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1 INTRODUCTION

We consider a revenue-maximizing auctioneer with a single item to sell to multiple bidders. Starting
from Myerson’s seminal work, it is traditionally assumed that the seller can commit to an auction
format but that buyers must be incentivized to report their true values. Several recent works have
moved beyond this assumption in repeated auctions, for example, where sellers can commit to a
particular auction today, but not to their behavior tomorrow (e.g., [7, 13, 15]). Even more recent
work of Akbarpour and Li proposes a framework also for one-shot auctions [1]. Our paper fits
within this later framework.

Specifically, each buyer i has value vi for the item, which is drawn independently from a
distribution Di , and the seller knows these distributions but not the precise values. As in [16],
we seek auctions which are incentive compatible, and optimal among all incentive compatible
auctions. [1] introduces a new desideratum, credibility. Informally, an auction is credible if the
auctioneer themselves is incentivized to execute the auction in earnest, even when permitted to
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cheat in ways that are undetectable to the bidders (see Section 2 for a formal definition in single-item
auctions).

Akbarpour and Li prove a comprehensive trilemma for single-item auctions: Myerson’s auction
is the unique truthful, one-round, revenue-maximizing auction, but it is not credible. Moreover,
the ascending-price auction (with reserves) is the unique truthful, revenue-maximizing, credible
auction, but it requires an unbounded number of rounds (that is, the number of rounds until
termination cannot be bounded by any function only of the number of bidders. Even with two
bidders, the number of rounds required is a function of the distributions). Finally, the first-price
auction (with reserves) is the unique revenue-maximizing, credible, one-round auction, but it is not
truthful.
Classical auction theory might take truthfulness as a first-order concern, and view the tradeoff

between bounded-round and credibility as a second-order concern. But as more and more auctions
are run online, credibility is not just a łbonus featurež, but a serious consideration. Specifically,
reserve price-setting in ad auctions is often opaque, and a desire for transparency in execution has
led major ad exchanges to switch from truthful second-price auctions to non-truthful (but credible)
first-price auctions [14, 18]. At the same time, these auctions are executed in milliseconds and must
conclude before a search browser loads, so bounding the number of rounds is now a first-order
concern as well.

In this context, the trilemma of [1] may feel like a negative result: it is impossible to achieve all
three first-order desiderata at once. Our main result circumvents their trilemma and provides a
truthful, revenue-maximizing, credible, two-round auction, under the assumption of basic crypto-
graphic primitives. That is, viewed through the framework of [1] verbatim, our auctions are not
credible (see Section 4 for an example). But, provably, no auctioneer can find a profitable deviation
without breaking standard cryptographic assumptions.

Interestingly, our construction is not a magic bullet with a trivial proof Ð we must still carefully
reason about the incentives of the auctioneer within our framework. Informally, our main results
are (all under the assumption of a cryptographically secure commitment scheme, see Section 2 for
formal assumption, and also for formal definitions of distribution classes):

• When all Di are MHR, there is a truthful, revenue-maximizing, credible, two-round auction
(Theorem 4.1).
• When all Di are α-strongly regular for any α ∈ (0, 1), there is a truthful, revenue-maximizing,
ε-credible, two-round auction (Theorem 4.2).
• When there is a single bidder whose distribution is α-strongly regular for any α ∈ (0, 1),
there is a truthful, revenue-maximizing, credible, two-round auction (Proposition 4.1).
• This auction is not necessarily credible when there is a single buyer from a regular distribution,
so extensions to regular distributions are not possible (Theorem 4.3).
• For any α ∈ (0, 1), this auction is not necessarily credible when all Di are α-strongly regular,
so the ε is necessary in bullet two (Theorem 4.4).

1.1 Brief Technical Overview

Our auctions are still fairly simple and require only the basic cryptographic primitive of commitment
schemes. Informally, a commitment scheme allows a sender to send a commitment ci to a bid bi ,
such that any user who sees only ci learns absolutely nothing about bi . Moreover, the sender can
later reveal bi , in a way that proves they committed to bi in the first place (assuming the sender is
computationally bounded). So our skeleton is simply to (a) ask each bidder to commit to their bid,
(b) forward these commitments to all other bidders, (c) ask each bidder to reveal, (d) forward these
revealed bids to all other bidders. We formalize this strawman auction in Section 3.
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The outlook for this strawman auction initially looks promising: it is truthful, revenue-optimal,
and two-round. Like in the auctions considered in [1], the primary way in which the auctioneer
can deviate is by submitting fake bids. It is not too hard to argue that if the auctioneer must reveal
all committed bids, then there is no way the auctioneer can deviate from being honest in a way
that is both undetectable and profitable. However, the auction must have a well-defined execution
even if some bids are concealed (that is, the committed bid is never revealed). Should the auction
simply stall? If so, it is undoubtedly in the auctioneer’s interest to reveal all bids. Still, this auction
is extremely not robust to latency, or an adversarial attack (simply commit a bid and disappear).
Perhaps the auction should reboot? This also seems undesirable, as now the auctioneer has learned
some private information.
A natural suggestion (implemented in the strawman auction) is instead to replace all missing

bids with 0. This change, however, now gives the auctioneer a new class of potential deviations:
they can commit to many different fake bids and reveal them selectively based on the true bids. It
is not hard to see that this auction is not credible.
We propose a straightforward modification, which is to fine any bidder who commits but does

not reveal, and pay this fine to the winning bidder. Now, the auctioneer faces a tradeoff: they can
still commit to as many fake bids as they like, and they can still selectively reveal them. But for
every bid they choose to conceal, they pay a fine. The entire technical portion of this paper is
understanding when a sufficiently large fine exists to disincentivize the auctioneer from cheating
in this particular way, and how large this fine must be. The bullet points above summarize our
findings: such fines exist when all distributions are MHR, and (almost) exist when all distributions
are α-strongly regular, but do not necessarily exist even with one buyer from a regular distribution.

1.2 Related Work

We have already overviewed the most related work above: we work in the model proposed by [1],
additionally with cryptographic primitives. There is a substantial literature generally on secure
multi-party computation since Yao’s millionaire problem [19] (see chapter 7 of [10] for a survey on
the topic), most of which is unrelated to our paper.
The easiest distinction between (most of) these works and ours is that they are not Sybil-proof.

Specifically, there is some trusted setup where every participant has an identity. Results such as [17]
replace commitments with strong public-key infrastructure in our strawman proposal. Specifically,
such protocols assume that a majority of participants are honestly following the protocol. In online
auctions, there is no hope of preventing the auctioneer from creating thousands of fake bidders
if it will (undetectably) increase their revenue (so while a majority of łreal participantsž may be
honest, the łdigital participantsž are nearly-unanimously not following the protocol). A second
distinction is that these protocols are often extremely complex, and certainly do not terminate
in two rounds. Indeed, a central challenge for modern research in multi-party computation is
developing practically reasonable protocols.

Our work is not the first to propose the use of fines to disincentivize participants from aborting
a protocol [2, 3], as there are known impossibility results (without monetary incentives) when
participants can abort [5].

1.3 Roadmap

Section 2 formalizes our problem of study, including cryptographic primitives. Section 3 analyzes
the strawman auction as a warmup. Section 4 proposes our auction, proves some basic facts, and
states our main results. Sections 5 through 7 prove our main results. All technical sections present
intuition, along with proofs (although some technical lemmas are deferred to the appendix).
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2 PRELIMINARIES

We first overview formalities with regards to auctions. Our model and definitions are identical
to [1], but repeated for clarity and completeness.

2.1 Auctions

There is a single seller with a single indivisible item and n bidders. Each bidder i has a private value
vi for the item, which is drawn from a distribution Di . We let D := ×iDi , and use Rev(D) to denote
the expected revenue of the optimal auction when buyers are drawn from D. To be concrete: each
bidder i knows only their value vi and type distribution Di , but not n or D−i . The seller knows n
and D.1

Communication and rounds. The seller communicates with each bidder using a private channel
(and this is the only communication Ð the bidders do not communicate with each other). In every
round, the following occurs: (a) each bidder chooses a message to send to the auctioneer, (b) the
auctioneer processes all received messages, (c) the auctioneer chooses a (personalized) message
to send to each bidder. At any point, the auctioneer may terminate and select a winner of the
item (potentially no one), and charge prices. Importantly, each bidder communicates only with
the auctioneer, and learns only whether or not they win the item and how much they pay upon
termination (if they lose, they do not learn who wins, nor how much the winner pays). We also
assume there is a default message ⊥, which is sent if the bidder stays silent during a round.

Game. Observe that the communication model induces an extended form game among the bidders
and the auctioneer. Like [1], we are interested in the case where the auctioneer commits publicly to
a strategy which terminates in finite rounds with probability 1. This induces an extended form game
among the bidders. We’ll refer to this game as the auction, and repeat the following definitions:

Definition 2.1 (Strategyproof/Ex-Post Nash/Individually Rational). An auction is strat-
egyproof if for all n ∈ N+, and for all i ∈ [n], there exists a mapping si (·) from values to strategies,
and additionally for all i and all ®v , si (vi ) is a best response of bidder i to ®s−i (®v−i ). That is, for all ®v , if
buyers’ valuations are ®v , then ⟨s1(v1), . . . , sn(vn)⟩ forms an ex-post Nash.2

In this paper, we will only consider auctions for which there is a unique s1(·), . . . , sn(·) that always
form an ex-post Nash, and refer to these strategies as łtelling the truth.ž
An auction is individually rational if telling the truth guarantees non-negative expected utility,

ex-post.

Definition 2.2 (Safe Deviation). A safe deviation for the auctioneer in the communication
game is a strategy which does not necessarily implement the promised auction, but for every bidder
i , their personal communication with the auctioneer and resulting allocation/price is consistent with
some (®s−i )

i := ⟨si1, s
i
2, ..., s

i
i−1, s

i
i+1, ..., s

i
ni
⟩ where bidder i believes there are ni total bidders, and each

sij is a valid strategy for the auction. Importantly, bidders can have inconsistent views of what is the

communication game, depending on their interaction with the auctioneer.

Observe quickly that if an auction is strategyproof, then the strategy of bidder i is independent
of ni , the number of bidder they believe to be in the auction.

1It is worth briefly noting that the Ascending Price Auction (and our auctions) are credible, even when the auctioneer can

misrepresent n and D−i . On the other hand, the Second Price Auction is not credible, even when all bidders know n and

D−i .
2In other words, an auction need not be direct-revelation in order to be strategyproof, but there must exist a strategy (si (vi ))

which bidder i can use which is akin to łreporting vi .ž
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Definition 2.3 (Credible). An auction is credible if, in expectation over ®v ← D, and conditioned
on buyers being truthful, executing the auction in earnest maximizes expected revenue over all safe
deviations.

Example 2.1 (Second-Price Auction). [1] establishes that the second-price auction is not credible.
Consider when v1 = 5 and v2 = 10. An earnest execution of the second-price auction would give the
item to bidder 2 and charge 5. However, the auctioneer could instead give bidder 2 the item and charge
9 Ð this is a safe deviation because it is consistent with buyer 1 bidding 9.

2.2 Computational Assumptions and Basic Cryptography

The main difference between our model and that of [1] is that we consider computationally-bounded
participants and the existence of basic cryptographic primitives.

