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Specifications Table

Subject Ecology, Soil Science

Specific subject area Earthworm ecology, litter decomposition, soil carbon

Type of data Table

How data were acquired Systematic review of the literature

Data format Raw

Parameters for data collection We used three different combinations of keywords: earthworm and litter
decomposition; earthworm and forest floor; earthworm and soil carbon.

Description of data collection Data were collected from the ISI-Web of Science and Google Scholar.

Data source location 18 countries over five continents

Data accessibility With the article

Related research article Wei Huang, Grizelle Gonzalez, Xiaoming Zou, Earthworm Abundance and Functional

Group Diversity Regulate Plant Litter Decay and Soil Organic Carbon Level: A Global
Meta-analysis, Applied Soil Ecology, in press, https://doi.org/10.1016/j.apsoil.2019.
103473. [1]

Value of the Data

e To date, no dataset has provided a comprehensive synthesis of existing experimental data about the effect of earthworms
on litter decomposition and soil organic carbon (SOC) levels at global scale.

e Data can be used to quantify the effect of earthworms on litter decomposition and SOC levels at global scale.

e Data can be used to identify effects of earthworm functional group diversity, vegetation types, litter quality, litterbag mesh
size, soil C/N, soil aggregate size, experiment types and length of experimental time on earthworm induced plant litter and
SOC decay.

1. Data description

Data were extracted from peer-reviewed journal papers published between 1985 and 2018. Totally
340 observations from 69 studies were included. Detailed data are listed in Tables 1-5, giving the
following information: location, ecosystem, earthworm density, annual litter decomposition rate,
earthworm function group, the response ratio (R), mean annual temperature, mean annual precipi-
tation, experimental type, experimental duration, litter quality, forest floormass thickness and carbon
stock, soil carbon concentration, soil C/N, soil aggregate size, and literature reference.

2. Experimental design, materials, and methods

A data set was compiled using literature search of peer-reviewed publications about the effects of
earthworms on litter decomposition or SOC from the ISI-Web of Science and Google Scholar research
database. We used three different combinations of keywords: earthworm and litter decomposition;
earthworm and forest floor; earthworm and soil carbon. A total of 69 studies published between 1985
and 2018 were found (Tables 1-5). An Engauge Digitizer (Free Software Foundation, Inc., Boston, MA,
United States of America) was used to extract numerical values from figures in selected articles in
which data were graphically presented.

For Table 1, we included studies that reported earthworm density and litter decomposition/decay
rate; 40 observations from 13 studies were found. For Table 3, we included studies that reported
earthworm density and forest floor thickness or carbon stock; 32 observations from 12 studies were
found. For Table 4, we included studies that reported earthworm density and soil carbon content (%, g
C/kg soil or mg C/g soil); 70 observations from 12 studies were found. For Tables 1, 3 and 4, we included
studies that reflected earthworm density under field conditions (i.e. earthworms were not reduced or
added), and plant litter from the vegetation currently under the experimental sites so that these ob-
servations can reflect the balance between earthworm density and turnover of plant litter, SOC under
field conditions.


https://doi.org/10.1016/j.apsoil.2019.103473
https://doi.org/10.1016/j.apsoil.2019.103473

Table 1
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Location, earthworm density, plant litter decomposition rate, and earthworm functional group in crop fields, tree plantations and
forests worldwide for curve estimation.

