
1530-437X (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2020.3017706, IEEE Sensors
Journal

IEEE SENSORS JOURNAL, VOL. XX, NO. XX, MONTH X, XXXX 1 

XXXX-XXXX © XXXX IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. 
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 

 
Abstract— Remote patient monitoring has emerged from the 

intersection of engineering and medicine. Advances in sensors, circuits 
and systems have made possible the implementation of small, wearable 
devices capable of collecting and streaming data for long periods of time 
to help physicians track diseases and detect conditions in a non-intrusive 
manner. Cardiac monitoring comprises many of these applications, with 
the need to capture transient cardiac events motivating the adoption of 
wearable monitors in standard clinical practice. However, user burden 
and battery life limit the duration of monitoring or require heavy duty 
cycling, thus preventing the adoption of these technologies for use cases 
that require long-term vigilant monitoring, in which the sensor system 
cannot miss a critical cardiac event. To overcome these challenges, this 
paper introduces a self-powered system for uninterrupted vigilant cardiac 
and activity monitoring that senses and streams electrocardiogram (ECG) and motion data continuously to a 
smartphone while consuming only 683 µW on average. To achieve self-powered operation under environmental and 
wearability constraints, the system incorporates an energy combining technique to support multi-modal energy 
harvesting from indoor solar and thermoelectric energy.  A custom ECG shirt made of a knitted compression fabric 
with embedded dry electrodes addresses issues of user comfort, skin irritation and motion artifacts. Vigilant Atrial 
Fibrillation (AF) monitoring is used as an example case study, analyzing sampling frequency and bit-depth 
quantization and their correlation to vigilant, self-powered operation. The integrated system demonstrates an 
important step forward for remote patient monitoring beyond the clinic. 
 

Index Terms— atrial fibrillation, Bluetooth, body sensor networks, cyber-physical systems, energy harvesting, e-
textiles, low-power electronics, remote monitoring, self-powered, smart textiles, wearable, wireless 
 

 1 
I.  Introduction 

N a 2018 study, the American Heart Association reported 
Cardiovascular Disease (CVD) as a leading cause of death in 

the United States and an associated cost of $555 billion driven 
by the elevated number of hospitalizations and re-
hospitalizations of patients with CVD due to the aggravation of 
symptoms [1, 2]. In response to this, researchers and physicians 
have looked at remote patient monitoring as a potential solution 
to provide affordable and effective care by eliminating 
unnecessary visits, improving communication and treatment, 
and optimizing the allocation of resources in the clinic [3]. 
Furthermore, specific recommendations have emphasized the 
integration of telehealth and mobile health technologies as part 
of this effort [1]. A variety of home health technologies have 
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seen some success, but the associated user burden often results 
in infrequent samples of physiological status. Cyber-physical 
sensor systems such as body sensor networks (BSNs) can 
alleviate many of the issues found in current remote patient 
monitoring methods by collecting, processing and transmitting 
high quality physiological, activity, and environmental data. 
However, critical obstacles need to be overcome before these 
technologies can be comprehensively adopted [4]. 

User compliance and battery life represent two such 
obstacles. The implications of these issues are commonly 
reflected in the willingness of the user to wear the device, the 
system losing power during the deployment, or the effects of 
the latter on the former by having the user frequently recharge 
the device. To address user acceptance, researchers have made 
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innovations related to form factor, operation and maintenance 
[5]. In addition, multiple efforts have been made to develop 
ultra-low power electronics to increase battery life or even to 
replace the battery itself by harvesting energy from the 
environment or the body [6]. However, achieving these 
operating conditions typically requires reduced sampling rates 
and duty cycling, which may result in missed critical cardiac 
and activity events, relegating the system incapable of 
providing vigilant monitoring. 

Achieving long-term vigilance in a self-powered system 
requires continuously maintaining a positive energy balance. 
Energy harvesters have been developed for BSNs to scavenge 
solar energy from the environment, and heat and motion from 
the body, but form factors, low conversion efficiencies, and 
variable energy availability have proven to be difficult 
challenges. Several approaches to efficiently administer the 
harvested energy have been presented from a hardware and 
software perspective. In the case of the former, the individual 
blocks of the energy harvesting and power management unit 
(PMU) have been optimized for self-powered applications [7]. 
In the latter, dynamic power management (DPM) techniques 
have been developed to adjust the operation of the system based 
on workload, available energy, and required data quality [8, 9]. 
Even though previous works have investigated the relationship 
of data quality and power consumption, many of these 
approaches consider digital signal metrics that may or may not 
relate to application-level information metrics, such as critical 
event detection vigilance. 

This paper addresses these issues by expanding the work 
reported in [10, 11] and using an application-driven approach 
to define the system design space that drives the design of a 
self-powered wearable sensor system with e-textile integration 
for vigilant cardiac and activity monitoring that achieves a 
positive energy balance solely from solar and thermal energy 
but also has the flexibility to be interfaced with other harvesting 
modalities. The system includes wireless streaming to a 
smartphone programmed both to process and display the data, 
and to interface with web services and applications for remote 
data access and caregiver/clinician notification. Specific 
contributions of this work include: 

a. A multi-modal energy harvesting architecture that 
combines the harnessed energy from solar cells and 
thermoelectrical generators (TEGs) to power the 
wearable sensor system, and which stores the surplus 
of energy into a supercapacitor for when not enough 
energy at the input is available. 

b. A custom compression electrocardiogram (ECG) shirt 
with embedded dry-electrodes to improve wearability, 
user compliance, and reduce motion artifacts. 

c. A formalization of vigilance in the context of wearable 
sensing systems as an additional dimension to a 
previously proposed taxonomy for health applications. 

d. A demonstration of vigilant monitoring for atrial 
fibrillation (AF) as a case study through the 
assessment of sampling frequency and bit-depth 
quantization and their relationship with system power 
consumption to achieve self-powered operation.  