Commitment Scheme. A commitment scheme is a function Commit(·, ·) which takes as input
a messagem, a one-time pad r , and outputs a commitment c . Informally, a scheme is computa-
tionally binding if a computationally-bounded seller cannot find anm , m′ and r , r ′ such that
Commit(m, r ) = Commit(m′, r ′). A scheme is perfectly hiding if the distribution of commitments
produced on messagem when r is uniformly random is independent ofm (and therefore, even a
computationally unbounded receiver learns nothing aboutm).

Assumption 2.1. There exists a cryptographic commitment scheme satisfying:

• (Efficiency) The function Commit(·, ·) can be implemented in time poly(|m |, |r |).
• (Computationally Binding) For any algorithm A which takes as input a length k , terminates
in expected time poly(k), and outputs m, r ,m′, r ′ with |m |, |m′ |, |r |, |r ′ | ≤ poly(k), A breaks

commitment w.p. ≤ 2−Ω(k ). Formally: Pr[Commit(m, r ) = Commit(m′, r ′), andm , m′] ≤

2−Ω(k ).
• (Perfectly Hiding) The distributions of Commit(m, r ) and Commit(m′, r ′), when r and r ′ are
uniformly random, are identical distributions for allm andm′.
• (Non-malleable) See [8, 9] for a formal definition (as formal definitions are quite involved).
Informally, imagine the following scenario: First, Alice sends c := Commit(m, r ) to Bob. Then,
Bob sends c ′ := Commit(f (m), r ′) to Charlie without knowingm, r . Then, Alice revealsm, r to
Bob. Then, Bob reveals f (m), r ′ to Charlie. In this example, Bob has modified Alice’s commitment
tom to instead be a commitment to f (m). While Bob does not necessarily knowm when creating
c ′, he does know that c ′ is a commitment to f (m) (whateverm happens to be), and he does know
how to reveal f (m), r ′ once he learnsm, r . If Bob can perform this style łman-in-the-middlež
attack (in poly-time) for a non-identity function f (·), then Commit(·, ·) is malleable. Informally,
Commit(·, ·) is non-malleable if the above scenario is feasible only when f (·) is the identity
function (but this is not a formal definition, see [8, 9]).

There are indeed commitment schemes which are believed to satisfy Assumption 2.1, such as the
Pedersen schemewith digital signatures.3 Note that the particular choice of a perfectly hiding (versus

3Briefly, the Pedersen scheme requires a group of prime order p under which the discrete logarithm is (believed to be) hard,

with generator д. Every potential receiver of a message raises д to a random power to get another generator h, and publicly

announces h. Then Commit(m, r ) := дm ·hr . Observe that for all c and allm, there exists a unique r such that дm ·hr = c

(so the scheme is perfectly hiding). But if a sender were able to break their commitment, this would explicitly learn logд (h),

so it is also computationally binding. As stated, the scheme is malleable: an adversary could see дmhr and multiply it by д2

to now get дm+2hr = Commit(m + 2, r ). The scheme can be made non-malleable by first using any non-malleable digital

signature scheme. Note that to use exactly the Pedersen commitment scheme (with digital signatures), every bidder i would

need to share their own hi in order to receive binding commitments (and a public key), which can be done in one additional

preprocessing round, and this preprocessing round could be done once and reused across indefinitely-many auctions.
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computationally hiding) scheme is not crucial for the spirit of our results. However, it does allow
significantly cleaner theorem statements. Similarly, our main positive result (Theorem 4.1) doesn’t
require non-malleability, although it does make proofs cleaner (our main extension, Theorem 4.2
necessarily requires non-malleability). Informally, Assumption 2.1 implies that unless the auctioneer
is relying on events which occur with probability at most 2−Ω(k ), or is computationally unbounded,
the auctioneer cannot perform an unreasonable deviation, defined below.

Definition 2.4 (Reasonable Deviation). Say that a commitment c is explicitly tied to (m, r )
if the participant (bidder or auctioneer) who created c explicitly computed c := Commit(m, r ). Note
that this implies a commitment c is explicitly tied to at most one (m, r ). A reasonable deviation for
the auctioneer in the communication game is a strategy such that whenever the auctioneer reveals a
commitment to c , with c = Commit(m, r ), c was explicitly tied to (m, r ).

Observe that one kind of unreasonable deviation would violate computational binding: the auc-
tioneer might compute c := Commit(m, r ), but later reveal that c := Commit(m′, r ′) (unreasonable
because c is explicitly tied to (m, r ), not (m′, r ′)). Another kind would violate non-malleability:
the auctioneer might receive commitments c1 := Commit(m1, r1), c2 := Commit(m2, r2) and send
c3 := Commit(max{m1,m2}, r1 + r2) without knowing m1,m2 (unreasonable because c3 is not
explicitly tied to anything).

Definition 2.5 (Computationally Credible). An auction is computationally credible if, in
expectation over ®v ← D, and buyers being truthful, the auctioneer maximizes their expected revenue,
over all deviations which are both safe and reasonable, by executing the auction in earnest.

An auction is computationally ε-credible if executing the auction in earnest yields a (1 − ε)-fraction
of the expected revenue of any safe, reasonable deviation.

Our main results will design auctions that are computationally credible (Theorem 4.1). One of
our extensions will design an auction which is computationally ε-credible (Theorem 4.2), and some
of our lower bounds rule out ε-credible mechanisms for ε arbitrarily close to one (Theorem 4.3).

2.3 Virtual Values

For a continuous single-dimensional distribution with CDF F and PDF f , the virtual value of x is

φF (x) := x −
1−F (x )
f (x ) . We also use hF (x) :=

f (x )
1−F (x ) the hazard rate of F . We drop the superscript F if it

is clear from context, and will use subscripts of i instead of superscripts of Di (e.g. hi (x) := h
Di (x)).

Seminal work of Myerson asserts that the expected revenue of any strategyproof mechanism is its
expected virtual welfare.

Theorem 2.1 ([16]). Let a strategy proof mechanism award bidder i the item with probability xi (®b)

on bids ®b, and charge them pi (®b). Then:

E ®v←D

[

n
∑

i=1

pi (®v)

]

= E ®v←D

[

n
∑

i=1

xi (®v)φi (vi )

]

Finally, we conclude with a definition of classes of distributions which are relevant for our results.

Definition 2.6 (Regular, MHR, α-Strongly Regular). A distribution F is α-strongly regular
if for all v ′ ≥ v , φF (v ′) − φF (v) ≥ α(v ′ −v). A distribution is regular if it is 0-strongly regular, and
monotone hazard rate (MHR) if it is 1-strongly regular.

3 STRAWMAN COMPUTATIONALLY CREDIBLE AUCTIONS

We propose a simple modification to any direct revelation mechanism, which turns these one-round
mechanisms into two-round mechanisms. In round one, the buyer’s communication is simply a
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commitment to a bid. The auctioneer’s communication is to forward these commitments to all
bidders. In round two, the buyer’s communication is to decommit (reveal their bid to the auctioneer).
The auctioneer’s communication is to forward all (decommitted) bids to the buyers. We use the
terminology reveal ci when a message (mi , ri ) such that Commit(mi , ri ) = ci is sent, and conceal ci
when some other pair is sent instead.

Definition 3.1 (Strawman Auction). Let Commit(·, ·) be a commitment scheme satisfying As-
sumption 2.1. For a given direct revelation mechanism, with allocation rule ®x(·) and payment rule ®p(·),
Strawman(®x , ®p) is the following auction:

1st Round:

• Each bidder i picks a bid, bi , draws ri uniformly at random, and sends ci := Commit(bi , ri ).
• The auctioneer sends each commitment to all buyers.

2nd Round:

• Each bidder i sends (bi , ri ) to the auctioneer.
• The auctioneer forwards each (bi , ri ) to all buyers.

Resolution:

• Let S denote the set of bidders for which ci = Commit(bi , ri ), and let b
′
i := bi · I (i ∈ S). Allocate

and charge payments according to ®x(®b ′), ®p(®b ′).

In particular, observe that the auction’s behavior must be well-defined even when not all com-
mitments are revealed. We quickly observe that the Strawman Auction preserves incentive compat-
ibility:

Observation 3.1. Let (®x , ®p) be a strategyproof, individually rational, direct revelation mechanism.
Then Strawman(®x , ®p) is also strategyproof and individually rational. In particular, it is an ex-post
Nash for each bidder to set bi := vi , and to reveal in round two.

Proof. Because (®x , ®p) is individually rational, no bidder can benefit by replacing their bid with
0 by concealing in round two. Given that bidder i will reveal, and that all other bidders will also
reveal,4 it is best for bidder i to commit to vi (because (®x , ®p) is strategyproof). □

Observation 3.1 establishes that this modification preserves strategyproofness. One might hope
that it also encourages the auctioneer to behave honestly (if ®x , ®p is the revenue-optimal auction)
because they do not know any of the buyers’ bids before round two. So while the auctioneer can
create fake bidders and submit fake bids, it seems like these bids may simply act as a reserve. And
indeed, if the auctioneer must reveal all fake bids, the only reasonable deviations are to reveal the
precise fake bids selected in round one (which was chosen with no information about buyers’
values). Therefore, the Strawman optimal auction would be computationally credible by the same
reasoning used in [1] for the ascending price auction.

Unfortunately, the auction’s behavior must be well-defined even when some bids are concealed,
and the auction cannot merely stall. For example, bidders may naturally drop out between rounds
due to latency issues, or attackers may adversarially bid and conceal to stall the system. Restarting
the auction is perhaps even worse, as now the auctioneer has learned some private information
from those bidders who did participate honestly. This means that while it is not a safe, reasonable
deviation for the auctioneer to change their commitment, it is indeed a safe, reasonable deviation

4Note that this is necessary: it is not a dominant strategy to be honest. Bidder 1 could use a weird strategy łCommit to

c1 := (∞, 0). If I am sent a commitment of c = Commit(5, 12), then conceal. Otherwise, reveal.ž If bidder 1 uses this strategy

(and you are the only other bidder), it is a better response to just send Commit(5, 12) and reveal, rather than being honest.
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for the auctioneer to simply conceal some fake bids. The following example establishes that such
deviations violate computational credibility of the Strawman auction.

Example 3.1 (Strawman is not computationally credible). Consider that there is a single
(real) buyer, whose value is drawn uniformly from {1, 2}, and consider the Strawman second-price
auction with reserve 1, which tie-breaks lexicographically. The auctioneer will get expected revenue 1
by being honest (which is optimal among all strategyproof auctions). Instead, they could create a fake
bidder, and always commit to b2 = 2. After bidder 1 reveals in round 2, the auctioneer can either (a)
reveal b2, if b1 = 2, causing b ′2 = 2 and yielding revenue 2 or (b) conceal, if b1 = 1, causing b ′2 = 0 and
yielding revenue 1. This gets the auctioneer expected revenue 3/2.

The main takeaway from this section is that the Strawman auction serves as a good base for a
computationally credible, strategyproof auction; however, we cannot force the auctioneer (or any
bidder, for that matter) to reveal their bids. Our solution in Section 4 is to instead fine all bidders
(including fake bidders) who conceal, to disincentivize this particular safe, reasonable deviation.