Location Ecosystem Earthworm Annual litter Earthworm  Reference
density (no./m?)  decomposition  function
rate (y ) group
Georgia, USA Crop
Soy bean 176 1.67 Mixture [3]
Rye 176 145 Mixture
Queensland, Sugarcane 199 1.88 Endogeic [4]
Australia Plantation
Dublin, Ireland Salix 189 1.69 Mixture [5]
Carlshead, UK Short Rotation Forestry 152 091 Mixture [6]
Natural forest
Puerto Rico, USA  Tabonuco (Upland) 45 147 Mixture [7]
Tabonuco (Riparian) 16 0.94 Mixture
Anduze, France Chestnut 86 1.50 Mixture [8,9]
86 0.55 Mixture
86 1.10 Mixture
86 0.64 Mixture
4 0.71 Anecic
4 0.56 Anecic
4 0.50 Anecic
4 0.37 Anecic
28 0.52 Mixture
28 0.52 Mixture
28 0.48 Mixture
28 0.25 Mixture
Skane, Sweden Beech 2.5 0.33 Epigeic [10]
39.8 0.60 Mixture
219.7 2.15 Mixture
Hawaii, USA Metrosiderus 21 0.37 Mixture [11,12]
Puerto Rico, USA  Tabonuco (Control) 168.8 1.12 Mixture [13]
Tabonuco (Fertilization) 29.33 0.84 Endogeic
Subtropical lower 12 0.7 mixture
montane rain forest (Control)
Subtropical lower 19 1.49 Mixture
montane rain forest (Fertilization)
Ontario, Canada Sugar maple and American beech 67.675 0.39 Mixture [14]
Colorado, USA Aspen Forest 44.44 0.36 Mixture [15]
44.44 0.31 Mixture
Pine Forest 0.77 0.29 Epigeic
0.77 0.25 Epigeic
New York State, Sugar maple 79.6 1.05 Mixture [16]
USA 26.5 0.51 Mixture
99.4 1.27 Mixture
26.1 0.6 Mixture
Oak 81.6 0.96 Mixture
26.4 0.53 Mixture
92.6 1.16 Mixture
215 0.63 Mixture




Table 2
The location, biome, mean annual temperature (MAT), mean annual precipitation (MAP), experimental type, experimental duration, earthworm functional group, earthworm numbers, litter
quality for observations about the effects of earthworm on litter decomposition in the meta-analysis.

Location Ecosystems MAT (°C) MAP (mm) Experimental Experimental Earthworm Litter Litter C/N Litter Effect size References
type period (days) functional type bag mesh
group size (mm)
Puerto Rico, USA Pasture 22-26 3500 Field 365 Endogeic Leaf 26 1 2.62 [17]
Pasture 22-26 3500 Field 365 Endogeic Root 101 1 1.10
Forest 20.8—24.5 3456 Field 365 Mixture Leaf 32 1 1.22
Forest 20.8—24.5 3456 Field 365 Mixture Root 101 1 1.12
Maryland, USA Forest (Tulip poplar Field 240 Mixture Leaf 10 2.29 [18]
Association-mature) Field 240 Mixture Leaf 1 1.12
Anduze, France Forest 11.9 1212 Field 760 Mixture Leaf 5 233 [8]
Field 760 Mixture Leaf 5 1.75 [9]
Field 760 Mixture Leaf 5 242
Field 760 Mixture Leaf 5 1.492
Chicago, USA Forest (Buckthorn) Field 365 Leaf 4 33.76 [19]
Field 365 Leaf 4 2.32
Field 365 Leaf 4 1.95
Field 365 Leaf 4 1.64
Forest (mesic) Field 365 Leaf 4 9.81
Field 365 Leaf 4 3.73
Field 365 Leaf 4 233
Field 365 Leaf 4 2.56
Forest (maple) Field 365 Leaf 4 2.79
Field 365 Leaf 4 0.77
Field 365 Leaf 4 1.73
Field 365 Leaf 4 0.94
Ibadan, Nigeria Crop Lab 56 Epigeic Leaf 10.1 2.53 [20]
Field 56 Epigeic Leaf  10.1 1.98
New York, USA Forest (Oak) 1000 Field 190 Mixture Leaf 10 0.98 [21]
Field 190 Mixture Leaf 10 1.077
Forest (Sugar maple) Field 190 Mixture Leaf 10 1.027
Field 190 Mixture Leaf 10 1.11
Forest (Oak) Field 340 Mixture Leaf 10 1.35
Field 340 Mixture Leaf 10 1.51
Forest (Sugar maple) Field 340 Mixture Leaf 10 2.58
Field 340 Mixture Leaf 10 1.53
Forest (Oak) Field 540 Mixture Leaf 10 1.68
Field 540 Mixture Leaf 10 241
Forest (Sugar maple) Field 540 Mixture Leaf 10 1.56