The remainder of the paper is organized as follows. Section 

II discusses background and related work, including a 

discussion of self-powered systems and a definition of 

“vigilance” in the context of sensor systems. Section III 

presents the end-to-end wearable sensor system, followed by 

the description of the textile integration and the modeling of the 

system power consumption in Section IV and Section V, 

respectively. AF as a case study and as a driver of the design 

space and metrics for the system is analyzed in Section VI, and 

a comparison with state-of-the-art wearable cardiac monitors is 

summarized in Section VII. Deployment results and 

considerations for preserving both vigilance and a positive 

energy balance are presented within the context of that use case 

in Section VIII. Finally, conclusions and future work are 

discussed in Section IX.  

II. BACKGROUND AND RELATED WORK 
Developing a framework for self-powered sensor systems for 

vigilant cardiac monitoring requires the integration of multiple 
elements that need to be designed and optimized to work 
together in a harmonious way. Therefore, we review previous 
advances in wearables for health applications, self-powered 
sensor systems, and cardiac and activity monitoring systems, 
while also clarifying the meaning of “vigilance” in this context.  

A. Wearable Systems for Health Applications 
The miniaturization of technology has enabled the 

development of sensor systems that can be attached to the body 
with purposes that range from disease diagnosis and tracking to 
physical rehabilitation and behavior modification. For instance, 
in [6] the authors discuss the design of a system intended for 
improving the understanding of the impact of increased ozone 
levels and other pollutants on chronic asthma conditions. 
Similarly, the authors Han et al. reported in [12] a piezoelectric 
based system embedded in a shoe sole to identify different 
forms of human motion. Furthermore, a system designed for 
motion monitoring during physical rehabilitation is presented 
in [13]. Given this wide range of efforts in wearables for health 
applications, Witte et al. conducted a systematic literature 
review of state-of-the-art devices reported from 2013 to 2018 
[14]. The authors conducted an extensive search on four 
different research literature databases, selecting 200 papers 
from each database as a representative sample based on 
relevance for their fields. After multiple filters using a 
predefined criterion, 97 papers were selected for the systematic 
review. To analyze the reported works, the authors classified 
the papers based on disease treatment, application area, vital 
parameter measurement and target patients. From this 
evaluation, five potential research areas were identified: 
application scenarios for widespread diseases, expansion of 
wearable systems functionality, diversity of vital parameters 
measurement, proactive analysis of sensor data for preventive 
purposes and promoting patient adoption through enhanced 
usability. 

A comparable exercise done by Pevnick et al. in [15] for 
cardiac monitoring proposed a taxonomy to classify wearable 
sensor systems in the general context of health applications 
based on the data collection mechanism. Such classification 
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was established according to the patient engagement required 
(passive vs. active), the data acquisition mode (continuous vs. 
intermittent) and the data management mode (streaming vs. 
storing). As a result, each reported wearable device could be 
categorized based on the patient engagement and the data 
acquisition and management modes employed. However, a 
limitation of this categorization is the broad definition of 
continuous collection, which does not differentiate between 
continuous monitoring and vigilant monitoring. 

A different approach taken by researchers has been the 
development of application specific integrated circuits (ASIC) 
with subsystems designed, optimized, and highly integrated on 
a single chip or package for wearable and health applications. 
For instance, a system-on-chip (SoC) presented in [16] 
proposes an event-driven architecture that allows for clockless 
operation and power reduction. The SoC has an ultra-wideband 
transmitter for wireless communication and it consumes 2.89 
µW when operating at 1.2V. A comparable effort was proposed 
in [17] where an ASIC front-end for biosensing was optimized 
for noise, power, and area. These optimizations give the chip 
the flexibility of sensing different biopotentials by adjusting 
parameters such as gain and filter cutoff frequency. The chip 
consumes 5.74 µW plus 306 nW for the power management 
unit and it is all packed in an area of 0.0228 mm2. Another 
example of this approach is the work introduced in [18] where 
a highly integrated SoC incorporates subsystems for sensing, 
processing and control, wireless communication, energy 
harvesting and power management, and application-specific 
accelerators for wearable sensors. The SoC is able to operate 
from different harvesters with high efficiency without the need 
of additional energy sources and employs an ultra-wide band 
transmitter for wireless communication. The full system 
consumes 6.45 µW in a motion capture application, powered 
from indoor solar by the energy harvesting and power 
management unit.  

B. Vigilant Monitoring 
In the context of sensor systems, the term “vigilant” has a 

specific meaning – a vigilant monitoring system is one that 
operates in a mode such that no critical events are missed. 
Events may be missed due to noise or user error, but not due to 
operational mode. It is important to note the difference between 
vigilant sensing and continuous sensing, as a continuous 
sensing system may not include all of the necessary sensors or 
operate at the minimum sampling frequency and/or 
quantization bit depth to ensure that all critical events will be 
detected. Conversely, not all vigilant systems perform 
continuous sensing, as critical events may only happen during 
certain times, activities, etc., and the system does not need to 
operate otherwise. To design a monitoring system to be vigilant, 
a precise definition of a critical event must be established and 
is inherently application dependent. For the use case application 
explored in this paper, a critical event is AF (which can be short 
in duration and can happen intermittently and irregularly) as 
detected through ECG monitoring using a state-of-the-art AF 
classification algorithm. 

C. Energy Harvesting 
Harvesting energy from the environment represents a 

promising option to overcome the limitations of battery-
powered wireless sensor nodes. Multiple efforts have been 
made to advance various energy harvesting modalities, leading 
to the realization of self-powered sensor systems. In a survey 
presented by Panatik et al. [19], the authors researched the work 
done in harvesting mechanical, solar, thermal and fluid flow 
energy. A similar study was done in [20], where Singh and Moh 
compared the same energy sources in addition to 
electromagnetic energy and identified the advantages and 
disadvantages of each. A recent work done by Dhananjaya and 
Reddy [21] considered the aforementioned energy sources in 
the context of the Internet-of-Things (IoT). The results from 
these studies show an advantage of solar energy over other 
energy sources in terms of power density and maturity. 
Therefore, this work uses solar energy as the power source for 
the monitoring system and combines it with thermoelectric 
energy harvesting from body heat to achieve self-powered 
operation even in the absence of light. 

