 (x —7p).

The solution here is exactly the A defined above.
Alternatively, by replacing x with 74, thus setting A =

Fa—Fp
ra=y-ap(y )(Fs-y)’
has ua(x) > up(x) and us(74) = ug(f4) as required in (5).

Thus we have ensured that for top chains of all lengths, we can give an allocation rule that
satisfies complementary slackness for all values from the bottom to the top of the chain. For
v below the chain, ug(v) = uas(v) = 0, so we automatically satisfy complementary slackness.
Above the chain, if we have used the alternate solution that (5) guarantees exists, we automatically
satisfy complementary slackness for v > 74. This would only fail if there is flow into item B for
v € [x,74)—that is, if the dual contains a upper swap, but by assumption it does not. Then for any
dual solution with no double swaps or upper swaps, this algorithm gives an allocation rule that
satisfies complementary slackness.

We prove that the menu complexity of the mechanism output by this algorithm is finite below:

we get a solution that

Cramm. The menu complexity is always finite.

Proor. Proof by contradiction. Suppose that there exists an instance such that the mechanism
output by the algorithm has infinite menu complexity.
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Note that this can only happen if the length of the top chain is infinity. Thus, there exists a
sequence of points (x1,A), (x2,B), (x3,A),- - - such that the point (x;,A) is inside an ironed interval
[ﬁ A,x_iA] and x4 > Xi - Analogous claims hold for an element (x;+1, B) in the chain.

Thus, we have

I\

X|1 2TB > X2B XZZﬁAZX_3AZX3Z"'

Since the infinite sequence x7,xz,- - - is monotone and bounded, it converges to a limit, say x*.
Observe that x* satisfies @f{“(x*) = @g’“(x*) = 0 and is unironed. This is because points arbitrarily
close to it are unironed and are zeroes of @f{“() and @g’“(-). However, in this case, our algorithm

just sets the price x* and thus has constant menu complexity, a contradiction.
mi

O

A B
+ _
-— ra
a
— " T ap(v)
B
—
—
- y
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-« aa(v)
* )
. . =B
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.
Yy Zpy ' T ra v
a a
[ — (V) 15(v)
aa(v) aa(v)

Fig. 17. Top Left: A top chain from a candidate dual. We use the inductive hypothesis on the chain of one size
smaller (below the green line). Top Right: The allocation rule from the inductive hypothesis that satisfies all
CS constraints on the smaller chain (below the green line). Bottom Left: The scaled allocation rule, requiring
preferability of A between the green lines. Bottom Right: The allocation rule that satisfies these preferability
constraints.
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G. Equivalence with Single-Minded Valuations

In the introduction, we note the following observation.
OBSERVATION 2. The partially-ordered setting is equivalent to the single-minded setting.
First, we define the single-minded setting.

DEFINITION G.1. In a single-minded setting, a seller determines how to sell any bundle of k items.
A buyer has a (value, bundle) pair (v, B) where B € 2IK) is any subset of items. The pair (v, B) is drawn
from a joint probability distribution over [0, H] x 2X1 where H is the maximum possible value of any
bidder for any item.

Any single-minded setting can be represented as a partially-ordered setting: the set of possible
interests G is just the set of possible bundles, 2[K] The relation is set containment: an interest G
dominates an interest G’, that is, G > G’, if G D G’. The distribution F is identical.

Any partially-ordered setting can be represented as a single-minded setting: we can invent items
such that every interest G maps to some subset of items. For any minimal interest G (that is, G which
does not dominate any other interests), map G to a new item i: B(G) = {i}. For each successive
interest G’ € N*(G), map G’ to B(G') = {j} U Ug».¢ren+(G7) B(G”') where j is a new additional
item. Repeat this process, completing a mapping from interests to subsets of some m created items.
For all subsets B € 2[¥] which do not have an interest that maps onto it, assign measure 0 to the
event of drawing (v, B) from F. Otherwise, fg(c)(v) = fo(v).

H. The Master Theorem

All of the analysis in the previous section started from a candidate dual solution, and showed that
such duals are optimal (as in, there is a feasible primal satisfying complementary slackness). The
missing step is ensuring that there exists an input distribution for which these duals are feasible.
To save ourselves (and future work) the tedium of hand-crafting an actual distribution for which
these duals are feasible, we prove a general Master Theorem, essentially stating that for a wide
class of duals (essentially, anything dictated by ironed intervals, positive/negative regions, and flow
in), there exists a distribution for which this dual is feasible.

THEOREM H.1 (MASTER THEOREM). Suppose we are given a partial order over G, for each item
G € G candidate endpoints of zero region (bounded away from 0) Fg,r s, a finite set of candidate
ironed intervals (bounded away from zero) [x; ;.Xic] withr, < x, ; < Xi,c < FG, and for each pair
of items G’ > G a finite set of candidate flow-exchanging points (bounded away from zero) y; g.¢’
not in (x; ;,X;,c] for any candidate ironed interval. Then there exists a joint distribution over (value,

interest) pairs with a feasible dual (A, ) such that:
e the endpoints of the zero region for CI%’“ arer andrg.
e the ironed intervals of@é“ are exactly to the intervals [x; ;,X; ] (no others).
o aco(y) >0 & y=y;cc forsomei.

Note that from the proof the Master Theorem, it is clear how to explicitly construct a distribution
for the lower bound (although this is a tedious and unilluminating process).

In this section we provide a complete proof of Theorem H.1. On our way to prove this theorem,
we generalize a result of [23], in which they show that for totally ordered preferences, one can
always find a discrete distribution that produces a well-enough-behaved revenue curve. They use
this result to show that there exist instances for which the menu complexity is the worst possible,
exponential in the number of items. Here we extend their construction and show that for any
well-enough-behaved set of continuous revenue curves for the partially ordered setting, there exist
distributions that induce them.
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The first step is to generalize the result of [23] from discrete distributions to continuous distribu-
tions.

LEMMA H.2 (REVENUE THEOREM FOR CONTINUOUS CURVES). Given a continuous curve R : [1,H]
differentiable everywhere except at countably many points, such that R(1) = 1 and |R’(x)+|,|R’(x)-] <
ﬁ\v’x € [1,H], there exists a distribution ¥ such that R is the revenue curve that arises from selling to
a single bidder with a valuation drawn from ¥ .

Proor. Consider the following distribution

F(x)=1- @,x € [1,H]

and F(x) = 0 for x < 1, F(x) = 1 for x > H. In order to show that this is a valid distribution, it
suffices to show that it is monotonic non-decreasing. For that, we consider its derivative and show
it is non-negative everywhere:

—xR’(x) + R(x)

F'(x) = 2

X

It suffices to show that the numerator, R(x) — R’(x)x, is always non-negative. Note that for x > 1,
R(x) > % (since R(1) = 1 and the derivative doesn’t change fast enough) and |R’(x)| < % Since
x < H, the claim follows.

It remains to show that indeed the revenue from this distribution matches the curve R(x).
Consider setting a price of x, then the revenue of selling at x is exactly x(1 — F(x)) = R(x). O

Now we want to extend this to say we can find distributions for revenue curves with specific
properties that will be useful.

THEOREM H.3 (MASTER THEOREM FOR SINGLE ITEM). Given candidate endpoints of zero region
X4,x_ and candidate ironed interval endpoints [gi,fi]é‘:l (where x_ < x; < X; < x4) thereisa
distribution ¥ such that the revenue curve induced by a bidder whose valuation is drawn from ¥
satisfies

o 1% (x)f(x) is negative for x < x_ (i.e. x_ is the lower endpoint of the zero region),
o M (x) f(x) is positive for x > x, (i.e. x, is the upper endpoint of the zero region) and,
o the ironed intervals correspond exactly to the intervals [x,,x;] fori =1 tok.