Field 540 Mixture Leaf 10 2.59
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Guangdong, China

Baden Wurttemberg,
Germany

Amazonas, Brazil

Tyrol, Austria

Wisconsin, USA
Minnesota, USA

Tyrol, Austria

Forest
Temperate deciduous forest

14-22
14-22
14-22
24-31

15-20

18
18
18

Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Lab
Field

Lab
Lab
Field
Field
Field

Lab
Lab
Lab

126
126
63
63
63
97
97
97
97
97
97
97
97
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
84
123

Endogeic
Anecic
Anecic
Anecic
Anecic
Endogeic
Endogeic
Endogeic
Endogeic
Endogeic
Endogeic
Endogeic
Endogeic
Endogeic
Epigeic
Epigeic
Mixture
Mixture
Epigeic
Epigeic
Endogeic
Endogeic
Epigeic
Epigeic
Mixture
Mixture
Epigeic
Epigeic
Endogeic
Anecic
Anecic
Epigeic
Mixture
Anecic
Epigeic
Mixture
Epigeic
Epigeic
Epigeic
Epigeic

Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf
Leaf

17.3
17.3
17.3
27

32

34

42

27

32

34

42

34.7
34.7
34.7
34.7
34.7
34.7
34.7
34.7
272
272
27.2
272
272
27.2
27.2
272

0.93
1.42

1.91
2.37
0.95
1.03
1.07
1.04
0.78
0.89
1.00
0.98
0.96
1.00
143
1.02
1.09
1.12
1.32
1.11
0.95
1.04
1.97
1.02
1.31
1.25
2.05
1.56
4.62
1.50
235
2.80
1.06
1.47
1.37
1.07
1.11
117
1.21

(continued on next page)

(22]

[23]

[24]

[25]

[26]
[27]

[28]
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Table 2 (continued )

Location Ecosystems MAT (°C) MAP (mm) Experimental Experimental Earthworm Litter Litter C/N Litter Effect size References
type period (days) functional type bag mesh
group size (mm)
Bechstedt, Germany 15-20 Lab 56 Anecic Leaf 2.12 [29]
Lab 56 Anecic Leaf 2.68
Lab 56 Anecic Leaf 3.15
Lab 56 Anecic Leaf 3.26
Lab 56 Anecic Leaf 2.67
Lab 56 Anecic Leaf 4.00
Lab 56 Anecic Leaf 13.28
Lab 56 Anecic Leaf 6.28
Lab 56 Anecic Leaf 1.34
Lab 56 Anecic Leaf 1.06
Lab 56 Anecic Leaf 35.85
Lab 56 Anecic Leaf 2.15
Lab 56 Anecic Leaf 5.95
Lab 56 Anecic Leaf 1.33
Lab 56 Anecic Leaf 2.18
Lab 56 Anecic Leaf 4.72
Lab 56 Anecic Leaf 9.63
Lab 56 Anecic Leaf 1.16
Lab 56 Anecic Leaf 1.20
Lab 56 Anecic Leaf 1.56
Lab 56 Anecic Leaf 1.80
Lab 56 Anecic Leaf 334
Lab 56 Anecic Leaf 11.36
Lab 56 Anecic Leaf 6.97
Lab 56 Anecic Leaf 12.36
Puerto Rico, USA Lab 22 Mixture Leaf 2.10 [30]
Hampshire, UK Short rotation forestry 11.2 630 Field 365 Mixture Leaf 32.5 2.26 [31]
Field 365 Mixture Leaf 39.5 1.51
Carlshead, UK Short rotation forestry 9 1000 Field 365 Mixture Leaf 39.5 5 5.28 [6]
Field 365 Mixture Leaf 52 5 8.15
Field 365 Mixture Leaf 33 5 12.44
Field 365 Mixture Leaf 325 5 1041
Field 261 Mixture Leaf 18.2 5 17.56
Kaserstattalm, Austria 9-17 Lab 120 Epigeic Leaf 1.35 [32]
Lab 120 Epigeic Leaf 1.07
Lab 120 Epigeic Leaf 2.50