D. Self-powered Systems 
Self-powered sensor systems have been more commonly 

achieved in non-wearable scenarios, especially when outdoor 
solar is available. However, there are examples of wearable 
devices being self-powered. The device presented in [22] is 
intended for body temperature sensing, and self-powered 
operation is attained with solar harvesters that have a power 
density of 9 µW/cm2. The system transmits data every 134 
seconds and consumes an average of 47.2 µW. Similarly, 
considering again the work in [12], the wearable insole uses the 
piezoelectric film as the sensor and as the energy source at the 
same time. Its average output power during normal walking is 
100 µW and demonstrates an important concept in self-powered 
wearable devices, which is the relationship between the sensing 
location and the energy harvesting location. This applies to the 
device introduced in this work, and its implications are further 
discussed in the sections below. Furthermore, in [23] a more 
recent work implemented an autonomous wireless sensor node 
powered by solar energy with two functional modes. In one 
operation mode, the sensor node collected body temperature 
and heart rate data to be transmitted to an aggregator for local 
displaying and uploading to a web service. In the other 
operation mode, the node remained asleep until a fall detection 
event occurred and a notification to the aggregator was sent. 
The sensor system consumed 1.76 mW when active, and it 
adopted a heavily duty-cycled power management strategy to 
achieve lower power operation. Additionally, it is important to 
mention that self-powered wearable sensors have been realized 
through ASIC technologies as discussed in section A. That was 
the case of the work presented in [18] where the SoC was 
intended to be powered by energy harvesting from solar cells or 
TEGs. A similar case is the effort introduced in [24] where an 
SoC for EMG sensing was developed. The system consumes 24 
µW when deployed and it is powered by RF energy harvesting. 
A more recent work presented in [25] demonstrates a system-
in-package (SiP) that operates solely from energy harvesting 
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and has the capability to recover from power losses by 
integrating an ultra-low power non-volatile memory. The 
system is intended for different wearable applications and 
performing continuous ECG monitoring consumes only 1.02 
µW that is delivered from solar cells or TEGs with a peak 
efficiency of 71.1%. All these efforts are great contributions 
that have pushed forward the state-of-the-art in self-powered 
wearable sensing. However, the robustness and technology 
readiness level of these systems is often far from being able to 
be deployed in the real world, with more naturalistic 
environments. Furthermore, the accessibility to this technology 
is very limited and it represents a high cost. The conjunction of 
these factors sets the aforementioned efforts as potential 
solutions in the long term, but leaves a gap in the 
near/intermediate term where other approaches such as the one 
presented here can promote the widespread adoption of 
wearable technology.  

III. SYSTEM OVERVIEW 
The system presented in this paper is a semi-custom 

commercial-off-the-shelf (COTS) based self-powered sensor 
system designed to perform vigilant long-term cardiac and 
activity monitoring. The device is designed as a 3-electrode, 
single lead ECG that continuously samples and wirelessly 
streams ECG data in addition to 3-axis motion data to a 
smartphone. The system samples ECG data with an 8-bit 
resolution at 50 Hz and motion data at 12.5 Hz to achieve a low-
power consumption of 683 µW while preserving vigilant 
sensing operation. (See Section VI for rationale behind 50 Hz 
@ 8 bits ECG sampling for AF detection.) Three main blocks 
constitute the architecture of the system: Sensing, Energy 
Harvesting and Power Management, and Control and Data 
Transmission. The Sensing block integrates a digital 
accelerometer and a discreet analog-front-end (AFE) that 
interfaces with the ECG shirt. Similarly, flexible solar cells, 
TEGs, a DC-DC converter for each source, a supercapacitor and 
a low drop-out (LDO) regulator compose the Energy 
Harvesting and Power Management block. Finally, the Control 
and Data Transmission block is comprised of a BLE-enabled 
system-on-chip (SoC) from Dialog Semiconductors. A block 
diagram of the architecture is shown in figure 1. Most of the 

components are integrated onto two small printed circuit boards 
(PCBs) with dimensions 2.79 cm by 2.28 cm to achieve a 
compact form factor and increase its wearability. The two PCBs 
are the energy harvesting board and the system main board. The 
energy harvesting board incorporates the DC-DC converters 
and the supercapacitor that acts as a storage element for the 
system. The system main board accommodates the 
accelerometer, the ECG AFE, the LDO regulator and the BLE 
SoC. This distributed architecture gives the system certain 
flexibility to interface with different harvesters and sensors 
according to the target application. 

A. Sensing 
The sensing modalities relevant to the defined use case 

application are ECG and motion, which provides activity 
context to the cardiac data. The Sensing block, which is 
integrated onto the main board, acquires the sensor data from 
the user and transfers it to the SoC where it is stored in a buffer 
for transmission. The accelerometer used for motion recording 
is the ADXL362 3-axis digital output MEMS accelerometer 
from Analog Devices. The device can operate in a voltage range 
of 1.8V to 3.3V and at the 2.3V domain set for the whole 
system, it consumes less than 5 µW of power at a 100 Hz output 
data rate. The accelerometer has a 12-bit data resolution, from 
which only 8 bits are used in this application for power 
reduction, and the measurement range is set from -2g to +2g 
according to the characteristics of human motion. The device 
incorporates a standard Serial Peripheral Interface (SPI) that 
allows it to communicate seamlessly with the BLE SoC. 

The ECG AFE consists of six discreet LPV521 low-power, 
operational amplifiers (op-amps) from Texas Instruments. The 
initial stage integrates four op-amps in an instrumentation 
amplifier configuration with a set gain of 110 and a passive, 
low-pass filter at the input with a cutoff frequency of 1.5 KHz. 
The purpose of this filter is to remove high frequency noise that 
could be coupled to the leads of the electrodes. At the output of 
the instrumentation amplifier, an additional active, second-
order, Sallen Key low-pass filter with a cutoff frequency of 135 
Hz was implemented. Finally, a driven right leg (DRL) circuit 
was included to reduce common-mode interference. The 
measured Common Mode Rejection Ratio (CMRR) for our 
design corresponds to 106.8 dB. Additionally, the overall ECG 

 
 

Fig. 1.  Block diagram of the self-powered system with the three main modules that comprise it. The system is distributed onto two PCBs: main 
board and energy harvesting board. 
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AFE presents an input referred noise of 0.398 mVrms. The AFE 
can operate with a power supply as low as 1.6V, where a 
minimum power consumption of 46.6 µW is achieved. After the 
signal conditioning, the output of the ECG AFE interfaces with 
the analog to digital converter (ADC) of the BLE SoC that 
digitizes the signal with a resolution of 10 bits, where the 8 most 
significant bits are extracted for further processing. 
Additionally, the ECG AFE incorporates a 3.5mm audio jack to 
have the flexibility of interfacing with standard patch electrodes 
or, in this case, the custom ECG shirt. 

