
Optimal Mechanism Design for Single-Minded Agents

NIKHIL R. DEVANUR∗, Amazon

KIRA GOLDNER†, Columbia University

RAGHUVANSH R. SAXENA‡, Princeton University

ARIEL SCHVARTZMAN§, Princeton University

S. MATTHEW WEINBERG¶, Princeton University

We consider optimal (revenue maximizing) mechanism design in the interdimensional setting, where one

dimension is the ‘value’ of the buyer, and the other is a ‘type’ that captures some auxiliary information. A

prototypical example of this is the FedEx Problem, for which Fiat et al. [10] characterize the optimal mechanism

for a single agent. Another example of this is when the type encodes the buyer’s budget [DW17]. The question

we address is how far can such characterizations go? In particular, we consider the setting of single-minded

agents. A seller has heterogenous items. A buyer has a valuation v for a specific subset of items S , and obtains

value v if and only if he gets all the items in S (and potentially some others too).

We show the following results.

(1) Deterministic mechanisms (i.e. posted prices) are optimal for distributions that satisfy the łdeclin-

ing marginal revenuež (DMR) property. In this case we give an explicit construction of the optimal

mechanism.

(2) Without the DMR assumption, the result depends on the structure of the minimal directed acyclic

graph (DAG) representing the partial order among types. When the DAG has out-degree at most 1, we

characterize the optimal mechanism à la FedEx; this can be thought of as a generalization of the FedEx

characterization since FedEx corresponds to a DAG that is a line.

(3) Surprisingly, without the DMR assumption and when the DAG has at least one node with an out-degree

of at least 2, then we show that there is no hope of such a characterization. The minimal such example

happens on a DAG with 3 types. We show that in this case the menu complexity is unbounded in that

for any M , there exist distributions over (v,S ) pairs such that the menu complexity of the optimal

mechanism is at leastM .

(4) For the case of 3 types, we also show that for all distributions there exists an optimal mechanism of

finite menu complexity. This is in contrast to the case where you have 2 heterogenous items with

additive utilities for which the menu complexity could be uncountably infinite [DDT15, MV07].

In addition, we prove that optimal mechanisms for Multi-Unit Pricing (without a DMR assumption) can

have unbounded menu complexity as well, and we further propose an extension where the menu complexity

of optimal mechanisms can be countably infinite, but not uncountably infinite.

∗iam@nikhildevanur.com.
†kgoldner@cs.columbia.edu. Supported in part by NSF CCF-1420381 and by a Microsoft Research PhD Fellowship. Supported

in part by NSF award DMS-1903037 and a Columbia Data Science Institute postdoctoral fellowship.
‡rrsaxena@princeton.edu.
§acohenca@princeton.edu. Supported by NSF CCF-1717899.
¶smweinberg@princeton.edu. Supported by NSF CCF-1717899.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EC ’20, July 13ś17, 2020, Virtual Event, Hungary

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7975-5/20/07. . . $15.00

https://doi.org/10.1145/3391403.3399454

EC’20 Session 2e: Revenue Maximization

193



Taken together, these results establish that optimal mechanisms in interdimensional settings are both

surprisingly richer than single-dimensional settings, yet also vastly more structured than multi-dimensional

settings.

CCS Concepts: • Theory of computation → Algorithmic mechanism design.

Additional Key Words and Phrases: optimal mechanism design, revenue, duality, interdimensional, menu

complexity, single-minded valuations, partial Lagrangian.
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1. Introduction

Consider the problem of selling multiple items to a unit-demand buyer. The fundamental problem
underlying much of mechanism design asks how the seller should maximize their revenue. If the
items are identical, then the setting is considered single-dimensional. In this case, seminal work
of Myerson [22] completely resolves this question with an exact characterization of the optimal
mechanism. The optimal mechanism is a simple take-it-or-leave-it price, and the fact that there
are multiple items versus just one is irrelevant. In contrast, if the items are heterogenous, then the
setting is multi-dimensional and, unlike the single-dimensional setting, optimal mechanisms suffer
from numerous sources of intractability (including computational intractability, non-monotonicity,
high description complexity, and others): [2, 6, 7, 14, 15, 20].
Very recently, Fiat et al. [10] identify a fascinating middle-ground. Imagine that the items are

neither identical nor heterogeneous, but are instead varying qualities of the same item. To have an
example in mind, imagine that you’re shipping a package and the items are one-day, two-day, or
three-day shipping. You obtain some value v for having your package shipped, but only if it arrives
by your deadline (which is one, two, or three days from now). We can think of the input as being a
(correlated) two-dimensional distribution over (value, deadline) pairs.

The FedEx Problem is a special case of single-minded valuations: a buyer has a valuation v for a
specific subset of items S , and obtains value v if he gets any superset of S , and 0 otherwise. To have
an example in mind, imagine that a company offers internet, phone service, and cable TV. You have
a value, v , and are interested in getting internet service. So you value options such as exclusively
internet service, internet/phone service, or internet/cable, and so on, at v . For any option that
does not include internet you get a value of zero (so we again think of the input distribution as a
two-dimensional distribution over (value, interest) pairs).

An alternative perspective to single-minded valuations is that there is a partial order on the set of
possible interests a buyer may have. The partial order is just the one induced by set inclusion. The
FedEx problem has totally-ordered items: one-day shipping is at least as good as two-day shipping
is at least as good as three-day shipping, and every buyer agrees. In fact, any partial order can be
induced from set inclusion, so the two settings are equivalent (see Observation 2 in Appendix G). It
turns out that the partial order view is more useful from a mechanism design perspective, therefore
we will use that view for the rest of the paper.

The following problem can also be interpreted as a partially-ordered setting: Suppose that each
buyer has a publicly visible attribute which the seller can use to price discriminate. E.g., the buyer
could be a student, a senior, or general-admission. Or, the buyer could be a łprime memberž or a
łnon-prime member.ž However, buyers with certain attributes can disguise themselves as having

EC’20 Session 2e: Revenue Maximization

194



other attributes, given by a partial order. For example, a prime member could disguise as a non-
prime member, but not vice-versa. Then if item i is a movie ticket redeemable by anyone who can
disguise themselves as having attribute i , the items are partially-ordered.

1.1. Main Results

Fiat et al. [10] give a characterization of an optimal mechanism for the FedEx problem, and our goal
is to understand the generalizability of this characterization, in particular to the partially ordered
setting. Towards this, we first describe the FedEx characterization and what a generalization could
look like. A deterministic mechanism sets a posted price pi for each shipping option, and the buyer
picks the option he prefers (if any). Clearly, it makes sense for the prices to be non-increasing in
i-day shipping. The FedEx solution is recursive: start with the price on day 1 (as a variable), and
constrain the price on day 2 to be weakly lower, and so on. When the distributions satisfy the
Declining Marginal Revenue (DMR)1 property, this strategy actually results in deterministic prices
that are optimal. Without any distributional assumption, one might have to resort to lotteries: the
buyer gets the item only with some probability. The first day price is still deterministic, but for the
second day, the mechanism offers a lottery such that the expected price for full service is weakly
lower. It turns out that we only need to randomize between two options. Recursively, every option
on day i may split into two options on day i + 1, so we might have at most 2m−1 options on daym,
and 2m − 1 options overall (and examples exist where 2m − 1 options are necessary [23]).
So our starting point is a hope that similar recursive ideas can characterize optimal auctions

beyond the totally-ordered FedEx setting. Some terminology is useful here to understand precisely
what this might mean. We use the directed acyclic graph (DAG) representation of a partial order:
an edge from i to j implies j is preferred over i . The DAG isminimal: if (i, j ) and (j,k ) are edges then
(i,k ) is not an edge. The DAG for the FedEx problem goes right to left, i.e., it has edges (i + 1,i )
for i from 1 tom − 1. A recursive approach for a DAG would look like this: start with a sink, set a
deterministic price, and use this to constrain the prices (either deterministically or in expectation,
based on the distributional assumption) for its predecessors and so on. The goal of this paper is to
understandWill something like this work for partially-ordered items?

DMR: Under the DMR assumption, this strategy for pricing works in any DAG (Theorem C.1
in Appendix C). We start from the sink nodes and recursively constrain the price of a node to be
at most the minimum among the prices of all its successors. Our proof that this procedure works
employs LP duality, and a significantly more involved procedure to set appropriate dual variables
than in [FGKK16]. The fact that optimal mechanisms are deterministic subject to DMR matches
prior work for totally-ordered settings [Che and Gale 2000, DHP17, DW17, FGKK16].

Out-degree 1: The FedEx strategy still works when the minimal DAG has out-degree at most 1,
without any distributional assumptions (Theorem D.1 in Appendix D). Compared to the DMR case,
we now have to deal with lotteries but when we process a node, there is exactly one successor that
constrains the lotteries for this node, in exactly the same way as in FedEx.

3 node DAG: The minimal example where the out-degree is 2 is a three-node DAG with nodes
A,B, andC , and edges (C,A) and (C,B). One might hope that the following recursive strategy would
work (after all, the graph is still a DAG, and should be amenable to recursive arguments): set prices

1A one-dimensional distribution F satisfies Declining Marginal Revenues if v (1 − F (v )) is concave. Note that this is an
incomparable condition to Regularity (in the Myersonian sense), and also Monotone Hazard Rate (MHR). There exist

distributions which are DMR, but not Regular (and therefore not MHR). There also exist distributions which are MHR

but not DMR. See [8] for examples and more discussion. For example, uniform distributions are DMR, along with any

distribution of bounded support and monotone non-decreasing density.
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Known Menu Complexity Results for Optimal Mechanisms with One Buyer

One Item FedEx Single-Minded, 3 Items Multi-Unit Coordinated, 3 Items Additive

Det. under DMR N/A ✓ ✓ ✓ ✗ N/A

Lower Bound 1 2m − 1 unbounded unbounded countably infinite uncountable

Upper Bound 1 2m − 1 finite Ð countably infinite uncountable

Bold results are from this paper.

deterministically for A and B and use the minimum of the two to constrain the expected price for
C . Note that if there were no item B, this would match precisely the FedEx solution.

It turns out that this idea fails horribly, for the following (very high-level) reason. With just two
items (C and A), the price of A transparently constrains what prices we can set for C (the expected
price for C must be lower). So when optimizing the price of A, we can take this into account. With
three items, it’s no longer clear how the price of A constrains the price ofC . Certainly, the expected
price for C must be lower, but perhaps a stronger constraint is already implied by the price of B.
Therefore, one cannot separately optimize the price of A without knowing the price of B.

Indeed, this intuition actually manifests into a lower bound: it is not only challenging to jointly
optimize the prices of A,B together, but the optimum may no longer be deterministic at all! Specifi-
cally, for any integerM , there exist value distributions for this 3-node DAG for which the unique
optimal mechanism presentsM different lotteries to the buyer (Theorem 4.1). Essentially, there is
no hope for a FedEx style solution even for this minimal case. We focus the technical presentation of
our paper on this result.

Finiteness of menu complexity: The use of menu complexity lower bounds to ascertain complexity
of mechanisms is not new: Daskalakis et al. [7], Manelli and Vincent [20] show that the optimal
mechanism for the multi-dimensional setting might have uncountable menu complexityÐthis
holds even for just two items with additive valuations, and even when the item values are drawn
independently from absolutely bounded distributions. This dichotomy serves as one fundamental
difference between single-dimensional and multi-dimensional settings.
Within the context of these results, we ask if we can get an infinite (uncountable or countable)

menu complexity for the partially-ordered setting as well. A natural strategy is to take the limit
of our construction as the number of randomizations goes to infinity. Somewhat surprisingly, the
example then collapses and has a deterministic price as optimal. We show that this is no coincidence:
that the menu complexity for the three item case is always finite (Theorem 4.2).

Summary: The main technical takeaway from our results is a thorough understanding of optimal
mechanisms in interdimensional settings beyond FedEx through broadly applicable tools. Our
theorem statements use the language of menu complexity, but only to distinguish among mecha-
nisms with bounded, unbounded, or infinite menu complexity. The main conceptual takeaway is
that optimal auctions for single-minded valuations lie in a space of their own: significantly more
complex than optimal single-dimensional auctions, or even optimal auctions for totally-ordered
valuations, yet more structured than optimal multi-dimensional auctions.

1.2. Additional results

We postpone all details about our proofs to the technical sections, but highlight one result of
independent interest that we develop en route. Our problem can be phrased as a continuous linear
program, and all of our proofs require reasoning about the dual. In particular, developing our lower
bound construction (instances with unbounded menu complexity) consists of two parts: First, we
construct a candidate dual λ for which a primal exists satisfying complementary slackness, and
for which every primal satisfying complementary slackness has menu complexity ≥ M . Second,
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we prove that there exists a distribution for which λ is a feasible dual (and combining these two
claims means that every optimal mechanism for this input has menu complexity ≥ M). Analyzing
λ through complementary slackness is technically interesting, and captures all of the insight one
would hope to gain from the construction. Reverse engineering an instance for which λ is feasible,
however, is technically challenging yet unilluminating. On this front, we prove a łMaster Theorem,ž
stating essentially that every candidate dual is feasible for some input distribution (Theorem H.1).
More specifically, given desired properties of a dual λ such as: λ(x ) = 0 for x ∈ S , λ(x ) > 0 for x ∈ T ,
etc. (see Theorem H.1 for formal statement), the Master Theorem asserts that there exists some

distribution for which there exists a feasible dual with the desired properties. This allows the user
(of the theorem) to reason exclusively about primals and duals, letting the Master Theorem map the
candidate pair back to an instance for which they are feasible. In some sense, the Master Theorem
formally separates the insightful analysis (reasoning about primals and duals using complementary
slackness) from the tedious parts (confirming that there exists an instance for which a dual with
particular desired properties even exists).
Of course, one should not expect this theorem to hold in general multi-dimensional settings

(in particular, one key property that enables our Master Theorem is a łpayment identity,ž which
general multi-dimensional settings notoriously lackÐthis is a further example of how our setting
lies in-between single- and multi-dimensional), but the Master Theorem is quite generally applicable
for problems in this intermediate range. In addition, because the Master Theorem takes care of
guaranteeing that distributions corresponding to some dual will exist, this result also emphasizes
the strength of reasoning about duals in similar settings.

Finally, beyond our main results, we prove two additional results using the same tools. First, we
apply our lower bound techniques to show that the menu complexity of the Multi-Unit Pricing
problem [DHP17] is also unbounded (Theorem I.1 in Appendix I). Multi-Unit Pricing is also a
totally-ordered setting, where the items correspond to copies of a good (item one is one copy, item
two is two copies, item three is three copies). The difference from FedEx is that if the buyer is
interested in two copies but gets one, they get half their value (versus zero). Second, we propose
a generalization beyond totally-ordered settings which we call coordinated valuations, and again
characterize the menu complexity of optimal mechanisms for one instance of three items (which
can be countably infinite, but not uncountable, see Appendix J).

1.3. Related Work

Single-minded valuations are a well-known model (e.g. [18]). Most work in this model pertains
to welfare maximization in more complex settings, such as combinatorial auctions. Other work
assumes that the buyer’s interest is publicly known; in this case, the buyer is single-parameter, and
a single-buyer revenue maximization problem reduces to Myerson.

The most related line of works has already mostly been discussed. The FedEx Problem considers
totally-ordered items (in our language), as does Multi-Unit Pricing and Budgets [5, 8ś10]. The
present paper is the first to consider partially-ordered items. In terms of techniques, we indeed
draw on tools from prior work. All three prior works employ some form of duality. Our approach
is most similar to that of Devanur and Weinberg [9] in that (1) both are the only works to use the
analysis from [CDW16] to characterize optimal mechanisms rather than obtain approximations,
and (2) we also perform łdual operationsž rather than search for a closed form. However, as the
single-minded setting is much more complicated, we extend the techniques to handle this setting.

Also related is a long line of work which aims to characterize optimal mechanisms beyond single-
dimensional settings. Owing to the inherent complexity of mechanism design for heterogeneous
items, results on this front necessarily consider restricted settings [6, 7, 11, 13, 17, 19, 21]. From this
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set, the most related are [13, 19], who also considered settings where all consumers prefer (e.g.)
item a to item b, but there are no substantial technical connections.
There is also a quickly growing body of work regarding the menu complexity of multi-item

auctions. Much of this work focuses on settings with heterogeneous items [1, 2, 7, 12, 14, 24]. Very
recent work of [SSW18] considers the menu complexity of approximately optimal mechanisms for
the FedEx Problem (for which [FGKK16] already characterized the menu complexity of exactly
optimal mechanisms). On this front, our work places partially-ordered items (where the menu
complexity is finite but unbounded) distinctly between totally-ordered items (where the menu
complexity is bounded) [FGKK16], and heterogeneous items (uncountable) [DDT15]. Previously,
no settings with this property were known.

1.4. Roadmap

Our paper contains four main results, although we view the primary contributions as (3) and (4):

(1) In Appendix C, we prove Theorem C.1, which explicitly constructs a deterministic optimal
auction for partially-ordered items when all marginals are DMR.

(2) In Appendix D, we prove Theorem D.1, which extends the recursive FedEx algorithm for
totally-ordered items to partially-ordered items when minimal DAGs with outdegree at most
one.

(3) We focus our technical presentation on the ideas necessary for Theorem 4.1, which establishes
that any partially-ordered instance for which some node in the minimal DAG has outdegree
at least two, the menu complexity of the optimal mechanism may be unbounded. In Section 2
we provide the minimal preliminaries to understand the main ideas behind our proof of
this result (full preliminaries in Appendix A). In Section 3 we overview the key duality
aspects. In Section 4 we give a brief overview of the proof of Theorem 4.1. The full proof is
in Appendix E.

(4) Finally, we also establish that the menu complexity of optimal mechanisms for this minimal
3-item instance is always finite. The main ideas appear in Section 4, and a full proof of
Theorem 4.2 appears in Appendix F.

Outside of our main results, Appendix H presents our łMaster Theoremž (Theorem H.1), which
is of independent interest for future work on mechanism design with totally- or partially-ordered
items. In Appendix I and Appendix J we display the applicability of our techniques for related
settings such as Multi-Unit Pricing (Theorem I.1) and coordinated values (Theorems J.2, J.4, J.5),
respectively. Section 5 presents our conclusions and discusses future work.

2. Preliminaries

In the interest of presentation, we’ll provide the minimum preliminaries here for the reader to
understand the key ideas. In Appendix A, we provide full preliminaries, including additional
intuition, and covering prior work (such as [DW17, FGKK16]). Many of the facts we will use are
stated here without proof (proofs are given in Appendix A).