4 DEFERRED REVELATION AUCTION

In this section, we describe the Deferred Revelation Auction (DRA) and prove basic facts that will
be useful throughout all of our analyses. Rather than state the auction as a reduction, we directly
apply it to Myerson’s revenue-optimal auction. Below, recall that φ̄(·) is Myerson’s ironed virtual
value function, which is the upper concave envelope of φ(·) (for further details, see [11, 16]). Recall
also that, by [16], the allocation rule of the revenue-optimal single-item auction is to award the item
to the buyer with the highest non-negative ironed virtual value (tie-breaking lexicographically).5

Definition 4.1 (Deferred Revelation Auction). Let Commit(·, ·) be a commitment scheme
satisfying Assumption 2.1. For a given fine function f (·, ·), DRA(f ) is the following auction:

1st Round:

• Each buyer i picks a bid, bi , draws a one-time pad ri uniformly at random, and sends ci :=
Commit(bi , ri ). The distribution Di from which vi is drawn is known to the auctioneer.
• The auctioneer sends (ci ,Di , i) to all buyers. Let ni denote the number of tuples sent to buyer i
(including their own).

2nd Round:

• Each buyer i sends (bi , ri ) to the auctioneer.
• The auctioneer forwards each (bi , ri ) to all buyers.

Resolution:

• Let S denote the set of buyers for which ci = Commit(bi , ri ), and let b ′i := bi · I (i ∈ S). Let
i∗ := argmaxi ∈S {φ̄i (bi )}.
• If φ̄i∗ (bi∗ ) > 0, award buyer i∗ the item. Charge them φ̄−1i∗ (max{0,maxi ∈S\{i∗ }{φ̄i (bi )}}).

6

• Additionally, all i < S pay buyer i∗ a fine equal to f (ni∗ ,Di∗ ).

Tie-breaking:

• All ties are broken lexicographically, with the auctioneer treated as łbuyer zerož. With this, we
will write all inequalities as > or <, taking this tie-breaking already into account.

Above, we are essentially running the optimal Strawman auction, but fining any buyers who
conceal and paying these fines to the winning buyer. Intuitively, this helps in the following way:

5When we say łtie-break lexicographicallyž, we mean łbreak all ties in favor of the lowest-indexed bidderž.
6Here, we define the inverse of a monotone function д(·) to be д−1(y) = infx {x | д(x ) ≥ y }.
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during round one, the auctioneer can certainly gamble and commit to several fake bids. However,
they run the risk of accidentally overshooting the winning bid. In the Strawman auction, they
could simply conceal these bids. In DRA(f ), they must instead pay some fine f (ni∗ ,Di∗ ). Intuitively,
it seems that if the fine is large enough, the auctioneer would rather just be honest than commit
to any fake bids and run the risk of paying a huge fine. This turns out to be true when each Di is
MHR, but not in general. Before stating our main results, we recap the safe, reasonable deviations.

(1) The seller might create fake buyers during round one.
(2) The seller may selectively choose which commitments to send to buyer i .
• The seller might not send c j at all.
• The seller might send c j , but with some D ′j instead of the true D j .

• If Commit(·, ·) were malleable, the seller could apply some function д(·) to bj and forward
instead c ′j = Commit(д(bj ), r j ). We assumed in Assumption 2.1 that Commit(·, ·) is non-

malleable to avoid this, although Theorem 4.1 holds even without this assumption.

• All of these might depend on ®b−i , but not bi .
7

(3) The seller might conceal a commitment. This decision can depend on the entire ®b.

Before reasoning about computational credibility, we quickly observe that DRA(f ) is indeed
strategyproof and optimal.

Observation 4.1. For all f , DRA(f ) is strategyproof and revenue-optimal.

Proof. DRA(f ) is clearly optimal, as it simply runs Myerson’s auction. It is also strategyproof:
because Myerson’s auction is individually rational, buyers have no incentive to conceal their
commitment in round two. Given that all buyers will reveal their commitments, it is in buyer i’s
interest to commit to vi , because Myerson’s auction is truthful. □

It is more challenging to reason when DRA(f ) is computationally credible. While there are many
ways the seller might deviate, our approach to upper bounding the seller’s revenue, fortunately,
boils down to one vector of parameters determined by the seller’s decisions during round one.

Definition 4.2. For a triple (c j = Commit(bj , r j ),D j , j) sent to bidder i , denote the effective bid
by βi j := φ̄−1i (φ̄ j (bj )). We call the effective commitment to buyer i as βi := max{φ̄−1i (0),maxj {βi j }}.

We call the effective reveal to buyer i as γi := max{φ̄−1i (0),maxj,c j is revealed to i {βi j }}.

Recall that βi is a function only of ®b−i , and γi is a function of βi and ®b.

Observation 4.2. For all f , under any safe, reasonable deviation to DRA(f ), bidder i receives the
item if and only if vi > γi . Therefore, vi > γi for at most one bidder.

We now quickly show that Observation 4.2 is enough to show that DRA(f ) is computationally
credible whenever each Di is bounded.

Observation 4.3. Let each Di be bounded, and let f (n,Di ) := inf{x : Prv←Di
[v > x] = 0} + 1.

Then DRA(f ) is optimal, strategyproof, and computationally credible for the instance D = ×iDi .

Proof. Optimality and strategyproofness follow directly from Observation 4.1. To see that
DRA(f ) is computationally credible, observe that the auctioneer will certainly get negative revenue
if they ever conceal a fake bid sent to buyer i and sell them the item (because buyer i will pay at
most inf{x : Prv←Di

[v > x] = 0}, while the auctioneer must pay a strictly larger fine). Therefore,
any optimal safe, reasonable deviation has vi < γi ⇔ vi < βi . Indeed, the⇐ implication is trivial,

7For example, the seller might solicit a commitment from all buyers. Then, in increasing order of i , they could forward

some commitments to buyer i , and ask i to reveal. Then, after terminating this for all buyers, they could go back and reveal

commitments. As far as any individual buyer can tell, the timeline appears correct based on their interaction with the seller.
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as γi ≤ βi . The⇒ implication follows because the auctioneer would get negative revenue selling
the item to buyer i , and could strictly improve their revenue by just revealing all commitments and
not selling the item.

Once we have this implication, observe that buyer i now wins the item if and only if vi > βi , and

βi is a function of ®b−i . Moreover, when buyer i wins, they will pay βi . This is a truthful mechanism,
and therefore it achieves revenue no better than Myerson’s optimal auction. To recap: we have
shown that every safe, reasonable deviation is strictly outperformed by another deviation, which
implements a truthful mechanism, which is outperformed by executing the auction in earnest. □

Observation 4.3 illustrates one idea to reason about computational credibility ofDRA(f ), but does
not really shed much insight, as it is essentially just forcing the auctioneer to reveal all commitments.
Our main results, therefore, concern unbounded distributions (or significantly shrinking the fines
necessary for bounded distributions), where there do not exist sufficiently large fines to trivially
force the auctioneer to always reveal. We begin with our positive results. Below, r (D0) denotes the
Myerson reserve for a one-dimensional distribution D0.

Theorem 4.1. Let f (n,Di ) := r (Di ).
8 Then when all Di are MHR (bounded or unbounded), DRA(f )

is optimal, strategyproof, and computationally credible.

Theorem 4.2. For all ε,α > 0, there exists an f (·, ·) such that f (n,Di ) ≤ polyα (n, r (Di ), 1/ε) for all
n,Di ,

9 such that when all Di are unbounded and α -strongly regular, DRA(f ) is optimal, strategyproof,
and computationally ε-credible.

Theorem 4.2 can be improved to remove the ε when there is just a single bidder, but not otherwise
(see Theorem 4.4 shortly after).

Proposition 4.1. Moreover, for all α > 0, there exists an f (·, ·) with f (n,D0) := Θα (r (D0)) for all
n, such that when D0 is α-strongly regular, DRA(f ) is optimal, strategyproof, and computationally
credible when there is a single (real) buyer from D0.

10

Theorem 4.1 is our main positive result: it asserts that there is a reasonably-sized fine, which
depends only on Di and not even on n, such that these fines are sufficient to deter the auctioneer
from submitting fake bids. Proposition 4.1 extends Theorem 4.1 to α-strongly regular distributions
when there is just a single (real) bidder. Theorem 4.2 is an extension to multiple bidders, but is
a relaxation in two ways: the mechanism is only ε-credible, and the fine now depends on n. Our
main negative results establish that these are necessary, and Theorem 4.2 is essentially the limit
of what DRA(f ) achieves within the framework of α-strongly regular distributions. Our negative
results are as follows:

Theorem 4.3. There exists an unbounded regular distribution D0, such that for all f (·, ·), DRA(f )
is not computationally ε-credible for the instance D0 and any ε < 1.

Theorem 4.4. For all f (·, ·), all α < 1, and all n > 1, there exists an unboundedD0 that is α -strongly
regular such that DRA(f ) is not computationally credible for the instance D := ×ni=1D0.

8Note that when Di is MHR, r (Di ) = Θ(Rev(Di )) [4].
9By the notation polyα (·), we mean that for all fixed α , the fine is poly(n, D(ri ), 1/ε ). The precise fine which we prove

suffices is f (n, Di ) :=
(

2n2

εα

)
1−α
α
· (1 − α )−1/α · r (Di ).

10The precise fine which we prove suffices is f (n, D) := r (D)

((

1
1−α

)
1

1−α
1
α

)
1−α
α

.
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Before continuing, let us parse the results, which clearly distinguish between MHR, α-strongly
MHR, and regular distributions. On one extreme, DRA works as well as could be hoped for when all
distributions are MHR: there is a fine which is independent of the number of buyers which suffices to
ensure that DRA is computationally credible. On the other extreme, DRA does not work well at all
for arbitrary regular distributions: even when n = 1, there may not exist a sufficiently large fine to
discourage the auctioneer from cheating, and cheating may yield unboundedly more revenue than
honesty. In the middle, we see that Theorem 4.2 does not distinguish between different values of
α ∈ (0, 1). In this range, positive results are possible, but not quite so strong as for MHR distributions.
Moreover, the positive results we prove for DRA(f ) are tight.
We conclude this section by revisiting our simple example under DRA instead of Strawman.

Section 5 follows immediately afterwards, and proves Theorem 4.3 (perhaps unsurprisingly, the
witness D0 is the equal-revenue curve). This will give an intuition for the technical challenges,
and why stronger assumptions are necessary to have the positive results in Theorems 4.1 and 4.2,
whose proofs follow in Sections 6 and 7.

Example 4.1. Consider that there is a single (real) buyer, whose value is drawn from D1, which is
the uniform distribution on {1, 2}. Let also f (n,D1) := 1 for all n. Consider now the auction DRA(f ).
The auctioneer will get expected revenue 1 by being honest and not submitting any fake bids (which is
optimal among all strategyproof auctions). Instead, the auctioneer could submit any number of fake
bids. It is clear that it only makes sense to submit fake bids of 2, and also that it is unnecessary to
submit multiple fake bids of the same value.
In order to be a reasonable deviation, if the auctioneer submits a fake bid of b2 = 2, then after

buyer 1 reveals in round 2, the auctioneer can either reveal b2 = 2, or conceal. In order to be a safe
deviation, the auctioneer must set a price of b2 to buyer 1 if they reveal, and set a price of 1 otherwise.
In particular, observe that while the auctioneer can guarantee revenue 2 when b1 = 2 (by revealing),
the best revenue they can guarantee when b1 = 1 is 0. If they reveal, then they pay no fines but also
receive no payment. If they conceal, then they get payment of 1, but also pay a fine of 1, for a net
payment of 0. Therefore, no matter what strategy the auctioneer uses, they get revenue at most 1 in
expectation, the same as being honest.
Observe that if we only consider safe (but unreasonable) deviations, then the auctioneer could

commit to b2 = 2, but reveal instead a commitment to b2 = 1 when b1 = 1. Of course, doing so would
require breaking the cryptographic commitment scheme, an event that can be made less likely than the
inverse number of atoms in the universe. So this mechanism is not credible, but only computationally
credible, and this example highlights the distinction.

