

1 A historical perspective on the regulation of cellulose biosynthesis

2 Holly Allen^a, Donghui Wei^a, Ying Gu^a and Shundai Li^{ab}

3 ^aDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University
4 Park, PA, 16802, USA (hea5112@psu.edu, dxw608@psu.edu, yug13@psu.edu)

5 ^bAddress correspondence to sul38@psu.edu

6 Highlights

- 7 • Many aspects of cellulose synthesis are shared between bacteria, algae, and higher plants.
- 8 • Significant progress has been made in studying the physical aspects of cellulose synthesis
9 due to the development of more sensitive techniques.
- 10 • Cellulose microfibrils are important for anisotropic cell expansion.
- 11 • Live-cell imaging has greatly enhanced the study of cellulose synthesis.

12 Abstract

13 Cellulose is a β -1,4 linked glucose polymer that is synthesized by higher plants, algae and even by
14 some bacteria and animals, making it the most abundant polymer on earth. As the major load
15 bearing structure of the plant cell wall, it is hugely important in terms of plant growth and
16 development, and in recent years it has gained interest for its biotechnological applications.
17 Naturally, there has been a large, concerted research effort to uncover the regulatory mechanisms
18 underpinning cellulose synthesis. During the last century, several major breakthroughs in our
19 understanding of cellulose synthesis in unicellular organisms and higher plants have been pivotal in
20 advancing the field of cellulose research, improving the likelihood that cellulose synthesis could be
21 feasibly adapted for sustainable purposes. In this review, we will summarize the major hypotheses
22 and advancements made during the last century on the regulation of cellulose biosynthesis,
23 focussing on *Arabidopsis thaliana*.

24 Keywords: cell wall, synthase complexes, microtubules, trafficking, *Arabidopsis thaliana*

25 1. Introduction

26 For centuries, cellulose has been widely recognized in terms of its economic potential and biological
27 influence. Cellulose is an essential multi-purpose resource that is heavily used in construction, paper
28 manufacturing, textile production, and as a source of fuel. More recently, cellulose has been
29 recognized as a potential feedstock for renewable biofuels and other sustainable products. All plant
30 cells deposit cell walls that contain cellulose. As a result, cellulose is the most abundant organic
31 polymer on earth, contributing between 150-170 billion tons of carbon to the biosphere per year
32 through carbon sequestration (Engelhardt, 1995). During growth, plant cells develop a primary cell
33 wall that consists of three main polymers: cellulose, hemicellulose (typically xyloglucan), and pectin,
34 contained within an aqueous matrix (Cosgrove & Jarvis, 2012). Once cells cease expanding,
35 specialized cell types can deposit a thicker, stronger secondary cell wall that is reinforced by the
36 hydrophobic polymer lignin. Cellulose tends to be more abundant in secondary cell walls that are
37 comprised of up to 50% cellulose (Meents, Watanabe, & Samuels, 2018).

38 Despite its huge importance, cellulose research consisted of a relatively finite, insignificant field a
39 hundred years ago. Since the 1950s, several major breakthroughs in our understanding of cellulose
40 synthesis and regulation have turned this on its head and it is now a thriving field of research.

41 Studies historically focussed on characterizing the structure of cellulose microfibrils and synthetic
42 mechanisms in cellulose-rich unicellular organisms, including the green algae, *Valonia* and *Oocystis*
43 and the bacteria *Acetobacter xylinum*. In addition, fibers from *Gossypium* (Cotton) and *Boehmeria*
44 (Ramie) were also used. Ground-breaking findings from these organisms were applied to higher
45 plants on the basis that the intrinsic properties of cellulose were shared, igniting the study of
46 cellulose synthesis in higher plants. The development of the herbaceous species, *Arabidopsis*
47 *thaliana*, as a model plant for genetic research in the 1980s caused a noticeable shift from studying
48 the biophysical aspects of cellulose to a genetic and cell biology led approach, especially regarding
49 the dynamics of the cellulose synthase complex (CSC). In *Arabidopsis*, significant advancements have
50 been somewhat restricted to the primary cell wall, since *Arabidopsis* undergoes limited secondary
51 growth, though some notable contributions have been made (Strabala & Macmillan, 2013). Poplar
52 became a genetic model for studying cellulose in secondary cell walls and is frequently used to
53 validate assumptions made from *Arabidopsis*, and other species, regarding secondary cell wall
54 formation. Poplar can also produce a gelatinous, 'G-layer' that is composed almost entirely of
55 cellulose during tension wood formation, which has greatly supplemented studies of cellulose
56 synthesis (Felten & Sundberg, 2013).