2.1. A Minimal Instance

We focus on the three-item case with items G = {A,B,C} where A ≻ C and B ≻ C , but A ⊁ B and
B ⊁ A. That is, if a buyer is interested in itemC , they are content with A or B. If they are interested
in A, they are content only with A (ditto for B). There is a single buyer with a (value, interest) pair
(v,G ), who receives value v if they are awarded an item ⪰ G (that is, G ′ ≻ G or G ′ = G). This is
the minimal non-trivial example of a partially-ordered setting. A menu-complexity lower bound
for this example applies to any partially-ordered setting that contains an itemG with at least two
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incomparable items that dominateG (which includes every single-minded valuation setting with at
least 3 items).

An instance of the problem consists of a joint probability distribution over [0,H ] × G, where H
is the maximum possible value of any bidder for any item.2 We will use f to denote the density of
this joint distribution, with fG (v ) denoting the density at (v,G ). We will also use FG (v ) to denote
∫ v

0
fG (w )dw , and qG to denote the probability that the bidder’s interest isG.

We’ll consider (w.l.o.g.) direct truthful mechanisms, where the bidder reports a (value, interest)
pair and is awarded a (possibly randomized) item. Further, as observed in Fiat et al. [10], it is
without loss of generality to only consider mechanisms that award bidders their declared item of
interest with probability in [0,1], and all other items with probability 0.3 For a direct mechanism,
we’ll define aG (v ) to be the probability that item G is awarded to a bidder who reports (v,G ). Our
goal is to find the revenue-optimal allocation ruleÐaG (v ) defined for all G ∈ G,v ∈ [0,H ] with
payment determined by the allocation ruleÐsuch that the mechanism is incentive-compatible. The
menu complexity of a direct mechanism refers to the number of distinct pairs (G,q) such that there
exists a v with aG (v ) = q.

2.2. Incentive Compatibility, Revenue Curves, and Ironing

As observed in [FGKK16], it is without loss of generality to only consider mechanisms that award
bidders their declared item of interest with probability in [0,1], and all other items with probability
0. Also observed in [FGKK16] is that Myerson’s payment identity holds in this setting as well,

and any truthful mechanism must satisfy pG (v ) = vaG (v ) −
∫ v

0
aG (w )dw (this also implies that

the bidder’s utility when truthfully reporting (v,G ) is uG (v ) =
∫ v

0
aG (w )dw). This allows us to

drop the payment variables, and follow Myerson’s analysis. Fiat et al. observe that many of the
truthfulness constraints are redundant, and in fact it suffices to only make sure that when the
bidder has (value, interest) pair (v,G ) they:

• Prefer to tell the truth rather than report any other (v ′,G ). This is accomplished by constrain-
ing aG (·) to be monotone non-decreasing (exactly as in the single-item setting).
• Prefer to tell the truth rather than report any other (v,G ′ ∈ N + (G )). By N + (G ), we mean
all items G ′ such that G ′ ⪰ G, but there does not exist a G ′′ with G ′ ⪰ G ′′ ⪰ G. This is
accomplished by constraining

∫ v

0
aG (w )dw ≥

∫ v

0
aG′ (w )dw (as the LHS denotes the utility

of the buyer for reporting (v,G ) and the RHS denotes the utility of the buyer for reporting
(v,G ′)). Note that this is equivalent to saying that the area underG’s allocation curve should
be at least as large at every v as the area under G ′’s allocation curve.

All of these constraints together imply that (v,G ) also does not prefer to report any other (v ′,G ′).4

We conclude this section with some standard definitions and observations.

Definition 2.1 (Revenue Curve). The revenue curve for an item G with CDF FG is a function

RG that maps a value v to the revenue obtained by posting a price of v , for a single item, when buyer

2Note that the multi-dimensional instances with uncountable menu complexity are also supported on a compact set: [0, H ]2.

So our results are not merely a product of compactness.
3To see this, observe that the bidder is just as happy to get nothing instead of an item that doesn’t dominate their interest.

See also that they are just as happy to get their interest item instead of any item that dominates it. It will also make this

option no more attractive to any bidder considering misreporting. So starting from a truthful mechanism, modifying it to

only award the item of declared interest or nothing cannot possibly violate truthfulness. Note also that this modification

maintains optimality, but could impact the menu complexity up to a factor of # items. As we only consider distinctions

between bounded, unbounded, and infinite, this is still w.l.o.g.
4 For example, if (v,G ) prefers truthful reporting to reporting (v,G′) whereG′ ≻ G , and (v,G′) prefers truthful reporting
to reporting (v ′,G′), then since (v,G ) gets the same utility for reporting (v,G′) as type (v,G′) does for truthfully reporting,
(v,G ) prefers truthful reporting to reporting (v ′,G′).
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In Figure 3, a horizontal arrow into item A (or B) at v indicates that αC,A (v ) (or αC,B (v )) is
non-zero. We write the following statements for G ∈ {A,B}.
• (Flow) We will call the value of αG′,G (v ) the łflow into (v,G )ž or the łflow intoG at v .ž When
we focus on the minimal partial-order example, we infer that flow into A or B comes from C

in our figure.

Dual best response (condition (5)) requires that forG ∈ {A,B}, if αC,G (v ) > 0 then
∫ v

0
aG (x )dx =

∫ v

0
aC (x )dx , or equivalently, uG (v ) = uC (v ): a type with value v should have the same utility in C

and G. Sending flow across interests forces the corresponding utilities to be the same.

Virtual Values. We will define a new variable, Φλ,α (v ) for all v ∈ [0,H ], and we will call the
product f (v )Φλ,α (v ) the virtual value.6 Once again, this is a generalization of Myerson’s virtual
value function to this more general setting.

Figure 2 has a vertical axis ranging over values from 0 (at the bottom) to H (at the top), with a
label of the item of focus G at the top. The point on the axis for any v represents the virtual value

fG (v )Φ
λ,α
G

(v ).
Of particular interest to us is the region where the virtual value is 0 because this is the region (and

the only region) for which a primal satisfying complementary slackness can have a randomized

allocation. This is an interval if ( fGΦ
λ,α
G

) (·) is monotone in v (our solution ensures it is; details in
Appendix A.5).

• (Endpoints of Zero Region) We define the bottom end point of the zero virtual value region in

G by rG = inf {v | fG (v )Φλ,α
G

(v ) ≥ 0} and the top end point r̄G = sup{v | fG (v )Φλ,α
G

(v ) ≤ 0}.
In Figure 2 the horizontal black lines and signs indicate where the virtual values shift from positive
sign to zero, rG , and from zero to negative sign, rG . Primal best response requires the allocation to
satisfy aG (v ) = 0 for v ≤ rG (condition (2)) and aG (v ) = 1 for v ≥ rG (condition (3)).

3.2. The Lagrangian Dual.

The quality of a primal solution is measured by how well it solves the following Lagrangian
relaxation induced by (λ,α ). The quality of a dual solution is measured by the value of its induced
Lagrangian relaxation. A dual is better if the value of its induced Lagrangian relaxation is smaller.

Variables: aG (v ) ∀G ∈ G, v ∈ [0,H ]

Maximize
∑

G ∈G

∫ H

0

fG (v ) · aG (v ) · Φλ,α
G

(v )dv

subject to aG (v ) ∈ [0,1]

where φG (v ) = v −
1 − FG (v )
fG (v )

and where Φ
λ,α
G

(v )

:= φG (v ) +
1

fG (v )

−λ
′
G (v ) +

∑

G′∈N + (G )

∫ H

v

αG,G′ (w )dw −
∑

G′:G ∈N + (G′)

∫ H

v

αG′,G (w )dw

 . (1)

Before continuing, lets parse the Lagrangian relaxation. The only remaining constraints are that
aG (v ) ∈ [0,1], and the objective is a linear function of these variables. This immediately implies

that the solution to this LP relaxation will set aG (v ) = 1 whenever Φλ,α
G

(v ) > 0, and aG (v ) = 0

whenever Φλ,α
G

(v ) < 0. This implies that if there is any randomization, i.e., aG (v ) ∈ (0,1) then it

6 Whether we refer to Φ as the virtual value or Φf reflects whether we iron in the quantile space or the value space.
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must be that Φλ,α
G

(v ) = 0. The details of the definition of Φ are not so important here. (However,
note that in the definition of Φ, the term λ′ refers to the derivative of λ.)

3.3. Complementary Slackness.

Under strong duality, a (primal, dual) pair is optimal if and only if the primal and dual satisfy
complementary slackness. In addition, if a dual (λ,α ) is optimal, i.e. satisfies complementary
slackness with some primal, then any primal is optimal if and only if it satisfies complementary
slackness with (λ,α ). Let’s review complementary slackness in our setting. A primal a and dual
(λ,α ) satisfy complementary slackness if and only if:7

(Primal best response) Φ
λ,α
G

(v ) > 0 ⇒ aG (v ) = 1 (2)

Φ
λ,α
G

(v ) < 0 ⇒ aG (v ) = 0 (3)

(Dual best response) λG (v ) > 0 ⇒ a′G (v ) = 0 (4)

αG,G′ (v ) > 0 ⇒
∫ v

0

aG (x )dx −
∫ v

0

aG′ (x )dx = 0 (5)

That is, a primal is a best response to a dual if all (v,G ) with positive virtual value are awarded
the item, and all (v,G ) with negative virtual value are not. A dual is a best response to a primal
if whenever a dual variable is non-zero, the corresponding local IC constraint is tight. The entire
technical aspect of this paper is using the constraints imposed by complementary slackness in (2-5)
to reason about optimal mechanisms and their menu complexity.

4. Menu Complexity

We provide here the key ideas behind the construction that forms our lower bound and the proof
of our upper bound. Full details are provided in Appendix E and Appendix F respectively.

4.1. Menu Complexity is Unbounded: A Gadget and Candidate Instance

In this section, we provide a gadget that will be used in our menu complexity lower bound, and
successively chain copies of it together to build our full construction. For one instance of our gadget,
we provide a concrete potential dual, and prove that any allocation rule satisfying complementary
slackness with it must have two distinct allocation probabilities. In order for this example to
establish a menu complexity lower bound of two, we must additionally:

• Establish that there exists a distribution F for which our dual is feasible. This is not covered
in this section, and is deferred to our Master Theorem (Theorem H.1).
• Establish that there exists an allocation rule which satisfies complementary slackness with
this dual, thereby establishing that the dual is optimal (and any optimal allocation rule must
satisfy complementary slackness with it). This is also not covered in this section, and is
deferred to Appendix F.

We begin below with our gadget, then successively chain copies together to establish a menu
complexity lower bound of M for any M > 0. We use graphics and recall the following facts
established in the previous section:

7One can interpret these conditions as saying that the primal is an optimal solution to the Lagrangian relaxation, and the

dual is the worst possible Lagrangian relaxation for the primal.
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mechanism:

aA (v ) =



0 v < 1.5
4
7 v ∈ [1.5,6)
6
7 v ∈ [6,10)
1 v ≥ 10

aB (v ) =



0 v < 1
2
7 v ∈ [1,3)
5
7 v ∈ [3,8)
1 v ≥ 8

aC (v ) =



0 v < 1
2
7 v ∈ [1,2)
4
7 v ∈ [2,5)
5
7 v ∈ [5,7)
6
7 v ∈ [7,9)
1 v ≥ 9

.

The mechanism achieves a revenue of 3.2, which is slightly more than that of the best deterministic
mechanism.

5. Conclusions

We study optimal mechanisms for single-minded bidders, and show that the menu complexity of
optimal mechanisms is unbounded but finite for three items. Recall that for three identical items,
the menu complexity is 1, for totally-ordered items the menu complexity is at most 7, and for
heterogeneous items the menu complexity is uncountable. So our setting fits nicely łin betweenž
totally-ordered and heterogeneous by this measure. By fuzzier measures of complexity, the same
is true too: for identical items, the optimal mechanism has a clean closed-form description. For
totally-ordered items, the optimal dual has a closed form, and the primal can be recovered by a
simple algorithm as a function of this dual. For partially-ordered items, the optimal dual is unlikely
to have a closed form, but can be characterized in terms of properties it must satisfy, and the
primal can still be recovered algorithmically8 as a function of this dual. For heterogeneous items,
optimal mechanisms are pure chaos. And, like other settings that can be placed fundamentally in
between single- and multi- dimensional settings (e.g., FedEx and MUP), we prove that the optimal
mechanism is deterministic under DMR in the partially-ordered setting.

We also provide extensionsÐmenu complexity of MUP (Theorem I.1, Appendix I) and of coordi-
nated values (Theorems J.2, J.4, J.5, Appendix J)Ðproving the usefulness of our techniques beyond
our setting.
Many interesting open directions remain. First, general menu complexity upper boundsÐfor

the single-minded setting, the Multi-Unit Pricing setting, and the coordinated valuations setting.
The techniques we use in this paper focus on characterizing the optimal dual and recovering the
optimal mechanism for the three-item single-minded setting; this approach appears to be far too
detailed and focused on characterizations to be extended. We expect new ideas to be needed.
Second, the question of menu-complexity lower bounds for any of these three settings for

approximately-optimal mechanism are wide-open. Is the separation from FedEx still as large when
we only require approximately-optimal revenue?

Both directions of research would further fill out this rich spectrum, which until only recently
was but thought to be a dichotomy between single-dimensional and heterogenous.
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A. Full Preliminaries

While this paper focuses on the three-item case, it’s illustrative (and perhaps cleaner) to provide
notation for general partially-ordered items. In general, there arem partially-ordered items. Item
G can be better than, worse than, or incomparable to item G ′, and we’ll use the relation G ≻ G ′

to denote that G is better than G ′. We refer to the set of items as G, and use N + (G ) to denote
the set of items G ′ ∈ G for which G ′ ≻ G, but there is no G ′′ with G ′ ≻ G ′′ ≻ G (i.e. the items
łimmediately betterž thanG, or the 1-out-neighborhood ofG in a graphic representation). There
is a single buyer with a (value, interest) pair (v,G ), who receives value v if they are awarded an
item ⪰ G. An instance of the problem consists of a joint probability distribution over [0,H ] × G,
where H is the maximum possible value of any bidder for any item. We will use f to denote the
density of this joint distribution, with fG (v ) denoting the density at (v,G ). We will also use FG (v )

to denote
∫ v

0
fG (w )dw , and qG to denote the probability that the bidder’s interest isG. Note that

FG (H ) = qG < 1, so FG (·) is not the CDF of a distribution (although FG (·)/qG is the CDF of the
marginal distribution of v conditioned on interest G).
We’ll consider (w.l.o.g.) direct truthful mechanisms, where the bidder reports a (value, interest)

pair and is awarded a (possibly randomized) item. For a direct mechanism, we’ll define aG (v ) to be
the probability that itemG is awarded to a bidder who reports (v,G ), and pG (v ) to be the expected
payment charged. Then a buyer’s utility for reporting any (v ′,G ′) where G ′ doesn’t dominate G is
−pG′ (v ′), and the utility for reporting any (v ′,G ′) where G ′ dominates G is v · aG′ (v ′) − pG′ (v ′).
At this point, one can write a primal LP that maximizes expected revenue subject to incentive

constraints, manipulate the LP, and consider a Lagrangian relaxation (and all of this is done
in Devanur and Weinberg [9], Fiat et al. [10]).

A.1. Formulating the Optimization Problem

The łdefaultž way to write the continuous LP characterizing the optimal mechanism would be to

maximize
∑

G ∈G
∫ H

0
fG (v )pG (v )dv (the expected revenue) such that everyone prefers to tell the

truth than to report any other type. As observed in Fiat et al. [10], it is without loss of generality
to only consider mechanisms that award bidders their declared item of interest with probability
in [0,1], and all other items with probability 0.9 Also observed in Fiat et al. [10] is that Myerson’s
payment identity holds in this setting as well, and any truthful mechanism must satisfy pG (v ) =

vaG (v ) −
∫ v

0
aG (w )dw (this also implies that the bidder’s utility when truthfully reporting (v,G )

is uG (v ) =
∫ v

0
aG (w )dw). This allows us to drop the payment variables, and follow Myerson’s

analysis to recover:10

E[revenue] =
∑

G ∈G

∫ H

0

fG (v ) · pG (v )dv =
∑

G ∈G

∫ H

0

fG (v )aG (v )

(

v − 1 − FG (v )
fG (v )

)

dv

The experienced reader will notice that v − 1−FG (v )
fG (v )

is exactly Myerson’s virtual value for the

conditional distribution FG (·)/qG , which we’ll denote by φG (v ). At this point, we still have a
continuous LP with only allocation variables, but still lots of truthfulness constraints. Fiat et al.

9To see this, observe that the bidder is just as happy to get nothing instead of an item that doesn’t dominate their interest.

See also that they are just as happy to get their interest item instead of any item that dominates it. It will also make this

option no more attractive to any bidder considering misreporting. So starting from a truthful mechanism, modifying it to

only award the item of declared interest or nothing cannot possibly violate truthfulness.
10For the familiar reader, this derivation is routine, so we omit it. The unfamiliar reader can refer to [16, 22] for this

derivation.
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[10] observe that many of these constraints are redundant, and in fact it suffices to only make sure
that when the bidder has (value, interest) pair (v,G ) they:

• Prefer to tell the truth rather than report any other (v ′,G ). This is accomplished by constrain-
ing aG (·) to be monotone non-decreasing (exactly as in the single-item setting).
• Prefer to tell the truth rather than report any other (v,G ′ ∈ N + (G )). This is accomplished by

constraining
∫ v

0
aG (w )dw ≥

∫ v

0
aG′ (w )dw (as the LHS denotes the utility of the buyer for

reporting (v,G ) and the RHS denote the utility of the buyer for reporting (v,G ′)).

All of these constraints together imply that (v,G ) also does not prefer to report any other (v ′,G ′).11

Below, we will now formulate the Primal LP and its Lagrangian relaxation. This derivation is not a
new result, but important to understanding our approach. So we’ll go through some of the steps to
help provide some intuition for the reader, but omit any calculations and proofs.

A.2. The Primal

With the above discussion in mind, we can now formulate our primal continuous LP.

Variables: aG (v ), ∀G ∈ G, v ∈ [0,H ]

Maximize
∑

G ∈G

∫ H

0

fG (v )aG (v )φG (v )dv

subject to a′G (v ) ≥ 0 ∀G ∈ G ∀v ∈ [0,H ] (dual variables λG (v ) ≥ 0)
∫ v

0

aG (x )dx −
∫ v

0

aG′ (x )dx ≥ 0 ∀G ∈ G, G ′ ∈ N + (G ) ∀v ∈ [0,H ] (dual vars αG,G′ (v ) ≥ 0)

aG (v ) ∈ [0,1] ∀G ∈ G, ∀v ∈ [0,H ] (no dual variables)

The first constraint requires that aG (·) is monotone non-decreasing for all G. If an allocation
rule is not monotone, it cannot possibly be part of a truthful mechanism. As discussed above,
Myerson’s payment identity combined with monotonicity guarantees that (v,G ) will always prefer
to report (v,G ) instead of (v ′,G ). The second constraint directly requires that the utility of (v,G )

for reporting (v,G ) is at least as high as for reporting (v,G ′) (also discussed above). The final
constraint simply ensures that the allocation probabilities lie in [0,1].