5 EXAMPLE: DRA ON REGULAR DISTRIBUTIONS

In this section, we prove Theorem 4.3. The main intuition is that the equal-revenue curve is so
heavy-tailed that no matter how big the fines are, there are always some sufficiently-high fake bids
that the auctioneer can set to extract additional revenue while barely ever paying the fine.

Proof of Theorem 4.3. Let D0 denote the equal-revenue distribution, which has CDF 1 − 1/x
on [1,∞). The optimal revenue that the seller can achieve by earnestly running a truthful auction
for one bidder drawn from D0 is 1. Consider now any fine function f (·, ·), and simply refer to
Ln := f (n + 1,D0) as the fine the seller must pay per hidden fake bid, if they submit n fake bids. We
show in fact that for all f (·, ·), there not only exists a safe, reasonable deviation which achieves
revenue > 1, but also one that achieves revenue > r for any r .

For a given r , let n ≥ r +2. Consider now the following construction of fake bids: Set bi := n
2i ·Ln

for all i ∈ [n]. For simplicity of notation, define bn+1 := ∞. The seller’s strategy is then:

• Commit to a bid bi for all i ∈ [n].
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• When the bidder’s bid b is revealed:
– If b < b1, reveal all bids.
– Otherwise, if b ∈ [bi ,bi+1), reveal bids b1, . . . ,bi , and conceal bi+1, . . . ,bn .

We now want to compute the seller’s expected revenue for this strategy. We do this by first upper
bounding the total expected fines that the seller will pay.

Claim 5.1. The total expected fines paid by the seller in expectation is at most 1/n.

Proof. Observe that the seller only ever pays a fine when b > b1. Because b is drawn from the
equal-revenue curve, this occurs with probability at most 1/b1 = 1/(n2Ln). Moreover, the seller
submits only n fake bids, and therefore the total fine they pay, conditioned on paying a fine at all, is
at most nLn . Therefore, the total expected fines paid by the seller in expectation is at most 1/n. □

Next, we show that the seller’s expected payment received by the buyer is still large.

Claim 5.2. The expected revenue that the seller receives is at least n − 1/n.

Proof. We compute the probability that the buyer pays exactlybi , for all i . Observe that the buyer
pays exactly bi whenever b ∈ [bi ,bi+1] which occurs with probability exactly 1/bi − 1/bi+1, because
b is drawn from the equal-revenue curve. As bi+1 = n

2bi , this probability is exactly (1 − 1/n2)/bi
(or this is a lower bound, when i = n). Therefore, the expected revenue can be written as:

n
∑

i=1

bi · Pr[buyer pays exactly bi ] ≥
∑

i

bi · (1 − 1/n
2)/bi = n − 1/n.

□

Claims 5.1 and 5.2 together establish that the seller achieves expected revenue at least n−2/n ≥ r ,
as desired. □

The key feature of the equal-revenue curve which drives the proof of Theorem 4.3 is that for
all probabilities p, there exists an optimal reserve which is exceeded with probability at most
p. This allowed us to set extremely high łreservesž, to get revenue as if we are setting each of
these reserves independently, while also paying fines so extremely rarely that it barely matters. In
Appendix D, we show that it is really a condition like this which drives Theorem 4.3, and not just
that the equal-revenue curve has infinite expectation (by providing an example of a distribution
with infinite expectation and a choice of f for which DRA(f ) is computationally ε-credible for that
distribution). We will also try to use this as intuition when explaining our (more technical) proofs
for the MHR and α-strongly regular cases.

6 DRA IS CREDIBLE FOR MHR DISTRIBUTIONS

In this section, we consider the performance of DRA on MHR distributions. Drawing intuition from
what drove the proof of Theorem 4.3, the key feature which enables a strong positive result for
(even unbounded) MHR distributions is that the revenue generated by reserves significantly above
the optimal reserve shrinks exponentially fast.

Recall from Section 4 that βi denotes the effective commitment to buyer i , and that it is a function

of ®b−i . Our analysis breaks down the expected revenue achieved by the seller using any round one
strategy into two terms: revenue from cases where there exists an i such that bi > βi , and revenue
when all i satisfy bi < βi . The first case, which we proceed with now, has similarities to the analysis
in Section 4, but is more precise so that it can be combined with the second case.
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Lemma 6.1. For any D, f , consider any strategy of the seller, which is a safe, reasonable deviation

to DRA(f ). Let R(®b) denote the revenue achieved by the seller on bids ®b using this strategy. Then:

E ®v←D [R(®v) · I (∃ i,vi > βi )] ≤ E ®v←D [maxj {φ j (vj )} · I (∃ i,vi > βi )].

Proof. Observe first that by Observation 4.2, whenever there exists an i such that vi > βi , there
is a unique such i (otherwise, each such i certainly satisfies vi > γi as γi ≤ βi , which contradicts
Observation 4.2). So consider the allocation rule which awards the item to bidder i if and only if
vi > βi , and charges them βi . Observe first that the expected revenue of this allocation rule is at
least E ®v←D [R(®v) · I (∃ i,vi > βi )]. Indeed, if the seller chooses to reveal all commitments sent to
bidder i , then this will be exactly the expected revenue. If the seller (sub-optimally) chooses instead
to conceal some commitments, they simply pay additional fines and get less revenue.
Importantly, observe also that this allocation rule is monotone, as βi doesn’t depend on vi .

Moreover, observe that this allocation/payment rule is truthful. Therefore, Myerson’s Lemma
implies that its expected revenue is exactly its expected virtual surplus, and its expected virtual
surplus is exactly E ®v←D [

∑

i φi (vi ) · I (vi > βi )]. This gives the following chain of inequalities:

E ®v←D [R(®v) · I (∃ i,vi > βi )] ≤ E ®v←D

[

∑

i

βi · I (vi > βi )

]

= E ®v←D

[

∑

i

φi (vi ) · I (vi > βi )

]

≤ E ®v←D

[

maxj {φ j (vj )} · I (∃ i,vi > βi )
]

.

The first line follows from the reasoning in the first paragraph: DRA(f ) will charge bidder i
at most βi when they win. The second line is just Myerson’s lemma. The final line is just upper
bounding a particular virtual value with the maximum virtual value and uses Observation 4.2 to
conclude that no more than one indicator variable in the sum can be non-zero. □

The second step is now to bound the optimal revenue the seller can get from cases where vi < βi
for all i . The following technical lemma will be a crucial step in this part of the analysis. Intuitively,
Lemma 6.2 states that the expected value of a draw from an MHR distribution, conditioned on
being large, is not much more than its expected virtual value under the same conditioning. Below,
recall that we defined r (D0) to be the Myerson reserve of D0.

Lemma 6.2. Let D0 be MHR. Let E be any event such that Prv←D0
[v ≥ r (D0)|E] = 1. Then:

Ev←D0
[v |E] ≤ Ev←D0

[φ(v)|E] + r (D0).

Equivalently, Ev←D0
[v · I (E)] ≤ Ev←D0

[φ(v) · I (E)] + r (D0) · Pr[E].

Proof. Recall that because D0 is MHR, and v ≥ r (D0), we have that φ(v) −φ(r (D0)) ≥ v − r (D0)
whenever event E occurs. Recalling that φ(r (D0)) = 0 by definition, this rearranges to v ≤ r (D0) +
φ(v). We then immediately conclude:

Ev←D0
[v |E] ≤ Ev←D0

[φ(v) + r (D0)|E]

= Ev←D0
[φ(v)|E] + r (D0).

□
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Corollary 6.1. Let each Di be MHR, and consider DRA(f ) where f (n,Di ) = r (Di ) for all i .

Consider any strategy of the seller, which is a safe, reasonable deviation, and let R(®b) denote the revenue

achieved by the seller on bids ®b using this strategy. Then:

E ®v←D [R(®v) · I (∀ i,vi < βi )] ≤ E ®v←D [max{0,maxj {φ j (vj )}} · I (∀ i,vi < βi )].

Proof. For ease of notation let ri := r (Di ), and let Xi (®v) denote the indicator random variable
for the event that vi > ri , vj < βj for all j, and the item is awarded to bidder i . Then clearly when
this occurs, the payment made by bidder i is at most vi . But additionally, selling the item to buyer i
when vi < βi requires concealing at least one commitment and paying a fine (otherwise, bidder i
expects not to win the item). As the fine charged per concealed commitment is ri , this means that
the seller’s total revenue is at most vi − ri . In particular, this also concludes that the seller’s total
revenue when awarding the item to buyer i when vi < ri is non-positive. Therefore, we can write:

E ®v←D [R(®v) · I (∀ i,vi < βi )] ≤ E ®v←D

[

∑

i

(vi − ri ) · Xi (®v)

]

.

But now let’s consider E ®v←D [(vi − ri ) ·Xi (®v)] separately for each i . The event Xi (®v) = 1 satisfies
the hypotheses of Lemma 6.2, as Xi (®v) = 1 implies that vi > ri . Therefore, Lemma 6.2 allows us to
conclude that:

E ®v←D [(vi − ri ) · Xi (®v)] = E ®v←D [vi · Xi (®v)] − ri · Pr[Xi (®v) = 1]

≤ E ®v←D [φi (vi ) · Xi (®v)] .

The first line is just linearity of expectation, and the second line follows by Lemma 6.2. Now, we
can put everything together to conclude:

E ®v←D [R(®v) · I (∀ i,vi < βi )] ≤ E ®v←D

[

∑

i

φi (vi ) · Xi (®v)

]

≤ E ®v←D

[

maxi {φi (vi )} ·

(

∑

i

Xi (®v)

)]

≤ E ®v←D

[

max{0,maxj {φ j (vj )}} · I (∀ i,vi < βi )
]

.

The first line is simply restating the work above. The second line is just upper bounding each φi (vi )
with the maximum virtual value. The final line simply observes that at most one of the indicators
Xi (®v) can be one (because at most one bidder can receive the item), and that a prerequisite for any
of them to be one is that all vi < βi . □

Lemma 6.1 and Corollary 6.1 together suffice to prove Theorem 4.1.

Proof of Theorem 4.1. Lemma 6.1 upper bounds the expected revenue of any safe, reasonable
deviation when some vi > βi . Corollary 6.1 upper bounds the expected revenue of any safe,
reasonable deviation when all vi < βi . Together, this implies that for any safe, reasonable deviation:

E ®v←D [R(®v)] = E ®v←D [R(®v) · I (∃ i,vi > βi )] + E ®v←D [R(®v) · I (∀ i,vi < βi )]

≤ E ®v←D [maxj {φ j (vj )} · I (∃ i,vi > βi )]

+ E ®v←D [max{0,maxj {φ j (vj )}} · I (∀ i,vi < βi )]

= E ®v←D [max{0,maxj {φ j (vj )}}].