57 The increasing availability of biological tools combined with the development of highly sensitive
58 techniques have been largely responsible for the significant progress made in the study of cellulose
59 synthesis in higher plants. Together these have confirmed many of the original hypotheses made
60 and answered, at least partially, many of the outstanding questions regarding cellulose synthesis. In
61 this review, we will focus on how our understanding of the regulation of cellulose synthesis has
62 developed during the last century, with particular focus on i) how cellulose is synthesized?; ii) when
63 it is synthesized?; iii) CSC trafficking; and iv) how it is regulated? We will cover the main hypotheses
64 regarding cellulose synthesis, and the significant advancements that have been made to support
65 these in *Arabidopsis*, though contributions from other species will be included where relevant. We
66 regret that due to space limitations we cannot cover every aspect of cellulose synthesis, but some
67 excellent reviews are widely available (Brown & Saxena, 2000; Delmer, 1999; Guerriero, Fugelstad, &
68 Bulone, 2010; Haigler & Roberts, 2018; Lampugnani et al., 2019; Li, Bashline, Lei, & Gu, 2014;
69 Somerville, 2006; Wolf, Hematy, & Hofte, 2012).

70 2. How is cellulose synthesized?

71 The long-standing use of cellulose as a feedstock for the pulping and energy industries naturally
72 called for a more thorough understanding of the physical structure, biochemistry, and synthesis of
73 microfibrils. Early studies on the physical aspects of cell walls and cellulose crystallinity relied on a
74 combination of polarizing microscopy, transmission electron microscopy (TEM) and X-ray diffraction
75 analysis of algae and bacteria. Even with the limited resources available, many of these assumptions
76 were held to be true in higher plants when they were later reinforced by genetics.

77 2.1 Structure of cellulose

78 While cellulose was first described as a polymer in the 1920s, the crystal structure of cellulose was
79 not resolved until fifty years later. X-ray diffraction analysis of cellulose from ramie fibers and the
80 algae, *Valonia ventricosa*, revealed that cellulose is a crystalline β -1,4 linked glucose polymer
81 (Gardner & Blackwell, 1974). More specifically, cellulose is a two-fold helical structure of alternating
82 cellobiose units, as β -1,4 glycosidic linkages require a 180° rotation of consecutive molecules
83 (Hermans, de Boos, & Maan, 1943). The 120° rotation of β -1,4 bonds is thought to facilitate the
84 inversion of glucose molecules during synthesis (Delmer, 1999). Multiple isoforms of cellulose exist
85 (I-IV), although the most labile form, cellulose I, is produced almost exclusively in nature (Delmer,
86 1999). Physical and chemical deformations of cellulose I can produce cellulose II-IV isoforms that are
87 inherently more stable.