A.3. Derivation of the Partial Lagrangian Dual

Moving the first two types of constraints from the primal to the objective function with multipliers
λG (v ) and αG,G′ (v ) respectively gives the partial Lagrangian primal:

max
a:aG (v )∈[0,1] ∀G ∈G,∀v ∈[0,H ]

min
λ,α ≥0

L (a; λ,α )

where

L (a; λ,α ) :=
∑

G ∈G

∫ H

0

fG (v )aG (v )φG (v ) +
∑

G′∈N + (G )

αG,G′ (v ) ·
[∫ v

0

aG (x )dx −
∫ v

0

aG′ (x )dx

]
+ λG (v )a

′
G (v )

 dv .
11 For example, if (v,G ) prefers truthful reporting to reporting (v,G′) whereG′ ≻ G , and (v,G′) prefers truthful reporting
to reporting (v ′,G′), then since (v,G ) gets the same utility for reporting (v,G′) as type (v,G′) does for truthfully reporting,
(v,G ) prefers truthful reporting to reporting (v ′,G′).
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This gives the corresponding partial Lagrangian dual of

min
λ,α ≥0

max
a:aG (v )∈[0,1] ∀G ∈G,∀v ∈[0,H ]

L (a; λ,α ).

Note however that we can rewrite L (a; λ,α ) by using integration by parts on the a′G (v ) term to
get aG (v ) terms, using that aG (0) = 0 and λG (H ) = 0 without loss:

∫ H

0

λG (v )a
′
G (v )dv = λG (v )aG (v ) |H0 −

∫ H

0

λ′G (v )aG (v )dv = −
∫ H

0

λ′G (v )aG (v )dv

As in [FGKK16], this uses the facts that λG (·) is continuous and equal to 0 at any point that
a′G (v ) = ∞, which occurs at only countably many points. Then, collecting the aG (v ) terms gives:

L (a; λ,α ) =
∑

G ∈G

∫ H

0

[
fG (v )aG (v )φG (v )

+

∑

G′∈N + (G )

αG,G′ (v ) ·
[∫ v

0

aG (x )dx −
∫ v

0

aG′ (x )dx

]
− λ′G (v )aG (v )

]
dv

=

∑

G ∈G

∫ H

0

fG (v )aG (v )Φ
λ,α
G

(v )dv

where we define

Φ
λ,α
G

(v ) := φG (v )+
1

fG (v )
·


∑

G′∈N + (G )

∫ H

v

αG,G′ (x )dx −
∑

G′:G ∈N + (G′)

∫ H

v

αG′,G (v )dx

−
1

fG (v )
λ′G (v ).

Then we can write that the Lagrangian dual problem is

min
λ,α ≥0

max
a:aG (v )∈[0,1] ∀G ∈G,∀v ∈[0,H ]

∑

G ∈G

∫ H

0

fG (v )aG (v )Φ
λ,α
G

(v )dv .

A.4. More Dual Terminology

Minimal dual terminology is first introduced in subsection 3.1. Here, we add a few additional terms.
Dual best response (condition (5)) implies the following.

• (Preferable Items) To satisfy complementary slackness, for any x such that αG,G′ (x ) > 0,
we must have uG′ (x ) ≥ uG′′ (x ) ∀G ′′ ∈ N + (G ). This is because (a) uG (x ) = uG′ (x ) by
complementary slackness and (b)uG (x ) ≥ uG′′ (x ) ∀G ′′ ∈ N + (G ) by incentive compatibility.
• (Equally Preferable Items) By the above, to satisfy complementary slackness with any dual
with αG,G′ (x ) > 0 and αG,G′′ (x ) > 0, we must have uG′ (x ) = uG′′ (x ).

A.5. Review of Dual Properties

• (Rerouting Flow Among N + (G )) If G ′,G ′′ ∈ N + (G ) and we decrease αG,G′ (v ) by ε and

increase αG,G′′ (v ) by ε , then v ′ ≤ v , fG′ (v
′)Φλ,α

G′ (v
′) decreases by ε and fG′′ (v

′)Φλ,α
G′′ (v

′)
increases by ε . All other virtual values, including all of those withinG, remain the same.
• (Utility based on the dual) We can often simplify how utility is written in terms of the dual
and complementary slackness constraints. If xG < x < y < xG , then allocation in ironed
intervals implies uG (y) = uG (x ) + aG (y) (y − x ).
• (Allocation to Nonzero Virtual Values) As shown above in Subection 3.2, the dual variables (1)
determine the virtual welfare functions Φλ,α (·) and (2) are chosen to minimize the maximum
virtual welfare underΦλ,α (·). For an optimal dual solution, the optimal mechanismwill simply
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be the corresponding virtual welfare maximizer that satisfies complementary slackness. Parts
of this mechanism are easy to predict if the virtual value functions are sign-monotone, which
we will later ensure that they are. Assuming this, we can talk about the virtual values in
terms of three regions: positives, negatives, and zeroes.
• (Ironing and Proper Monotonicity.) We say that a dual satisfies proper monotonicity if fG ·
Φ
λ,α
G

(·) is monotone non-decreasing (note themultiplier of fG ). As shown in [DW17, FGKK16],
for all α , there exists a λ such that (λ,α ) is properly monotone.
• (Boosting can only improve the dual.) Given any dual with properly monotone virtual

values, if there exists v such that fG (v )Φ
λ,α
G

(v ) < 0, then for any G ′ ∈ N + (G ), incrementing

αG,G′ (v ) by fG (v )Φ
λ,α
G

(v ) only improves the dual. By proper monotonicity, for all v ′ ≤ v ,

fG (v
′)Φλ,α

G
(v ′) < fG (v )Φ

λ,α
G

(v ) < 0, hence increasing αG,G′ (v ) will not create any positives
within G, not hurting the dual objective. Sending flow into an item G ′ can only help by
making positives less so, and does not increase any virtual values (but it’s possible that it
doesn’t strictly help). This operation is coined boosting in [DW17]. While it is clear that G
should send the flow, the remaining question is which G ′ ∈ N + (G ) should the flow be sent to.
This is the bulk of our analysis.
• By sign monotonicity, v > r̄G has a positive virtual value, and thus the allocation rule must
set aG (v ) = 1, otherwise it is not maximizing virtual welfare.
• Similarly, for values with negative virtual values, that is, v < rG , it must be that aG (v ) = 0.

From these observations, we can conclude that the flow out of C is identical to the flow out of
the root node (day n) in the FedEx solution. That is,

αC,A (v ) + αC,B (v ) =

0 v > r̄C

−R̂′′C (v )/fC (v ) v ≤ r̄C .

where RC (·) is defined as in Definition 2.1, R̂C (·) is the least concave upper bound on RC (·), and
R̂′′C (·) is the second derivative of this function with respect to v .

We conclude with a fundamental result from [FGKK16].

Theorem A.1 (Proper Ironing [FGKK16]). Given all dual variables α , suppose λG (v ) = 0 for

all (v,G ). Then fG (v )Φ
λ,α
G

(v ) is defined for all (v,G ). We define ΓG (v ) = −
∫ v

0
fG (x )Φ

λ,α
G

(x )dx , and

Γ̂G (·) is the least concave upper bound on this function. Then setting λG (v ) = Γ̂G (v ) − ΓG (v ) defines

a continuous and differentiable λG (·) that, with the update of Φλ,α
G

(·) based on λG (·), results in the

proper monotonicity of fG (·)Φλ,α
G

(·).

B. Three Illustrative Examples

In this section, we use three example instances to understand how the optimal mechanisms become
increasingly complex, blowing up from deterministic prices to unbounded randomization. We begin
with some intuition before diving into examples.

Intuition: Why is single-minded more complex? Consider first a one-item setting that only sells
2-day shipping. Myerson’s seminal work proves that the optimal way to sell 2-day shipping in
isolation is to post the monopoly reserve price for it. Consider next retroactively adding 1-day
shipping into the mix, perhaps because some customers demand 1-day shipping and aren’t satisfied
with 2-day shipping. Perhaps the distribution of customers demanding 1-day shipping has a higher
Myerson reserve than the initial 2-day shipping distribution, in which case it is consistent to set
both optimal reserves. Note, however, that a customer who wants their package within 2 days would
be content with 1-day shipping. So if instead the 1-day shipping distribution has a lower Myerson
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reserve than 2-day shipping, posting the pair of Myerson reserves is no longer incentive compatible.
This complexity arises in the FedEx problem [10], and requires considering the constraints imposed
on 2-day shipping by 1-day shipping (or vice versa).
Now consider the simplest single-minded valuation setting. The internet service provider (ISP)

sells three options: wifi, wifi/cable, and wifi/phone, where wifi/cable and wifi/phone dominate wifi
but are incomparable with each other. If it happens to be that the distribution of consumers who
are interested in wifi/cable or wifi/phone both have a higher Myerson reserve than the distribution
of consumers who are interested in only wifi,12 then again the seller can simply offer all three
options at their Myerson reserve. However, if this is not the case, further optimization must be done.
Importantly, in contrast to the FedEx setting, there’s a circular dependency involving these three
options which doesn’t arise in the totally-ordered case (see examples for further detail). In this way,
the IC constraints that govern the mechanism are much more complex in the single-minded setting
than in the FedEx setting, and are the reason both for developing much richer techniques and for
the much higher degree of randomization that is seen in our results.

Now, we explain what the optimal mechanism looks like for (1) the minimal partially-ordered
(single-minded) instance under DMR, (2) the minimal totally-ordered (FedEx) instance without
DMR, and (3) the minimal partially-ordered instance without DMR.

Three Partially-Ordered Items under DMR. We begin with the special case where the marginal
distributions for each item satisfy DMR. Recall that this implies that the marginal revenue curves
for each item are concave, and thus do not require ironing. We show how to derive the optimal item
pricing (but a proof that this is indeed optimal is deferred to Appendix C as part of the general DMR
case). Our instance is again that where C is the worst item (e.g. wifi) and A and B are incomparable
(e.g. wifi/cable and wifi/phone).

Let’s start by considering what price we would set for item A if we had already set price pC for
item C . (Note that whatever price we set for item B has no effect, as A and B are incomparable.)
Observe that our revenue from setting any price pA is just pA · [1 − FA (pA)], so ideally we would
just set price rA := argmaxp {p · [1 − FA (p)]}. If rA ≥ pC , this doesn’t violate any IC constraints.
Indeed, consumers with interest C will prefer to pay pC ≤ rA to get item C rather than item A. If
rA < pC , however, setting price rA will violate IC, as now consumers with interest C would strictly
prefer to report interest in item A instead. This constrains us to set a price for A that is at least
pC . Observe that, because RA (·) is concave, the revenue-maximizing price to set that is at least pC
(which is > rA) is pA := pC . Hence, we can define the revenue curve R̄A (·) to describe the revenue
we can get from selling item A as a function of pC :

R̄A (pC ) =

RA (rA) pC ≤ rA

RA (pC ) pC > rA
.

The same definition holds for R̄B (·). Now, we can find the price to set for item C that optimizes
the impact on all three items by simply finding the p maximizing RABC (p) := RC (p)+ R̄A (p)+ R̄B (p)

(depicted in Figure 9). Picking pC as such, and then setting pA := max{rA,pC }, pB := max{rB ,pC } is
the optimal pricing. The (challenging) remaining step is to prove that in fact this is optimal even
among randomized mechanisms. The duality theory previously hinted at is key in this step, but we
postpone these details for now. Importantly, note that this claim requires the DMR assumption (so

12Recall that a one-dimensional distribution D can stochastically dominate D′ yet have a lower Myerson reserve. For

example, if D is uniform over the set {1, 10}, the Myerson reserve is 10. If D is uniform over the set {9, 10}, the Myerson

reserve is 9.
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that node’s most limiting neighbor, splitting the flow equally if there are several limiting neighbors.
This raises the limiting reserve and never lowers it. We update regularly to ensure that we are
always sending flow to the now-limiting reserve, raising it, and thus relaxing the constraints onG.
This is almost exactly the construction: the only caveat is that we should never send flow out of an

item B at v where fB (v )Φ
λ,α
B

(v ) > 0. If we send into a B along the path where this is the case, we
instead send flow out at rB < v .

C.2. Formal Pricing Algorithm

Formally, we set the dual variables according to the following algorithm:

Dual variable construction:

Base case: For sink nodes A, there is nowhere to send flow. Set p̄A = rA.
for all nodes A starting from the sink nodes and in increasing reverse depth 13 do

p̄A = minB∈N + (A) p̄B
For allv from rA down to 0, determine the minimal amount of flow out σA such that φA (v ) = 0.
for v from 0 to rA do

Update(A,v,σA (v ))

Update(A,v,γ ):

Let LA := {argminB∈N + (A) p̄B }.
for all B ∈ LA do

Send αA,B (v ) =
1
|LA |γ .

Update(B,min{v,rB },γ ).

The key idea is that the price of a node G is limited by the smallest rA where A is some item
better thanG (i.e. there is a path fromG to A in the DAG). As we send flow along the path to A, we
raise rA and it becomes less limiting. Let SG be the set of the items that limitG the most, which are
precisely the items A such that rA = p̄G . Since we are in the continuous setting, sending flow is a
continuous process. This means that the most limiting item never discretely jumps up higher and
becomes no longer limiting. Instead, all limiting items stay in the set SG and this set grows as the
upper bounds raise and become less limiting.
Let LG ⊆ N + (G ) to be the items such that, for all B ∈ LG , there exists v such that αG,B (v ) > 0.

What this means is that p̄G = p̄B , and B is on the path (if not the end of the path) from G to a
limiting item A ∈ SG . We will use the variable r to keep track of the updated p̄G . If A ∈ SG , then
fA (r )Φ

λ,α
A

(r ) = 0, and if B is on a path to some limiting A, then fB (r )Φ
λ,α
B

(r ) ≤ 0. In every step we
decrease the amount of flow to send and the algorithm will terminate when there is no flow left to
send. Throughout this process the point r and the set SG both only increase.
First, we set the flow out of G:

∑

A∈N + (G )

αG,A (v ) =

0 v > r̄G

−R̂′′G (v )/fG (v ) v ≤ r̄G .

Lemma C.2. For every G, we can always send σG out of G distributed among N + (G ) such that

(1) If αG,B (x ) > 0 for any x , then B ∈ LG .
(2) If B ∈ LG , then fB (r )Φ

λ,α
B

(r ) = 0.

13i.e. # edges from sink nodes
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(3) If B ∈ N + (G ) ∖ LG , then r < rB and thus fB (r )Φ
λ,α
B

(r ) ≤ 0.

Proof. Suppose we have σG (v ) flow to send at v . Let Z = argminB∈N + (G )∖LG
pB be the next

possible upper bound to hit.
Let ε be such that by sending σG flow along paths to all items in SG with correct proportions, we

will maintain SG and raise r by ε . That is,
∑

A∈SG
fA (r + ε )Φ

λ,α
A

(r + ε ) = σ .

If r + ε < pZ , we can send this flow without growing SG . Let P (G,A) denote the edges forming
every path from G to A. For every (C,D) ∈ P (G,A) for some A ∈ SG , we set

αC,D (v ) =
∑

A∈SG :(C,D )∈P (G,A)
fA (r + ε )Φ

λ,α
A

(r + ε ) ∀A ∈ LG .

This will ensure that after this update, fA (r + ε )Φ
λ,α
A

(r + ε ) = 0 for all A ∈ SG . Update r ← r + ε .

Note that (2) holds by construction, and (3) holds since r < pZ < pB for all B ∈ N + (G ) ∖ LG .
Otherwise, suppose r + ε ≥ pZ and v ≥ pZ . Then we instead choose ε = pZ − r and make the

same update described above, add Z to LG and add the item Y that is limiting Z , that is, Y such that
pZ = RY , to SG . Note that we have sent positive flow, but the flow sent is < σ . After the update, we

will have r ← r + ε = pZ and fA (r )Φ
λ,α
A

(r ) = 0 for all A ∈ SG , including Y . Then again (2) holds,

and (3) holds since r = pZ < pB for all B ∈ N + (G ) ∖ LG .
Finally, (1) holds in both cases as we only send flow to elements of SG and SG is non-decreasing.

□

Lemma C.3. For every v and G, our choice of αG,A (w ) for all w ∈ [0,H ], A ∈ N + (G ) maintains

λG (v ) = 0 for all v .

Proof. Since the flow out of G is chosen exactly to bring all virtual values to 0 below r̄G , no
non-monotonicities are caused. □

Lemma C.4. For every v and G, any choice of αA,G (w ) for all w ∈ [0,H ], A ∈ N − (G ) maintains

λG (v ) = 0 for all v .

Proof. Suppose we get flow α into G at x . Every value v ≤ x has fG (v )Φ
λ,α
G

(v ) decrease by α
while this remains unchanged for v > x , causing no non-monotonicities.

□

We are now ready to prove the main result of this section.

Proof of Theorem C.1. We claim the the following deterministic allocation rule always satisfies
complementary slackness with the dual: set pG = min{rG ,rA : A ∈ SG }.
From DMR and our setting of λ, we will have λG (v ) = 0 for all (v,G ), automatically satisfying

complementary slackness for these variables. Further, even after sending α flow, fG (·)Φλ,α
G

(·) will
be properly monotone for all G by Lemma C.3 and Lemma C.4.
First, we verify that the when we set a price, the virtual values are 0 at that price, so we have

the freedom to do so. By Lemma C.2, fA (r )Φ
λ,α
A

(r ) = 0 for all A ∈ SG . Of course, by definition of r̄ ,

fA (rA)Φ
λ,α
A

(rA) = 0. In addition, by definition of the flow out ofG , fG (v )Φ
λ,α
G

(v ) = 0 for all v ≤ r̄G

so fG (r )Φ
λ,α
G

(r ) = 0. Then all of the prices posted are viable.
It remains to choose a mechanism that satisfies complementary slackness with the α variables. If

αG,B (v ) > 0 for some v then we know that (1) B ∈ LG and (2) v < r̄G . By Lemma C.2, the variable
αG,B (v ) > 0 for any v if and only if v ∈ LG , a monotone increasing set as v increases. In this case,
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then p̄B = p̄G and both are set at this price, satisfying uG (v ) = uB (v ) for all v and automatically
satisfying complementary slackness. □

D. An Extension of FedEx: DAGs with Out-Degree At Most 1

In this section, we consider DAGs with out-degree at most 1. That is, partial orders that are tree-like,
where each item has at most one item that minimally dominates it. In this case, we see that the
FedEx solution applies.