Proor. We will reduce the problem of finding a valid distribution to that of constructing a
revenue curve that will guarantee these properties and then apply Lemma H.2. Consider the
following revenue curve:
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x 0<x<1,
1+ 5 1<x<x,
1+ 35 x-<x<x
|4 X <x< e
Rx) = 1+ 2 X <x<x,
14+ X_+X;—X . < x < XX
2H =i -7 = 2
1+ 22 L < x <X
1+ 55 X <x < x4
1+;—ﬁ—#’:&)(x_+1) xy <x <H.
This revenue curve is such that R(1) = 1 and |R’(x)| < % for x € [1,H]. This allows us to claim

that there is a distribution that induces this revenue curve. Moreover, from the way we constructed
this revenue curve, the derivative is positive from 0 to x_, negative from x, to H, goes from negative
to positive for the intervals [x;,X;] and is 0 elsewhere. We will show that these conditions are
sufficient to make the virtual values take the signs we intend them to.

It suffices to note that the sign of the derivative of the revenue at x is the opposite of the sign of
the virtual value at x (noted in Definition 2.1). By construction, our revenue curve has negative
slope on values higher than x, and positive slope on points below x_. The intervals in between
will be ironed and turn into 0 slope intervals. O

REMARK 4. It is possible to relax the condition that all ironed intervals are between x_,x,. It is not
hard to see how to adapt the proof to have ironed intervals either in [1,x_] or [x,,H]. It is sufficient to
add dimpled intervals, like the ones in our construction, as the revenue curve is increasing or decreasing.
We don’t need them for our main result, hence don’t worry about this more general result. Likewise, the
revenue curve R could be made differentiable everywhere if we used a smoother function to transition
between the ironed and non-ironed intervals, as opposed to straight lines.

Proor oF THEOREM H.1. If the constraint over flows wasn’t there, the problem would be a direct
application of Theorem H.3. Unfortunately, the flow constraints may affect the virtual values of
neighboring items. It is not hard to predict how outgoing and incoming flow will change the virtual
values for the different items. From the study of duality in this context we know that if there is
e-flow leaving from (y;,G) to (y;,G’) (where G’ € N*(G)), then the virtual values of all points
of item G with y < y; will increase by ¢ and all points of item G’ with y < y; will decrease by e.
Thus, given that we know what we want the revenue curves to look like after all flow has been
sent, we can reverse engineer what they must look like in order to make that happen. In particular,
since the flows shift the virtual values by a constant it will suffice to subtract a function whose
value is 0 before y; and becomes a line with small, negative slope at x; (say, slope ¢ = ZLH) from the
“suggested” (by Theorem H.3) revenue curve for item G (since these will increase by ¢ after the flow
is sent) and add positive slope functions of the same value at x; on item G; ¢ from its suggested
revenue curve (since these will decrease by ¢ after the flow is sent). This is sufficient because of the
connection between virtual values and revenue curves argued before: the derivative corresponds to
changes in the virtual value. So for a constant change in virtual value, the matching change would
be adding a linear term to the revenue curve of opposite sign. The order in which we do these
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changes is by processing items from leaves to the root (i.e. only process a node once all its children
have been processed) and within an item G, address the flow-exchange values from smallest to
largest. O

We abuse this opportunity to prove a similar result for the multi-unit pricing setting.

THEOREM H.4 (MASTER THEOREM FOR MUP). Suppose we are given a MUP instance where the
buyer can get up to n copies of an item. Let G; for 1 < i < n be the item corresponding to i copies. For
each item G; we are given candidate endpoints of the zero region x_;,x,; and a set of candidate ironed
interval endpoints [Ej,i’fj»i]f; withx_; < X, ; < Xj,i < x1;. Moreover, for each tuple (i,i + 1) and

(i,i — 1), we are given a set of candidate flow-exchanging points y; ; j+1 and y; ; ;-1 not in (xj’l.,xj,,-]

for any candidate ironed interval. Then, there exists distributions ¥ for all items G such that:
e the endpoints of the zero region for G; correspond to x_;,x.;,
e the ironed intervals correspond exactly to the intervals [Ej,i»fj, ,-]j.c;'l (and no other),
e the dual of the problem is such that there ag, g,,, (Yj,ii+1) = 0 (i.e. there is flow sent from G; at
y; to Git1 into yj ; i+1 and no other flow fromi toi+1).
e the dual of the problem is such that there ag, G, , (yj,i.i-1) = 0 (i.e. there is flow sent from G; at
y; to G;_; into i_lej,,-,,-,l and no other flow fromitoi—1).

Proor. This proof is similar to that of H.1 with the exception that on the former, increasing
the flow from (v,G) to (v,G’) (with G’ € N*(G)) by a little bit increases and decreases the virtual
values below v by the same amount. This is no longer true since we are moving from (y;,;,;-1,G;)
to (%yj’i,i_l,Gi_l). In this case, sending ¢ flow from (y;,; ;-1,G;) to (%yj,i,i_l,Gi_l) increases the
virtual values below (y; ; i-1,G;) by e but decreases the ones on the other end by only %g So, in
order to reverse engineer the change in virtual value induced by this setting we need to add the
same functions as in the proof of Theorem H.1 to the revenue curve suggested for G; and add a
ﬁ-scaled version of it for the receiving item at the point (%yj,l—,i,l, G;_1) on the revenue curve for
Gi_1. The order in which these we do these changes is by processing items from leaves to root (i.e.
from G, to G;) and within a item G;, address the flow-exchange points from smallest to largest. O

I. A Candidate Dual for a Lower Bound on Menu-Complexity for the Multi-Unit
Pricing Problem

Consider an MUP instance where the buyer can get one, two, or three copies of a given item. The
relevant complementary slackness constraints in this setting go from

e Rightwards. For all v, from (v,1) — (v,2) and (v,2) — (v,3). This is because a buyer can
always misreport and get more items.

e Leftwards. For all v, from (v,2) — (v/2,1) and (v,3) — (2v/3,2). This is because a buyer
would prefer getting fewer items if they are available for much cheaper.

As shown in [DHP17], a buyer of type (v,C)’s utility for reporting (v/2,A) is given by us(v/2) =
fov/z aa(x)dx. The same buyer’s utility for reporting (v, B) is given by ug(v) = 2 fov ap(x)dx.

To construct a lower bound for the MUP instance, we adapt our construction from the partially
ordered case. We describe our construction formally below, but note here all the relevant differences.
Observe that the incentive compatibility constraints for the MUP instance described above hide a
partially ordered instance inside them. Indeed, the ‘item’ 2 is analogous to the item C, while the
items A and B are the items 1 and 3 respectively. Just like the partially ordered instance, there are
incentive compatibility constraints from (v,2) — (v,3) for all v. The only difference is that the
constraints from (v,2) — (v, 1) have been replaced by those from (v,2) — (v/2,1). Also, there are
‘new’ constraints from (v,1) — (v,2) and (v,3) — (2v/3,2).
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We claim that, despite these changes, the essence of our argument there still holds. Roughly
speaking, our argument there involved constructing a top-chain (see Definition E.1) oscillating
between items A and B. For any value x in this chain, we had flow coming from C to both A and B.
Reasoning about complementary slackness constraints, then, gave us our lower bound.

For the MUP case, we can still do all the above things with the caveat that the value (v/2,1) has
to be treated as if it were (v, 1). An analogous master theorem can still be proved as the effect of
the ‘diagonal’ flow on the virtual values is predictable. Using the master theorem, we can construct
(essentially) any dual we want. Thus, we can have a feasible dual with a top-chain of an arbitrary
length M oscillating between items 1 and 3. Also, we have flow from the item 2 to both 1 and 3 at
all values in this top-chain. Chasing through the complementary slackness constraints in this dual
again gives us a lower bound.