88 The idea of the microfibril was first coined by Preston, Nicolai, and Millard (1948) who observed in
89 electron micrographs and X-ray diffraction analyses of *V. ventricosa* that cellulose consists of
90 multiple glucan chains bound together. Characterizing the structure of cellulose I was initially
91 problematic and diverse X-ray diffraction patterns of cellulose I were reported amongst research
92 groups (Preston, 1974). Assessing the structure more intricately with solid-state nuclear magnetic
93 resonance (ssNMR) revealed that cellulose I exists as two distinct forms, I α and I β (Atalla &
94 Vanderhart, 1984). Cellulose I α exhibits a triclinic structure composed of one chain and cellulose I β
95 contains two parallel chains within a monoclinic structure. Cellulose I α microfibrils predominate in
96 algae and bacteria, whereas in higher plants and tunicates, cellulose I β tends to be more abundant,
97 though microfibrils are often comprised of both forms. Within the microfibril, parallel glucan chains
98 are stabilized by intra- and inter-molecular hydrogen bonds. Hydrophobic van der Waals forces can
99 also form between glucan sheets, particularly in aqueous environments (Cousins & Brown, 1997)
100 and so are perhaps more relevant in primary cell walls that have a high water content. In secondary
101 cell walls, cellulose is held together by a higher degree of intra-molecular hydrogen bonding,
102 creating a rigid, crystalline polymer that invokes strong structural support to the cell. In tension
103 wood, cellulose is almost purely crystalline, which is likely related to the production of wood under
104 high tensile stress (Foston et al., 2011).

105 The properties of cellulose can be measured in terms of its crystallinity; width; degree of
106 polymerization; and cross-sectional shape, to name a few variables. Unsurprisingly, considerable
107 variation in cellulosic properties exists between species, cell types, and even within the microfibril
108 itself. Variations in the width of cellulose microfibrils have been interpreted as differences in the
109 number of glucan chains, the extent of bundling and interactions with non-cellulosic
110 polysaccharides. Measuring microfibrils with a diversity of techniques, including atomic force
111 microscopy (AFM), small-angle neutron scattering (SANS) and wide-angle X-ray scattering (WAXS),
112 have demonstrated that individual microfibrils are consistently 3 – 4 nm wide, across different
113 species and cell wall types (Fernandes et al., 2011; Song, Zhao, Shen, Collings, & Ding, 2020; Zhang,
114 Zheng, & Cosgrove, 2016a). Close microfibril spacing can cause neighbouring microfibrils to associate
115 into larger bundles, that span up to 50 nm in width in secondary cell walls (Anderson, Carroll,

116 Akhmetova, & Somerville, 2010; Fernandes et al., 2011; Song et al., 2020; Thomas et al., 2013; Zhang
117 et al., 2016a). Detailed examination of microfibrils with AFM has revealed the sheer extent of
118 bundling, particularly in onion primary cell walls where up to 3% of the microfibril length coalesces
119 with other microfibrils (Zhang et al., 2016a). Wide cellulose microfibrils also tend to accompany a
120 higher degree of polymerization (DP). In primary cell walls, cellulose DP can range from 500-8,000
121 and in cotton secondary cell walls, cellulose DP can exceed 15,000 (Brett, 2000). Far longer
122 microfibrils of up to 23,000 DP have been observed in algae that secrete cellulose outside of the cell
123 (Brown, 1996), indicating that microfibril elongation may be partially restricted by the biophysical
124 and spatial constraints of the cell wall. An important caveat is that these estimates of cellulose DP
125 have not yet been verified in the intact cell wall, and so may not be representative of true microfibril
126 DPs. The biological significance of DP and what triggers the termination of chain elongation is
127 unknown, but chain length is likely to be an important determinant of cell wall function and
128 architecture (Somerville, 2006).

129 Uncovering the structure of cellulose microfibrils formed the building block for all future studies on
130 cellulose, as it can be used as a tool to make logical inferences about the underlying synthetic
131 mechanisms and architecture of cell walls. In particular, the width and cross-sectional shape of
132 cellulose microfibrils has been used to predict the size and arrangement of synthetic complexes and
133 the orientation of microfibrils has informed models of cell expansion. While it has been firmly
134 established that these features of cellulose are highly influential, how many of these cellulosic
135 properties are determined remains an open question.