B. Energy Harvesting and Power Management 
The Energy Harvesting and Power Management block 

administers and supplies power to the Sensing and Control and 
Data Transmission blocks by extracting the available power 
from the solar cells and TEGs. The selected flexible solar cells 
are the MP3-37 and LL200-3-37 from Power Film Solar with a 
nominal open circuit voltage of 3.2 V and with a combined 
surface area of 166.44 cm2. The DC-DC converter selected to 
interface with the solar cells was the BQ25505 ultra-low power 
boost converter from Texas Instruments given its wide input 
voltage range and the on-chip maximum power point tracking 
(MPPT) circuit. In the case of solar cells, the MPP is typically 
located between 70% and 80% of their open circuit voltage. The 
converter extracts the maximum power available by modulating 
the input impedance of the device to the one from the solar cells 
using a pre-set resistive divider. The open circuit voltage is 
sampled every 16 s for 256 ms to adjust the duty cycle of the 
converter accordingly. For the operating conditions of the 
selected solar cells under most scenarios, the device presents an 

efficiency between 80% and 90% and autonomously 
administers the harvested energy over two paths, one to power 
the system main board and another to store the excess energy 
onto a supercapacitor that powers the system when there is not 
enough energy available at the input. To complement the solar 
cells, the SP5424 TEGs from Marlow Industries were selected 
to provide power under little to no-light conditions. An array of 
20 TEGs with an effective surface area of 17.43 cm2 was 
created and were incorporated into an arm band as discussed in 
section 4. Since TEGs produce a small output voltage under 
wearable conditions, an ultra-low voltage boost converter was 
required. The LTC3108 from Linear Technology is capable of 
operating from 20mV inputs with a trade-off of lower efficiency 
(30 – 40%) given the losses at the input stages (transformer, 
rectifier, gate drive) necessary to operate from these lower input 
voltages. To achieve the ultra-low voltage operation, the device 
uses an external transformer to create an oscillator and amplify 
the signal to later rectify it. The transformer ratio determines 
the input voltage range at which the boost can function 
appropriately, in this case 20mV to 400mV for a 1:100 ratio. 
Similarly to the BQ25505, the LTC3108 manages the harvested 
energy in such way that the surplus energy is stored in a 
capacitor. For this application, a 1F supercapacitor was selected 
as the storage element, and it was connected to the storage path 

 
(a) 

 
(b) 

Fig. 2.  Characterization of the energy harvesting arm band: (a) 
Output power of the solar cells for different levels of illumination; (b) 
Generated power from the TEGs on a hot plate at 32 °C and under 
several ambient temperature conditions. 

 

 

 

 
Fig. 3.  The self-powered wearable sensor system: (a) Top side of 
the main board (2.79 cm x 2.28 cm); (b) Bottom side of the main 
board; (c) Top side of the energy harvesting board (2.79 cm x 2.28 
cm); (d) Bottom side of the energy harvesting board. 
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of both converters. Finally, an LDO regulator – TPS78326 from 
Texas Instruments – generates the 2.3 V rail needed for 
powering the accelerometer, the AFE, and the BLE SoC. Figure 
2 presents power vs. voltage curves for the solar cells and TEGs 
integrated into an arm band under different ambient conditions. 
For this assessment, the LITE platform presented in [26] was 
used in the evaluation of the solar cells. In the case of the TEGs, 
a hot plate and a fan were used to create and sustain a desired 
temperature difference. 

C. Control and Data Transmission 
The Control and Data Transmission block controls the sensor 

data flow and wirelessly transmits it to a smartphone. The BLE 
SoC used is the DA14580 from Dialog Semiconductor. This 
device incorporates 32 digital general purpose I/O (GPIO) pins, 
a SPI bus, and four 10-bit ADC channels. The SPI bus is used 
to communicate with the accelerometer, and one of the ADC 
channels is used to digitize the ECG signal. The DA14580 uses 
a 16 MHz 32-bit ARM Cortex-M0 for processing and a 
designated BLE core compliant with the BLE 4.2 standard. The 
BLE transceiver has a configurable output power that can be set 
to 0dBm or -20dBm. In this system, the second mode was 
selected to reduce power consumption. The SoC contains four 
memories: an 84 kB ROM for the BLE protocol stack and the 
boot code sequence for start-up, a 32 kB one-time 
programmable (OTP) memory to store the application code and 
the BLE profiles, a 42 kB system SRAM for mirroring the 
application code from the OTP upon wake up from sleep mode, 
and a series of low leakage SRAM cells for various data of the 
BLE protocol and to store the processor stack when the system 
goes into deep sleep mode. Figure 3 shows the system main 
board and the energy harvesting board. 

After transmission, the sensed data is displayed locally using 

a smartphone and remotely using a web application. A custom 

Android application was developed to display the data on the 

smartphone, which also uploads it to a time-series database 

hosted by Amazon in the current version. The view and display 

of the data is performed by a platform called Grafana. In figure 

4, screenshots of the Android application and the web 

application are presented.  

IV. TEXTILE INTEGRATION 
In an effort to address the issue of user compliance by 

improving system wearability, several garments to integrate 
different harvesters were designed, and a custom ECG shirt was 
developed. 

A. Energy Harvesting Garments 
The first approach to integrate a harvester into clothing was 

to attach solar cells to a compression arm sleeve. The cells were 
placed and sewed to the arm sleeve at the forearm level given 
the higher exposure to light of this area. On the upper arm, a 
small pocket to hold the main board and energy harvesting 
board was similarly sewed, and the leads coming from the solar 
cells were run inside the sleeve to the pocket to connect to the 
energy harvesting board. Even though this solution was able to 
harvest enough energy to maintain the system running at low 
sampling frequencies under indoor light conditions (469 lux 
average, 5000K fluorescent), the energy was not enough to fully 
recharge the 1F supercapacitor during the day if the lighting 
conditions did not change considerably, preventing the system 
from functioning for long periods of time in dark environments 
(e.g. at night). 