Gottingen, Germany 18 Lab 20 Epigeic Leaf 1.24 [33]
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Table 3
Location, earthworm density, and forest floormass thickness and carbon stock in forests worldwide for curve estimation.
Location Earthworm Forest floormass References
; 2
density (no./m) Thickness (cm) Carbon stock (g/m?)
Minnesota, USA 592.00 0.60 [34]
Minnesota, USA 821.47 1.14 [35]
Ontario, Canada 99.50 2.70 [36]
Alberta, Canada 622.72 419 [37]
181.59 3.66
108.14 3.57
136.42 3.49
162.75 2.64
214.18 1.01
196.08 0.97
623.02 0.20
458.67 0.12
661.73 0.04
Maryland, USA 212.00 1.00 116.00 [38]
Maryland, USA 38.00 6.25 [39]
Michigan, USA 9.10 895.60 [40]
247.80 316.20
New York State, USA 106.30 211.20 [41]
76.83 70.40
New York State, USA 150.00 196.34 [42]
89.20 295.39
Puerto Rico, USA 32.67 785.10 [43]
56.00 406.40
8.76 563.90
Jilin, China 780 1.0 [44]
336 2.5
153 2.0
52 1.5
Yunan, China 28.5 1.5 [45]
12.35 0.5
7.5 1

To be included in the meta-analysis, the paper had to report the means, standard deviation (SDs)
and replicate numbers of litter percent mass loss or SOC for the control treatment (C, with no
earthworms or reduced earthworm number) and the experimental treatment (E, with earthworms
or earthworm number do not reduce). For studies that did not report SD or standard error (SE), we
conservatively estimated SD values as 150% of the average variance across the dataset [2]. To
evaluate the significance of the earthworm-induced effect on litter decomposition, 113 observations
from 20 studies were found (Table 2). For the magnitude of the earthworm-induced effect on SOC
content, 120 observations from 22 studies were found (Table 5). Because most of the studies do not
report soil bulk density, we therefore converted SOC stocks with known bulk density (20 obser-
vations) to SOC concentrations. Besides earthworm functional groups, other details of experimental
conditions were also specified in our analyses. We included studies that reported climate, vege-
tation types (naturally-grown forest, plantation, pastureland and crop), litter quality (litter C/N ratio
and leaf versus root litter), litterbag mesh size, time length of experiment, soil depth, soil aggregate
size, soil C/N ratio and experimental types (field versus laboratory). These parameters were the
controlling factors that we considered for the earthworm effect on litter decay and SOC. The
magnitude of the earthworm-induced effect on litter decay and SOC were calculated as the
response ratio (R), R = E/C, where E and C are the means of experimental and control treatments,
respectively.



Table 4

Location, earthworm density, and mineral soil carbon concentration in 12 sites of crop fields, pasture, and forests worldwide used for curve estimation.

Location Ecosystems Earthworm Soil depth (cm) Soil organic Earthworm References
density (no./m?) C concentration (%) functional group
Ohio, USA Crop
Corn-soybean 179 0-10 16.1 Mixture [46]
10-20 124
20-30 123
30—-40 8.8
Jiangsu, China Rice—wheat 30 0-20 8.04 Anecic [47]
9.09
Timis, Romania Wheat-soybean-maize-barley 9.33 2.26 [48]
14.76 2.16
9.33 2.16
13.33 2.10
26.67 2.53
Tennessee, USA Rotation 0-15 [49]
Corn 46.05 1.2 Mixture
-soybean
Continuous Soybean 52.85 14 Mixture
Continuous Corn 40.5 1.0 Mixture
Bio-cover
Fallow 45.8 1.1 Mixture
Hair vetch 75.5 1.1 Mixture
Poultry litter 27.35 13 Mixture
Wheat 36.75 1.1 Mixture
Hawaii, USA Eucalypt 12 0-25 7.55 Endogeic [50]
151 8.52 Endogeic
154 8.80 Endogeic
398 9.86 Endogeic
Eifel, Germany Four crop rotation (rape, 1193 0-10 1.56 Mixture [51]
winter wheat, winter barley, 10-20 1.52
and spring barley) 20-30 0.87
1133 0-10 1.79 Mixture
10-20 1.22
20-30 0.75
160 0-10 1.94 Mixture
10-20 1.23
20-30 0.74
132.7 0-10 1.71 Mixture
10-20 1.14
20-30 0.68
157.3 0-10 1.75 Mixture
10-20 1.15
20-30 0.67
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Karnataka, India