Theorem D.1. Consider any partially-ordered preferences for items G,≻ such that for any G,

there exists at most one G ′′ that minimally dominates G: that is, G ′′ ≻ G and there does not exist

any G ′ where G ′′ ≻ G ′ ≻ G. Then a nearly identical construction to the FedEx Problem with a

minor modification for partial orderings yields closed-form optimal dual variables and the optimal

mechanism.

We use the notation and methods of [FGKK16]. The proof is almost identical, provided for
completeness, and much of the following is duplicated from their paper, with a slight modification
to allow for the DAG structure with out-degree at most 1. The key difference is the change in
definition of the Γ≥G curves.
We recall the following definitions from their paper:

• Let γG (v ) := φG (v ) fG (v ). Recall that φG (·) = v − 1−FG (v )
fG (v )

.

• Let ΓG (v ) =
∫ v

0
γG (x )dx . As shown in [FGKK16], this function is the negative of the marginal

revenue curve for item G. Thus, ΓG (0) = ΓG (H ) = 0 and ΓG (v ) ≤ 0 for v ∈ [0,H ].
• For any function Γ, define Γ̂(·) to be the lower convex envelope 14 of Γ(·). We say that Γ̂(·) is
ironed at v if Γ̂(v ) , Γ(v ).

Since Γ̂(·) is convex, it is continuously differentiable except at countably many points and its
derivative is monotone (weakly) increasing.

• Let γ̂ (·) be the derivative of Γ̂(·) and let γ (·) be the derivative of Γ(·).
As shown in [FGKK16], the following facts are immediate from the definition of lower convex

envelope:

• Γ̂(v ) ≤ Γ(v ) ∀v .
• Γ̂(vmin) = Γ(vmin) where vmin = argminvΓ(v ). (This implies that there is no ironed interval
containing vmin.)
• γ̂ (v ) is an increasing function of v and hence its derivative γ̂ ′(v ) ≥ 0 is non-negative for all
v .
• If Γ̂(v ) is ironed in the interval [ℓ,h] , then γ̂ (v ) is linear and γ̂ ′(v ) = 0 in (ℓ,h).

Now, we redefine the functions Γ≥i , which are used to set all of the FedEx dual variables, and
can be interpreted as negative combined revenue curves for deadlines i throughm. Instead, we
redefine them for an item G and all dominated items. In a DAG, we let the set of all source nodes,
that is, items that dominate no other items in the partial order, be the set S . Similarly, we call the
set of sinks, items that are dominated by no other items, as the set T .
Note that, by assumption, every item has out-degree at most 1. Then the set of items that

minimally dominate an item G, N + (G ), is of size 0 or 1. If it is of size 0, then G ∈ T : G is a sink
node. That is:

Observation 1. For all G < T , |N + (G ) | = 1.

14 The lower convex envelope of function f (x ) is the supremum over convex functions д ( ·) such that д (x ) ≤ f (x ) for all x .

Notice that the lower convex envelope of Γ( ·) is the negative of the ironed revenue curve R̂ (v ).
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For this reason, we define the following notation.

Definition D.1. For G < T , let D (G ) refer to the single item that minimally dominates G: G ′ ∈
N + (G ).

Now, for any source nodeG ∈ S , define Γ≥G = ΓG . We will define the curves Γ≥G for G ∈ G ∖G
inductively. Let define r≥G := max argmin Γ≥G (v ). Then define

Γ̄≥G (v ) :=

Γ̂≥G (v ) v < r≥G
Γ≥G (r≥G ) v ≥ r≥G .

Now, for all G that are not source nodes, we can inductively define

Γ≥G (v ) := ΓG (v ) +
∑

G′∈N − (G )

Γ̄≥G′ (v ).

Note then that

γ̄≥G =

γ̂≥G v ≤ r≥G
0 v > r≥G

and γ≥G = γG +
∑

G′∈N − (G )

γ̄≥G′ (v ).

D.1. Primal, Dual, and Complementary Slackness

We use the following primal and dual formulations with the noted complementary slackness
conditions. They are virtually identical to FedEx, modified for the DAG, and much of it is copied
from [FGKK16].

The Primal

Variables: aG (v ), for all G ∈ G, and all v ∈ [0,H ].

Maximize
∑

G

∫ H

0

aG (v )γG (v )dv

Subject to
∫ v

0

aG (x )dx −
∫ v

0

aG′ (x )dx ≤ 0 ∀G ∈ G ∖ S ,G ′ ∈ N − (G ) ∀v ∈ [0,H ] (dual variables αG′,G (v )

aG (v ) ≤ 1 ∀G ∈ G ∀v ∈ [0,H ] (dual variables bG (v ))

−a′G (v ) ≤ 0 ∀G ∈ G ∀v ∈ [0,H ] (dual variables λG (v ))

aG (v ) ≥ 0 ∀G ∈ G ∀v ∈ [0,H ].

Note that a′G (v ) denotes
d
dv

aG (v ).

The Dual

Variables: bG (v ),λG (v ), for all G ∈ G, and all v ∈ [0,H ], αG′,G (x ) for G ∈ G ∖ S ,G ′ ∈ N − (G ) and
all x ∈ [0,H ].
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Minimize

∫ H

0

∑

G ∈G
bG (v )dv

Subject to

bG (v ) + λ
′
G (v ) +

∑

G′∈N − (G )

∫ H

v

αG′,G (x )dx ≥ γG (v ) ∀v ∈ [0,H ],G ∈ S (primal var aG (v ))

bG (v ) + λ
′
G (v ) +

∑

G′∈N − (G )

∫ H

v

αG′,G (x )dx ∀v ∈ [0,H ],i ∈ G ∖ S ,T

−
∫ H

v

αG,D (G ) (x )dx ≥ γG (v ) (primal var aG (v ))

bG (v ) + λ
′
G (v ) −

∫ H

v

αG,D (G ) (x )dx ≥ γG (v ) ∀v ∈ [0,H ],G ∈ T (primal var aG (v ))

λG (H ) = 0 ∀G ∈ G
αG′,G (v ) ≥ 0 ∀v ∈ [0,H ],G ∈ G ∖ S ,G ′ ∈ N − (G )

bG (v ),λG (v ) ≥ 0 ∀G ∈ G∀v ∈ [0,H ].

Note that λ′G (v ) denotes
d
dv

λG (v ).

D.2. Conditions for strong duality

As long as there are feasible primal and dual solutions satisfying the following conditions, strong
duality holds. Theorem 3 from [FGKK16] proves that these conditions are sufficient.

aG (v ) > 0 ⇒ λG (v ) continuous at v G ∈ G (6)

aG (v ) < 1 ⇒ bG (v ) = 0 G ∈ G (7)

a′G (v ) > 0 ⇒ λG (v ) = 0 G ∈ G (8)
∫ v

0

aG (x )dx <

∫ v

0

aG′ (x )dx ⇒ αG′,G (v ) = 0 G ∈ G \ S ,G ′ ∈ N − (G )(9)

bG (v ) + λ
′
G (v ) +

∑

G′∈N − (G )

∫ H

v

αG′,G (x )dx

−
∫ H

v

αG,D (G ) (x )dx > γG (v ) ⇒ aG (v ) = 0 G ∈ G ∖ S ,T (10)

bG (v ) + λ
′
G (v ) +

∑

G′∈N − (G )

∫ H

v

αG′,G (x )dx > γG (v ) ⇒ aG (v ) = 0 G ∈ T (11)

bG (v ) + λ
′
G (v ) −

∫ H

v

αG,D (G ) (x )dx > γG (v ) ⇒ aG (v ) = 0 G ∈ S (12)

We allow a′G (v ) ∈ R ∪ {+∞}. It may have (countably many) discontinuities. However, the proof
of optimality in [FGKK16] handles this.
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D.3. Optimal Primal Variables

We determine the allocation rules inductively, from sink nodes all the way to source nodes. First,
for sink nodes G ∈ T , set

aG (v ) =

0 v < r≥G
1 v ≥ r≥G .

Suppose that aG′ has been defined for G ′ = D (G ), with jumps at v1, . . . ,vk , and values 0 = β0 <

β1 ≤ β2 . . . ≤ βk = 1. That is,

aG′ (v ) =


0 if v < v1,

βj vj ≤ v < vj+1 1 ≤ j < k

1 vk ≤ v .

Thus, we can write

aG′ (v ) =

k
∑

j=1

(βj − βj−1)aG′,j (v )

where

aG′,j (v ) =

0 if v < vj

1 v ≥ vj .

Next we define aG (v ).

Definition D.2. Let j∗ be the largest j such that vj ≤ r≥G . For any j ≤ j∗, consider two cases:

• Γ̂≥G (vj ) = Γ≥G (vj ), i.e. Γ̂≥G not ironed at vj : In this case, define

aG,j (v ) =

0 if v < vj

1 otherwise .
.

• Γ̂≥G (vj ) , Γ≥G (vj ): In this case, let

– v j := the largest v < vj such that Γ̂≥G (v ) = Γ≥G (v ) i.e., not ironed, and

– v j := the smallest v > vj such that Γ̂≥G (v ) = Γ≥G (v ) i.e., not ironed.
Let 0 < δ < 1 such that

vj = δv j + (1 − δ )v j .

Then Γ̂≥G (·) is linear between v j and v j :

Γ̂≥G (vj ) = δΓ≥G (v j ) + (1 − δ )Γ≥G (v j ).

Define

aG,j (v ) =


0 if v < v j

δ v j ≤ v < v j

1 otherwise .

Finally, set aG (v ) as follows:

aG (v ) =



∑j∗

j=1 (βj − βj−1)aG,j (v ) if v < r≥G ,

1 v ≥ r≥G .

(13)

Remark: In order to continue the induction and define aG′′ (v ) for G = D (G ′′), we need to rewrite
aG (v ) in terms of functions aG,j (v ) that take only 0/1 values. This is straightforward.
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D.4. Closed-Form Dual Variables and Proof of Optimality

The following dual variables and proofs are again almost verbatim from [FGKK16] with very small
modifications for the DAG structure.

λG (v ) = Γ≥G (v ) − Γ̂≥G (v ) (14)

bG (v ) =

0 v < r≥G
γ̂≥G (v ) v ≥ r≥G

(15)

αG′,G (v ) =

γ̂ ′≥G′ (v ) v < r≥G′

0 v ≥ r≥G′
for G ∈ G ∖ S ,G ′ ∈ N − (G ) (16)

Taking the derivative of (14), and using the definition of Γ, we obtain:

γG (v ) − λ′G (v ) = γ̂≥G (v ) −
∑

G′∈N − (G )

γ̄≥G′ (v ) for G ∈ G ∖ S (17)

γG (v ) − λ′G (v ) = γ̂G (v ) for G ∈ S (18)

Also, using (16) and the fact that γ̂≥i+1 (r≥i+1) = 0, we get:

AG′,G (v ) :=

∫ H

v

αG′,G (x ) dx =

−γ̂≥G′ (v ) v < r≥G′

0 v ≥ r≥G′
= −γ̄≥G′ (v ) (19)

Claim. Conditions (10)ś(12) and dual feasibility: For allG andv , aG (v ) > 0 =⇒ the corresponding

dual constraint is tight, and the dual constraints are always feasible.

Proof. Rearrange the dual constraint bG (v )+
∑

G′∈N − (G ) AG′,G (v )−AG,D (G ) (v )+λ
′
G (v ) ≥ γG (v )

to

bG (v ) −AG,D (G ) (v ) ≥ γG (v ) − λ′G (v ) −
∑

G′∈N − (G )

AG′,G (v ).

Fact 1: ForG < S , γG (v ) − λ′G (v ) −
∑

G′∈N − (G ) AG′,G (v ) = γ̂≥G (v ) for all v . To see this use (17) and
(19):

γG (v ) − λ′G (v ) = γ̂≥G (v ) −
∑

G′∈N − (G )

γ̄≥G′ (v ) AG′,G (v ) = −γ̄≥G′

Fact 2: For G < T , bG (v ) −AG,D (G ) (v ) = γ̂≥G (v ) for all v .

bG (v ) =

0 v < r≥G
γ̂≥G (v ) v ≥ r≥G

−AG,D (G ) (v ) =

γ̂≥G (v ) v < r≥G
0 v ≥ r≥G

Hence for G < T , bG (v ) −AG,D (G ) (v ) ≥ γG (v ) − λ′G (v ) −
∑

G′∈N − (G ) AG′,G (v ) for all v .
For G ∈ S , since γ≥G = γG , and γG (v ) − λ′G (v ) = γ̂G (v ). Combining this with Fact 2 above, we

get that bG (v ) −AG,D (G ) (v ) + λ
′
G (v ) = γG (v ) for all v .

Finally, for G ∈ T , using Fact 1, for v < r≥G , we get

bG (v ) = 0 ≥ γ̂≥G (v ) = γG (v ) − λ′G (v ) −
∑

G′∈N − (G )

AG′,G (v )

which is true for v < r≥G . For v ≥ r≥G , we get

bG (v ) = γ≥G (v ) = γG (v ) − λ′G (v ) −
∑

G′∈N − (G )

AG′,G (v ),

so the dual constraint is tight when aG (v ) > 0 as this starts at r≥G . □
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• Φ
λ,α
A

(x ) = 0 for all (x ,A) in the chain and Φλ,α
B

(y) = 0 for all (y,B) in the chain.

• αC,A (x ) > 0 for all (x ,A) in the chain and αC,B (y) > 0 for all (y,B) in the chain.

• λA (x ) > 0 for all (x ,A) in the chain and λB (y) > 0 for all (y,B) in the chain.

• xi A
< xi+1 < xi if (xi ,A) is in the chain and xi B

< xi+1 < xi if (xi ,B) is in the chain.

We call a chain the top chain if x1 > rB .

Note that if any of these conditions do not hold, the mechanism has an easier solution. If any
point v in the zero regions of both A and B were unironed, we could just set a price of v for both. If
the chains did not interleave with flow alternating in, our series of constraints would end. The top
chain structure (and it is key that it is a top chain) prevents this.

We now provide a complete proof of Theorem 4.1. First, we provide a construction of our candi-
date dual, which is depicted in Figure 7. The instance uses definition E.1 of a top chain.

Construction of candidate dual instance:

• Let there exist no point at which A and B both have virtual value zero and both are unironed,

that is, there is no v such that Φλ,α
A

(v ) = Φ
λ,α
B

(v ) = 0 and λA (v ) = λB (v ) = 0.
• Let rA > x1 > rB > x2 > x3 > · · · > xM > rB > rA. The dual has a top chain of length M

defined by (x1,A), (x2,B), . . . , (xM ,A).
• In addition, we have flow into the other item at each point in the chain: let αC,B (xi ) > 0 for
all (xi ,A) in the chain as well as αC,A (xi ) > 0 for all (xi ,B) in the chain.
• Let λC (v ) = 0 for all v , i.e., item C is unironed everywhere.
• For all v where α has not already been defined, let αC,A (v ) = αC,B (v ) = 0.

We first make some remarks that follow directly from our construction. All the remarks below
(only) talk about our dual and any feasible primal that satisfies complementary slackness with our
dual.

Remark 1. For all i ∈ {1,3, · · · ,M − 2}, we have xi ,xi+1 ∈ [xi A,xi A] = [xi+1A,xi+1A]. Since this

interval is ironed, we have λA (v ) > 0 =⇒ a′A (v ) = 0 for v in this interval. Thus, aA (xi ) = aA (xi+1).

Remark 2. For all i ∈ {2,4, · · · ,M − 1}, we have xi ,xi+1 ∈ [xi B ,xi B] = [xi+1B ,xi+1B]. Since this

interval is ironed, we have λB (v ) > 0 =⇒ a′B (v ) = 0 for v in this interval. Thus, aB (xi ) = aB (xi+1).

Remark 3. For all i ∈ {1,2, · · · ,M }, we have uA (xi ) = uB (xi ).
We now prove a lemma that forms the backbone of our inductive argument:

Lemma E.1. For all i ∈ {1,2, · · · ,M − 1}, we have aA (xi ) > aB (xi ) ⇐⇒ aA (xi+1) < aB (xi+1).

Similarly, we have aA (xi ) < aB (xi ) ⇐⇒ aA (xi+1) > aB (xi+1)

Proof. Note that either aA (xi ) = aA (xi+1) or aB (xi ) = aB (xi+1) by Remark 1 and Remark 2. We
only prove aA (xi ) > aB (xi ) ⇐⇒ aA (xi+1) < aB (xi+1) for the case aA (xi ) = aA (xi+1) and omit the
other (symmetric) cases. Since aA (xi ) = aA (xi+1), we have

uA (xi ) = uA (xi+1) + aA (xi ) · (xi − xi+1) = aA (xi+1) · (xi B − xi+1) + aA (xi ) · (xi − xi B ).
We also have, by the structure of the ironed intervals for the item B,

uB (xi ) = uB (xi+1) + aB (xi+1) · (xi B − xi+1) + aB (xi ) · (xi − xi B )
Now, since the utilities at all points xi is the same for both items A and B (Remark 3), the fact

that aA (xi ) > aB (xi ) is equivalent to aA (xi ) · (xi − xi B ) > aB (xi ) · (xi − xi B ) which is equivalent to

aA (xi+1)·(xi B−xi+1) < aB (xi+1)·(xi B−xi+1)which, in turn, is equivalent toaA (xi+1) < aB (xi+1). □
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Finally, we prove Theorem 4.1.

Proof of Theorem 4.1. At xM , we have that

uA (xM ) = aA (xM ) · (xM − xMA
) and uB (xM ) = aB (xM ) · (xM − xMB

).

Since xMB
> xMA

and aA (xM ) > 0, then to ensure that uA (xM ) = uB (xM ) (Remark 3), we

must have aB (xM ) > aA (xM ). However, with this fact, Lemma E.1 says that aB (xi ) > aA (xi ) and
aB (xi+1) > aA (xi+1) in alternation.

Since aA (·) and aB (·) are non-decreasing sequences, they can only alternate if they have Ω(M )

distinct elements.
By Theorem 4.2, there exists a feasible primal that satisfies complementary slackness. The primal

algorithm constructs a mechanism with menu complexity at leastM and satisfies complementary
slackness, hence this dual is in fact optimal. □

Corollary E.2. This idea gives a lower bound for Multi-Unit Pricing as well.

We expand on this on Appendix I.

F. Menu Complexity is Finite: Characterizing the Optimal Mechanism via Duality

In this section, we’ll characterize the optimal mechanism for three items {A,B,C} with structure
A ≻ C , B ≻ C , and A ⊁ B,B ⊁ A. While our approach will be algorithmic, our focus isn’t to actually
run this algorithm or analyze its runtime. We’ll merely use the algorithms to deduce structure
of the optimal mechanism. We prove essentially that the interleaving of ironed intervals used in
the construction of the previous section is the worst case (in terms of menu complexity of the
optimal mechanism). Still, in order to possibly prove this, we need to at minimum find an optimal
mechanism for every possible instance.