The second solution, and considering that the shoulders 

would have a higher exposure to light relative to the forearm, a 

solar shirt was designed. For this garment, smaller, rigid, 

amorphous solar cells were used since they perform better 

under low light conditions. In this case, assuming that the shirt 

may need to be washed, small Velcro straps were sewed to the 

shoulder of the shirt and similarly glued to the back of the solar 

cells to have the flexibility of attaching and removing the cells 

as needed. The results from testing the shirt showed that even 

though the exposure to light increased, the rigid cells were still 

not producing enough energy that ensured the operation of the 

system overnight. 

Finally, using the knowledge acquired from the previous two 

solutions, a third garment that incorporated multiple flexible 

solar cells and TEGs was created. In this approach, two new 

low-light flexible solar cells were added to the array used in the 

arm sleeve to increase the energy harvested from light, and the 

TEGs were added to work as a backup for dark environments 

 

                  
                                                                         (a)                                                            (b) 

 
Fig. 4.  Screenshot of the developed applications for data display: (a) Cloud interface displaying ECG and acceleration data; (b) Android 
application with ECG and acceleration data displayed. 
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using the body heat as the energy source. The multiple 

harvesters were integrated in an arm band meant to be worn on 

the upper arm. The solar cells were attached on the anterior 

upper arm, and the TEGs were placed on the interior. The arm 

band also included a small pocket to carry the sensor system, 

and buttonholes were designed to run the harvester and ECG 

cables. This solution harvests a higher amount of energy when 

the illumination levels are very low and enough to charge the 

supercapacitor in relatively short periods of time when 

outdoors. Although the power harvested from the TEGs is small 

compared to the solar cells (as was expected), this small amount 

is able to extend the operation of the system when no harvesting 

from the solar cells is possible.  

B. ECG Shirt 
A custom e-textile shirt acquires the ECG signal for the 

system. The shirt utilizes three dry electrodes integrated into a 
knitted compression fabric supplied from Hanesbrand Inc., NC, 
USA, made of 87% polyester and 13% spandex yarns with a 
basis weight of 150 g/m2. The electrodes were screen printed 
with Creative Materials (124-36) Ag/AgCl electrically 
conductive ink onto a thermoplastic polyurethane film (TPU) 
obtained from BEMIS Inc. (TL644), and heat laminated onto 
the knitted compression fabric. The composite like structure of 
the textile-based electrodes results in a durable and stretchable 

electrode with excellent electromechanical properties [27]. In 
contrast with common ECG sticky electrodes, the developed 
dry electrodes do not produce irritation on the skin and allow 
for long term monitoring and data collection. Regarding the 
structure of the shirt, in addition to using the form-fitting knitted 
compression fabric, the shirt employs a custom panel design. 
The transparent panels incorporate another type of compression 
fabric whose elasticity is higher than the Hanesbrand knitted 
compression fabric. The chosen fabrics and custom panel 
design help the shirt conform to the user’s body as tightly as 
possible and maintain good skin-electrode contact. Skin-
electrode impedance is a key parameter when acquiring high-
fidelity ECG signals and is directly correlated to the contact of 
the skin relative to the electrode [28]. Poor skin-electrode 
contact results in a high skin-electrode impedance and low-
quality ECG signals. An evaluation of skin-electrode 
impedance for our shirt done from 0.1 Hz to 1000 Hz showed 
an impedance range of 10 KΩ to 550Ω, respectively. Figure 5 
shows the ECG shirt on the body and demonstrates effective 
compression in the areas where the ECG electrodes are located. 
The three metal knobs in figure 5a are the snap connection 
points for the ECG cable that connects the shirt to the main 
board. 

The shirt has good compression in most areas, but it is 

heavily dependent on the user’s anatomical physique. Thus, it 

can be difficult to get the electrodes to establish good skin-

electrode contact at all times. The particular shirt seen in figure 

5 was sized to dimensions slightly different than the user’s 

physique. The slight sizing variance results in wrinkling of the 

shirt as seen in figure 5b. Wrinkling is problematic because it 

can cause poor skin-electrode contact and low ECG signal 

quality. Physiological factors such as dry skin can also affect 

the ECG signal quality from the shirt. This is a problem 

independent of skin-electrode contact because dry skin is a poor 

conductor, which increases the overall skin-electrode 

impedance. Different solutions can be utilized to overcome 

these setbacks.  The first, and probably least practical in day-to-

day situations, is to work up a sweat. The ions in sweat turn skin 

into a better conductor and help the electrodes stick in place 

         
(a) 

   
(b)                                             (c) 

 
Fig. 6.  ECG signal acquired with the custom ECG shirt and the 
implemented AFE displayed on an oscilloscope. (a) ECG signal 
when user is still; (b) ECG signal when user is running in place; (c) 
ECG signal when user is dancing. 

     
(a)                                            (b) 

 
(c) 

 
Fig. 5.  Custom ECG shirt with dry electrodes on the body: (a) Front 
view of the ECG shirt with the snap button connectors on the left to 
interface with the main board; (b) Back view of the ECG shirt, the 
electrode for reference can be seen on the right lower back; (c) Full 
integration of the ECG shirt (under) with the system boards and the 
energy harvesting arm band. 
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preventing wrinkles from moving them around. The second 

more practical solution is to put lotion on the skin where the 

textile-based electrodes make contact. The lotion acts as an 

electrolyte, similar to those found in commercially available 

wet electrodes. This decreases the overall skin-electrode 

impedance and helps the electrodes stick in place, similar to the 

effect of sweating. 

If proper skin-electrode contact is maintained, the resulting 

connection and acquired signal are quite robust. This was 

verified by measuring the ECG signal from the shirt when 

performing different movements and comparing those signals 

to an ECG signal acquired when performing no movement. 