KwaZuluNatal
midlands, South Africa

Victoria, Australia

New Zealand

KwaZuluNatal
midlands, South Africa

New York, USA

Honduras
Karnataka, India
KwaZuluNatal

midlands, South Africa

Hawaii, USA

Agricultural fields
(rice, nuts, and banana)
Ryegrass

Maize

Sugarcane

Ryegrass

Maize

Sugarcane

Crop

Pasture

Kikuyu grass
Native grassland
Kikuyu grass
Forest

Forest

Forest
Forest
Gum forest
Pine forest
Gum forest
Pine forest
Eucalypt

485.14

158.82
49.27
25.74
76.53
45.79
164.69
21.00
46.00
50.00

637

236.03
6.08
303.34

106

76

37.89
561.06
60.29
18.38
60.97
19.91
173
147

0-5
5-10
10-18
18-26
0-10

0-5
5-10
10-15
15-20
0-5
5-10
10-15
15-20
0-15
0-30
0-10

4.94

3.74
3.12
2.56
3.21
2.68
3.06
0.93
0.94
0.96

3.98
4.10
330
3.20
7.58
5.79
8.07

5.75
2.63
1.65
1.43
6.97
4.12
1.93
1.71
3.59
5.24
3.53
4.45
5.62
5.51
8.90
9.43

Mixture

Mixture
Mixture
Epigeic
Mixture
Mixture
Epigeic

Mixture

Mixture
Mixture

Mixture

Mixture

Endogeic
Mixture
Endogeic
Mixture
Endogeic
Mixture
Mixture
Mixture

[52]

[53]

[54]

[55]

[53]

[39,40]

[56]
[52]
[53]

[50]

€92501 (0202) 6 Jouq ur pIDq / v 32 SUDNH M



Table 5
The location, biome, MAT, MAP, experimental type, earthworm functional group, earthworm number, soil depth, soil C/N and soil aggregate size for observations about the effects of
earthworm on soil organic carbon levels in the meta-analysis.

Location Ecosystems MAT (°C) MAP (mm) Experimental Earthworm Soil Experimental Soil C/N  Soil aggregate Effect size of soil ~References
type functional  depth (cm) period size organic carbon
group
New York, USA Forest 900 Field Mixture 0-5 730 133 0.62 [41]
Mixture 5-10 730 11.6 0.81
Mixture 10-15 730 10.1 0.62
Mixture 15-20 730 10.0 0.65
Mixture 0-5 730 0.75
Mixture 5-10 730 1.27
Mixture 10-15 730 0.72
Mixture 15-20 730 0.78
New York, USA Forest 900 Field Mixture 0-5 730 0.86 [57]
Mixture 5-10 730 1.10
Mixture 10-15 730 0.62
Mixture 15-20 730 0.72
New Zealand Pasture 12.2 1050 Field Anecic 0-5 10950 0.82 [55]
5-10 10950 0.75
10-18 10950 0.58
18- 26 10950 0.82
0-5 7300 0.98
5-10 7300 1.06
10-18 7300 1.05
18- 26 7300 1.24
New York, USA Sugar maple 980 Field 0-3 18.73 134 [42]
3-6 17.53 1.14
6-9 16.80 1.08
9-12 15.84 0.96
0-3 13.59 1.17
3-6 11.83 0.99
6-9 11.59 1.05
9-12 11.18 0.95
Cumbria, UK 15 Lab 0-8 110 1.06 [58]
Tennessee, USA 20 Lab Endogeic 26 >250 2.05 [59]
Endogeic 26 53—-250 0.78
Endogeic 26 <53 1.30
Epigeic 26 >250 3.60
Epigeic 26 53-250 0.96
Epigeic 26 <53 1.13
Ohio, USA Corn-soybean Field Mixture 0-10 1075 1.11 [46]
Mixture 10-20 1075 1.19
Mixture 20 - 30 1075 1.01