To highlight this analogy, in what follows, we use C instead of 2, A instead of 1, and B instead of
3.

Formally, we construct given an integer M > 0, a dual containing a top chain among A and B of
length M. That is, a sequence of points (x1,A4), (x2,B),. .., (xa,A) such that

XM/ZA < xM_lB/Z < - < ﬂB/z < x1/2A.
In this dual, we have no extra space between the ironed intervals:
or, = MA/Z’ TA = X14/2, and for i such that (x;,A) and (x;.2,A) are in the chain, x,-/ZA =
Xiv2/24.

® Iy = XMy, B = X2, and for i such that (x;, B) and (x;42,B) are in the chain, Xi, = Xit2B-

Recall that by definition of the * and : operators, (x;,X¢] is ironed in G. Also by our definitions,
fo@)@E(v) > 0 for v 2 Fe; f(V)PE%(v) = 0 for v € [rg,76]; fo (V)DL (V) < 0 forv < r,.
We will also define C to be DMR (and thus have no ironed intervals) with r . = 2r, and 7c = 274.
We adapt the flow from the partially ordered lower bound example: for any (x,G) in the chain,
ac,a(x = x/2) > 0 and ac g(x — x) > 0.

B
A
_ — + I
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Fa = = + % B 2B —2
2 A /ﬁ T3
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@ _ T3 z3 T4
2 4 2 A /Ti
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Fig. 18. The analogue of the partially ordered candidate dual, adjusted for the Multi-Unit Pricing problem.
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TueoreM L1. To satisfy complementary slackness with the candidate dual, the allocation requires
M distinct allocation probabilities; the menu complexity is at least M.

Proor. The proof is almost identical to that of Theorem 4.1. Using the constraint that the
allocation can’t increase in the middle of an ironed interval and that u4(x/2) = ug(x) for all (x,G)
in the chain, we show that the allocations must be non-zero throughout the chain.

Then, we show that for consecutive points in a chain (x;,A), (x;+1,B) that (1/2)aa(x;/2) >
2ap(x;i+1), and similarly, for (x;, B), (x;j+1,A), that 2ag(x;) > (1/2)aa(xi+1/2)

This is enough to show that all of the menu options must be distinct, requiring meu complexity
> M. O

J. Coordinated Valuations

In this section and the following Appendix K, we examine the same minimal partial ordering with
G ={A,B,C} where A > C,B > C,A # B,B # C. However, a type (v,C) now has a function g4 (v)
and gp(v) describe his valuations for A and B respectively, and gc(v) = v. That is, if a buyer with
type (v,C) gets item G, his utility is g (v) times the probability that he is served minus his payment.

The main result is that even for g4 that is piecewise linear with only two segments and for
gs(v) = v, the randomization required in the optimal mechanism jumps from unbounded but finite,
as it was in the partially-ordered setting, to countably infinite. This further fills out the spectrum,
placing this setting between partially-ordered items and two additive items.

However, if g4 and gp are not piecewise linear, the menu complexity once again jumps up,
becoming uncountably infinite, and matching the menu complexity for two additive items.

J.1. Preliminaries

Consider selling 3 items A, B, and C to one bidder. Define the set Items = {A, B,C}. We use G to
refer to a general item € Items. When we make claims about G, we mean that the claim holds for
each of the three items in Items. When referring only to items A, B, we use the symbol G. Thus, a
claim that holds for G holds for both A and B.

In the setting we consider, the bidder has a type in the set Types = {A,B,C} X [0,H], where
H € R is some constant. The type (G,v) of the bidder is drawn from a distribution f supported

on Types. Denote by g = fOH f(G,t)dt. Also, define f5(v) = # fov f(G,t)dt as the distribution f
conditioned on ¢ = G. Almost exclusively, we refer to f as (g, f). We also omit the subscript when
it is clear from context.

We now define the bidder’s value function v : Types X Items — [0, H]. This is defined as

0(C.v.0) = gs(v)  and  v(G.0.0) =v-Lgg,

where g : [0,H] — [0,H] is an increasing, invertible function that is Lipschitz with parameter L
and gc(v) = v for all v € [0, H]. Intuitively, this means that if the bidder has type (C,v), then their
value for item G is g5 (v). A bidder with type (G, v) has the value 0 for any item G # G and value v
for the item G.

Mechanisms. A mechanism is defined by two functions a, p, where a : Types — [0,1] and
p : Types — [0,H]. The function a is called the allocation rule and the function p is called the
payment rule. We will use ag(v) to denote a(G,v) and pg(v) to denote p(G,v). A mechanism is
said to be incentive compatible if, for all t = (G,v),t’ = (G’,v’) € Types

o(t,G)a(t) - p(t) > o(t,Ga(t’) - p(t) (20)
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Instance. An instance J for the coordinated items setting is defined by a tuple (q, f5,95). We
will usually omit the subscript and simply write (g, f,g). Our goal is find, for a given instance 7,
the incentive compatible mechanism that maximizes the revenue Et-(q r)[p(1)].

J.1.1. A Linear Programming Formulation For an instance 7 for the coordinated items , finding the
incentive compatible mechanism that maximizes Ei. (g, r)[p(t)] turns out to be equivalent to the
linear program in Equation 21. Here and throughout, for a distribution f supported on [0, H], we
use p(v) =v — 1}1(2(;’) to denote the Myerson’s virtual value function, where F(v) = fov f(t)dt is

the cumulative distribution function for the distribution defined by f.

H

maximize P(a) = ; fo qcfe(Dag (Do (t)dt (21a)
subject to
9c(v) v
f ag(t)dt —f ac(t)dt <0 Yo (21b)
0 0

—a;(v) <0 Yo (21c)
0<ag(w) <1 ,You (21d)
ag(0) =0 (21e)

Even though the argument that Equation 21 is equivalent to finding the incentive compatible
mechanism that maximizes Et.(q r)[p(t)] is standard, we summarize it here. Observe that the
non-trivial incentive compatibility constraints in Equation 20 can be classified into two types:

e t = (G,v) and t’ = (G,v’): In this case, Equation 20 reduces to vag(v) — ps(v) > vag(v’) —
pi(v”). This is attainable for all v, v’ if and only if the allocation rule a; is monotone
increasing (Equation 21c) and ps(v) = vag(v) — fov ag(t)dt.

e t = (C,v)andt’ = (G,v’): In this case, Equation 20 reduces to vac (v)—pc(v) = gg(v)ag(v’)—
pc(v”). Due to the constraints in the previous paragraph, it is sufficient to have vac(v) —
pc(v) = go(v)ag(gc(v)) — pc(gs(v)). This is equivalent to the constraint in Equation 21b.

Finally, it can be verified that if p5(v) = vag(v) — fov ag(t)dt, then By (g5 [p(t)] = P(a).
We will use p = (ag) to denote a general solution to Equation 21 and (') to denote the optimal
value for the instance 7.