EC’20 Session 7c: Optimal Auctions

696



The RHS is now precisely the expected revenue that the seller achieves by executing the protocol
in earnest, so this series of inequalities explicitly witnesses that every safe, reasonable deviation
yields expected revenue at most that of being honest. □

To repeat the key steps in the proof: Lemma 6.1 doesn’t use at all the particular form of f (·, ·),
nor that each Di is MHR. It merely says that the revenue achieved from cases where the seller may
as well reveal all commitments is the same as a truthful auction (because these commitments to i

are a function only of ®b−i ). Corollary 6.1 uses the particular form of f (·, ·) and that each Di is MHR
to conclude that even when the seller might strategically conceal some commitments, it does no
better than a truthful auction. Interestingly, observe that the entire proof only used the property

that βi can be written as a function of ®b−i , which is true even when the commitment scheme is
malleable. So Theorem 4.1 holds even for malleable commitment schemes (but still requires the
commitment scheme to be binding).

7 EXTENSIONS AND LIMITATIONS OF α-STRONGLY REGULAR DISTRIBUTIONS

We now provide an extension of Theorem 4.1 to α-strongly regular distributions, but also prove
the limits of such an extension. The proof of our extension follows a similar outline to Section 6. In
particular, recall that Lemma 6.1 held for all distributions, not just MHR. So we will use Lemma 6.1
verbatim to handle the case where somevi > βi . Lemma 6.2, however, requires theMHR assumption.
Our first step is to extend (and relax) Lemma 6.2. The proof of Lemma 7.1 and Corollary 7.1 are
similar to Section 6, and deferred to Appendix B.

Lemma 7.1. Let D0 be α-strongly regular. Let E be such that Prv←D0
[v ≥ r (D0)|E] = 1. Then:

Ev←D0
[v |E] ≤

1

α
· Ev←D0

[φ(v)|E] + r (D0).

Equivalently, Ev←D0
[v · I (E)] ≤ 1

α
· Ev←D0

[φ(v) · I (E)] + r (D0) · Pr [E].

In Corollary 7.1 below, we will consider again safe, reasonable deviations from a particular

DRA(f ). Below, we’ll let R(®b) denote the revenue achieved by the seller (using this particular

deviation) on bids ®b, and ki := f (ni ,Di ).

Corollary 7.1. Let each Di be α-strongly regular, and consider DRA(f ) where f (n,Di ) ≥ r (Di )
for all n, i . Consider any strategy of the seller which is a safe, reasonable deviation. Finally, let Xi (®v)
denote the indicator random variable for the event that the item is awarded to bidder i , vi > ki , and
vj < βj for all j. Then:

E ®v←D [R(®v) · I (∀ i,vi < βi )] ≤
∑

i

E ®v←D [(φi (vi )/α + ri − ki ) · Xi (®v)] .

From here, making use of Corollary 7.1 is not as straight-forward as in the MHR case. We first
need another technical lemma, bounding the achievable revenue by posting a very high price for a
single α-strongly regular distribution. The proof of Lemma 7.2 appears in Appendix B.11

Lemma 7.2. Let D0 be α-strongly regular. Then for all p ≥ r (D0),

p · Pr
v←D0

[v ≥ p] ≤ r (D0) · Pr
v←D0

[v ≥ r (D0)] · (1 − α)
−1/(1−α ) ·

(

r (D0)

p

)
α

1−α

11Lemma A.3 gives a stronger bound when α → 1, but the simpler bound in Lemma 7.2 suffices for all of our results.
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And finally, we need one more technical lemma before we can wrap up the proof of Theorem 4.2.
This technical lemma is the only reason why Theorem 4.2 applies to unbounded distributions,
and also the only reason why we need non-malleability of the commitment scheme. We show in
Appendix E that both non-malleability and unbounded distributions are indeed necessary (via
a counterexample to Theorem 4.2 otherwise). The proof of Lemma 7.3 is included, as it has no
counterpart in Section 6.

Lemma 7.3. Let each Di be unbounded. Then for all f , all j ∈ [n], and any safe, reasonable deviation
inDRA(f ) it must be that for at least j distinct bidders,ni ≥ n−j+1. In particular,

∑

i 1/n
2
i ≤ π 2/6 ≤ 2.

Proof. For simplicity of notation, relabel the bidders 1, . . . ,n by the order in which the seller
requests their decommitment (if some are requested simultaneously, break those ties arbitrarily).
Importantly, observe that the seller cannot request decommitment from a bidder until they have
forwarded all commitments. Therefore, the decision of which commitments to forward to bidder i

can depend only on ®b<i .
So now assume for contradiction that the lemma fails for some j. Then there is some bidder

i ≤ j with ni ≤ n − i (recall that ni includes their own commitment too). In particular, this means
that there is some bidder ℓ > i whose commitment was not forwarded to bidder i , and that bℓ was
completely unknown when this decision was made. In particular, the following situation now has
non-zero probability:

• First, draw v−i, ℓ to determine which commitments to forward to bidder i . Observe that this
also suffices to define βi , as it is independent of both vi and vℓ .
• Now, it is entirely possible that vi > βi , as Di is unbounded. Observe that determining this
only requires additionally drawing vi .
• Now, this sets βℓ . As we have yet to draw vℓ , it is entirely possible that vℓ > βℓ , as Dℓ is
unbounded.

The above derives a contradiction to the deviation being safe and reasonable, as now two distinct
buyers are both expecting to win the item. The łIn particular,. . . ž part of the statement follows
simply as the sum is maximized when there is exactly one bidder with ni = j, for all j ∈ [n]. □

We can now wrap up the proof of Theorem 4.2.
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Proof of Theorem 4.2. Consider first combining Lemma 6.1 andCorollary 7.1. If we set f (n,Di ) :=
(

2n2

εα

)
1−α
α
· (1 − α)−1/α · r (Di ), we get:

E ®v←D [R(®v)] = E ®v←D [R(®v) · I (∃ i,vi > βi )] + E ®v←D [R(®v) · I (∀ i,vi < βi )]

≤ E ®v←D [maxj {φ j (vj )} · I (∃ i,vi > βi )] +
∑

i

E ®v←D [(φi (vi )/α + r (Di ) − ki ) · Xi (®v)]

≤ E ®v←D [max{0,maxj {φ j (vj )}}] +
∑

i

Evi←Di
[φi (vi ) · (1/α) · I (vi > ki )]

= E ®v←D [max{0,maxj {φ j (vj )}}] +
∑

i

ki · Pr
vi←Di

[vi > ki ]/α

≤ E ®v←D [max{0,maxj {φ j (vj )}}]

+

∑

i

(1 − α)−1/(1−α ) · (ki/r (Di ))
− α

1−α · r (Di ) · Pr
vi←Di

[vi ≥ r (Di )]/α

≤ E ®v←D [max{0,maxj {φ j (vj )}}] +
∑

i

ε

2n2i
· r (Di ) · Pr

vi←Di

[vi ≥ r (Di )]

≤ Rev(D) + εRev(D) ·
∑

i

1

2n2i

≤ (1 + ε)Rev(D).

The first line is just linearity of expectation. The second line is Lemma 6.1 and Corollary 7.1. The
third line simply observes that Xi (®v) = 1⇒ vi > ki , and also that ki > r (Di ). The fourth simply
observes that the right-hand term of line three is the expected virtual welfare of an auction (which
sells the item to bidder i whenever vi > ki ), and the right-hand term of line four is the expected
revenue of that same auction (so they are equal byMyerson’s lemma). The fifth is a direct application
of Lemma 7.2. The sixth uses our particular choice of f (n,Di ). The seventh simply observes that
both E ®v←D [max{0,maxj {φ j (vj )}}] = Rev(D), and also r (Di ) · Prvi←Di

[vi ≥ r (Di )] ≤ Rev(D)
(because this is just the revenue of selling only to bidder i). The final line follows directly from
Lemma 7.3. □

It may seem odd that Theorem 4.2 requires both that the distributions are unbounded, and
also that the commitment scheme is non-malleable (given that neither assumption is necessary
for Theorem 4.1). Both of these assumptions show up only in the proof of Lemma 7.3, where we
show that the auctioneer must send many commitments to each bidder. This perhaps seems like a
technical artifact of the current proof approach, but surprisingly we show that both assumptions are
necessary. Specifically, Theorem 4.2 does not hold when the commitment scheme is malleable, nor
when the distributions are bounded. This establishes that there is (perhaps surprisingly) something
integral about Lemma 7.3 to the proof of Theorem 4.2. See Appendix E for formal theorem statements
and proofs.
A full proof of Proposition 4.1 appears in Appendix C, which reuses several technical lemmas.

7.1 Limits of DRA for α-Strongly Regular

We conclude by establishing that the ε in Theorem 4.2 cannot be improved for n > 1 bidders
(whereas Proposition 4.1 removes it for n = 1 bidder). We provide a complete proof below, which
will give further intuition for why the ε is not needed for MHR distributions, or only a single bidder.

Proof of Theorem 4.4. For any n > 1, our safe, reasonable strategy will do the following. First,
it will always interact honestly with bidders , 1. Also, it will almost always also interact honestly
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with bidder 1. In the extremely rare case that the maximum bid from bidders , 1 is unusually high,
then it will try to cheat bidder 1. To be clear, the auctioneer’s strategy will do the following (for
simplicity of notation in what follows, we denote by k := f (n + 1,D0)):

(1) Honestly solicit commitments from all n bidders.
(2) Honestly forward all commitments to all bidders , 1, and ask for them to reveal. Let j∗ :=

argmaxj,1{bj }.
(3) If bj∗ ≤ T , for some threshold T to be set later, honestly forward all commitments to bidder 1

as well, and ask bidder 1 to reveal. Execute the auction honestly.
(4) If instead bj∗ > T , forward instead all commitments to bidder 1, along with one fake commit-

ment to b = bj∗ + k .
• If v1 ≤ T , reveal b and execute the auction honestly.
• If v1 ≥ b, reveal b and execute the auction honestly.
• If v1 ∈ (T ,b), conceal b and sell the item to bidder one.

Observe that this is indeed a safe, reasonable deviation. From the perspective of each bidder,
they first send a commitment, then receive commitments, then reveal their commitment, then learn
which commitments are revealed/concealed. Intuitively, our proof will show that no matter how
large f (n + 1,D0) is, there is always a sufficiently largeT such that this fine becomes negligible and
the increased revenue from setting a slightly higher łreservež of b becomes worth it (note, however,
that this phenomenon does not occur for MHR distributions, by Theorem 4.1).

Our distribution D0 will have the following CDF and PDF:

Fα (v) =

{

0 , v < 1

1 −
(

1
v

)
1

1−α , v ≥ 1
f α (v) =

{

0 , v < 1

1
1−α

(

1
v

)
2−α
1−α , v ≥ 1

The hazard rate of Fα is hF
α
(v) = 1

(1−α )v for v ≥ 1 and the virtual value function of Fα is

φF
α
(v) = v − 1

hF
α
(v)
= αv , so D0 is α-strongly regular.