Our approach is the following: we propose a primal recovery algorithm that, given a dual (λ,α ),
produces a primal solution that (1) satisfies complementary slackness with the dual and (2) has
finite menu complexity. Obviously, the algorithm can’t possibly succeed for every input dual (as
some duals are simply not optimal for any instance). But we show that whenever the algorithm
fails, the dual has some strange structure (elaborated below). We then show that the best dual
(which is optimal and always exists, definition below) never admits these strange structures, and
therefore the algorithm always succeeds when given the best dual as input.

Definition F.1 (Best Dual). We define the best dual of an instance with three partially-ordered

items to be the (λ,α ) satisfying the following:

(1) First, (λ,α ) is optimal: (λ,α ) ∈ argmin{∑G ∈{A,B,C }
∫ H

0
fG (v ) ·max{0,Φλ,α

G
(v )}dv}.

(2) Among (λ,α ) satisfying (1), (λ,α ) has the fewest ironed intervals of virtual value zero. That is,

(λ,α ) minimizes |I (λ,α ) | = |{xG | (x ,G ) ∈ [0,H ] × {A,B,C},Φλ,α
G

(v ) = 0}|.
(3) Among (λ,α ) satisfying (2), (λ,α ) has the lowest positives (lexicographically ordered). That is,

(λ,α ) minimizes r̄A, followed by r̄B , followed by r̄C .

Definition F.2. A double swap exists when there are consecutive points (x ,A) and (y,B) in a

chain, and there is flow into A for v ∈ [xA,y). See Figure 13.

Definition F.3. An upper swap occurs when there is flow into (x ,A) and (y,B) where x > r̄A >

y > r̄B . See Figure 14.

Proposition F.1. The best dual has no double swaps or upper swaps.
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The full proof of Proposition F.1 appears below. The high-level approach is that whenever a
double swap or upper swap exists, we can exploit this structure to modify the dual variables. This
creates a better dual solution (with respect to definition F.1) and proves that (2) or (3) respectively
must not have held for the original dual.

Theorem 4.2. For any best dual solution, we can find a primal with finite menu complexity that

satisfies complementary slackness (and is therefore optimal).

A full proof appears below, but the high-level approach is explained in the following.

Proof Sketch of Theorem 4.2. (No bad structures exist in best duals.) First, we try to satisfy
the necessary complementary slackness system of equations as in Appendix E, and identify all
possible barriers to solutions existing. These barriers are exactly double swaps or upper swaps,
which are not found in best duals by Proposition F.1.

(Inductive primal recovery algorithm.) Without these barriers, an inductive argument shows that
we can indeed find an allocation rule that satisfies all of the complementary slackness conditions.
Every dual has a (possibly empty) top chain, and each point in the chain has another set of
preferability constraints for that item, along with the constraint that the allocation is constant. We
use induction to handle one point in the chain at a time. (See Figure 17 in Appendix F.) We take
the partially-constructed allocation that satisfies the constraints for the chain so far, scale it down
(and thus continue to satisfy the constraints), and then solve for the allocation probability that will
satisfy the new constraints given by this point in the chain. As shown in Appendix E, this requires
choosing a different allocation probability at the bottom of each ironed interval in the chain, but
we show that this is sufficient, giving menu complexity at most the length of the chain + 1.

(Finite menu complexity.) The other interesting part not addressed in Appendix E is what to do
if there is a chain of countably infinite length (which can certainly exist). Naively following our
algorithm would indeed result in a primal of countably infinite menu complexity. But, because
the sequence of chain points is monotonically decreasing (and lower bounded by zero), they must
converge to some value v . If they converge, and the chain is indeed infinitely long, then neither A
nor B can possibly be ironed at v , and we can simply set price v for both items instead. □

We begin below by reviewing properties of the dual previously observed in [9, 10]. Throughout
this section we’ll reference the łbestž dual. While multiple optimal duals might exist, we’ll be
interested in a specific tie-breaking among them (and refer to the one that satisfies these conditions
as łbest").

Theorem F.2 ([9]). The best dual (λ,α ) satisfies the following:

• (Proper monotonicity) ( fG · Φλ,α
G

) (·) is monotone non-decreasing, for all v .

• (No-boosting) Φλ,α
G

(v ) ≥ 0 for all G such that there exists a G ′ ≻ G.

• (No-rerouting) Φλ,α
G

(v ) > 0⇒ αG,G′ (v ) = 0 for all G ′.
• (No-splitting) λG (v ) > 0⇒ αG,G′ (v ) = 0 for all G ′.

Returning to our three-item example, prior work nicely characterizes the flow coming out ofC in
the optimal dual: No-boosting tells us that we must always send flow out of (v,C ) into somewhere

whenever Φλ,α
C

(v ) < 0 (in order to bring it up to 0). No-rerouting tells us that we can never send

flow out of (v,C ) if Φλ,α
C

(v ) > 0. No-splitting tells us that we never send flow out of the middle of
an ironed interval. But, we still need to decide whether to send this flow into A or B. This is the
novel part of our analysis.

Proof of Proposition F.1. ByDefinition F.1, we know that a best dual has theminimumnumber
of ironed intervals amongst all optimal duals. Similarly, a best dual has the lowest positives amongst
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ironing preserves virtual welfare. This is canceled out by the improvement in virtual welfare from
item B. Then we have maintained virtual welfare but lowered the positives, showing that this dual
solution could not have had the lowest positives. □

Lemma F.3 and Lemma F.4 comprise the proof of Proposition F.1. □

Now we prove that our primal recovery algorithm always succeeds in finding an optimal primal
(that satisfies complementary slackness) when given a best dual.

Proof of Theorem 4.2. First, consider the case where there exists some pointv whereΦλ,α
A

(v ) =

Φ
λ,α
B

(v ) = 0, and v is unironed both in A and in B. Then we simply set v as a price for both A and
B, automatically satisfying the complementary slackness conditions of flow into A or B, as both are
equally preferable. Since both itemsA and B, have the same allocation rule, the instance degenerates
into a FedEx instance. Thus, an optimal allocation rule for the item C can be determined.
Otherwise, the dual solution contains no point v as described in the first case, meaning that

ironed intervals interleave throughout the region of zero virtual values. This means that, if without
loss of generality r̄A > r̄B , that r̄B = x must sit in an ironed interval [xA, x̄A] on A.
If the top chain is empty, then we have r̄A > r̄B > xA with no flow into A for any v ∈ [xA, x̄A].

Then, setting

aA (v ) =


1 v ≥ x̄A
r̄A−r̄B
r̄A−xA

v ∈ [xA, x̄A)
0 otherwise

and aB (v ) =

1 v ≥ r̄B

0 otherwise

makes both options equally preferable for all v except for v ∈ [xA, x̄A], where reporting B is strictly
preferable, but this does not violate complementary slackness by the assumption that the top chain
is empty.

Otherwise, the top chain is non-empty. A dual gives a system of utility inequalities via comple-
mentary slackness which the allocation rule must satisfy. Instead, we can solve a system of utility
equalities given by the chain via induction on the length of the top chain, and this will imply a
solution that satisfies all of the inequalities. More specifically, the following will hold for top chains
of all lengths:

(1) The allocation rule will only increase at the bottom of ironed intervals in the chain. That
is, if the allocation rule increases at z, so a′A (z) > 0, then z must be the bottom of an ironed
interval for a point (x ,A) in the top chain, thus z = xA, and aA (x ) = aA (xA).

(2) We will fully allocate to all positive virtual values. That is, aA (r̄A) = aB (r̄B ) = 1.
(3) If (x ,A) is followed by (y,B) in the chain, then aA (x ) = aA (xA) > aB (y) = aB (y

B
).

(4) At any point (x ,A) in the top chain, we will have uA (x ) = uB (x ).
(5) An alternative solution can, for the first point in the chain (x ,A), vary aA (xA) such that the

utility constraint is a strict inequality uA (x ) > uB (x ), and instead we have equality at r̄A:
uA (r̄A) = uB (r̄A). This gives an equal expected price for the two items, and equal utility for
all values v ≥ r̄A.

To satisfy complementary slackness, for any type (x ,A) with flow in, it must be that uA (x ) ≥
uB (x ). We now show why (3-4) imply that complementary slackness will be satisfied everywhere.

Consider a subsequence of points in the chain: (x ,B), (y,A), (z,B), hence y > xB and z > y
A
.

Then aB (x ) > aA (y) > aB (z) by (3). Since uA = uB for every point in the chain and a larger
allocation rule implies a larger change in utility, we can deduce that uA (v ) ≥ uB (v ) for allv ∈ [z,y].
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G. Equivalence with Single-Minded Valuations

In the introduction, we note the following observation.

Observation 2. The partially-ordered setting is equivalent to the single-minded setting.

First, we define the single-minded setting.

Definition G.1. In a single-minded setting, a seller determines how to sell any bundle of k items.

A buyer has a (value, bundle) pair (v,B) where B ∈ 2[k] is any subset of items. The pair (v,B) is drawn

from a joint probability distribution over [0,H ] × 2[k] where H is the maximum possible value of any

bidder for any item.

Any single-minded setting can be represented as a partially-ordered setting: the set of possible
interests G is just the set of possible bundles, 2[k]. The relation is set containment: an interestG
dominates an interest G ′, that is, G ≻ G ′, if G ⊃ G ′. The distribution F is identical.

Any partially-ordered setting can be represented as a single-minded setting: we can invent items
such that every interestG maps to some subset of items. For any minimal interestG (that is,G which
does not dominate any other interests), map G to a new item i: B (G ) = {i}. For each successive
interest G ′ ∈ N + (G ), map G ′ to B (G ′) = {j} ∪⋃

G′′:G′∈N + (G′′) B (G
′′) where j is a new additional

item. Repeat this process, completing a mapping from interests to subsets of somem created items.
For all subsets B ∈ 2[k] which do not have an interest that maps onto it, assign measure 0 to the
event of drawing (v,B) from F . Otherwise, fB (G ) (v ) = fG (v ).

H. The Master Theorem

All of the analysis in the previous section started from a candidate dual solution, and showed that
such duals are optimal (as in, there is a feasible primal satisfying complementary slackness). The
missing step is ensuring that there exists an input distribution for which these duals are feasible.
To save ourselves (and future work) the tedium of hand-crafting an actual distribution for which
these duals are feasible, we prove a general Master Theorem, essentially stating that for a wide
class of duals (essentially, anything dictated by ironed intervals, positive/negative regions, and flow
in), there exists a distribution for which this dual is feasible.

Theorem H.1 (Master Theorem). Suppose we are given a partial order over G, for each item

G ∈ G candidate endpoints of zero region (bounded away from 0) r̄G ,rG , a finite set of candidate

ironed intervals (bounded away from zero) [x i,G ,x i,G ] with rG ≤ x i,G ≤ x i,G ≤ r̄G , and for each pair

of items G ′ ≻ G a finite set of candidate flow-exchanging points (bounded away from zero) yi,G,G′

not in (x i,G ,x i,G ] for any candidate ironed interval. Then there exists a joint distribution over (value,

interest) pairs with a feasible dual (λ,α ) such that:

• the endpoints of the zero region for Φλ,α
G

are rG and r̄G .

• the ironed intervals of Φλ,α
G

are exactly to the intervals [x i,G ,x i,G ] (no others).

• αG,G′ (y) > 0⇔ y = yi,G,G′ for some i .

Note that from the proof the Master Theorem, it is clear how to explicitly construct a distribution
for the lower bound (although this is a tedious and unilluminating process).

In this section we provide a complete proof of Theorem H.1. On our way to prove this theorem,
we generalize a result of [23], in which they show that for totally ordered preferences, one can
always find a discrete distribution that produces a well-enough-behaved revenue curve. They use
this result to show that there exist instances for which the menu complexity is the worst possible,
exponential in the number of items. Here we extend their construction and show that for any
well-enough-behaved set of continuous revenue curves for the partially ordered setting, there exist
distributions that induce them.
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The first step is to generalize the result of [23] from discrete distributions to continuous distribu-
tions.

Lemma H.2 (Revenue Theorem for Continuous Curves). Given a continuous curve R : [1,H ]
differentiable everywhere except at countably many points, such that R (1) = 1 and |R′(x )+ |, |R′(x )− | ≤
1
2H ∀x ∈ [1,H ], there exists a distribution F such that R is the revenue curve that arises from selling to

a single bidder with a valuation drawn from F .

Proof. Consider the following distribution

F (x ) = 1 − R (x )

x
,x ∈ [1,H ]

and F (x ) = 0 for x ≤ 1, F (x ) = 1 for x ≥ H . In order to show that this is a valid distribution, it
suffices to show that it is monotonic non-decreasing. For that, we consider its derivative and show
it is non-negative everywhere:

F ′(x ) =
−xR′(x ) + R (x )

x2
.

It suffices to show that the numerator, R (x ) −R′(x )x , is always non-negative. Note that for x ≥ 1,
R (x ) ≥ 1

2 (since R (1) = 1 and the derivative doesn’t change fast enough) and |R′(x )+ | ≤ 1
2H . Since

x ≤ H , the claim follows.
It remains to show that indeed the revenue from this distribution matches the curve R (x ).

Consider setting a price of x , then the revenue of selling at x is exactly x (1 − F (x )) = R (x ). □

Now we want to extend this to say we can find distributions for revenue curves with specific
properties that will be useful.

Theorem H.3 (Master Theorem for Single Item). Given candidate endpoints of zero region

x+,x− and candidate ironed interval endpoints [x i ,x i ]
k
i=1 (where x− ≤ x i ≤ x i ≤ x+) there is a

distribution F such that the revenue curve induced by a bidder whose valuation is drawn from F
satisfies

• Φ
λ,α (x ) f (x ) is negative for x < x− (i.e. x− is the lower endpoint of the zero region),

• Φ
λ,α (x ) f (x ) is positive for x > x+ (i.e. x+ is the upper endpoint of the zero region) and,

• the ironed intervals correspond exactly to the intervals [x i ,x i ] for i = 1 to k .

Proof. We will reduce the problem of finding a valid distribution to that of constructing a
revenue curve that will guarantee these properties and then apply Lemma H.2. Consider the
following revenue curve:
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R (x ) =



x 0 ≤ x ≤ 1,

1 + x
2H 1 ≤ x ≤ x−,

1 + x−
2H x− ≤ x ≤ x1

1 +
x−+x 1−x

2H x1 ≤ x ≤ x 1+x 1

2

1 + x−+x−x 1

2H

x 1+x 1

2 ≤ x ≤ x1

. . .

1 + x−
2H x i−1 ≤ x ≤ x i

1 +
x−+x i−x

2H x i ≤ x ≤ x i+x i
2

1 + x−+x−x i
2H

x i+x i
2 ≤ x ≤ x i

. . .

1 + x−
2H xk ≤ x ≤ x+

1 + x−
2H −

x−x+
2H (H−x+ ) (x− + 1) x+ ≤ x ≤ H .

This revenue curve is such that R (1) = 1 and |R′(x ) | ≤ 1
2H for x ∈ [1,H ]. This allows us to claim

that there is a distribution that induces this revenue curve. Moreover, from the way we constructed
this revenue curve, the derivative is positive from 0 to x−, negative from x+ toH , goes from negative
to positive for the intervals [x i ,x i ] and is 0 elsewhere. We will show that these conditions are
sufficient to make the virtual values take the signs we intend them to.

It suffices to note that the sign of the derivative of the revenue at x is the opposite of the sign of
the virtual value at x (noted in Definition 2.1). By construction, our revenue curve has negative
slope on values higher than x+ and positive slope on points below x−. The intervals in between
will be ironed and turn into 0 slope intervals. □

Remark 4. It is possible to relax the condition that all ironed intervals are between x−,x+. It is not
hard to see how to adapt the proof to have ironed intervals either in [1,x−] or [x+,H ]. It is sufficient to

add dimpled intervals, like the ones in our construction, as the revenue curve is increasing or decreasing.

We don’t need them for our main result, hence don’t worry about this more general result. Likewise, the

revenue curve R could be made differentiable everywhere if we used a smoother function to transition

between the ironed and non-ironed intervals, as opposed to straight lines.

Proof of Theorem H.1. If the constraint over flows wasn’t there, the problem would be a direct
application of Theorem H.3. Unfortunately, the flow constraints may affect the virtual values of
neighboring items. It is not hard to predict how outgoing and incoming flow will change the virtual
values for the different items. From the study of duality in this context we know that if there is
ε-flow leaving from (yi ,G ) to (yi ,G

′) (where G ′ ∈ N + (G )), then the virtual values of all points
of item G with y ≤ yi will increase by ε and all points of item G ′ with y ≤ yi will decrease by ε .
Thus, given that we know what we want the revenue curves to look like after all flow has been
sent, we can reverse engineer what they must look like in order to make that happen. In particular,
since the flows shift the virtual values by a constant it will suffice to subtract a function whose
value is 0 before yi and becomes a line with small, negative slope at xi (say, slope ε =

1
2H

) from the

łsuggestedž (by Theorem H.3) revenue curve for itemG (since these will increase by ε after the flow
is sent) and add positive slope functions of the same value at xi on item Gi,G from its suggested
revenue curve (since these will decrease by ε after the flow is sent). This is sufficient because of the
connection between virtual values and revenue curves argued before: the derivative corresponds to
changes in the virtual value. So for a constant change in virtual value, the matching change would
be adding a linear term to the revenue curve of opposite sign. The order in which we do these
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changes is by processing items from leaves to the root (i.e. only process a node once all its children
have been processed) and within an item G, address the flow-exchange values from smallest to
largest. □

We abuse this opportunity to prove a similar result for the multi-unit pricing setting.

Theorem H.4 (Master Theorem for MUP). Suppose we are given a MUP instance where the

buyer can get up to n copies of an item. Let Gi for 1 ≤ i ≤ n be the item corresponding to i copies. For

each itemGi we are given candidate endpoints of the zero region x−i ,x+i and a set of candidate ironed

interval endpoints [x j,i ,x j,i ]
ki
j=1 with x−i ≤ x j,i ≤ x j,i ≤ x+i . Moreover, for each tuple (i,i + 1) and

(i,i − 1), we are given a set of candidate flow-exchanging points yj,i,i+1 and yj,i,i−1 not in (x j,i ,x j,i ]

for any candidate ironed interval. Then, there exists distributions FG for all items G such that:

• the endpoints of the zero region for Gi correspond to x−i ,x+i ,

• the ironed intervals correspond exactly to the intervals [x j,i ,x j,i ]
ki
j=1 (and no other),

• the dual of the problem is such that there αGi ,Gi+1 (yj,i,i+1) ≥ 0 (i.e. there is flow sent from Gi at

yi to Gi+1 into yj,i,i+1 and no other flow from i to i + 1).
• the dual of the problem is such that there αGi ,Gi−1 (yj,i,i−1) ≥ 0 (i.e. there is flow sent from Gi at

yi to Gi−1 into
i−1
i
yj,i,i−1 and no other flow from i to i − 1).