J.1.2. A Lagrangian Dual Formulation For any instance I of coordinated items , the revenue
maximization problem is defined in Equation 21. Let X C [0,H] be a discrete set of points in [0, H].
Define the X-dual of Equation 21 as:

H
Ce . _ o, Ay.[LX
minimize Zx (A,y,T) = ; \fo qafa(t) max (O,CDG (t)) dt (22a)
subject to
AgH) =0 (22b)
Aa(0),y6(v),Ig(x) = 0 ,Vx € X,v € [0,H] (22¢)
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where

H
B0 =g+ A= Y, T [ yeds
quG (U) X3x>gg(‘u) gg(v)

Equation 22 is obtained from Equation 21 by Lagrangifying the constraints Equation 21c using
the variables A5 (v), the constraints Equation 21b using the variables y(v), and the constraints
Equation 21b, for v € X using the variables I'c(v). Here and throughout this paper, we define
Yc(@) = —ya(v) — yg(v) and T (v) = —T4(v) — Ig(v) for notational ease. We note that getting
Equation 22 from Equation 21 requires integrating a certain term by parts. Throughout this work,
we assume that our functions are well-behaved enough to allow such standard operations.

Note that the idea of using a Lagrangian dual is not new to this work. Indeed, a lot of recent
advances in similar settings have been made using this technique. We will use d = (14,y6,Ic) to
denote a general solution to Equation 22 and Zx (7) to denote the optimal value for the instance 7.
Often, we will abbreviate @g Y’F’X(v) to (I>DG.’X (v) or even ®(v) if the subscript and superscript are
clear from the context.

We have the following ‘strong duality’ result (proof in Appendix K.1):

THEOREM J.1 (STRONG DuALITY). Let I be an instance of coordinated items .

(a) Let X C [0,H] be a discrete set. For any feasible solution p = (ag) of Equation 21 and any
feasible solutiond = (Ag,yG,Ic) of the X-dual (Equation 22), it holds that:

P(p) < Zx(0).

Equality holds if and only if the following conditions are satisfied almost everywhere:

Yo:d%(v) >0 = ag(v) = 1. (23a)
Yo ®%(v) <0 = ag(v) = 0. (23b)
Yo:dg() >0 = a;(v) = 0. (23¢)

v c(v)
Yo:yg(v) >0 = f ac(t)dt = f.‘i ag(t)dt. (23d)

0 0
x 9c(x)
Vx e X : T, dt = dt.

x € cx)>0 = fo ac(t)dt fo ac(t)dt (23e)

(b) There exists a set X such that P(I) = Dx(I).

The main reason we provide a proof for this ‘strong duality’ result is that the variables are
parametrized by a continuous variable. We could not find any results for such variables that
subsume our setting. Our proof of Theorem J.1 works by showing, for all ¢ > 0, a discrete linear
program that has almost the same primal and dual value (up to terms depending on +/€). Since
strong duality holds for discrete systems, this gives us that the duality gap of our linear program is
small. Theorem J.1 then follows as the feasible region is closed.

J.1.3. Our Framework Fix an instance 7 and discrete set X C [0,H].

The Dual Framework. Let d = (Ag,y:,Ic) be a feasible solution for the X-dual, i.e., Equation 22.
Define

re®) = inf{o | ®%% (v) = 0} 75(0) = supfv | 2% (v) = 0}.

If the inf (resp. sup) is over an empty set, we define it to be H (resp. 0).
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We sometimes refer to y and T as representing flow, e.g., we say that there is flow from (C,v) to
Aifys(v) > 0o0rT4(v) > 0.

An interval [y,7] C [0,H] is said to be ironed on a item G if Az(y) = A5(y) = 0 and for all
v € (y,7), we have Ag(v) > 0. B

The Primal Framework. Let p = (as) be a feasible primal solution for Equation 21. Let Y = [y,y] €
[0,H] be an interval. Define MC5(Y,p) = {a | Jv € Y : a5(v) = a}| to be the number of distinct
values taken by the function as over the interval Y. Also, define MC(Y,p) = maxs¢jems MCa (Y, D).
We omit the argument Y if it is [0, H].

We define the menu complexity of the instance 7, MC(Z) = miny.py)=p(r) MC(p) to be the
smallest menu complexity of any optimal solution to Equation 21.

J.1.4.  Formal Statements of our Results

THEOREM J.2. There exists an instance Uncountable of coordinated items such that MC(Uncountable)
is uncountably infinite. Furthermore, the instance Uncountable satisfies gg(v) = v and all the distri-
butions fs are DMR®.

THEOREM ].3. For any instance I such that the functions g are piecewise linear, we have MC(Z)
is at most countably infinite.

THEOREM J.4. There exists an instance Countable; of coordinated items such that MC(Countable;)
is countably infinite. Furthermore, the instance Countable; satisfies gg(v) = v and all the distributions
f& are DMR, and the function g, is piecewise linear.

THEOREM].5. There exists an instance Countable, of coordinated items such that MC(Countable;,)
is countably infinite. Furthermore, the instance Countable, satisfies gg(v) = v and the function g4 is
piecewise linear with only 2 segments.

J.2. Master Theorem

For our lower bounds, we will construct instances that have a large menu complexity. To show a
lower bound on the menu complexity, we will define a feasible solution to the X-dual (Equation 22),
for some X, show that it is optimal, and then show that any feasible primal that satisfies comple-
mentary slackness (Equation 23) with this dual must have a large menu complexity. Below, we
prove a ‘Master Theorem’ (Theorem J.6) (proof in Appendix K.2) that constructs instances together
with a feasible dual solution with some desirable properties.

THEOREM J.6 (MASTER THEOREM). Let H > 0 be fixed. Suppose that, for all G € Items, points
Py < Pi € [1,H] are given. Let X4, Xp be discrete subsets of [pc,ﬁc]. Consider finite or infinite
sequences of disjoint intervals

Y5 = {(EG,i’yG”')}iZO Zc = {(EG’iazG,i)}iZO

where Y, YG.i € [pG,ﬁG] andz ;,2G,i € [pc,ﬁc]. Then, for any invertible functions g, : [0,H] —
[0,H], there exists an instance I = (¢, f&,96) and an (Xa U Xp)-duald = (Ag, v, 1) such that the
following hold:

® gG(v) = g;(v) forallv € [0,H].

o The value ofd%XAUXB (v) fg(v) is non-decreasing and r () = Ps andrs(d) = pgs.
e Ac(v) = 0 throughout and Ag(v) > 0 & v € (yG i,g_/G’i)for some i.

* y6(v) >0 & v € (z4,,2G,i) for some i. ’

15Recall that a distribution is DMR if the Myerson’s virtual value function is non-decreasing.
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o I[5(v) >0 &< v e Xg for somei.
Moreover, if Y is empty, then the distributions f5 are DMR.

J.3. Lower Bounds

J.3.1. DMR Distributions Let a : [0,H] — [0,1] be a non-decreasing function that is continuous
except at countably many points. In this subsection, we construct an instance 7 = (q, f,g) of
coordinated items such any optimal solution of Equation 21 for I satisfies that a4 = a'®. In our
construction, the distributions fz are DMR and gg(v) = v.

Two important instantiations of this general procedure prove Theorem J.2 and Theorem J].4. For
Theorem J.2, we construct Uncountable by setting need a(v) = v/H. For Theorem J.4, we construct
Countable; by setting a to be a function that takes countably many values. A concrete example of
such a function is one that has countably many “steps” as it moves from 0 to 1. We take care that
the function g4 is piecewise linear in Countable;.

The Instance For notational convenience, we work in the range [0,H + 3] in this subsubsection.
Consider an increasing function a : [0, H] — [0,1] and let A(v) = fov a(t)dt. Letp = H+2—-U(H) €
[2,H + 2]. Note that U~!(v) is well defined for v > 0 and define:

v ,0<v <1
v—1
—+1 ,I<v<p
ga(v) =127
Al (v-p)+2 ,p<v<H+2
v H+2<v<H+3

It is readily seen seen that g/, satisfies A(H) — U (gl"‘(v) - 2)) = H - (v — 2) in the interval
(p,H + 2]. Let g;(v) = v and apply Theorem J.6 with g/, and
° EA:Z,ﬁA:H-i-Z,;_)B:,T)B:p,EC:1,/_)C:H+2.
o Xi,Ys are empty
* Zg(v) = {(p.H +2)}.
This gives an instance 7 = (q, f,g) and an (X4 U Xp)-dual solution d = (14,ys,Ic) such that
the distributions f; are DMR and :

e Forall v, gg(v) = g;(v) and r; = P and7g = pa.
e 15(v),Ig(v) are 0 throughout.

e y6(v) >0 & ve(p,H+2).