Observe that for our particular deviation, the revenue of the honest execution and our deviation
differ only when v1 > vj∗ > T . The tradeoff the auctioneer chooses is that when v1 > vj∗ + k ,
they get an additional revenue of k . But if instead v1 ∈ (vj∗ ,vj∗ + k), they have to pay a fine of
k . Observe that the difference in both cases is exactly k , one in favor of cheating, and the other
in favor of being honest. So we just want to check how big vj∗ needs to be in order to have
Pr[v1 > vj∗ + k] > Pr[v1 ∈ (vj∗ ,vj∗ + k)]. Again, observe that Theorem 4.1 establishes that no such
vj∗ exists when D0 is MHR and k = r (D0). But slightly relaxing this condition to α-strongly regular
for α < 1 now implies the existence of such a vj∗ for any k .
We upper bound the probability that v1 ∈ (vj∗ ,vj∗ + k), conditioned on v1 ≥ vj∗ (holds for any

vj∗ ≥ 1):

Pr[v1 ∈ (vj∗ ,vj∗ + k)|v1 ≥ vj∗ ] =

∫ vj∗+k

vj∗

f α (v)

1 − Fα (vj∗ )
dv

≤

∫ vj∗+k

vj∗

f α (vj∗ )

1 − Fα (vj∗ )
dv

= k · hF
α

(vj∗ ) =
k

(1 − α)vj∗

Observe this also implies Pr[v1 ≥ vj∗ + k |v1 ≥ vj∗ ] = 1 − Pr[v1 ∈ (vj∗ ,vj∗ + k)|v1 ≥ vj∗ ] ≥ 1 −
k

(1−α )vj∗
. Together, these two claims immediately imply that (after multiplying both by Pr[v1 ≥ vj∗ ]):

vj∗ >
2k

1 − α
⇒ Pr[v1 ≥ vj∗ + k] > Pr[v1 ∈ (vj∗ ,vj∗ + k)].
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By the work above, this proves that this deviation is strictly profitable for any T > 2k
1−α . □

In Appendix E, we consider DRA with a malleable commitment scheme. In particular, we show
that if the commitment scheme is sufficiently malleable, then DRA(f ) is not (1 − α − ε)-credible for
any ε > 0 for multiple α-strongly regular buyers (this means that non-malleability is truly necessary
for Theorem 4.2, and not a technical artifact of going through Lemma 7.3). We also show that this is
tight, and that there exists an f such that DRA(f ) is (1−α)-credible for multiple α-strongly regular
buyers, even when the commitment scheme is malleable (but still computationally binding).
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A FACTS ABOUT α-STRONGLY REGULAR DISTRIBUTIONS

Here we provide a proof of the main technical lemma for α-strongly regular distributions, which
itself follows from two short structural lemmas. Lemma A.1 follows directly from the definition of
virtual values and α-strongly regular distributions [6].

Lemma A.1. If an α-strongly regular distribution has CDF F and PDF f , then for all v ′ ≥ v ,

h(v ′) ≥
1

(1 − α)(v ′ −v) + 1/h(v)
(1)

Proof. For all v ′ ≥ v , if h(v) is the hazard rate of F , then φ(v ′) = 1 − 1/h(v). By definition of
α-strongly regularity,

φ(v ′) − φ(v) = v ′ − 1/h(v ′) −v + 1/h(v) ≥ α(v ′ −v)

=⇒ 1/h(v ′) ≤ (1 − α)(v ′ −v) + 1/h(v)

The latter implies the statement. □

Lemma A.2. Let an α-strongly regular distribution have CDF F and PDF f , and let r := φ−1(0).
Then for all x ≥ r ,

Prv←D [v ≥ x] ≤ Prv←D [v ≥ r ] ·

(

r

(1 − α)x + αr

)
1

1−α

Proof. Let H (v) =
∫ v

0
h(x)dx . A well-known property of hazard rates is that 1 − F (v) = e−H (v).

To see this, observe that d
dx

ln(1−F (x)) = −
f (x )

1−F (x ) = −h(x). By the fundamental theorem of calculus,
∫ v

0
−h(x)dx = ln(1−F (v))−ln(1−F (0)) = ln(1−F (v)), which implies 1−F (v) = e−

∫ v

0
h(x )dx

= e−H (v).
By Lemma A.1, we have

H (v) =

∫ v

0

h(x)dx =

∫ r

0

h(x)dx +

∫ v

r

h(x)dx

≥ H (r ) +

∫ v

r

1

(1 − α)(x − r ) + r
dx

= H (r ) +
1

1 − α

[

ln((1 − α)(x − r ) + r )
]v

r

= H (r ) +
1

1 − α
ln

(

(1 − α)v + αr

r

)

This implies that:

Prv←D [v ≥ x] = e−H (x )

≤ e−H (r )e
1

1−α ln r
α r+(1−α )x

= Prv←D [v ≥ r ] ·

(

r

αr + (1 − α)x

)
1

1−α

□

When (1 − α) = o(r/x), we obtain an exponential tail bound:

Lemma A.3. Let an α-strongly regular distribution have CDF F and PDF f , and let r := φ−1(0).
Then for all x ≥ r ,

Prv←D [v ≥ x] ≤ Prv←D [v ≥ r ] · exp

(

−
x/r − 1

α + (1 − α)x/r

)
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Proof. We simply rewrite the second term in the inequality of Lemma A.2:

1

1 − α
ln

(

r

αr + (1 − α)x

)

= −
1

1 − α
ln(α + (1 − α)x/r )

≤ −
1

1 − α

α + (1 − α)x/r − 1

α + (1 − α)x/r

= −
1

1 − α

(1 − α)(x/r − 1)

α + (1 − α)x/r

= −
x/r − 1

α + (1 − α)x/r

The inequality uses the fact ln(x) ≥ (x − 1)/x . To conclude the proof, we simply exponentiate both
sides of the inequality. □

B OMITTED PROOFS FROM SECTION 7

Proof of Lemma 7.1. Again recall that becauseD0 isα-strongly regular, andv ≥ r (D0)whenever
event E occurs, that φ(v) − φ(r (D0)) ≥ αv − αr (D0). Recalling that φ(r (D0)) = 0 by definition, this
rearranges to v ≤ r (D0) + φ(v)/α . We then immediately conclude:

Ev←D0
[v |E] ≤ Ev←D0

[φ(v)/α + r (D0)|E]

=

1

α
· Ev←D0

[φ(v)|E] + r (D0).

□

Proof of Corollary 7.1. Observe first that whenever the variable Xi (®v) = 1, the item is
awarded to bidder i , and therefore the payment made is at most vi . But additionally, in order
to sell the item to buyer i when vi < βi requires concealing at least one commitment and paying a
fine (otherwise, bidder i expects not to win the item). As the fine charged per concealed commitment
is ki , this means that the seller’s total revenue is at most vi − ki . In particular, this also concludes
that the seller’s total revenue when awarding the item to buyer i when vi < ki is non-positive.
Therefore, we can write:

E ®v←D [R(®v) · I (∀ i,vi < βi )] ≤ E ®v←D

[

∑

i

(vi − ki ) · Xi (®v)

]

.

But now let’s consider E ®v←D [(vi − ki ) · Xi (®v)] separately for each i . The event Xi (®v) = 1 satisfies
the hypotheses of Lemma 7.1, as Xi (®v) = 1 implies that vi > ki ≥ r (Di ). Therefore, Lemma 7.1
allows us to conclude that:

E ®v←D [(vi − ki ) · Xi (®v)] ≤ E ®v←D [(φi (vi )/α − ki + ri ) · Xi (®v)] .

□
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Proof of Lemma 7.2. Starting from LemmaA.2, we get the following chain of inequalities (letting
r := r (D0) for simplicity of notation):

p · Pr
v←D0

[v ≥ p] ≤ p · Pr
v←D0

[v ≥ r ] ·

(

r

(1 − α)p + αr

)
1

1−α

= r · Pr
v←D0

[v ≥ r ] · (p/r ) ·

(

r

(1 − α)p + αr

)
1

1−α

≤ r · Pr
v←D0

[v ≥ r ] · (p/r ) ·

(

r

(1 − α)p

)
1

1−α

= r · Pr
v←D0

[v ≥ r ] · (1 − α)−
1

1−α · (p/r ) ·

(

r

p

)
1

1−α

= r · Pr
v←D0

[v ≥ r ] · (1 − α)−
1

1−α ·

(

r

p

)
α

1−α

.

The final line completes the proof. □

C PROOF OF PROPOSITION 4.1

Proof of Proposition 4.1. When α = 1, we can directly invoke Theorem 4.1. When α ∈ (0, 1),

we will set f (n,D) := r (D)

((

1
1−α

)
1

1−α
1
α

)
1−α
α

for all n. We will use r := r (D) and k := f (n,D) for ease

of notation. Recall that R(v) denotes the revenue of the auctioneer when the single (real) bidder
bids v , and β denotes the effective commitment to the single (real) bidder. Importantly, note that in
the single-bidder case, β is fixed and not a random variable (because the auctioneer just decides
what fake bids to submit, because there are no other bidders’ bids to forward). So, for example,
I (k < β) is deterministically 1 or 0.

Claim C.1. Ev←D [R(v) · I (v < β)] ≤ (Rev(D) − E[φ(v)/α · I (v > β)]) · I (k < β)

Proof. Define X (v) as the indicator random variable for the event where k < v < β and the
item is allocated to the real bidder. Observe that the auctioneer charge the buyer at most v . Also, if
v < β , then the auctioneer has to conceal at least one bid. In this case, R(v) ≤ v − k . If β ≤ k , then
v < k but if so, the auctioneer gets non-positive revenue. We get:

Ev←D [R(v) · I (v < β)] ≤ Ev←D [(v − k) · X (v)] · I (k < β)

≤ Ev←D [φ(v)/α · X (v)] · I (k < β)

The first line is simply restating the work above. The second line follows by Lemma 7.1, observing
that X (v) = 1 implies v > k ≥ r . Now observe that if k ≥ β , then Pr[X (v)] = 0 which implies
Ev←D [φ(v)/α · X (v)] = 0 and we are done. For the case where k < β , we can write that X (v) ≤
I (k < v < β) = I (v > k) − I (v > β):

Ev←D [φ(v)/α · X (v)] ≤ Ev←D [φ(v)/α · I (v > k)] − Ev←D [φ(v)/α · I (v > β)]

=

k

α
Prv←D [v > k] − Ev←D [φ(v)/α · I (v > β)]

The first line is simply restating the work above and the second line applies Myerson’s Lemma for
the single item, single bidder auction which sets price k . To bound k · Prv←D [v > k], we directly
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use Lemma 7.2:

k · Pr
v←D
[v > k] ≤ r · Pr

v←D
[v ≥ r ] · (1 − α)−1/(1−α ) · (k/r )−α/(1−α )

≤ r · Pr
v←D
[v ≥ r ] · (1 − α)−1/(1−α ) · α · (1 − α)

1
1−α

= αRev(D)

In the second line, we use the factk = r

((

1
1−α

)
1

1−α
1
α

)
1−α
α

. Putting both bounds together, we conclude

the proof of the statement. □

Combining Claim C.1 and Lemma 6.1, we get:

Ev←D [R(v)] = Ev←D [R(v) · I (v > β)] + Ev←D [R(v) · I (v < β)]

≤ E[φ(v) · I (v > β)] + (Rev(D) − E[φ(v)/α · I (v > β)]) · I (k < β)

≤ Rev(D)

The first line follows from linearity of expectation. The second line directly applies Lemma 6.1 and
Claim C.1. In the last line, we observe that if k ≥ β , then we can use the fact E[φ(v) · I (v > β)] ≤
Rev(D), else E[φ(v) · I (v > β)] − E[φ(v)/α · I (v > β)] < 0 because α ∈ (0, 1). □

D EXAMPLE: DRA ON HEAVY TAIL DISTRIBUTIONS

Proposition D.1. There exists a regular distribution D with unbounded expected value, such that
for some f (n,D), DRA(f ) is optimal, strategyproof and computationally 2/3-credible when there is a
single (real) buyer from D.