Mixture 30-40 1075 1.02

oL
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Jiangsu, China
Quebec, Canada

Xishuangbanna
, China

Congo, Brail
Georgia, USA

Georgia, USA

Great Smoky
Mountains
National
Park, USA

Trier, Germany

Georgia, USA

Alberta, Canada

Rice—wheat 16 1106
Hardwood 6.2 1058
forest
Rubber 21.8 1493
plantation
Savanna

18

15

Field

Field

Field

Lab

Lab

Lab

Lab

Lab

Lab

Anecic

Endogeic

Endogeic

Endogeic

Endogeic

Epigeic

Mixture

Endogeic
Epigeic
Endogeic
Epigeic
Epigeic

0-10
10-20
0-5
5-15
0-5
5-15
0-10
10-20
20-30

0-3.5

- wow
[ b [
AW
ANRE I

|
NN NSNS S DS

[N N N e
|

2555
2555

600
600
600
600

20
20
20
20
20
20
23
23
23
23
23
23
23
23
42
42
42
42
37

37
37
28
56
84
28
56
84
28

84
28
56

8.30

14.00
13.30
11.80
11.80
11.80
11.80

14.88
14.31
15.25
15.25

>2000
250—2000
>2000
250—-2000
53-250
<53

>2000
>2000
250-2000
250—-2000
53-250
53-250

1.02
1.02
1.56
1.50
0.94
1.05
0.72
1.45
0.67
1.31
1.00
342
0.52
3.12
0.78
0.71
0.61
0.92
0.89
10.25
532
0.59
0.80
0.08
0.66
1.01
1.06
0.99
1.03
1.03
1.09
0.98
1.08
1.03
0.89
0.96
0.73
0.89
0.70
0.94
0.90
1.00
0.79
1.00

[47]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

(continued on next page)
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Table 5 (continued )

[48

Location Ecosystems MAT (°C) MAP (mm) Experimental Earthworm Soil Experimental Soil C/N  Soil aggregate Effect size of soil ~References
type functional  depth (cm) period size organic carbon
group
4-7 84 0.68
>7 28 1.16
>7 56 1.29
>7 84 1.04
>7 28 1.60
>7 56 1.23
>7 84 1.94
Jilin, China 18 Lab 0-2.5 30 0.95 [69]
0-2.5 30 1.12
0-2.5 30 0.94
0-2.5 30 1.18
2.5-5 30 1.03
2.5-5 30 0.77
2.5-5 30 0.95
2.5-5 30 1.14
Hubei, China 25+2 Lab Anecic 40 0.96 [70]
40 0.77
40 <250 1.10
40 250—1000 0.79
40 1000—-2000 1.21
40 >2000 1.19
Jinlin, China 20 Lab compost 18 13.04 1.04 [71]
18 13.04 1.15
18 13.04 1.04
35 14.09 1.12
35 14.09 1.10
35 14.09 1.08
Puerto Rico, USA Lab Anecic 22 0.98 [30]
Endogeic 22 1.01
Endogeic 22 0.94
Mixture 22 0.99
Mixture 22 0.97
Mixture 22 0.97
Mixture 22 0.97
Hanoi, Vietnam 15-25 Lab Endogeic 365 1.02 [72]
Endogeic 365 0.82
Endogeic 365 0.81
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