The Analysis Recall a, p, and I constructed above. Define a feasible primal solution p* = (ag) of
Equation 21 for I as:

0 L0<0v<2 o 0<o<
* % % ,Usv=p
a,(v)=15a(v-2) ,2<v<H+2 ar(v) =a~(v) =
4(0) = {a@-2) 5 = ax(©) {1 o Ha3
1 H+2<v<H+3

In Theorem ].7 (proof in Appendix K.3), we show that p* and d satisfy complementary slackness.
To finish our menu complexity lower bound, we argue that any primal p = (ag) that satisfies
complementary slackness with » must have a4 = a’;. This proof is in Theorem J.8.

16We abuse notation slightly here. What is meant is that a4 takes the same values over the interval [2, H + 2] as a takes
over the interval [0, H] (see subsubsection J.3.1 for the exact statement).
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Together with strong duality (Theorem J.1), Theorem J.7 shows that d is optimal. Thus, any
optimal primal for 7 must satisfy complementary slackness with d. Theorem J.8 says that as = a7
for this primal and thus, it has a high menu complexity.

LeEMMA J.7. The primal p* is feasible and p*, d satisfy complementary slackness (Equation 23).

LEMMA ].8. Consider any feasible primalp = (ag) that satisfies complementary slackness with d
must as = a),, where a’, is the allocation for item A in p*.

Proor. We reason from Equation 23. Specifically, the constraints (23a), (23b) for item B imply
that ag(v) = 0 for v € [0,p) and ap(v) = 1 for v € (p,H + 3]. Thus, we have:

gB(v)
f as(D)dt = (0~ p)Los .
0

Since yg(v) > 0 for all v € (p,H + 2), we have by (23d) that ngA(v) aa(t)dt = ngB(U) ag(t)dt =
fov ac(t)dt for all v in this range. Thus, for all v € (p,H + 2):

ga(v)
f ax(t)dt =v - p.
0

Since the right hand side in the equation above is independent of the primal, we get for all

v € (p,H+2) that ngA(v) aa(t)dt = OgA(v) a, (t)dt. Thus, forallv € (2, H+2), we have fov au(t)dt =

fov a, (t)dt implying as(v) = a’,(v) in this range. The constraints (23a), (23b) for item A fix the
allocation a4 outside (2,H + 2). Combining, we get that as = aj;.
[m}

J.3.2. Proof of Theorem J.5 In the last subsection, we showed that instances can have high menu
complexity, even when all the distributions f; are DMR. The reason for high menu complexity is
the complexity in the functions gg. We now show that if the distributions f are not required to be
DMR, even ‘simple’ (e.g., piecewise linear with only 2 segments) functions gg can have countably
infinite menu complexity. Two segments are required because of the arguments in Appendix F.
This is tight due to our upper bounds in subsection J.4.

The Instance Countable, For notational convenience, we work in the range [0,H + 1] in this
subsubsection. Define:
v ,0<0v<1
AR T+1 ,1<v<2H/3+1 gp(v) =v
2V-H-1 ,2H/3+1<v<H+1

We define points x; = % +1,y; = % +1,and x; = %Zﬂ,
the sequence x; converges to x = 1.

In order to construct Countable,, we apply Theorem J.6 with g/, and
© 0, = 64(x). Py = 64(x2). p, = 94(0). By = gp(). p, = % P = 1.
o Ya = {(9)y(x2i+2),94 (x2:))} for some i > 0. Yp = {(g95(x2i+1),g5(x2i-1))} for some i > 0.
o Z¢ is empty and X = {y;}i>o-
This gives an instance Countable; = (q, f,g) and an (X4 U Xp)-dual solution d = (A5, yg,Ic) such
that :

+1,yi=§§+1fori>1.Notethat

7Note that this function is piecewise linear with 3 segments and not 2. However, the first segment is just for notational
ease and can be removed.
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e Forall v, gg(v) = g;(v) and r;, = Ps and 75 = pgs.

e Ac(v),yc(v) are 0 throughout. 14(v) > 0 if and only if v € (ga(x2i+2),ga(x2:)) for some
i > 0and Ag(v) > 0if and only if v € (gp(x2i+1),9B(x2i-1)) for some i > 0.

o Vi>0:Ts(y;) > 0.

The Analysis Recall the definitions of x;,1; and the instance Countable; above. Define a feasible
primal solution p = (a;;) of Equation 21 for Countable; as:

0 ,0 <0 < ga(x) 0 ,0 < v < gp(x)
ay(v) = { % .9a(x2i2) < U < galxz) ap(v) = { % .g8(x2i41) < U < gB(xX2i-1)
1 ,galx) <v<H+1 1 ,9(x1) Sv<H+1
0 ,0<v<x
ac(v) = % Yir1 S0 <Y
1 W <v<H+1

We proceed exactly as in subsubsection J.3.1. In Theorem J.9 (proof in Appendix K.4), we show
that p and bd satisfy complementary slackness. To finish our menu complexity lower bound, we
argue that any primal that satisfies complementary slackness with d must have infinite menu
complexity.

Together with strong duality (Theorem J.1), Theorem J.9 shows that d is optimal. Thus, any
optimal primal for Countable, must satisfy complementary slackness with d. Theorem J.10 says
that such a primal has infinite menu complexity

LEMMA J.9. There primalp is feasible for Countable; and p,d satisfy complementary slackness.

LEMMA J.10. Any feasible primalp for Countable, with a finite menu complexity does not satisfy
complementary slackness with d.

ProoF. Proof by contradiction. Let p = (as) be a feasible primal with finite menu complexity
that satisfies complementary slackness with d.

Let i* be the largest i such that aa(ga(y;)) > aa(ga(yi+1)) or ag(9s(y:)) > as(gp(yi+1)). If no
such i* exists, we define i* = 0. Since MC(p) is assumed to be finite and the allocation is monotone
(by constraint (21c)), i* is well defined and a4(ga(y;)) and ag(gg(y;)) is constant for all i > i*. Let
the constant values be 74 and 7p respectively.