Proof. We will define D such that even though it has infinite expected value, the tail of D is not
too heavy so that with a constant fine we can limit the revenue the auctioneer can obtain. We will
use f (n,D) = ee . For ease of notation k := f (n,D) and r := r (D) is the optimal reserve. Assume
there is a single real buyer from D.
Let’s first define an extension of tetration for positive real numbers.

h(x) :=

{

1 + x , for −1 < x ≤ 0

eh(x−1) , for x > 0

This function is continuous and differentiable in (−1,∞) ([12] for a detailed analysis of ultra
exponential functions). Differentiating with respect to x ,

h′(x) =

{

1 , for −1 < x ≤ 0

h(x)h′(x − 1) , for x > 0

Define the natural super-logarithm ln∗(·) to be the inverse of h(·). More formally, ln∗(x) = y if and
only if h(y) = x which implies the following property for every x ∈ (0,∞),

ln∗(y) =

{

y − 1 for 0 < y ≤ 1

1 + ln∗(ln(y)) for y > 1

Observe that ln∗(ex ) = 1 + ln∗(x) and ln∗(1) = 0. Informally, one can interpret ln∗(x) as counting
how many times one must take the natural-logarithm of x to get 1. We define the distribution D

supported on [1,∞) in terms of the CDF:

Prv←D [v > x] :=

{

1 , for x ≤ 1
d
dx

ln∗(x) , for x > 1
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By the chain rule, for x > 1, Prv←D [v > x] = 1
h′(ln∗(x ))

. To see this is a valid distribution, observe

Prv←D [v > x] is monotone decreasing, Prv←D [v > 1] = 1, and limn→∞ Prv←D [v > n] = 0. Now
observe D has unbounded expected value:

Ev←D [v] = 1 +

∫ ∞

1

Prv←D [v > x]dx

= 1 + lim
n→∞

ln∗ n − ln∗ 1 = ∞

In the next claim, we show that for every price p ∈ R+, pPrv←D [v > p] ≤ 1.

Claim D.1. For all p ∈ R+, pPrv←D [v ≥ p] ≤ 1.

Proof. If p ≤ 1, then pPrv←D [v ≥ p] = p ≤ 1. For p > 1, ln∗ p > 0 and by the recursive
definition of h′(·), we can expand h′(ln∗ p):

Prv←D [v > p] =
1

h′(ln∗ p)
=

1

h(ln∗ p)h′(ln∗ p − 1)

=

1

ph′(ln∗ p − 1)

≤
1

p

where the last inequality follows from the fact (ln∗ p − 1) > −1 and h′(ln∗ p − 1) ≥ 1. □

The claim above implies that r (D) = 1 is the optimal reserve since Prv←D [v > r (D)] = 1. Let
x1 < x2 < ... < xn , be the bids sent to the real bidder. For easy of notation, define x0 = 0 and
xn+1 = ∞.

Observation D.1. If n ≥ 1, then Ev←D [R(v) · I (0 ≤ v < x1)] = 0.

Proof. If v < x1, the auctioneer has to hide at least x1 which implies the revenue is non-positive
since k > r (D). □

Claim D.2. Ev←D [R(v)] ≤ max{1,n}

Proof. If n = 0, the auctioneer is simply implementing DRA(f ) in earnest and the revenue is
1. Assuming n ≥ 1, observe that if v ∈ [xi ,xi+1) the auctioneer obtains revenue at most xi by
concealing all x j > xi and revealing x j ≤ xi . We get:

Ev←D [R(v)] ≤

n
∑

i=1

Ev←D [R(v) · I (xi ≤ v < xi+1)]

≤

n
∑

i=1

Ev←D [xi · I (v ≥ xi )]

≤ n

The first line is linearity of expectation and Observation D.1. The second line uses the fact I (xi ≤
v < xi+1) ≤ I (v ≥ xi ) and restating the work above. The last line is Claim D.1. □

The auctioneer gets revenue 1 by implementing the auction in earnest, and the claim above
states that the auctioneer needs to submit at least 3 fake bids to get revenue bigger or equal than 3.
Next, We argue that the auctioneer cannot get revenue bigger than 3, no matter the number of fake
bids sent to the real bidder.
So assuming n > 3, we next argue that it is without loss of generality to assume that x1 > n.

Consider the event where v ∈ [x1,x2) and recall that to charge the real bidder x1, the auctioneer
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has to conceal n − 1 bids and pay k · (n − 1) ≥ n for our choice of k . If x1 ≤ n, then the auctioneer
gets non-positive revenue. We conclude that the auctioneer cannot decrease their revenue by not
bidding on x1. So from now on, we will assume that the smallest bid x1 > n.

Claim D.3. Ev←D [R(v) · I (0 ≤ v < en)] ≤ 2

Proof. Observe that R(v) ≤ v . We get:

Ev←D [R(v) · I (0 ≤ v < en)] = Ev←D [R(v) · I (0 ≤ v < x1)] + Ev←D [R(v) · I (x1 ≤ v < en)]

≤ Ev←D [v · I (n ≤ v < en)]

=

∫ ∞

0

Prv←D [v · I (n ≤ v < en) > x]dx

=

∫ n

0

Prv←D [v · I (n ≤ v < en) > x]dx +

∫ en

n

Prv←D [v · I (n ≤ v < en) > x]dx

+

∫ ∞

en
Prv←D [v · I (n ≤ v < en) > x]dx

≤

∫ n

0

Prv←D [n ≤ v < en]dx +

∫ en

n

Prv←D [v > x]dx +

∫ ∞

en
Prv←D [n ≤ v < en |v > x]dx

≤ nPrv←D [v ≥ n] + (ln∗(en) − ln∗(n)) + 0

≤ 1 + (1 + ln∗ n − ln∗ n) = 2

The first line is linearity of expectation. The second line is Observation D.1, restating that R(v) ≤ v
and x1 > n. The third line is just the integral form of expectation for non-negative random variables.
The fourth line is simply linearity of integration. In the fifth line, we observe Prv←D [v · I (n ≤ v <
en) > x] = Prv←D [v > x ,n ≤ v < en]. In the sixth line, the first term follows by integrating the
constant function in the interval 0 to n, the second term follows from the fundamental theorem of
calculus, and the third term is 0 simply by observing the event {n ≤ v < en |v > x > en} = ∅. The
last line follows by Claim D.1 and the recursive definition of super-logarithm. □

Claim D.4. Ev←D [R(v) · I (v ≥ en)] ≤ 1

Proof. Letm = min{i : xi ≥ en}. For all i ≥ m, when v ∈ [xi ,xi+1), R(v) ≤ xi which happens
with probability at most Prv←D [v ≥ xi ].

Ev←D [R(v) · I (v ≥ en)] ≤

n
∑

i=m

xiPrv←D [v ≥ xi ]

=

n
∑

i=m

xi

h′(ln∗ xi )

=

n
∑

i=m

xi

xi lnxih′(ln
∗ xi − 2)

≤

n
∑

i=m

1

nh′(ln∗ xi − 2)

≤
n −m + 1

n
≤ 1

The first line is restating the work above. The second line uses the definition of D. The third
line uses the fact xi ≥ en ≥ ee , which implies h′(ln∗ xi ) = h(ln∗ xi )h(ln

∗ xi − 1)h′(ln∗ xi − 2) =
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xi lnxih
′(ln∗ xi − 2). The fourth line uses xi ≥ en . The fifth lines uses xi ≥ ee , which implies

h′(ln∗ xi − 2) ≥ 1. □

Combining the bounds in Claim D.3 and Claim D.4, the sequence of inequalities witnesses that
the auctioneer can obtain revenue at most 3 when f (n,D) = ee . Because Myerson’s optimal auction
gets revenue 1, we conclude DRA(f ) is 2/3-credible when there is a single bidder from D. □

E EXAMPLE: DRA ON α-STRONGLY REGULAR DISTRIBUTIONS

Definition E.1 (Almost reasonable). A commitment is loosely tied to (m1, r1), . . . , (mk , rk ) if
the participant who sent c explicitly computed a poly-time function of c1, . . . , ck , which were explicitly
tied to (m1, r1), . . . , (mk , rk ). A deviation is almost reasonable with respect to д for the auctioneer in
the communication game if whenever the auctioneer reveals a commitment to c , with c = Commit(m, r ),
thenm = д(m1, . . . ,mk ) for some (m1, r1), . . . , (mk , rk ) to which c is loosely tied.

To help get intuition for the definition, observe that any reasonable deviation is also almost
reasonable with respect to the identity function. If the commitment scheme is malleable, though,
and it is possible to compute a poly-time function д(·, . . . , ·) on un-revealed commitments, then a
deviation which forwards a commitment to д(b1, . . . ,bn−1) to bidder n (before the commitments
are revealed), and then later reveals д(b1, . . . ,bn−1) is almost reasonable with respect to д.

Definition E.2 (Strongly Computationally Credible). An auction is strongly computation-
ally credible with respect to д if, in expectation over ®v ← D, and buyers being truthful, the auctioneer
maximizes their expected revenue, over all deviations which are both safe and almost reasonable with
respect to д, by executing the auction in earnest.

An auction is strongly ε-computationally credible with respect to д if executing the auction in earnest
yields a (1 − ε)-fraction of the expected revenue of any safe, almost reasonable with respect to д,
deviation.

Theorems E.1 and E.2 below show that, perhaps surprisingly, both assumptions of unbounded
distributions and non-malleable commitment schemes are necessary for Theorem 4.2 (whereas
they were not necessary for Theorem 4.1, and appear to be just a technical artifact of our proof
approach through Lemma 7.3).

Theorem E.1. Let д be any function such that д(m1, . . . ,mk ) ≥ maxi ∈[k ]{mi }. Then for all α < 1,
there exists a D0 which is α-strongly regular, such that for all ε > 0 and all f (·, ·), there exists a
sufficiently large n such that DRA(f ) is not strongly (1 − α − ε)-computationally credible with respect
to д for the instance D := ×ni=1D0.

In Theorem E.2 below, by the notation DT
0 , we mean the distribution D0 truncated at T (all

probability mass above T is moved to T . Formally, Prv←D0
[v ≥ x] = Prv←DT

0
[v ≥ x] for all x ≤ T ,

and Prv←DT
0
[v ≥ x] = 0 for all x > T ).

Theorem E.2. For all α < 1, there exists a distribution D0 which is α-strongly regular, such that
for all ε > 0 and all f (·, ·) such that f (n,D) depends on α , ε, r (D),n (but may depend arbitrarily on
these values), there exists a sufficiently large T and n such that DRA(f ) is not (1 − α − ε)-credible for
the instance D := ×ni=1D

T
0 .