These tests were also conducted to quantify and understand the 

skin-electrode contact throughout the different movements. The 

motions performed were running in place and dancing. Running 

in place was performed to test the effect of consistent 

movement, while dancing was performed to test the effect of 

erratic movement. We determined the signal-to-noise ratio 

(SNR) for each activity using MATLAB wavelet signal 

denoising method and found an SNR of 36.9 dB for no motion, 

25 dB for running and 21.9 dB for dancing. The captured ECG 

signals for each of these tests are shown in figure 6. Both types 

of movement introduce more noise into the ECG signal 

compared to the no motion evaluation. The noise in the signal 

is correlated to the custom panel design of the shirt. The 

transparent panels seen in figure 5 have a higher elasticity than 

the fabric integrated with the electrodes located on the torso of 

the shirt. The higher elastic fabrics act as a buffer by absorbing 

most of the motion generated from both movements. This helps 

isolate the fabric integrated with electrodes from motion 

artifacts experienced from both types of movements. As a 

result, the ECG signal was never lost, nor was the noise large 

enough to significantly distort the waveform and prevent the 

measurement of key features such as the R-R interval used in 

this approach. 

V. POWER CONSUMPTION MODELING 
The total power consumption of the system and its 

relationship with the sampling rate was modeled by the 
following equations: 

 
𝑃𝑡𝑜𝑡 = 𝑃𝑐𝑚𝑝𝑡𝑠 + 𝑃𝐵𝐿𝐸         (1) 

 

𝑃𝐵𝐿𝐸 =  
𝑓𝑇𝑐𝑇𝑎𝑠𝑃𝑎𝑠+𝑇𝑎𝑡𝑃𝑎𝑡+(𝑇𝑐−𝑇𝑎𝑡−𝑓𝑇𝑐𝑇𝑎𝑠)𝑃𝑠

𝑇𝑐
     (2) 

 
where Pcmpts represents the power consumption of the 
accelerometer, the ECG AFE, and the LDO regulator; and PBLE 
constitutes the power consumption of the BLE SoC. PBLE is 
dynamic and it is defined by the duty-cycling activity between 
operation modes in the BLE SoC as illustrated in figure 7. 
Essentially, the BLE SoC wakes up from sleep mode and goes 
into active mode periodically to sample data from the sensors. 
This data is stored in a 20-byte buffer. Once the buffer is full, 
packets containing the data are sent in a connection event to the 
smartphone. 

In equation 2, PBLE is calculated from the sampling rate of the 

sensors, the length of the connection interval, and the 

transmission period for each packet. Tc represents the length of 

the connection interval. Tas represents the period of time when 

the BLE SoC is active for sampling data. Tat represents the 

transmission time. The power consumptions of the BLE SoC 

active and sampling, transmitting, and sleeping are represented 

by Pas, Pat, and Ps, respectively. 

PBLE is also calculated from the sampling frequency of the 

sensors. A plot of the sampling frequency vs. system power is 

shown in figure 8. As seen in the plot, the system power 

increases linearly with frequency. Since the sampling rate is the 

most easily controllable variable in PBLE, modeling system 

power in this way is useful for determining the optimum 

sampling rate at which to run the system given a specified 

power budget. For example, for the system to consume less than 

450 µW, the sampling rate has to be 25 Hz or below. However, 

it is also important for the sampling rate to be high enough to 

capture all the important features of the ECG signal based on 

the application requirements. The decision to use 50 Hz as the 

sampling frequency to maintain cardiac vigilant monitoring is 

discussed in the following sections. Table 1 summarizes 

measured power consumption of the self-powered system and 

individual modules for comparison with the projected values 

from figure 8. The discrepancy between the estimated power 

 
(a) 

 
(b) 

 
Fig. 7.  System power modeling using the workload operation 
profile. a) Workload profile during normal operation. Three states 
are observed: active, sleep and transmission, b) Power profile 
representation based on the workload profile for normal operation 
[10]. During the active mode, the data is sampled and when a 
connection event occurs, the data is transmitted to the phone. 
 
 

  
 

Fig. 8.  Projected system power consumption using the power 
model for different sampling rates modified from [10]. 
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consumption from the model and the corresponding power 

measurements are attributed to the fact that the numbers entered 

in the model correspond to the maximum power values derived 

from the datasheet for each component in the system and 

therefore representing the worst-case scenario. 

VI. VIGILANT ATRIAL FIBRILLATION MONITORING 
AF is a condition characterized for abnormal heart rhythm 
commonly associated with heart diseases such as cardiac 
failure. The early detection and diagnosis of AF could help to 
prevent heart failure and stroke, but vigilant monitoring is 
necessary to capture transient periods of AF. 
In a patient with AF, the irregularly rapid action potentials 
produced in the atrium manifest in the ECG as low amplitude 
potentials that alter the ECG baseline, often masking the P-
wave. As these irregular atrial action potentials travel through 
the heart’s electrical system, they reach the AV node and 

generate ventricular activity that is presented in the ECG as a 
QRS complex. Given the refractory period of the AV node, not 
all of the irregular atrial action potentials can trigger ventricular 
activity. As a result, the ECG of an AF patient is characterized 
by the absence of P-waves and irregular QRS complex. Given 
these characteristics of the condition, the analysis of R-R 
intervals and atrial activity waveforms are two of the main 
methods for AF detection. In a comparative study for AF 
detection reported in [29], the algorithm performance for both 
approaches was evaluated, and it was concluded that the R-R 
interval-based approach provided better results. Therefore, an 
R-R interval approach was adopted in this work. 

The R-R interval variations are used in different ways for AF 
detection. In [30], a normalized R-R interval variation threshold 
is set to classify AF events. In other works, both R-R interval 
and its change are used for detection of AF [31]. In [32], the 
Kolmogorov-Smirnov test is used to detect AF episodes. In this 
paper, we used the method in [30] for its simplicity and high 
performance. For R-R interval calculation, we used the curve 
length transform in [33] and additional methods such as a 
wavelet transform [34]. The curve length transform algorithm 
can deal with baseline changes using a dynamic threshold.  

The original ECG data employed in the exploration was 

retrieved from the MIT-BIH AF database [35], number 05121. 