Since p, b satisfy Equation 23, we have, by Equation 23c

ac() =nc Vv € (96(x).gc(Yi-+1)] (24)
Also, for all i > 0 we have by the constraint (23e) (applied once to both y; and y;1)
9a(yi) Yi 95(y:)
f aa(t)dt = f ac(t)dt = f ap(t)dt (25)
9a(Yi+1) Yit1 9B(Yi+1)

We derive a contradiction in two steps. First, we prove
CLAIM. s = 27B.
Proor. Consider an i larger than i* + 10. Using Equation 24 and Equation 25, we get

74 (9a(i) = 9a(ir1)) = 78 (98(Yi) — 9B(Yi+1))
7a (Yi — Yir1) = 278 (Yi — Yiv1) (Definition of g4 )
A = ZJTB.
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Cramm. aa(ga(yz)) # 2ap(98(y2))-

ProoF. Proof by contradiction. Suppose that a(ga(y2)) = 2as(9s(y2)) = 2. By Equation 23a,
we have a4(ga(v)) = 1 for all v > x,. Since y,y; are in the same ironed interval on B and y,, x;
are in the same ironed interval on A, we have using Equation 25 that

9ay1) = ga(xz) + 27 (9a(x2) = ga(y2)) = 7 (gs(y1) — g5 (y2)) -
Plugging in the values of y;,x2,y2, we have

() a2

4 5

a contradiction to 7 < 1. m]

These two claims together with Equation 24 establish that i* > 1. We now give a contradiction
assuming i* is even. A similar argument works if i* is odd. Since ga(yi+),ga(yi-+1) lie in the
same ironed interval in A, we have a4(ga(y;+)) = aa(ga(yi-+1)) = ma. By choice of i*, we have
ng = ap(gs(yi+)) > 7. By Equation 25, we have

T ’
f(yi* = Yir+1) = 1a(9a(yir) = 9a(ir+1)) = mp(Yir — Xies1) + 7B (X401 — Yir+1) > 7B (Y — Yi41)s
a contradiction to Equation ].3.2. m}

J.4. Upper bounds

In this subsection, we prove that for any instance 7 such that the functions g4(:) and gp(-) are
piecewise linear, we have MC(J') is at most countably infinite (Theorem J.3). This result is tight by
our arguments in subsection J.3

Our line of argument is as follows: Fix an instance 7. By Theorem J.1, there exists an X, a
primal solution p = (a5) and an X-dual solution d = (As,y6,Ig) that satisfy complementary
slackness. From p,d, we construct another primal solution p such that MC(p) is small and p, d
satisfy complementary slackness. Thus, the primal § also defines an optimal revenue mechanism.
The menu complexity of this new mechanism gives us our upper bound on MC(7).

We note that this technique is markedly different from that employed in Appendix F where we
assume an optimal dual and describe a recovery algorithm that reads an optimal primal from the
optimal dual. Here, we assume both, an optimal dual and an optimal primal'®, and prove that such
a primal can be improved to have a lower menu complexity.

J.4.1. Splitting Our procedure to improve the primal makes extensive use of the following “splitting”
operation:

DEFINITION J.1. Leta : R — R be a function and consider the interval s = [x,y], where x,y € R.
Define the functionao s as:

aos(v) = {a(v) s

y
y%xfx a(tydt ,ves

18Note that we need Theorem J.1 to assume that there exists an optimal primal-dual pair that satisfies complementary
slackness.
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The following is easily observed for all v ¢ s:

j:: aos(t)dt = f:: a(t)dt (26)

If s; and s, are two disjoint intervals, then a o s; 0 s = a 0 55 0 5;. We will use a o s1s; to denote
this common value.

REMARK 5. Let a be a function and s be an interval. For any x,y,z € s, we have

L:aos(t)dt: yix [(y—z)f:a(t)dt+(z—x)fia(t)dt].

LEmMMA J.11. Let a be an increasing function and s be an interval. We have f_zoo a(t)dt < f_zoo ao
s(t)dt. Moreover, equality holds if v & s or a is constant over the interval s.

Proor. Let s = [x,y]. Since a is increasing, we have

[Catwaes ["awaer 22 [ aar = 22 [Taar

Rearranging gives the result. The moreover part can be using Equation 26 and Definition J.1. O

J.4.2. Proof of Theorem J.3 Fix an instance J and let p,d, be an optimal primal dual pair (b is
X-dual for some X). Without loss of generality, we can assume that the product d%x (v) fa(v) is
non-decreasing (see Appendix A). We define the function sgn(x) to be 1if x > 0, 0 if x = 0, and —1
if x < 0. Using b, define the following notion of a strip.

DEFINITION J.2 (STRIP). A strip s is an interval [x,y], where x,y € [0,H], such that the following
hold:
e For all G, there functions g are linear over s
e For all G, the function sgn (d%x (96(0)) faga (v))) is constant forv € s.
e For all G, the function sgn (A5 (gs(v))) is constant forv € s.

The following holds for any strip.

LEMMA J.12. For I,p,d as above, let s be any strip. There exists another primal solution p of I such
that
® dg(96(v)) = ag(gs(v)) forallv ¢ s.
o P, b satisfy complementary slackness (Equation 23).
e For all G, it holds that MC¢ ([g95(x),95(y)],4g) < 10.

The proof of this lemma spans the rest of this subsection.

ProoF. Let s = [x,y]. Define the function ug(v) = Ogc(v) ag(t)dt?. Since the functions gg
are continuous, and ag is continuous except at countably many points, we have that ug is also
continuous. Define points z, Z as follows®’:

z= inf {v|ua(v) =up(v)} z= sup {v|ua(v)=up(v)}.
velx,y] velx,yl

19Note that this is just the utility of a bidder with type (G, g5 (v)).
2Throughout this subsection, we define several infimums and supremums. In case the argument to any of these is empty, we
simply drop those terms from where they are used. For example, if z, z are not defined, we simply use ag © [gG(x), 9gG(y)]

instead of ag © [9G(x), 96(2)1[9G(2), 96 (2)][9:G(2), 96 (y)] below.
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We use z and 7 to define:

dG = ag ° [96(x),96(2)][96(2),96(2)1[96(2), 96 (y) ]
g9 (v)
g (v) = fo ag(t)dt.

Now, define:
a= eig(f,d{v | max(iia(v),ip(v)) = uc(v)}  z = vz&]{v | max(iia (v), ip(v)) = uc(v)}.
= inf (vl max(@s(0).d5(0) =uc@) 2= 021[1;]{0 | max(a(v), ip(v)) = uc(v)}.
= il 0l max(@a@).ap@) =ue@) 2= sup (o] max@ae).as) = w@)

Finally, we define:

A

dc = ac o [x,21][z1,22][22, 2][2, 23] (23, 24][24, 2] [Z, 25] [ 25, 26 ][ 26, 1]

fo *ac(t)dt.

Our primal p is defined by the allocations (ds). Note that item 1 and item 3 are straightforward
from Definition J.1. We only concentrate on item 2.

For item 2, we verify each of the constraints in Equation 23. For Equation 23a, observe that if
®5(ga(v)) > 0 for some v € s and some G, then, since s is a strip, ®(gs(v)) > 0 throughout s.
Thus, the allocation ag is 1 throughout s and our operations have no effect. If v ¢ s, then the result
follows as p, d satisfied complementary slackness. A similar argument verifies Equation 23b and
Equation 23c.

For Equation 23d, consider a v,G such that yg(v) > 0. If v ¢ s, then the result follows because
of 5 and the fact that p,d satisfy complementary slackness. If v € s, then, since p,d satisfied
complementary slackness, we have ug(v) = uc(v). Thus, by Theorem J.11, dig > uc(v) implying
that v € [z1,22] U [23,24] U [25,26]. Suppose that v € [z1,z;]. The other cases are similar. We have:

iic(v)

i16(21)(96(z2) — g6 (v)) + G (22) (96 (v) — gc(21))
gG(Zz) - gG(Zl)
iG(z1)(z2 — v) +iG(z2) (v — z1)

iG(v) =

(5)

(9 (v) = mgv + ¢ over a strip)

Z2 — 21
_ ic(z1)(z2 — v) +dc(z2) (v — z1) (Definition of 7y, zy)
Z — 21 1, <2
= iic(v) (5

Equation 23e is verified similarly.
]

Proor oF THEOREM J.3. Since the functions g¢ are assumed to be piecewise linear, we can parti-
tion the range [0, H] into countably many disjoint strips. Theorem J.3 follows by applying Theo-
rem J.12 to each of the strips. O
K. Missing Proofs From Appendix )