Proof. This proof is similar to that of H.1 with the exception that on the former, increasing
the flow from (v,G ) to (v,G ′) (with G ′ ∈ N + (G )) by a little bit increases and decreases the virtual
values below v by the same amount. This is no longer true since we are moving from (yj,i,i−1,Gi )

to ( i−1
i
yj,i,i−1,Gi−1). In this case, sending ε flow from (yj,i,i−1,Gi ) to ( i−1

i
yj,i,i−1,Gi−1) increases the

virtual values below (yj,i,i−1,Gi ) by ε but decreases the ones on the other end by only i−1
i
ε . So, in

order to reverse engineer the change in virtual value induced by this setting we need to add the
same functions as in the proof of Theorem H.1 to the revenue curve suggested for Gi and add a
i

i−1 -scaled version of it for the receiving item at the point ( i−1
i
yj,i,i−1,Gi−1) on the revenue curve for

Gi−1. The order in which these we do these changes is by processing items from leaves to root (i.e.
fromGn toG1) and within a itemGi , address the flow-exchange points from smallest to largest. □

I. A Candidate Dual for a Lower Bound on Menu-Complexity for the Multi-Unit

Pricing Problem

Consider an MUP instance where the buyer can get one, two, or three copies of a given item. The
relevant complementary slackness constraints in this setting go from

• Rightwards. For all v , from (v,1) → (v,2) and (v,2) → (v,3). This is because a buyer can
always misreport and get more items.
• Leftwards. For all v , from (v,2) → (v/2,1) and (v,3) → (2v/3,2). This is because a buyer
would prefer getting fewer items if they are available for much cheaper.

As shown in [DHP17], a buyer of type (v,C )’s utility for reporting (v/2,A) is given by uA (v/2) =
∫ v/2

0
aA (x )dx . The same buyer’s utility for reporting (v,B) is given by uB (v ) = 2

∫ v

0
aB (x )dx .

To construct a lower bound for the MUP instance, we adapt our construction from the partially
ordered case. We describe our construction formally below, but note here all the relevant differences.
Observe that the incentive compatibility constraints for the MUP instance described above hide a
partially ordered instance inside them. Indeed, the ‘item’ 2 is analogous to the item C , while the
items A and B are the items 1 and 3 respectively. Just like the partially ordered instance, there are
incentive compatibility constraints from (v,2) → (v,3) for all v . The only difference is that the
constraints from (v,2) → (v,1) have been replaced by those from (v,2) → (v/2,1). Also, there are
‘new’ constraints from (v,1) → (v,2) and (v,3) → (2v/3,2).
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Theorem I.1. To satisfy complementary slackness with the candidate dual, the allocation requires

M distinct allocation probabilities; the menu complexity is at leastM .

Proof. The proof is almost identical to that of Theorem 4.1. Using the constraint that the
allocation can’t increase in the middle of an ironed interval and that uA (x/2) = uB (x ) for all (x ,G )

in the chain, we show that the allocations must be non-zero throughout the chain.
Then, we show that for consecutive points in a chain (xi ,A), (xi+1,B) that (1/2)aA (xi/2) >

2aB (xi+1), and similarly, for (xi ,B), (xi+1,A), that 2aB (xi ) > (1/2)aA (xi+1/2)
This is enough to show that all of the menu options must be distinct, requiring meu complexity

≥ M . □

J. Coordinated Valuations

In this section and the following Appendix K, we examine the same minimal partial ordering with
G = {A,B,C} where A ≻ C,B ≻ C,A ⊁ B,B ⊁ C . However, a type (v,C ) now has a function дA (v )
and дB (v ) describe his valuations for A and B respectively, and дC (v ) = v . That is, if a buyer with
type (v,C ) gets itemG , his utility is дG (v ) times the probability that he is served minus his payment.
The main result is that even for дA that is piecewise linear with only two segments and for

дB (v ) = v , the randomization required in the optimal mechanism jumps from unbounded but finite,
as it was in the partially-ordered setting, to countably infinite. This further fills out the spectrum,
placing this setting between partially-ordered items and two additive items.
However, if дA and дB are not piecewise linear, the menu complexity once again jumps up,

becoming uncountably infinite, and matching the menu complexity for two additive items.

J.1. Preliminaries

Consider selling 3 items A, B, and C to one bidder. Define the set Items = {A,B,C}. We use Ḡ to
refer to a general item ∈ Items. When we make claims about Ḡ, we mean that the claim holds for
each of the three items in Items. When referring only to items A, B, we use the symbol G. Thus, a
claim that holds for G holds for both A and B.
In the setting we consider, the bidder has a type in the set Types = {A,B,C} × [0,H ], where

H ∈ R is some constant. The type (Ḡ,v ) of the bidder is drawn from a distribution f supported

on Types. Denote by qḠ =
∫ H

0
f(Ḡ,t )dt . Also, define fḠ (v ) =

1
qḠ

∫ v

0
f(Ḡ,t )dt as the distribution f

conditioned on q = Ḡ . Almost exclusively, we refer to f as (q, fḠ ). We also omit the subscript when
it is clear from context.
We now define the bidder’s value function v : Types × Items→ [0,H ]. This is defined as

v(C,v,Ḡ ) = дḠ (v ) and v(G,v,Ḡ ) = v · 1G=Ḡ ,

where дG : [0,H ]→ [0,H ] is an increasing, invertible function that is Lipschitz with parameter L
and дC (v ) = v for all v ∈ [0,H ]. Intuitively, this means that if the bidder has type (C,v ), then their
value for item Ḡ is дḠ (v ). A bidder with type (G,v ) has the value 0 for any item Ḡ , G and value v
for the item G.

Mechanisms. A mechanism is defined by two functions a, p, where a : Types → [0,1] and
p : Types → [0,H ]. The function a is called the allocation rule and the function p is called the
payment rule. We will use aḠ (v ) to denote a(Ḡ,v ) and pḠ (v ) to denote p (Ḡ,v ). A mechanism is
said to be incentive compatible if, for all t = (Ḡ,v ), t′ = (Ḡ ′,v ′) ∈ Types

v(t,Ḡ )a(t) − p (t) ≥ v(t,Ḡ ′)a(t′) − p (t′) (20)
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Instance. An instance I for the coordinated items setting is defined by a tuple (q, fḠ ,дḠ ). We
will usually omit the subscript and simply write (q, f ,д). Our goal is find, for a given instance I,
the incentive compatible mechanism that maximizes the revenue Et∼(q,f )[p (t)].

J.1.1. A Linear Programming Formulation For an instance I for the coordinated items , finding the
incentive compatible mechanism that maximizes Et∼(q,f )[p (t)] turns out to be equivalent to the
linear program in Equation 21. Here and throughout, for a distribution f supported on [0,H ], we

use φ (v ) = v − 1−F (v )
f (v )

to denote the Myerson’s virtual value function, where F (v ) =
∫ v

0
f (t )dt is

the cumulative distribution function for the distribution defined by f .

maximize P (a) =
∑

Ḡ

∫ H

0

qḠ fḠ (t )aḠ (t )φḠ (t )dt (21a)

subject to
∫ дG (v )

0

aG (t )dt −
∫ v

0

aC (t )dt ≤ 0 ,∀v (21b)

−a′
Ḡ
(v ) ≤ 0 ,∀v (21c)

0 ≤ aḠ (v ) ≤ 1 ,∀v (21d)

aḠ (0) = 0 (21e)

Even though the argument that Equation 21 is equivalent to finding the incentive compatible
mechanism that maximizes Et∼(q,f )[p (t)] is standard, we summarize it here. Observe that the
non-trivial incentive compatibility constraints in Equation 20 can be classified into two types:

• t = (Ḡ,v ) and t′ = (Ḡ,v ′): In this case, Equation 20 reduces to vaḠ (v ) − pḠ (v ) ≥ vaḠ (v
′) −

pḠ (v
′). This is attainable for all v , v ′ if and only if the allocation rule aḠ is monotone

increasing (Equation 21c) and pḠ (v ) = vaḠ (v ) −
∫ v

0
aḠ (t )dt .

• t = (C,v ) and t′ = (G,v ′): In this case, Equation 20 reduces tovaC (v )−pC (v ) ≥ дG (v )aG (v
′)−

pG (v
′). Due to the constraints in the previous paragraph, it is sufficient to have vaC (v ) −

pC (v ) ≥ дG (v )aG (дG (v )) − pG (дG (v )). This is equivalent to the constraint in Equation 21b.

Finally, it can be verified that if pḠ (v ) = vaḠ (v ) −
∫ v

0
aḠ (t )dt , then Et∼(q,f )[p (t)] = P (a).

We will use p = (aḠ ) to denote a general solution to Equation 21 and P (I) to denote the optimal
value for the instance I.

J.1.2. A Lagrangian Dual Formulation For any instance I of coordinated items , the revenue
maximization problem is defined in Equation 21. Let X ⊂ [0,H ] be a discrete set of points in [0,H ].
Define the X -dual of Equation 21 as:

minimizeDX (λ,γ ,Γ) =
∑

Ḡ

∫ H

0

qḠ fḠ (t )max
(

0,Φ
λ,γ ,Γ,X

Ḡ
(t )

)

dt (22a)

subject to

λḠ (H ) = 0 (22b)

λḠ (v ),γG (v ),ΓG (x ) ≥ 0 ,∀x ∈ X ,v ∈ [0,H ] (22c)
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where

Φ
λ,γ ,Γ,X

Ḡ
(v ) = φḠ (v ) +

1

qḠ fḠ (v )


−λ′

Ḡ
(v ) −

∑

X ∋x>д−1
Ḡ

(v )

ΓḠ (x ) −
∫ H

д−1
Ḡ

(v )

γḠ (s )ds


Equation 22 is obtained from Equation 21 by Lagrangifying the constraints Equation 21c using

the variables λḠ (v ), the constraints Equation 21b using the variables γG (v ), and the constraints
Equation 21b, for v ∈ X using the variables ΓG (v ). Here and throughout this paper, we define
γC (v ) = −γA (v ) − γB (v ) and ΓC (v ) = −ΓA (v ) − ΓB (v ) for notational ease. We note that getting
Equation 22 from Equation 21 requires integrating a certain term by parts. Throughout this work,
we assume that our functions are well-behaved enough to allow such standard operations.

Note that the idea of using a Lagrangian dual is not new to this work. Indeed, a lot of recent
advances in similar settings have been made using this technique. We will use d = (λḠ ,γG ,ΓG ) to
denote a general solution to Equation 22 and DX (I) to denote the optimal value for the instance I.
Often, we will abbreviate Φ

λ,γ ,Γ,X

Ḡ
(v ) to Φ

d,X

Ḡ
(v ) or even Φ(v ) if the subscript and superscript are

clear from the context.
We have the following ‘strong duality’ result (proof in Appendix K.1):

Theorem J.1 (Strong Duality). Let I be an instance of coordinated items .

(a) Let X ⊂ [0,H ] be a discrete set. For any feasible solution p = (aḠ ) of Equation 21 and any

feasible solution d = (λḠ ,γG ,ΓG ) of the X -dual (Equation 22), it holds that:

P (p) ≤ DX (d).

Equality holds if and only if the following conditions are satisfied almost everywhere:

∀v : Φd
Ḡ
(v ) > 0 =⇒ aḠ (v ) = 1. (23a)

∀v : Φd
Ḡ
(v ) < 0 =⇒ aḠ (v ) = 0. (23b)

∀v : λḠ (v ) > 0 =⇒ a′
Ḡ
(v ) = 0. (23c)

∀v : γG (v ) > 0 =⇒
∫ v

0

aC (t )dt =

∫ дG (v )

0

aG (t )dt . (23d)

∀x ∈ X : ΓG (x ) > 0 =⇒
∫ x

0

aC (t )dt =

∫ дG (x )

0

aG (t )dt . (23e)

(b) There exists a set X such that P (I) = DX (I).

The main reason we provide a proof for this ‘strong duality’ result is that the variables are
parametrized by a continuous variable. We could not find any results for such variables that
subsume our setting. Our proof of Theorem J.1 works by showing, for all ϵ > 0, a discrete linear
program that has almost the same primal and dual value (up to terms depending on

√
ϵ). Since

strong duality holds for discrete systems, this gives us that the duality gap of our linear program is
small. Theorem J.1 then follows as the feasible region is closed.

J.1.3. Our Framework Fix an instance I and discrete set X ⊆ [0,H ].

The Dual Framework. Let d = (λḠ ,γG ,ΓG ) be a feasible solution for the X -dual, i.e., Equation 22.
Define

r Ḡ (d) = inf {v | Φd,X
Ḡ

(v ) = 0} r Ḡ (d) = sup{v | Φd,X
Ḡ

(v ) = 0}.
If the inf (resp. sup) is over an empty set, we define it to be H (resp. 0).
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We sometimes refer to γ and Γ as representing flow, e.g., we say that there is flow from (C,v ) to
A if γA (v ) > 0 or ΓA (v ) > 0.

An interval [y,y] ⊆ [0,H ] is said to be ironed on a item Ḡ if λḠ (y) = λḠ (y) = 0 and for all

v ∈ (y,y), we have λḠ (v ) > 0.

The Primal Framework. Letp = (aḠ ) be a feasible primal solution for Equation 21. LetY = [y,y] ⊆
[0,H ] be an interval. DefineMCḠ (Y ,p) = |{α | ∃v ∈ Y : aḠ (v ) = α }| to be the number of distinct
values taken by the function aḠ over the intervalY . Also, defineMC(Y ,p) = maxḠ ∈Items MCḠ (Y ,p).
We omit the argument Y if it is [0,H ].

We define the menu complexity of the instance I, MC(I) = minp:P (p)=P (I) MC(p) to be the
smallest menu complexity of any optimal solution to Equation 21.

J.1.4. Formal Statements of our Results

Theorem J.2. There exists an instance Uncountable of coordinated items such thatMC(Uncountable)

is uncountably infinite. Furthermore, the instance Uncountable satisfies дB (v ) = v and all the distri-

butions fḠ are DMR15.

Theorem J.3. For any instance I such that the functions дG are piecewise linear, we have MC(I)
is at most countably infinite.

Theorem J.4. There exists an instance Countable1 of coordinated items such thatMC(Countable1)

is countably infinite. Furthermore, the instance Countable1 satisfiesдB (v ) = v and all the distributions

fḠ are DMR, and the function дA is piecewise linear.

Theorem J.5. There exists an instance Countable2 of coordinated items such thatMC(Countable2)

is countably infinite. Furthermore, the instance Countable2 satisfies дB (v ) = v and the function дA is

piecewise linear with only 2 segments.

J.2. Master Theorem

For our lower bounds, we will construct instances that have a large menu complexity. To show a
lower bound on the menu complexity, we will define a feasible solution to the X -dual (Equation 22),
for some X , show that it is optimal, and then show that any feasible primal that satisfies comple-
mentary slackness (Equation 23) with this dual must have a large menu complexity. Below, we
prove a ‘Master Theorem’ (Theorem J.6) (proof in Appendix K.2) that constructs instances together
with a feasible dual solution with some desirable properties.

Theorem J.6 (Master Theorem). Let H > 0 be fixed. Suppose that, for all Ḡ ∈ Items, points

ρ
Ḡ
< ρḠ ∈ [1,H ] are given. Let XA, XB be discrete subsets of [ρ

C
,ρC ]. Consider finite or infinite

sequences of disjoint intervals

YG = {(y
G,i
,yG,i )}i≥0 ZG = {(zG,i ,zG,i )}i≥0

where y
G,i
,yG,i ∈ [ρG ,ρG ] and zG,i ,zG,i ∈ [ρC ,ρC ]. Then, for any invertible functions д′G : [0,H ]→

[0,H ], there exists an instance I = (q, fḠ ,дG ) and an (XA ∪ XB )-dual d = (λḠ ,γG ,ΓG ) such that the

following hold:

• дG (v ) = д′G (v ) for all v ∈ [0,H ].

• The value of Φd,XA∪XB

Ḡ
(v ) fḠ (v ) is non-decreasing and r Ḡ (d) = ρ

Ḡ
and r Ḡ (d) = ρḠ .

• λC (v ) = 0 throughout and λG (v ) > 0 ⇐⇒ v ∈ (y
G,i
,yG,i ) for some i .

• γG (v ) > 0 ⇐⇒ v ∈ (zG,i ,zG,i ) for some i .

15Recall that a distribution is DMR if the Myerson’s virtual value function is non-decreasing.
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• ΓG (v ) > 0 ⇐⇒ v ∈ XG for some i .

Moreover, if YG is empty, then the distributions fḠ are DMR.

J.3. Lower Bounds

J.3.1. DMR Distributions Let a : [0,H ]→ [0,1] be a non-decreasing function that is continuous
except at countably many points. In this subsection, we construct an instance I = (q, f ,д) of
coordinated items such any optimal solution of Equation 21 for I satisfies that aA = a

16. In our
construction, the distributions fḠ are DMR and дB (v ) = v .

Two important instantiations of this general procedure prove Theorem J.2 and Theorem J.4. For
Theorem J.2, we construct Uncountable by setting need a(v ) = v/H . For Theorem J.4, we construct
Countable1 by setting a to be a function that takes countably many values. A concrete example of
such a function is one that has countably many łstepsž as it moves from 0 to 1. We take care that
the function дA is piecewise linear in Countable1.

The Instance For notational convenience, we work in the range [0,H + 3] in this subsubsection.

Consider an increasing function a : [0,H ]→ [0,1] and let A(v ) =
∫ v

0
a(t )dt . Let ρ = H +2−A(H ) ∈

[2,H + 2]. Note that A−1 (v ) is well defined for v > 0 and define:

д′A (v ) =



v ,0 ≤ v ≤ 1
v−1
ρ−1 + 1 ,1 < v ≤ ρ

A−1 (v − ρ) + 2 ,ρ < v ≤ H + 2

v ,H + 2 < v ≤ H + 3

.

It is readily seen seen that д′A satisfies A(H ) − A
(

д′A (v ) − 2)
)

= H − (v − 2) in the interval

(ρ,H + 2]. Let д′B (v ) = v and apply Theorem J.6 with д′G and

• ρ
A
= 2, ρA = H + 2, ρ

B
= ρB = ρ, ρ

C
= 1, ρC = H + 2.

• XG ,YG are empty
• ZG (v ) = {(ρ,H + 2)}.