The data was collected using ambulatory Holter monitors with 

a sampling frequency of 250 Hz. The total length of the 

recordings corresponds to 10.23 hours, which contains 26 AF 

events and junctional premature episodes that comprise 6.51 

TABLE I 
SYSTEM POWER BREAKDOWN 

Component Power (µW) 
ECG AFE 67 

Accelerometer 4.55 
LDO Regulator 9 

BLE SoC Sleep Mode 9 
BLE SoC Active Mode 1598 
Total System Power 

(ECG (50 Hz) + motion (12.5 
Hz) monitoring) 

683 

 

 
 
Fig. 9.  ECG waveforms and detected R peaks in red circles with different sampling rates. With the decrease in sampling rate, the ECG signal 
becomes distorted, but the R peak detection works well until a minimum sampling rate of 20Hz. Modified from [11]. 
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hours out of the total length. The WFDB MATLAB Toolbox 

[36, 37] was used for reading the ECG signal and annotations. 

In the experiment, the raw ECG signal is downsampled to 

simulate low sampling rate scenarios. Then the AF detection 

with R-R interval calculation algorithm is executed using the 

downsampled ECG signals. The R-R interval calculation 

algorithm was reimplemented from [33] to tune the parameters 

for dealing with low sampling frequency scenarios. Figure 9 

shows a 10 second window of ECG data at the original 

sampling frequency and five down-sampled versions. 

To quantitatively evaluate the performance of the AF 
detection algorithm with respect to the sampling frequency, the 
receiver operating characteristic (ROC) curve was created 
considering 9 different sampling rates from 250 Hz to 10 Hz. 
The resultant family of curves is shown in figure 10a. In 
general, it is possible to see the curve moving inwards as the 
sampling rate decreases. Furthermore, to expand the evaluation, 
the ROC area and the maximum F2 scores were calculated. The 
results are illustrated in 10b. The ROC area corresponds to the 
area under the ROC curve and the F2 score considers both 

 
(a) 

 
(b) 

Fig. 10.  From [11]. a) The receiver operating characteristic (ROC) 
curve of AF detection under 9 sampling rates. The curve is moving 
inward as the sampling rate decreases, b) The ROC area and 
maximum F2 score across different sampling rates of ECG data. 

               
(a)                                                                                                                                 (b) 

 
Fig. 12.  a) The ROC area versus bit depth and sampling rate, b) Design space considering sampling rate and bit depth. The red line represents 
the optimal design specification for a given power consumption level. 

 
(a) 

 
(b) 

Fig. 11.  a) The receiver operating characteristic (ROC) curve of AF 
detection corresponding to seven bit depths. The curve is moving 
inward as the bit depth decreases, b) The ROC area and maximum 
F2 score across different bit depths of ECG data. 
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classification recall/sensitivity and precision, and weights recall 
higher to reduce the false negative rate (failed to detect AF). For 
each sampling rate, the maximum F2 score was calculated over 
the set threshold. 

For both curves, the value generally increases with higher 
sampling rate. For the ROC area, the performance increases fast 
when the sampling rate is low, and it sees diminishing returns 
when the sampling rate is higher. In addition, from the curves it 
is possible to see that the performance almost reaches saturation 
after 50 Hz, which makes it the minimum power operating 
mode for vigilant AF monitoring. 

A similar analysis looking at the effects of bit depth on the 
sampled ECG signal was conducted. For this matter, the ROC, 
ROC area and F2 score were computed over different 
quantization depths going from the original 12 bits to 6 bits as 
illustrated in figure 11. 

To complete the analysis, the ROC area results for sampling 
rate and bit depth were combined in to establish the relation of 
these two parameters and the overall average system power 
consumption. The 3D plot of the ROC area is presented in 
figure 12a. It is possible to see that the ROC area, representing 
the performance of the system, is directly proportional to the 
sampling rate and bit depth. However, some irregularities when 
the bit depth is below 8 bits are identified. Under these 
conditions, the above relation does not hold. The main reason 
for this behavior is that the initial classification result is 
smoothed using a majority vote. Under the low bit depth 
scenarios, the R-R interval computation performs poorly, but 
the smoothing may increase the performance regardless of the 
sampling rate. Nevertheless, the signal quality below 8 bits is 
too low and therefore is not considered for real-world 
monitoring. Furthermore, employing the power consumption 
model defined by equations (1) and (2) in Section V, the design 
space considering the two discussed parameters and their 

possible combinations is denoted by the blue markers in figure 
12b. The red line is part of the convex hull of all the points and 
it represents the optimal design specifications for a given power 
budget. 

VII. COMPARISON WITH STATE-OF-THE-ART 
To highlight the contributions of this work, the proposed 

system was compared to similar COTS based, state-of-the-art 

cardiac monitoring devices [39-44] and commercially available 

solutions [38]. To present a fair comparison, the selected 

systems had to feature three main characteristics: low power 

operation, small form factor for wearability, and wireless 

connectivity. Based on these criteria a set of 12 categories were 

defined, and the results are summarized in Table 2. From this 

information it is possible to notice how most of the devices 

operate at 3V, have a relatively small form factor and present a 

3-electrode configuration with a DRL circuit for a higher 

CMRR and reduction in the ECG baseline wandering. The 

bigger differences among the solutions are observed in the bit 

depth, sampling frequency, power consumption and operation 

mode. 

The strengths of the proposed system are the low power 

consumption (only 683 µW), its continuous, vigilant operation, 

and the end-to-end system integration for remote monitoring. 

While all of the compared solutions can operate continuously, 

none of them features a true vigilant characteristic for long-term 

monitoring given the limited battery lifetime. A special case is 

the Ultra-Low Power Sensor Evaluation Kit (ULPSEK) 

presented in [40], where energy harvesting is used as the power 

source. The system achieves the lowest power consumption and 

self-powered operation, but heavy duty-cycling is required. Its 

implemented power management scheme wakes up the device 

to sample the sensor data for 31 seconds and then puts it to sleep 

for 12 minutes to reduce the average power consumption to 137 

µW over the 12.5-minute window. Therefore, ULPSEK is a 

TABLE II 
COMPARISON OF LOW POWER, WEARABLE, ECG SYSTEMS 

 [33] [34]  [35] [36] [37]1 [38]1 [39] This Work 

Number of 
electrodes 2 3 3 3 4 3 2 3 

ADC (bits) 8 n/a 12 16 24 12 16.5 (14 
ENOB) 8 

fsECG (Hz) 300 n/a 200 500 500 750 320 50 
Voltage (V) n/a 3 3 1.8 3 3.3 3 3 
Power (µW) n/a 12500 137 6500 90000 13400 12000 683 