K.1. The Proof of Theorem J.1
K.1.1.  The Proof of item (a)
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Proor. Fix X C [0,H]. Observe that :
H H
70 =Y, [ afo@max0acmar= Y, [ gafo®rcaar
5 Jo = Jo

Using the definition of @, we get

H H
Ix®) 2 P+ ). f a2 - > T - f v (s)ds |dt
G V0 g

X3x>g-\(t) G @

First, note that, integrating by parts, we have )5 fOH aG-(t)/l’G(t)dt =-Yc fOH a’G(t)AG-(t)dt <0
by Equation 21c. Fix any v € [0,H]. Grouping all the terms with ys(v), we observe that ys(v) is
multiplied by fov ac(t)dt — fogc(v) ag(t)dt > 0 by Equation 21b. Similarly, fix any x € X. Grouping

~ (9% syt = 0

all the terms with Tz (x), we observe that I'(x) is multiplied by fox ac(t)dt — |,

by Equation 21b.
Thus, we have Zx(d) > P (p). To finish the proof, observe that the conditions in Equation 23 are
exactly those needed to make these inequalities tight. O

K.1.2.  The Proof of item (b)

Proor. We prove that for all € > 0, there is a set X, such that P(I') > Px_ (1) —e€. The statement
then follows because the the union of the region in Equation 22 for all possible sets X is closed.
Recall that the functions g are L-Lipschitz.

Fix € > 0 and let § > 0 be sufficiently small. Our proof proceeds by defining a discrete linear
program (Equation 27) and its dual (Equation 28) for 7,§. Let the optimal value of Equation 27
be Ps(Z) and the optimal value of Equation 28 be Zs(J). Since strong duality holds for discrete
linear programs, we have Ps(I) = Zs(1). We also ensure that Z5(1) = Ps(I) < H for all d.

In Theorem K.1, we show that P(I') > (1 — V8)Ps(I) — L V4. In Theorem K.2, we show that
there is a set X5 such that Zx, (I') < Z5(I). Combining, we get

PI) > (1= VOPs(T)-LVE = (1- V6)Ds(I) - LV > (1= V&) Dx; (1)~ LN > Dx;(I) e,
for small enough §. o

The rest of this subsection is devoted to defining and analyzing the discrete linear program, in
order to prove Theorem K.1 and Theorem K.2.

K.1.3.  The Discrete Linear Program We describe a discrete linear program for the instance 7. The
instance 7 is fixed for the rest of this subsection. Without loss of generality, let § > 0 be such that
H/§ = H' is an integer.

The Primal Consider the following optimization problem with the variables as(i) and ps(i)
for 0 < i < H’'. In this subsection, we abuse notation and write g (i) instead of g;(id). Define

90 fo@)do = f5(i) and f5(0) = o.

9 (i-1)
"
maximizePs(a) = Z Z quG(i)pG(i) (27a)
G i=1
subject to
gc(iac (i) — pc(i) = go(i)ac(i) — pe (i) Vi (27b)
gc(ag(i) — pa(i) =2 gg(ag(i+1) —ps(i+1) Vi (27¢)
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ge(Mag (i) —pa(i) 2 gg(iag(i—1) —ps(i—1) Vi (27d)
p6(0) = ag(0) = 0 (27¢)
ag(i) € [0,1] Vi (27£)

It is easy to see why Ps(I) < H. We also have:
TueoreM K.1. The optimal value Py (I') of Equation 27 satisfies (1 — V8)Ps(I) < P(I) + L V3.

ProOF. Let n = V& and (ag.pg) be the optimal solution for Equation 27. Consider the set
T = {(Gj,a5,p5) | Fi,Gj = ag,(i) = a;,(1 — n)pg, (i) = p;}. Using the set 7', we now define a
mechanism M for the continuous revenue optimization problem. Consider a type t = (G,v) € Types.
Define:

(Gt,at,pt) = arg MaX (G g p)eT v(t,Gj)a; — pj.
Let M be the mechanism that allocates item G; with probability a; and charges price p; to a bidder
who reports t2!. Observe that M is a truthful mechanism. By a standard argument, there exists a
feasible solution p to Equation 21 such that P(Z') > P(p) = Et~(q,r)[pt] is the expected revenue of
M. We now prove that Ei.(q r)[pt] =2 (1 - n)Ps(I) - Ln.

Couple a bidder in M with (continuous) type t = (G,v) with a bidder with (discrete) type (G, 1)
where i is the smallest value such that g5 (i) > v . The coupling is valid as gg;’(gl_)l) fa(@)do = f5(i).
We show that p; > (1 — 17)ps (i) — L. Taking the expectation on both sides gives the result.

Observe that:

o(t,Goar - pi 2 vag (i) - (1 = mps (i)
gc(iag(i) — pa(i) > v(G,g5(i),Gr)as — i_tn
Adding, we get that
v(G,v,Gt)at + gg(i)ag (i) + _1’7f’*n > vag (i) + npa (i) + 0(G, g (i), Gr)at

Since ay,as(i) € [0,1], we have

pr= (1= n)ps(i) + 1% (0 - g6)ag(i) + (2(G,95(1),Gr) = v(G,v,G)) )

> (1= npali) + % (96 - 1) - g6.(1)) ag i) (96() > v 2 goi - 1)
> (1-n)pg(i) —Ln (9¢ is L-Lipschitz)
O

The Dual Consider the following Lagrangian relaxation of Equation 27, where we Lagrangify the
constraints Equation 27b using the variables I' (i), the constraints Equation 27c using the variables
A%(i), and the constraints Equation 27d using the variables A;,(i). We use the convention that
Te(i) = —Ta(i) - Ts()

o
minimize Ps(I)(AT) = Z Z 96 fo(i) max (0,03 (1)) (28a)
G i=1
subject to
A&(0) + A5 () =T (i) = qefeli) + A=) +2A5(1+1) Vi (28b)

21We slightly deviate from our definition of a mechanism and allow G; to be different from G.
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AL(0). A5 (1) 2 0 Vi (28¢)
(i) > 0 Vi (28d)

where terms like A*G(H + 1) are defined to be 0 and

oA (i) = (gGa) (-1 Gl 1)~ go ) + A5G+ 1) (gl + 1) - gc(i))))
q95fc (i)
THEOREM K.2. The optimal value P5(1') of Equation 28 satisfies Zs(I) > Px (1) where X = {id |
ieZn[0,H]}.

Proor. We proceed by defining a feasible solution of Equation 22 from the optimal solution of
Equation 28 with the same value. Throughout this proof, we denote the variables of the discrete
linear program using a ‘hat’. Let (AE,A&, Ic) be the optimal solution to Equation 28. Define F5(v) =

2igai)<v f@(i). Define an X-dual solution d = (A3, ys, ) for 7 as follows

16(0) = 06 (F(0) ~ Fe(0)) + (0 — g (AL (0) + (go (i + 1) — vy 962~ 960 = D)

96\) 96U~ 1) .
PEER RO

Ye(v) =0
I5(i8) = (i)

where i is the largest integer such that g5 (i) < v. Observe that d is feasible and

96+ D) (1-Fo() - 96 () (1+ fo () — Fo(0)
tolo@te ()= gc‘(i+1)—gc'(i)

G geli+ ) - gc(z) ¢

j=i+l

Since Q%X (v) is constant in [g5(i),ga (i + 1)], we have:

9o (i+1) o x
f 95/ (t) max (OKI)C—’; (t)) dt = max (0,[
960 961

9g(i+1)

ac o185 )

But,
g (i+1)
[ st
g (i)

. ;o + /s ; ] ey
= 96(1q6fc (D) = A5 = 1) (96 (i = 1) = g5(1)) — fgc(i)
= 96()qcfe (D) = A5 = 1) (95(i — 1) = g6(D) = A5 (i + 1) (9 (i +1) - g6(i))  (Equation 28b)
= 46 fa (I ()