This gives an instance I = (q, f ,д) and an (XA ∪ XB )-dual solution d = (λḠ ,γG ,ΓG ) such that
the distributions fḠ are DMR and :

• For all v , дG (v ) = д
′
G (v ) and r Ḡ = ρ

Ḡ
and r Ḡ = ρḠ .

• λḠ (v ),ΓG (v ) are 0 throughout.
• γG (v ) > 0 ⇐⇒ v ∈ (ρ,H + 2).

The Analysis Recall a, ρ, and I constructed above. Define a feasible primal solution p∗ = (a∗
Ḡ
) of

Equation 21 for I as:

a∗A (v ) =


0 ,0 ≤ v ≤ 2

a(v − 2) ,2 < v ≤ H + 2

1 ,H + 2 < v ≤ H + 3

a∗B (v ) = a∗C (v ) =

0 ,0 ≤ v ≤ ρ

1 ,ρ < v ≤ H + 3

In Theorem J.7 (proof in Appendix K.3), we show that p∗ and d satisfy complementary slackness.
To finish our menu complexity lower bound, we argue that any primal p = (aḠ ) that satisfies
complementary slackness with d must have aA = a∗A. This proof is in Theorem J.8.

16We abuse notation slightly here. What is meant is that aA takes the same values over the interval [2, H + 2] as a takes

over the interval [0, H ] (see subsubsection J.3.1 for the exact statement).
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Together with strong duality (Theorem J.1), Theorem J.7 shows that d is optimal. Thus, any
optimal primal for I must satisfy complementary slackness with d. Theorem J.8 says that aA = a∗A
for this primal and thus, it has a high menu complexity.

Lemma J.7. The primal p∗ is feasible and p∗, d satisfy complementary slackness (Equation 23).

Lemma J.8. Consider any feasible primal p = (aḠ ) that satisfies complementary slackness with d

must aA = a∗A, where a
∗
A is the allocation for item A in p∗.

Proof. We reason from Equation 23. Specifically, the constraints (23a), (23b) for item B imply
that aB (v ) = 0 for v ∈ [0,ρ) and aB (v ) = 1 for v ∈ (ρ,H + 3]. Thus, we have:

∫ дB (v )

0

aB (t )dt = (v − ρ)1v≥ρ .

Since γG (v ) > 0 for all v ∈ (ρ,H + 2), we have by (23d) that
∫ дA (v )

0
aA (t )dt =

∫ дB (v )

0
aB (t )dt =

∫ v

0
aC (t )dt for all v in this range. Thus, for all v ∈ (ρ,H + 2):

∫ дA (v )

0

aA (t )dt = v − ρ .

Since the right hand side in the equation above is independent of the primal, we get for all

v ∈ (ρ,H+2) that
∫ дA (v )

0
aA (t )dt =

∫ дA (v )

0
a∗A (t )dt . Thus, for allv ∈ (2,H+2), we have

∫ v

0
aA (t )dt =

∫ v

0
a∗A (t )dt implying aA (v ) = a∗A (v ) in this range. The constraints (23a), (23b) for item A fix the

allocation aA outside (2,H + 2). Combining, we get that aA = a∗A.
□

J.3.2. Proof of Theorem J.5 In the last subsection, we showed that instances can have high menu
complexity, even when all the distributions fḠ are DMR. The reason for high menu complexity is
the complexity in the functions дG . We now show that if the distributions fḠ are not required to be
DMR, even ‘simple’ (e.g., piecewise linear with only 2 segments) functions дG can have countably
infinite menu complexity. Two segments are required because of the arguments in Appendix F.
This is tight due to our upper bounds in subsection J.4.

The Instance Countable2 For notational convenience, we work in the range [0,H + 1] in this
subsubsection. Define:

д′A (v )
17
=


v ,0 ≤ v ≤ 1
v+1
2 ,1 < v ≤ 2H/3 + 1

2V − H − 1 ,2H/3 + 1 < v ≤ H + 1

д′B (v ) = v

We define points x1 =
4H
5 + 1, y1 =

3H
4 + 1, and xi =

8
3
H
2i
+ 1 , yi =

8
5
H
2i
+ 1 for i > 1. Note that

the sequence xi converges to x = 1.
In order to construct Countable2, we apply Theorem J.6 with д′G and

• ρ
A
= д′A (x ), ρA = д

′
A (x2), ρB

= д′B (x ), ρB = д
′
B (x1), ρC

= x , ρC = x1.

• YA = {(д′A (x2i+2),д′A (x2i ))} for some i > 0. YB = {(д′B (x2i+1),д′B (x2i−1))} for some i > 0.
• ZG is empty and XG = {yi }i>0.

This gives an instance Countable2 = (q, f ,д) and an (XA ∪XB )-dual solution d = (λḠ ,γG ,ΓG ) such
that :

17Note that this function is piecewise linear with 3 segments and not 2. However, the first segment is just for notational

ease and can be removed.
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• For all v , дG (v ) = д
′
G (v ) and r Ḡ = ρ

Ḡ
and r Ḡ = ρḠ .

• λC (v ),γG (v ) are 0 throughout. λA (v ) > 0 if and only if v ∈ (дA (x2i+2),дA (x2i )) for some
i > 0 and λB (v ) > 0 if and only if v ∈ (дB (x2i+1),дB (x2i−1)) for some i > 0.
• ∀i > 0 : ΓG (yi ) > 0.

The Analysis Recall the definitions of xi ,yi and the instance Countable2 above. Define a feasible
primal solution p = (a∗

Ḡ
) of Equation 21 for Countable2 as:

a∗A (v ) =


0 ,0 ≤ v ≤ дA (x )
40

13·4i ,дA (x2i+2) ≤ v < дA (x2i )

1 ,дA (x2) ≤ v ≤ H + 1

a∗B (v ) =


0 ,0 ≤ v ≤ дB (x )
40

13·4i ,дB (x2i+1) ≤ v < дB (x2i−1)

1 ,дB (x1) ≤ v ≤ H + 1

a∗C (v ) =


0 ,0 ≤ v ≤ x
20

13·2i ,yi+1 ≤ v < yi

1 ,y1 ≤ v ≤ H + 1

We proceed exactly as in subsubsection J.3.1. In Theorem J.9 (proof in Appendix K.4), we show
that p and d satisfy complementary slackness. To finish our menu complexity lower bound, we
argue that any primal that satisfies complementary slackness with d must have infinite menu
complexity.
Together with strong duality (Theorem J.1), Theorem J.9 shows that d is optimal. Thus, any

optimal primal for Countable2 must satisfy complementary slackness with d. Theorem J.10 says
that such a primal has infinite menu complexity

Lemma J.9. There primal p is feasible for Countable2 and p,d satisfy complementary slackness.

Lemma J.10. Any feasible primal p for Countable2 with a finite menu complexity does not satisfy

complementary slackness with d.

Proof. Proof by contradiction. Let p = (aḠ ) be a feasible primal with finite menu complexity
that satisfies complementary slackness with d.
Let i∗ be the largest i such that aA (дA (yi )) > aA (дA (yi+1)) or aB (дB (yi )) > aB (дB (yi+1)). If no

such i∗ exists, we define i∗ = 0. SinceMC(p) is assumed to be finite and the allocation is monotone
(by constraint (21c)), i∗ is well defined and aA (дA (yi )) and aB (дB (yi )) is constant for all i > i∗. Let
the constant values be πA and πB respectively.
Since p, d satisfy Equation 23, we have, by Equation 23c

aG (v ) = πG ,∀v ∈ (дG (x ),дG (yi∗+1)] (24)

Also, for all i > 0 we have by the constraint (23e) (applied once to both yi and yi+1)
∫ дA (yi )

дA (yi+1 )

aA (t )dt =

∫ yi

yi+1

aC (t )dt =

∫ дB (yi )

дB (yi+1 )

aB (t )dt (25)

We derive a contradiction in two steps. First, we prove

Claim. πA = 2πB .

Proof. Consider an i larger than i∗ + 10. Using Equation 24 and Equation 25, we get

πA (дA (yi ) − дA (yi+1)) = πB (дB (yi ) − дB (yi+1))
πA (yi − yi+1) = 2πB (yi − yi+1) (Definition of дA)

πA = 2πB .
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□

Claim. aA (дA (y2)) , 2aB (дB (y2)).

Proof. Proof by contradiction. Suppose that aA (дA (y2)) = 2aB (дB (y2)) = 2π . By Equation 23a,
we have aA (дA (v )) = 1 for all v > x2. Since y2,y1 are in the same ironed interval on B and y2,x2
are in the same ironed interval on A, we have using Equation 25 that

дA (y1) − дA (x2) + 2π (дA (x2) − дA (y2)) = π (дB (y1) − дB (y2)) .

Plugging in the values of y1,x2,y2, we have

H

2
− H

3
+ 2π

(

H

3
− H

5

)

= π

(

3H

4
− 2H

5

)

,

a contradiction to π < 1. □

These two claims together with Equation 24 establish that i∗ > 1. We now give a contradiction
assuming i∗ is even. A similar argument works if i∗ is odd. Since дA (yi∗ ),дA (yi∗+1) lie in the
same ironed interval in A, we have aA (дA (yi∗ )) = aA (дA (yi∗+1)) = πA. By choice of i∗, we have
π ′B = aB (дB (yi∗ )) > πB . By Equation 25, we have

πA

2
(yi∗ − yi∗+1) = πA (дA (yi∗ ) − дA (yi∗+1)) = π ′B (yi∗ − xi∗+1) + πB (xi∗+1 − yi∗+1) > πB (yi∗ − yi∗+1),

a contradiction to Equation J.3.2. □

J.4. Upper bounds

In this subsection, we prove that for any instance I such that the functions дA (·) and дB (·) are
piecewise linear, we have MC(I) is at most countably infinite (Theorem J.3). This result is tight by
our arguments in subsection J.3
Our line of argument is as follows: Fix an instance I. By Theorem J.1, there exists an X , a

primal solution p = (aḠ ) and an X -dual solution d = (λḠ ,γG ,ΓG ) that satisfy complementary
slackness. From p,d, we construct another primal solution p̂ such that MC(p̂) is small and p̂, d
satisfy complementary slackness. Thus, the primal p̂ also defines an optimal revenue mechanism.
The menu complexity of this new mechanism gives us our upper bound onMC(I).

We note that this technique is markedly different from that employed in Appendix F where we
assume an optimal dual and describe a recovery algorithm that reads an optimal primal from the
optimal dual. Here, we assume both, an optimal dual and an optimal primal18, and prove that such
a primal can be improved to have a lower menu complexity.

J.4.1. Splitting Our procedure to improve the primalmakes extensive use of the following łsplittingž
operation:

Definition J.1. Let a : R→ R be a function and consider the interval s = [x ,y], where x ,y ∈ R.
Define the function a ◦ s as :

a ◦ s (v ) =

a(v ) ,v < s
1

y−x
∫ y

x
a(t )dt ,v ∈ s

18Note that we need Theorem J.1 to assume that there exists an optimal primal-dual pair that satisfies complementary

slackness.
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The following is easily observed for all v < s:
∫ v

−∞
a ◦ s (t )dt =

∫ v

−∞
a(t )dt (26)

If s1 and s2 are two disjoint intervals, then a ◦ s1 ◦ s2 = a ◦ s2 ◦ s1. We will use a ◦ s1s2 to denote
this common value.

Remark 5. Let a be a function and s be an interval. For any x ,y,z ∈ s , we have
∫ z

−∞
a ◦ s (t )dt = 1

y − x

[
(y − z)

∫ x

−∞
a(t )dt + (z − x )

∫ y

−∞
a(t )dt

]
.

Lemma J.11. Let a be an increasing function and s be an interval. We have
∫ z

−∞ a(t )dt ≤
∫ z

−∞ a ◦
s (t )dt . Moreover, equality holds if v < s or a is constant over the interval s .

Proof. Let s = [x ,y]. Since a is increasing, we have
∫ y

x

a(t )dt ≥
∫ z

x

a(t )dt +
y − z
z − x

∫ z

x

a(t )dt =
y − x
z − x

∫ z

x

a(t )dt .

Rearranging gives the result. The moreover part can be using Equation 26 and Definition J.1. □

J.4.2. Proof of Theorem J.3 Fix an instance I and let p,d, be an optimal primal dual pair (d is

X -dual for some X ). Without loss of generality, we can assume that the product Φd,X
Ḡ

(v ) fḠ (v ) is

non-decreasing (see Appendix A). We define the function sgn(x ) to be 1 if x > 0, 0 if x = 0, and −1
if x < 0. Using d, define the following notion of a strip.

Definition J.2 (Strip). A strip s is an interval [x ,y], where x ,y ∈ [0,H ], such that the following

hold:

• For all Ḡ, there functions дḠ are linear over s

• For all Ḡ, the function sgn
(

Φ
d,X

Ḡ
(дḠ (v )) fḠ (дḠ (v ))

)

is constant for v ∈ s .
• For all Ḡ, the function sgn

(

λḠ (дḠ (v ))
)

is constant for v ∈ s .

The following holds for any strip.

Lemma J.12. For I,p,d as above, let s be any strip. There exists another primal solution p̂ of I such

that

• âḠ (дḠ (v )) = aḠ (дḠ (v )) for all v < s .

• p̂, d satisfy complementary slackness (Equation 23).

• For all Ḡ, it holds thatMCḠ

(

[дḠ (x ),дḠ (y)], âḠ
) ≤ 10.

The proof of this lemma spans the rest of this subsection.

Proof. Let s = [x ,y]. Define the function uḠ (v ) =
∫ дḠ (v )

0
aḠ (t )dt

19. Since the functions дḠ
are continuous, and aḠ is continuous except at countably many points, we have that uḠ is also
continuous. Define points z, z as follows20:

z = inf
v ∈[x,y]

{v | uA (v ) = uB (v )} z = sup
v ∈[x,y]

{v | uA (v ) = uB (v )}.

19Note that this is just the utility of a bidder with type (Ḡ, дḠ (v )).
20Throughout this subsection, we define several infimums and supremums. In case the argument to any of these is empty, we

simply drop those terms from where they are used. For example, if z , z are not defined, we simply use aG ◦ [дG (x ), дG (y )]

instead of aG ◦ [дG (x ), дG (z )][дG (z ), дG (z )][дG (z ), дG (y )] below.
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We use z and z to define:

âG = aG ◦ [дG (x ),дG (z)][дG (z),дG (z)][дG (z),дG (y)].

ûG (v ) =

∫ дG (v )

0

âG (t )dt .

Now, define:

z1 = inf
v ∈[x,z]

{v | max(ûA (v ),ûB (v )) = uC (v )} z2 = sup
v ∈[x,z]

{v | max(ûA (v ),ûB (v )) = uC (v )}.

z3 = inf
v ∈[z,z]

{v | max(ûA (v ),ûB (v )) = uC (v )} z4 = sup
v ∈[z,z]

{v | max(ûA (v ),ûB (v )) = uC (v )}.

z5 = inf
v ∈[z,y]

{v | max(ûA (v ),ûB (v )) = uC (v )} z6 = sup
v ∈[z,y]

{v | max(ûA (v ),ûB (v )) = uC (v )}.

Finally, we define:

âC = aC ◦ [x ,z1][z1,z2][z2,z][z,z3][z3,z4][z4,z][z,z5][z5,z6][z6,y].

ûC (v ) =

∫ v

0

âC (t )dt .

Our primal p̂ is defined by the allocations (âḠ ). Note that item 1 and item 3 are straightforward
from Definition J.1. We only concentrate on item 2.
For item 2, we verify each of the constraints in Equation 23. For Equation 23a, observe that if

ΦḠ (дḠ (v )) > 0 for some v ∈ s and some Ḡ, then, since s is a strip, ΦḠ (дḠ (v )) > 0 throughout s .
Thus, the allocation aḠ is 1 throughout s and our operations have no effect. If v < s , then the result
follows as p, d satisfied complementary slackness. A similar argument verifies Equation 23b and
Equation 23c.
For Equation 23d, consider a v,G such that γG (v ) > 0. If v < s , then the result follows because

of 5 and the fact that p,d satisfy complementary slackness. If v ∈ s , then, since p,d satisfied
complementary slackness, we have uG (v ) = uC (v ). Thus, by Theorem J.11, ûG ≥ uC (v ) implying
that v ∈ [z1,z2] ∪ [z3,z4] ∪ [z5,z6]. Suppose that v ∈ [z1,z2]. The other cases are similar. We have:

ûG (v ) =
ûG (z1) (дG (z2) − дG (v )) + ûG (z2) (дG (v ) − дG (z1))

дG (z2) − дG (z1)
( 5)

=

ûG (z1) (z2 −v ) + ûG (z2) (v − z1)
z2 − z1

(дG (v ) =mGv + cG over a strip)

=

ûC (z1) (z2 −v ) + ûC (z2) (v − z1)
z2 − z1

(Definition of z1, z2)

= ûC (v ) ( 5)

Equation 23e is verified similarly.
□

Proof of Theorem J.3. Since the functions дG are assumed to be piecewise linear, we can parti-
tion the range [0,H ] into countably many disjoint strips. Theorem J.3 follows by applying Theo-
rem J.12 to each of the strips. □

K. Missing Proofs From Appendix J

K.1. The Proof of Theorem J.1

K.1.1. The Proof of item (a)
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Proof. Fix X ⊂ [0,H ]. Observe that :

DX (d) =
∑

Ḡ

∫ H

0

qḠ fḠ (t )max
(

0,ΦḠ (t )
)

dt ≥
∑

Ḡ

∫ H

0

qḠ fḠ (t )ΦḠ (t )aḠ (t )dt

Using the definition of Φ, we get

DX (d) ≥ P (p) +
∑

Ḡ

∫ H

0

aḠ (t )
*..,
−λ′

Ḡ
(t ) −

∑

X ∋x>д−1
Ḡ

(t )

ΓḠ (x ) −
∫ H

д−1
Ḡ

(t )

γḠ (s )ds
+//-
dt

First, note that, integrating by parts, we have
∑

Ḡ

∫ H

0
aḠ (t )λ

′
Ḡ
(t )dt = −∑

Ḡ

∫ H

0
a′
Ḡ
(t )λḠ (t )dt ≤ 0

by Equation 21c. Fix any v ∈ [0,H ]. Grouping all the terms with γG (v ), we observe that γG (v ) is

multiplied by
∫ v

0
aC (t )dt −

∫ дG (v )

0
aG (t )dt ≥ 0 by Equation 21b. Similarly, fix any x ∈ X . Grouping

all the terms with ΓG (x ), we observe that ΓG (x ) is multiplied by
∫ x

0
aC (t )dt −

∫ дG (x )

0
aG (t )dt ≥ 0

by Equation 21b.
Thus, we have DX (d) ≥ P (p). To finish the proof, observe that the conditions in Equation 23 are

exactly those needed to make these inequalities tight. □

K.1.2. The Proof of item (b)

Proof. We prove that for all ϵ > 0, there is a setXϵ such that P (I) ≥ DXϵ
(I)−ϵ . The statement

then follows because the the union of the region in Equation 22 for all possible sets X is closed.
Recall that the functions дG are L-Lipschitz.
Fix ϵ > 0 and let δ > 0 be sufficiently small. Our proof proceeds by defining a discrete linear

program (Equation 27) and its dual (Equation 28) for I,δ . Let the optimal value of Equation 27
be Pδ (I) and the optimal value of Equation 28 be Dδ (I). Since strong duality holds for discrete
linear programs, we have Pδ (I) = Dδ (I). We also ensure that Dδ (I) = Pδ (I) ≤ H for all δ .