The proofs of Theorems E.1 and E.2 will be nearly identical, and just wrap up differently at the
end. Specifically, the D0 for both theorems is the same, and the deviations are the same in spirit.
First, we repeat the D0 we use, which is the same from the proof of Theorem 4.4, repeated below
for completeness:
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Fα (v) =

{

0 , v < 1

1 −
(

1
v

)
1

1−α , v ≥ 1
f α (v) =

{

0 , v < 1

1
1−α

(

1
v

)
2−α
1−α , v ≥ 1

The hazard rate of Fα is hF
α
(v) = 1

(1−α )v for v ≥ 1 and the virtual value function of Fα is

φF
α
(v) = v − 1

hF
α
(v)
= αv , so D0 is α-strongly regular.

Our proofwill proceed as follows. First, wewill quickly establish thatRev(D) = α ·E ®v←D [maxi {vi }].
Then, we will design a deviation which achieves revenue arbitrarily close to E ®v←D [maxi {vi }] for
sufficiently large n. Finally, we will show that this deviation satisfies the properties of the two
theorems (separately).

Claim E.1. For any n, and D := Dn
0 , Rev(D) = α · E ®v←D [maxi {vi }].

Proof. This could be verified by direct (but tedious) calculations. A simpler proof observes that
Rev(D) = E[maxi {φ(vi )}] by Myerson’s lemma. But because φ(vi ) := αvi , we immediately get that
Rev(D) = E[maxi {φ(vi )}] = α · E[maxi {vi }]. □

Now, consider the following deviation in DRA(f ). For any desired parameter δ , we will argue
that the following deviation gets revenue (not counting fines) at least (1 − 5δ ) · E[maxi {vi }], and
also pays at most poly(1/δ ) fines. Importantly, the number of fines paid will depend only on δ and is
independent of n (it is not crucial that it is polynomial in 1/δ ).

Our deviation is as follows: for ℓ = 0 to z, where z :=
(1−α )·ln1+δ (1/(αδ ·δ

α /(1−α )))
α

, let xℓ := δ · (1 +

δ )ℓ · n1−α . Upon receiving commitments to b1, . . . ,bn from the bidders, the auctioneer will send to
bidder i:

• A commitment to xℓ , for all ℓ.
• A single additional commitment to y∗i , where it is guaranteed that bi > y∗i only if bi > bj for
all j , i (but perhaps bi ≤ y∗i for all i , this is also fine). Note that we defer to the last step of
each proof exactly how to accomplish this for the two theorems of interest.

After asking all bidders to reveal, the auctioneer will reveal its own commitments as follows:

• To all bidders j , argmaxi {bi }, reveal all commitments. Note that this guarantees that bidder
j does not expect to win the item.
• To bidder i∗ := argmaxi {bi }:
– If bi∗ < x0, reveal all commitments.
– If bi∗ > xz , reveal all commitments except y∗i∗ .
– If bi∗ ∈ [xℓ,xℓ+1), reveal commitments x0, . . . ,xℓ and conceal the rest.

Now, we analyze the revenue of this deviation excluding fines. We first need a quick observation
about the relationship between n1−α and E[maxi {vi }].

Observation E.1. E[maxi {vi }] ≥ (1 − 1/e)n
1−α .

Proof. Observe that Pr[maxi {vi } > n1−α ] ≥ (1 − 1/e) (because each vi exceeds n
1−α indepen-

dently with probability exactly 1/n). Therefore, E[maxi {vi }] ≥ (1 − 1/e)n
1−α . □

Lemma E.1. Excluding fines, the deviation above guarantees revenue at least (1− 5δ ) · E[maxi {vi }]
in expectation.

Proof. Observe first that the payment made by bidder i∗ is:

• At least 0, when vi∗ < [x0,xz ].
• At least (1 − δ ) · vi∗ ∈ [x0,xz ].
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This is just because payments (excluding fines) are always non-negative, and because whenever
vi∗ ∈ [x0,xz ], there is always a revealed commitment within (1 − δ ) · vi∗ . So our only task is to
argue that E[maxi {vi } · I (maxi {vi } ∈ [x0,xz ])] ≥ (1 − 4δ ) · E[maxi {vi }].
To do this, we will simply argue that the welfare lost from cases where vi∗ < x0 is at most

2δ ·E[maxi {vi }], and also that the welfare lost from cases wherevi∗ > xz is at most 2δ ·E[maxi {vi }].

Observation E.2. E[maxi {vi } · I (maxi {vi } < x0)] ≤ 2δ · E[maxi {vi }].

Proof. Simply observe that E[maxi {vi }·I (maxi {vi } < x0)] ≤ x0 = δn1−α ≤ e
e−1 ·δ ·E[maxi {vi }].

□

Lemma E.2. E[maxi {vi } · I (maxi {vi } > xz )] ≤ 2δ · E[maxi {vi }].

Proof. The lemma will follow from a few observations. First, we observe that E[maxi {vi } ·
I (maxi {vi } > xz )] ≤ E[

∑

i vi · I (vi > xz )] = n · E[v1 · I (v1 > xz )]. Next, we observe that
n · E[v1 · I (v1 > xz )] = n · xz · (1 − Fα (xz ))/α . This could be observed by direct (but tedious)
calculations. Alternatively, it follows as the expected revenue of setting price xz to bidder one is
exactly xz · (1 − F

α (xz )), but also α · E[v1 · I (v1 > xz )] by Myerson’s lemma (and that φ(v) = αv).
Now, our job is just to upper bound xz · (1 − F

α (xz )). Recalling the definition of Fα (·), this is

exactly x
1− 1

1−α
z = x

− α
1−α

z . But now we get:

x
− α

1−α
z = (δ · n1−α · (1 + δ )z )−

α
1−α

= δ−α/(1−α ) · n−α · (1 + δ )−
(1−α )·ln1+δ (1/(αδ ·δ

α /(1−α )))
α ·α

1−α

= δ−α/(1−α ) · n−α · (1 + δ )− ln1+δ (1/(αδ ·δ
α /(1−α )))

= δ−α/(1−α ) · n−α · α · δ · δα/(1−α ).

Finally, we now conclude that:

n · xz · (1 − F
α (xz ))/α = n · n

−α · (αδ )/α

= δn1−α .

Again by Observation E.1, this is now at most 2δE[maxi {vi }]. □

Now, this concludes the proof of Lemma E.1. We have just argued that E[maxi {vi } · I (maxi {vi } <
x0)] ≤ 2δ ·E[maxi {vi }], and also that E[maxi {vi }·I (maxi {vi } > xz )] ≤ 2δ ·E[maxi {vi }]. Therefore,
E[maxi {vi } · I (maxi {vi } ∈ [x0,xz ])] ≥ (1 − 4δ ) · E[maxi {vi }], and the lemma follows as (1 − δ ) ·
(1 − 4δ ) ≥ (1 − 5δ ). □

Lemma E.1 argues that the revenue excluding fines of the above deviation is large. But we must
now argue that the fines paid are small.

Lemma E.3. The total fines paid by the above deviation is at most z · f (z + 2,D0). Importantly,
observe that this is independent of n.

Proof. The total number of commitments sent to each player is z + 1. So including themselves,
each player believes there are only z + 2 bidders, and fines are computed accordingly. To each
player, the auctioneer then clearly pays at most z fines when they conceal commitments (because
they send only z + 1, and reveal at least one when they hide any). □

We can now wrap up the proofs of Theorems E.1 and E.2.
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Proof of Theorem E.1. To implement the proposed deviation, simply set y∗i = д(
®b−i ). By defini-

tion of д, this guarantees that y∗i > bi for all i , i∗. For a given ε , first set δ < ε/100 and use the
proposed deviation. This guarantees revenue (including fines) of at least (1 − ε/2) · E[maxi {vi }] −
z · f (z + 2,D0). Because z · f (z + 2,D0) is independent of n, and D0 is unbounded, there exists a
sufficiently large n such that z · f (z + 2,D0) ≤ (ε/2) · E[maxi {vi }]. This completes the proof. □

Proof of Theorem E.2. Consider DT
0 for T to be set later, and define DT := ×ni=1D

T
0 . To im-

plement the proposed deviation, simply set y∗i = T + 1. For a given ε , first set δ < ε/100 and
then use the proposed deviation. This guarantees revenue (including fines) of at least (1 − ε/2) ·
E ®v←DT

0
[maxi {vi }]−z · f (z+2,D

T
0 ) = (1−ε/2) ·E ®v←DT

0
[maxi {vi }]−z · f (z+2,D0). Note that the last

equality follows as we have assumed that f (a,D) depends only on a, ε,α , r (D), and r (D) = r (D0) = 1.
But now because z · f (z + 2,D0) is independent of n, and D0 is unbounded, there exists a sufficiently
large n and T such that z · f (z + 2,D0) ≤ (ε/2) · E ®v←DT

0
[maxi {vi }]. This completes the proof. □

Finally, we show that Theorems E.1 and E.2 are tight. In the proof of Theorem E.3 below, note

that Lemma 6.1 and Corollary 7.1 only require that βi is a function of ®b−i , and not that it takes a
particular (non-malleable) form.

Theorem E.3. Let f (n,Di ) := r (Di ). Then when all Di are α-strongly regular (bounded or un-
bounded), DRA(f ) is optimal, strategyproof, computationally (1 − α)-credible, and strongly computa-
tionally (1 − α)-credible with respect to all functions д.

Proof. Let ki = r (Di ). Recall Xi (®v) is the indicator variable for the event where the item is
allocated to buyer i and ki ≤ vi < βi . Also observe that ϕ̄i (vi ) = ϕi (vi ) since Di is regular. If
Xi (®v) = 1, then vi ≥ ki ≥ ri and by definition ϕi (vi ) · Xi (®v) ≥ 0. We first combine Lemma 6.1 and
Corollary 7.1:

E ®v←D [R(®v)] = E ®v←D [R(®v) · I (∃ i,vi > βi )] + E ®v←D [R(®v) · I (∀ i,vi < βi )]

≤ E ®v←D [maxi {φi (vi )} · I (∃ i,vi > βi )] +

n
∑

i=1

E ®v←D [(φi (vi )/α + r (Di ) − ki ) · Xi (®v)]

≤ E ®v←D [maxi {φi (vi )}] +

n
∑

i=1

E ®v←D [φi (vi )/α · Xi (®v)]

− E ®v←D [maxi {φi (vi )} · I (∀i,vi < βi )]

≤ Rev(D) +

n
∑

i=1

E ®v←D [φi (vi )/α · Xi (®v)] −

n
∑

i=1

E ®v←D [φi (vi ) · Xi (®v) · I (∀i,vi < βi )]

≤ Rev(D) +

n
∑

i=1

E ®v←D [(1 − α)φi (vi )/α · Xi (®v)]

≤ Rev(D) +
1 − α

α
Rev(D)

=

1

α
Rev(D)

The first line is just linearity of expectation. The second line combines Lemma 6.1 and Corol-
lary 7.1. The third line is again by linearity of expectation and the fact ki = r (Di ). The fourth line
uses the fact that E ®v←D [maxi {φi (vi )}] is at most the revenue of Myerson’s optimal auction and
max(φi (vi )) ≥

∑n
i=1 φi (vi ) · Xi (®v) since the indicator random variable Xi (®v) = 1 for at most one

bidder. The fifth line is just the fact Xi (®v) = 1 implies ∀i,vi < βi and by linearity of expectation. In
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the sixth line, we observe that the second term is at most ( 1−α
α

times) the revenue of Myerson’s
optimal auction.
This concludes that the revenue of any deviation which is safe, and almost reasonable with

respect to any д(·), is at most Rev(D)/α .
□
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