(A () +4qc (1-Fo(t) + Z rco)

j=i+l

Thus, (() Y qafa(t) max (0,@2’3(1‘)) dt = quG(i) max (O,ﬁ%’f(i)). Summing over i, G, we get

that@5() Dx(d) > Dx(I). O
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K.2. Proof of Theorem J.6
We need the following technical lemma:
LEmMA K.3. Let H > 1 and R(x) : [1 H] — R be a function such that R(1)

x,y € [1,H] such that x < y, we have —2=> < R(y) — R(x) <
supported on [0,H] such that

= 1 and for all
%. Then, there exists a distribution F

R(x) ,1<x<H’

x(1—F(x))={x ,0<x<1

Proor. Define:

0 0<x<1
Fx)=41-8%  1<x<H.
1 x=H

Observe that F satisfies the requirements of the theorem. To prove that F is a valid distribution, it

is sufficient to show F(x) < F(y) for all x < y. We first note that 1 — R(x)
case left is when x,y € [1,H]. In this case,

xy (F(y) - F(x)) = yR(x) = xR(y) = yR(x) - xR(x) + x(R(x) = R(y))

> yR(x) — xR(x) — xgz;{x

:(y_x)(R(x)_ﬁ):(y—x)(R(x)—l.,.zH—x)

2H
> (y—x) (R(x) ~R(1) + ’;;) 0.

€ [0,1]. Thus, the only

O
ProOF OF THEOREM J.6. Let 7 =

= (¢, fa.9c) be such that q5 = % and gg(v) = g;(v) for all v. In
order to define fg, define

v—1
L+ {000 ’ISU<BG
Pl _
QG(U) =41+ 557 100H ’/—)G <v< pG
e -
I+ —Gm — Pc<v<H

Ag(v) = Wle Z min ((v - gG’i)(U - yG,,.),o)

Let Ac(v) = 0 throughout. Also, define:
1

g 0= Za L v<X
. — )1 _2Gi7? Zn ) _ )& > 2G,i
ZG,I(U) ¥ Zeizg, ,U € [_ZGJ"ZG,I] YG,I(U) - {0 o> fc’i
0 ,U > ZG,i
1
P = — i(v v i(v
16(0) = T D Z6a(o) 6(0) = o D Yau(o)

Finally, define P, c(v) = —PLA(U) — Py g(v) and P, c(v) = =Pz, 4(v) — Pz,B(v) and,

Rc<v>=QG<v>+é[AG<v>— f P62 (0)dt - f Pz,c;(g;l(t))dt]

253



EC’20 Session 2e: Revenue Maximization

Observe that the function R satisfies all the requirements of Theorem K.3. Thus, there exist
distributions fg such that

x ,0<x<1

x(1 - Fg(x)) = {Rc(x) Jd<x<H

Set Ag = —Ag, yo(v) = _PII,G(U) and I'(+) : Xg — R to be the unique function such that

Zx>v r(x) = PZ,G(U)-
Observe that the dual defined by (15, ys,Ig) satisfies all the requirements of the theorem.

K.3. Omitted Proofs in subsubsection J.3.1

Proor oF THEOREM ]J.7. We verify each of the constraints in Equation 23 and leave verifying
feasibility using Equation 21 to the reader. The constraints (23a), (23b) are verified easily. The
constraint (23c) is true because Ag(v) = 0 throughout. The constraint (23d) holds because for all

v € (p,H + 2), we have
f ai(t)ydt=v—-p
0

g8(v) v
f ap(t)dt = f ag(t)dt =v—p
0 0
ga(v) ga(v) ga(v)-2
f ay(t)dt = f a(t —2)dt = f a(t)dt = W(ga(v) —2) =v—p.
0 2 0

and the three quantities are equal. Finally, the constraint (23e) is satisfied because I' is zero through-

out.
[}

K.4. Omitted Proofs in subsubsection J.3.2

Recall that x; = % +1,y = % +1,and x; = %;—{ +1,y; gzﬂ, + 1 for i > 1. This implies the
equations
, 16H
V1>1:xi—y,~=ﬂ. (2921)
) 4H
Vi>1: Yi — Xiy1 = ﬂ (29b)
1
Vi>1: 3 (Xiv1 = Yiv1) + 2(Yi = Xiv1) = (Yi = Yiv1) (29¢)
5y, + 16y; = 21x;. (29d)

We will need the following lemma:

LemMma K.4. Foralli > 0 and v € [yi+1,yi],

9:6(v) v
f ag(x)dx < f ag(x)dx.
96(yi+1) Yir1

Moreover, equality holds if v = y;.

Proor. We calculate the three quantities:
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2 (94(0) = ga(y2)) Jd=10<x
9a(v) 3 (9a(x2) = ga(y2)) + (9a(v) — ga(x2)) Ji=1L0>x
[ o= 8 0a0) - gatwin) Jiis even
gali) T (94(0) = ga(Yinn) Jiis 0dd,v < Xy
T (Galxin) = gayin)) + Gaer (9a(©) = galxin)) iis 0dd,0 > xip
gB(v) . # (v = Yit+1) " ,iiseven,v < xj41
f ag(t)dt = 5oz (Xiv1 — Yir1) + o (U —Xix1) ,ids even,v > xju
9u (i) ot (0= Yi1) ,iis odd
v 20
* t dt = — Y
fym aC( ) 13- 2¢ (v y +1)

We now prove the result for i = 1. In this case, as the expressions for B and C are the same, it is
sufficient to show that

ga(v) 3 (v— <
f a;(t)dt: 153 (U y2) U S X2
9a(yiv1) 13 (2 —y2) +20-2x; ,U>x;
5
= (v - ,0 L X; .
=0 ( 10;512) 16y, : (Equation 29d)
e e
10 v
<—(v—-yp) = f ag(t)dt (Asv < yy)
13 Yi+1
We now prove for even i > 1. The case for odd i is similar. Note that g4(x;) = x’TH and
galy:) = leH for all i > 1. In this case, as the expressions for A and C are the same, it is sufficient
to show that
ng(v) o ()dt = # (v — Yit+1) ,U < Xig1
j =
98 (Yi+1) % (Xi+1 = Yis1) + % (v =Xiy1) V> Xin
10
3.2 (U= Ui ,0 L X )
= {132'02 (0= yin) " o (Equation 29c¢)
ot Wi — Y1) + 5 (0V—U1) v > x4
20 v
<—(@w-y)= ac(t)dt (Asv < y)
13 Yi+1
The moreover part can be observed by putting v = y; in our equations. O

ProoF oF THEOREM ]J.9.

Feasibility We verify the feasibility constraints in Equation 21. It is straightforward to verify that
a’, are monotone (constraint (21c)) and take values in [0, 1] (constraint (21d)). Finally, the constraint
(21Db) holds because of Theorem K.4.

Optimality We verify all the constraints in Equation 23. The constraints (23a), (23b) are straight-
forward to verify from the definition of a;. The constraint (23c) follows from the fact that Ac(v) is
0 throughout and

2a(v) >0 = Fi>0:0 € (galx2i+1),9a(x2i-1)) = a4 (v) =0

Ap(0) >0 = i > 0:0 € (gs(xne) g5(xa)) = aj(v) =0
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The constraint (23d) holds because y(v) is 0 throughout. For the constraint (23e), we need to prove

that for all y;
galy:) 9B(y:) Yi
f a’y(x)dx = f ap(x)dx = f ag(x)dx
0 0 0

which holds because of (the moreover part of) Theorem K.4
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