In Theorem K.1, we show that P (I) ≥ (1 −
√
δ )Pδ (I) − L

√
δ . In Theorem K.2, we show that

there is a set Xδ such that DXδ
(I) ≤ Dδ (I). Combining, we get

P (I) ≥ (1−
√
δ )Pδ (I)−L

√
δ = (1−

√
δ )Dδ (I)−L

√
δ ≥ (1−

√
δ )DXδ

(I)−L
√
δ > DXδ

(I)−ϵ ,
for small enough δ . □

The rest of this subsection is devoted to defining and analyzing the discrete linear program, in
order to prove Theorem K.1 and Theorem K.2.

K.1.3. The Discrete Linear Program We describe a discrete linear program for the instance I. The
instance I is fixed for the rest of this subsection. Without loss of generality, let δ > 0 be such that
H/δ = H ′ is an integer.

The Primal Consider the following optimization problem with the variables aḠ (i ) and pḠ (i )

for 0 ≤ i ≤ H ′. In this subsection, we abuse notation and write дḠ (i ) instead of дḠ (iδ ). Define
∫ дḠ (i )

дḠ (i−1) fḠ (v )dv = f̂Ḡ (i ) and f̂Ḡ (0) = 0.

maximizePδ (a) =
∑

Ḡ

H ′
∑

i=1

qḠ f̂Ḡ (i )pḠ (i ) (27a)

subject to

дC (i )aC (i ) − pC (i ) ≥ дG (i )aG (i ) − pG (i ) ,∀i (27b)

дḠ (i )aḠ (i ) − pḠ (i ) ≥ дḠ (i )aḠ (i + 1) − pḠ (i + 1) ,∀i (27c)
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дḠ (i )aḠ (i ) − pḠ (i ) ≥ дḠ (i )aḠ (i − 1) − pḠ (i − 1) ,∀i (27d)

pḠ (0) = aḠ (0) = 0 (27e)

aḠ (i ) ∈ [0,1] ,∀i (27f)

It is easy to see why Pδ (I) ≤ H . We also have:

Theorem K.1. The optimal value Pδ (I) of Equation 27 satisfies (1 −
√
δ )Pδ (I) ≤ P (I) + L

√
δ .

Proof. Let η =
√
δ and (aḠ ,pḠ ) be the optimal solution for Equation 27. Consider the set

T = {(G j ,aj ,pj ) | ∃i,G j : aG j
(i ) = aj , (1 − η)pG j

(i ) = pj }. Using the set T , we now define a

mechanismM for the continuous revenue optimization problem. Consider a type t = (Ḡ,v ) ∈ Types.
Define:

(Gt,at,pt ) = argmax(G j ,aj ,pj )∈T v(t,G j )aj − pj .
LetM be the mechanism that allocates item Gt with probability at and charges price pt to a bidder
who reports t21. Observe thatM is a truthful mechanism. By a standard argument, there exists a
feasible solution p to Equation 21 such that P (I) ≥ P (p) = Et∼(q,f )[pt] is the expected revenue of
M . We now prove that Et∼(q,f )[pt] ≥ (1 − η)Pδ (I) − Lη.

Couple a bidder inM with (continuous) type t = (Ḡ,v ) with a bidder with (discrete) type (Ḡ,i )

where i is the smallest value such that дḠ (i ) > v . The coupling is valid as
∫ дḠ (i )

дḠ (i−1) fḠ (v )dv = f̂Ḡ (i ).

We show that pt ≥ (1 − η)pḠ (i ) − Lη. Taking the expectation on both sides gives the result.
Observe that:

v(t,Gt )at − pt ≥ vaḠ (i ) − (1 − η)pḠ (i )

дḠ (i )aḠ (i ) − pḠ (i ) ≥ v(Ḡ,дḠ (i ),Gt )at −
pt

1 − η
Adding, we get that

v(Ḡ,v,Gt )at + дḠ (i )aḠ (i ) +
ηpt

1 − η ≥ vaḠ (i ) + ηpḠ (i ) + v(Ḡ,дḠ (i ),Gt )at

Since at,aḠ (i ) ∈ [0,1], we have

pt ≥ (1 − η)pḠ (i ) +
1 − η
η

(

(v − дḠ (i ))aḠ (i ) +
(

v(Ḡ,дḠ (i ),Gt ) − v(Ḡ,v,Gt )
)

at
)

≥ (1 − η)pḠ (i ) +
1

η

(

дḠ (i − 1) − дḠ (i )
)

aḠ (i ) (дḠ (i ) > v ≥ дḠ (i − 1))

≥ (1 − η)pḠ (i ) − Lη (дḠ is L-Lipschitz)

□

The Dual Consider the following Lagrangian relaxation of Equation 27, where we Lagrangify the
constraints Equation 27b using the variables ΓG (i ), the constraints Equation 27c using the variables
λ+G (i ), and the constraints Equation 27d using the variables λ−G (i ). We use the convention that
ΓC (i ) = −ΓA (i ) − ΓB (i )

minimize Dδ (I) (λ,Γ) =
∑

Ḡ

H ′
∑

i=1

qḠ f̂Ḡ (i )max
(

0,Φλ,Γ

Ḡ
(i )

)

(28a)

subject to

λ+
Ḡ
(i ) + λ−

Ḡ
(i ) − ΓḠ (i ) = qḠ f̂Ḡ (i ) + λ

+

Ḡ
(i − 1) + λ−

Ḡ
(i + 1) ,∀i (28b)

21We slightly deviate from our definition of a mechanism and allow Gt to be different from Ḡ .
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λ+
Ḡ
(i ),λ−

Ḡ
(i ) ≥ 0 ,∀i (28c)

γG (i ) ≥ 0 ,∀i (28d)

where terms like λ+Ḡ (H + 1) are defined to be 0 and

Φ
λ,γ

Ḡ
(i ) = *,дḠ (i ) −

1

qḠ f̂Ḡ (i )

(

λ+
Ḡ
(i − 1) (дḠ (i − 1) − дḠ (i )

)

+ λ−
Ḡ
(i + 1)

(

дḠ (i + 1) − дḠ (i )
)

)+-
Theorem K.2. The optimal value Dδ (I) of Equation 28 satisfies Dδ (I) ≥ DX (I) where X = {iδ |

i ∈ Z ∩ [0,H ′]}.

Proof. We proceed by defining a feasible solution of Equation 22 from the optimal solution of
Equation 28 with the same value. Throughout this proof, we denote the variables of the discrete

linear program using a ‘hat’. Let (λ̂+
Ḡ
, λ̂−

Ḡ
, Γ̂G ) be the optimal solution to Equation 28. Define F̂Ḡ (v ) =

∑

i :дḠ (i )<v f̂Ḡ (i ). Define an X -dual solution d = (λḠ ,γG ,ΓG ) for I as follows

λḠ (v ) = vqḠ (FḠ (v ) − F̂Ḡ (v )) + (v − дḠ (i ))λ+Ḡ (i ) + (дḠ (i + 1) −v )
дḠ (i ) − дḠ (i − 1)
дḠ (i + 1) − дḠ (i )

λ+
Ḡ
(i − 1)

γG (v ) = 0

ΓG (iδ ) = Γ̂G (i )

where i is the largest integer such that дḠ (i ) < v . Observe that d is feasible and

qḠ fḠ (v )Φ
d,X

Ḡ
(v ) = −qḠ

дḠ (i + 1)
(

1 − F̂Ḡ (v )
)

− дḠ (i )
(

1 + f̂Ḡ (i ) − F̂Ḡ (v )
)

дḠ (i + 1) − дḠ (i )

− λ+
Ḡ
(i ) +

дḠ (i ) − дḠ (i − 1)
дḠ (i + 1) − дḠ (i )

λ+
Ḡ
(i − 1) −

H /ϵ
∑

j=i+1

ΓḠ (j )

Since Φd,X
Ḡ

(v ) is constant in [дḠ (i ),дḠ (i + 1)], we have:

∫ дḠ (i+1)

дḠ (i )

qḠ fḠ (t )max
(

0,Φd,X
Ḡ

(t )
)

dt = max

(

0,

∫ дḠ (i+1)

дḠ (i )

qḠ fḠ (t )Φ
d,X

Ḡ
(t )dt

)

But,

∫ дḠ (i+1)

дḠ (i )

qḠ fḠ (t )Φ
d,X

Ḡ
(t )dt

= дḠ (i )qḠ f̂Ḡ (i ) − λ+Ḡ (i − 1)
(

дḠ (i − 1) − дḠ (i )
) −

∫ дḠ (i+1)

дḠ (i )

*.,λ
+

Ḡ
(i ) + qḠ

(

1 − F̂Ḡ (t )
)

+

H ′
∑

j=i+1

ΓḠ (j )
+/-dt

= дḠ (i )qḠ f̂Ḡ (i ) − λ+Ḡ (i − 1)
(

дḠ (i − 1) − дḠ (i )
) − λ−

Ḡ
(i + 1)

(

дḠ (i + 1) − дḠ (i )
)

(Equation 28b)

= qḠ f̂Ḡ (i )Φ̂
λ̂,Γ̂

Ḡ
(i )

Thus,
∫ дḠ (i+1)

дḠ (i )
qḠ fḠ (t )max

(

0,Φd,X
Ḡ

(t )
)

dt = qḠ f̂Ḡ (i )max
(

0, Φ̂λ̂,Γ̂

Ḡ
(i )

)

. Summing over i , Ḡ, we get

that Dδ (I) = DX (d) ≥ DX (I). □
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K.2. Proof of Theorem J.6

We need the following technical lemma:

Lemma K.3. Let H > 1 and R (x ) : [1,H ] → R be a function such that R (1) = 1 and for all

x ,y ∈ [1,H ] such that x < y, we have −y−x2H < R (y) − R (x ) < y−x
2H . Then, there exists a distribution F

supported on [0,H ] such that

x (1 − F (x )) =

x ,0 ≤ x < 1

R (x ) ,1 ≤ x ≤ H
.

Proof. Define:

F (x ) =


0 ,0 ≤ x < 1

1 − R (x )
x

,1 ≤ x < H

1 ,x = H

.

Observe that F satisfies the requirements of the theorem. To prove that F is a valid distribution, it

is sufficient to show F (x ) < F (y) for all x < y. We first note that 1 − R (x )
x
∈ [0,1]. Thus, the only

case left is when x ,y ∈ [1,H ]. In this case,

xy (F (y) − F (x )) = yR (x ) − xR (y) = yR (x ) − xR (x ) + x (R (x ) − R (y))

> yR (x ) − xR (x ) − xy − x
2H

= (y − x )
(

R (x ) − x

2H

)

= (y − x )
(

R (x ) − 1 + 2H − x
2H

)

> (y − x )
(

R (x ) − R (1) + x − 1
2H

)

> 0.

□

Proof of Theorem J.6. Let I = (q, fḠ ,дG ) be such that qḠ =
1
3 and дG (v ) = д

′
G (v ) for all v . In

order to define fḠ , define

QḠ (v ) =



1 + v−1
100H ,1 ≤ v < ρ

G

1 +
ρ
G
−1

100H ,ρ
G
≤ v < ρG

1 +
ρG+ρG

−1−v
100H ,ρG ≤ v ≤ H

ΛG (v ) =
1

100H 2

∑

i

min
(

(v − y
G,i

) (v − yG,i ),0
)

Let ΛC (v ) = 0 throughout. Also, define:

ZG,i (v ) =



1
4i

,v < zG,i
1
4i

zG,i−v
zG,i−zG,i

,v ∈ [zG,i ,zG,i ]
0 ,v > zG,i

YG,i (v ) =


1
4i
,v < xG,i

0 ,v > xG,i

P1,G (v ) =
1

100H

∑

i

ZG,i (v ) P2,G (v ) =
1

100H

∑

i

YG,i (v )

Finally, define P1,C (v ) = −P1,A (v ) − P1,B (v ) and P2,C (v ) = −P2,A (v ) − P2,B (v ) and ,

RḠ (v ) = QḠ (v ) +
1

qḠ

[
ΛḠ (v ) −

∫ v

1

P1,Ḡ (д
−1
Ḡ
(t ))dt −

∫ v

1

P2,Ḡ (д
−1
Ḡ
(t ))dt

]
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Observe that the function RḠ satisfies all the requirements of Theorem K.3. Thus, there exist
distributions fḠ such that

x (1 − FḠ (x )) =

x ,0 ≤ x < 1

RḠ (x ) ,1 ≤ x ≤ H
.

Set λḠ = −ΛḠ , γG (v ) = −P ′1,G (v ) and ΓG (·) : XG → R to be the unique function such that
∑

x>v Γ(x ) = P2,G (v ).
Observe that the dual defined by (λḠ ,γG ,ΓG ) satisfies all the requirements of the theorem.

□

K.3. Omitted Proofs in subsubsection J.3.1

Proof of Theorem J.7. We verify each of the constraints in Equation 23 and leave verifying
feasibility using Equation 21 to the reader. The constraints (23a), (23b) are verified easily. The
constraint (23c) is true because λG (v ) = 0 throughout. The constraint (23d) holds because for all
v ∈ (ρ,H + 2), we have

∫ v

0

a∗C (t )dt = v − ρ
∫ дB (v )

0

a∗B (t )dt =

∫ v

0

a∗B (t )dt = v − ρ
∫ дA (v )

0

a∗A (t )dt =

∫ дA (v )

2

a(t − 2)dt =
∫ дA (v )−2

0

a(t )dt = A(дA (v ) − 2) = v − ρ.

and the three quantities are equal. Finally, the constraint (23e) is satisfied because Γ is zero through-
out.

□

K.4. Omitted Proofs in subsubsection J.3.2

Recall that x1 =
4H
5 + 1, y1 =

3H
4 + 1, and xi =

8
3
H
2i
+ 1 , yi =

8
5
H
2i
+ 1 for i > 1. This implies the

equations

∀i > 1 : xi − yi =
16H

15 · 2i . (29a)

∀i > 1 : yi − xi+1 =
4H

15 · 2i . (29b)

∀i > 1 :
1

2
(xi+1 − yi+1) + 2 (yi − xi+1) = (yi − yi+1) (29c)

5y2 + 16y1 = 21x2. (29d)

We will need the following lemma:

Lemma K.4. For all i > 0 and v ∈ [yi+1,yi ],
∫ дG (v )

дG (yi+1 )

a∗G (x )dx ≤
∫ v

yi+1

a∗C (x )dx .

Moreover, equality holds if v = yi .

Proof. We calculate the three quantities:

EC’20 Session 2e: Revenue Maximization

254



∫ дA (v )

дA (yi+1 )

a∗A (t )dt =



10
13 (дA (v ) − дA (y2)) ,i = 1,v ≤ x2
10
13 (дA (x2) − дA (y2)) + (дA (v ) − дA (x2)) ,i = 1,v > x2
40

13·2i (дA (v ) − дA (yi+1)) ,i is even
40

13·2i+1 (дA (v ) − дA (yi+1)) ,i is odd,v ≤ xi+1
40

13·2i+1 (дA (xi+1) − дA (yi+1)) +
40

13·2i−1 (дA (v ) − дA (xi+1)) ,i is odd,v > xi+1

∫ дB (v )

дB (yi+1 )

a∗B (t )dt =



40
13·2i+2 (v − yi+1) ,i is even,v ≤ xi+1

40
13·2i+2 (xi+1 − yi+1) +

40
13·2i (v − xi+1) ,i is even,v > xi+1

40
13·2i+1 (v − yi+1) ,i is odd
∫ v

yi+1

a∗C (t )dt =
20

13 · 2i (v − yi+1)

We now prove the result for i = 1. In this case, as the expressions for B and C are the same, it is
sufficient to show that

∫ дA (v )

дA (yi+1 )

a∗A (t )dt =


5
13 (v − y2) ,v ≤ x2
5
13 (x2 − y2) + 2v − 2x2 ,v > x2

=


5
13 (v − y2) ,v ≤ x2

2v − 10y2
13 −

16y1
13 ,v > x2

(Equation 29d)

≤ 10

13
(v − y2) =

∫ v

yi+1

a∗C (t )dt (As v < y1)

We now prove for even i > 1. The case for odd i is similar. Note that дA (xi ) =
xi+1
2 and

дA (yi ) =
yi+1
2 for all i > 1. In this case, as the expressions for A and C are the same, it is sufficient

to show that
∫ дB (v )

дB (yi+1 )

a∗B (t )dt =


40
13·2i+2 (v − yi+1) ,v ≤ xi+1

40
13·2i+2 (xi+1 − yi+1) +

40
13·2i (v − xi+1) ,v > xi+1

=


10

13·2i (v − yi+1) ,v ≤ xi+1
20

13·2i (yi − yi+1) +
40

13·2i (v − yi ) ,v > xi+1
(Equation 29c)

≤ 20

13
(v − yi ) =

∫ v

yi+1

a∗C (t )dt (As v < y1)

The moreover part can be observed by putting v = yi in our equations. □

Proof of Theorem J.9.

Feasibility We verify the feasibility constraints in Equation 21. It is straightforward to verify that
a∗
Ḡ
are monotone (constraint (21c)) and take values in [0,1] (constraint (21d)). Finally, the constraint

(21b) holds because of Theorem K.4.

Optimality We verify all the constraints in Equation 23. The constraints (23a), (23b) are straight-
forward to verify from the definition of a∗G . The constraint (23c) follows from the fact that λC (v ) is
0 throughout and

λA (v ) > 0 =⇒ ∃i > 0 : v ∈ (дA (x2i+1),дA (x2i−1)) =⇒ a′∗A (v ) = 0

λB (v ) > 0 =⇒ ∃i > 0 : v ∈ (дB (x2i+2),дB (x2i )) =⇒ a′∗B (v ) = 0
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The constraint (23d) holds because γG (v ) is 0 throughout. For the constraint (23e), we need to prove
that for all yi

∫ дA (yi )

0

a∗A (x )dx =

∫ дB (yi )

0

a∗B (x )dx =

∫ yi

0

a∗C (x )dx

which holds because of (the moreover part of) Theorem K.4
□
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