Communication 
Protocol BT BT BLE BLE BT BLE ZigBee Pro BLE 

Multimodal 
Sensing Yes No Yes No Yes Yes No Yes 

Web Access Yes No No No No Yes Yes Yes 
Vigilant 

Operation Yes2 Yes2 No n/a Yes2 Yes2 Yes2 Yes 

Data Storage Local / 
Remote Local Remote Remote Local / 

Remote 
Local / 
Remote Remote Remote 

Power Source Battery  
(48 hrs) 

Battery  
(30 hrs) 

TEG  
(Self-

powered) 
n/a Battery  

(5 hrs) 
Battery  
(96 hrs) 

Battery  
(160 hrs) 

Photovoltaic 
+ TEG (Self-

powered) 
Dimensions 

(mm) 90 x 40 x 16 58 x 50 x 10 60 x 32 x n/a 24 x 14 x n/a 30 x 25 x 10 13 x 11 x 5 65 x 34 x n/a  28 x 23 x 12 

1 System operating in streaming mode. 2 Vigilant operation only during battery lifetime. 
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self-powered system with near-continuous operation but does 

not provide vigilant monitoring for cardiac event detection. 

Even though the work presented in this paper has lower 

numbers in terms of bit depth and sampling frequency, these 

parameters were set based on the application-driven approach 

to optimize power consumption while ensuring data quality. 

VIII. DEPLOYMENT RESULTS AND CONSIDERATIONS 
The sensor system was deployed on a healthy male 

individual for two consecutive days to evaluate its performance. 
Before the deployment, the storage element – a 

supercapacitor – was sized to ensure operation during 
prolonged periods of time when no harvesting was possible. 
Through experimental methods, three different custom 
supercapacitors were evaluated: 1F, 1.9F and 3.5F [45]. The 
experiment consisted of letting the sensor system run normally 
with only the fully pre-charged supercapacitor as the power 
source. For each of the capacitances, the recorded run times 
were 3.3 hours, 6.02 hours and 12.65 hours, respectively. The 
supercapacitors used had a form factor similar to a CR2032 coin 
cell battery, thus the wearability was not compromised. 

With all the system elements in place, the individual was 
asked to wear the system while doing his regular activities. To 
determine the impact of changes in illumination, the voltage of 
the storage element was randomly monitored, and the only time 
the voltage dropped was at night when no light was available – 
a positive energy balance was maintained at all other times. For 
the two mornings of the deployment, the individual reported to 
measure approximately 2.1V in the storage element after 
waking up, with the system still powered on and streaming data 
to the phone, supported in part by the TEG harvesting. During 
the day, it took about 6 hours for the storage element to be fully 
charged in an indoor environment of ~500 lux. Based on our 
previous profiling work [46, 47], the average illumination level 
at the office is 537 lux, which indicates that the conditions for 
the storage element to be recharged can be normally met. 

In the case of individuals with less mobility and those who 
spend most of the time in low illumination environments, the 
vigilant operation of the system may be compromised. For 
instance, in a scenario where the system is operating at a low 
voltage (e.g., morning after overnight operation) and the 
average illumination exposure during the day is 250 lux, the 
system will be able to operate while the light source is present, 
but it may not stay on for a long time with no solar harvesting 
(e.g., the following night). 

Typical illumination levels outdoor are higher than 100,000 
lux on a clear day and 20,000 lux on a cloudy day. In the case 
of indoor environments, the illumination levels are in the range 
of 100-1000 lux. If the average illumination level over 12 hours 
is higher than 300 lux, the supercapacitor will be fully 
recharged. A study presented in [48] surveying national human 
activity patterns reported that the average American spends 
87% of their time indoors, 6% in enclosed vehicles and 7% 
outdoors. This last number represents 1 hour and 40 minutes 
under illumination conditions higher than 1000 lux given that 
most of the activities corresponding to this percentage occurred 
between 7 AM and 6 PM according to the study. With these 

numbers, the proposed work represents a feasible solution for 
the majority of the population in the U.S. 

IX. CONCLUSIONS AND FUTURE WORK 
This paper presents a set of contributions developed to realize 

a platform for self-powered vigilant cardiac and activity 

monitoring, thereby addressing some of the critical barriers to 

widespread adoption of long-term remote patient monitoring. 

The sensor system represents a significant advancement in self-

powered multi-modal harvesting and sensing by collecting and 

transmitting ECG and motion data in real time to a smartphone 

for local access and to the web for remote analysis and alerts. 

Vigilant AF monitoring was investigated as a typical case 

study, and the implications of reduced ECG sampling rate and 

bit depth quantization in AF detection performance were 

analyzed. From this analysis, it was determined that ECG 

signals sampled under 20 Hz are not sufficiently accurate for 

peak detection of the QRS complex. In addition, while sampling 

rates above 20 Hz and below 50 Hz can perform well in peak 

detection, their timing is not precise enough for accurate R-R 

interval extraction, which is critical for AF detection. It was 

therefore determined that 50 Hz is the minimum sampling rate 

for vigilant AF monitoring. A similar conclusion was drawn for 

the analysis of ECG signal quantization, and it was determined 

that resolutions lower than 8 bits are not feasible to guarantee 

the quality of the signal for AF detection. The presented sensor 

system operating with a sampling frequency of 50 Hz and 8 bits 

consumes 683 µW on average. This harvested power can be 

delivered by wearable solar cells in most indoor illumination 

levels and complemented with TEGs for operation in low-light 

conditions. With the integration of the ECG shirt, the 

wearability of the system is highly improved and the realization 

of long-term monitoring is enabled by using dry electrodes 

which do not cause irritation on the skin as their counterpart do. 

Furthermore, given its anatomical design and the use of 

compression fabrics, motion artifacts commonly seen in other 

ECG systems are minimized. Future work includes the 

exploration of different harvesters and sensors, the integration 

of harvesters onto textiles, and a clinical trial using the 

developed sensor system and the custom ECG shirt. 
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