136 2.2 Cellulose synthase complexes (CSCs) - Structure

137 Once the structure of cellulose microfibrils was largely characterized, the next main focus was to
138 identify the protein complex responsible for cellulose synthesis. Uncovering the structure of the
139 synthetic complex was a major breakthrough in cellulose research (Table 1). Twenty years after
140 Roelofsen (1958) correctly predicted that microfibrils extend from the growing tip by large enzyme
141 complexes, linear structures matching that description were identified in the plasma membrane of
142 the algae, *Oocystis apiculate*, by freeze-fracture TEM (Brown & Montezinos, 1976). As they were
143 situated at the base of microfibril imprints they were referred to as 'terminal complexes'. This was
144 arguably the first indication that cellulose synthesis was highly distinct from other polysaccharides
145 that are synthesized in the Golgi, emphasizing that the production of cellulose in such close
146 proximity to the cell wall has functional significance.

147 Terminal complexes were subsequently identified in a whole host of different species, including
148 bacteria, higher plants and tunicates (Kimura & Itoh, 1996). However, they were not uniform in their
149 shape, abundance, or organization (Tsekos, 1999). Octagonal arrays and linear rows of rosette
150 complexes in the secondary cell walls of *Micrasteria denticulata* and *Spirogyra* respectively, produce
151 microfibril bundles consisting of more glucan chains than a single rosette in primary cell walls
152 (Giddings, Brower, & Staehelin, 1980; Herth, 1983). In contrast to the linear complexes described in
153 *O. apiculate*, freeze-fractured membranes of maize and pine seedlings revealed that terminal
154 complexes in higher plants consist of rosette-shaped particles with six-fold symmetry (Haigler &
155 Brown, 1986; Mueller & Brown, 1980). Re-examination of rosettes in the moss, *Physcomitrella*
156 *patens*, has suggested that rosette lobes can be triangular and the six-fold symmetry can be lost due
157 to unequal spacing between lobes (Nixon et al., 2016). In tobacco BY-2 cells the transmembrane
158 region spans 25 nm, similar to predictions made by Mueller and Brown (1980), and the cytosolic
159 region is twice as wide, ranging between 45 - 50 nm (Bowling & Brown, 2008).

160 Many researchers have repeatedly suggested that differences in the morphology of terminal
161 complexes may be responsible for the diversity in microfibril architecture. In particular, the
162 arrangement of terminal complexes has been linked with the extent of crystallization and microfibril
163 bundling in different types of cell wall (Tsekos, 1999) (Table 1). The closer arrangement of multiple
164 terminal complexes in secondary cell walls may be necessary to facilitate a higher degree of inter-
165 molecular hydrogen bonding between chains. Indeed, in *Arabidopsis*, dispersed complexes produce
166 widely spaced cellulose microfibrils in primary cell walls, whereas in secondary cell walls, dense
167 regions of complexes synthesize highly aggregated crystalline microfibrils (Li et al., 2016).
168 Interestingly, *in vitro* studies of cellulose synthesis have suggested that adjacent microfibrils can
169 spontaneously coalesce to form thicker microfibril bundles in the absence of a rosette complex.
170 Although this indicates that microfibrils may self-assemble in the cell wall, whether these microfibrils
171 resemble *in vivo* structures was not quantified (Cho et al., 2017; Purushotham et al., 2016) and so
172 more rigorous assessment is required to draw this conclusion with great certainty.

173 The location of terminal complexes at the ends of microfibrils and the high density of rosettes in
174 areas undergoing secondary cell wall deposition (Herth, 1985) made terminal complexes primary
175 candidates for cellulose biosynthesis, however, this evidence was purely circumstantial. Fifteen years
176 after terminal complexes were first visualized in green algae, genes with cellulose synthetic ability
177 were cloned from the bacteria, *A. xylinum* (Saxena, Lin, & Brown, 1990; Wong et al., 1990). The
178 bacterial operon encodes four bacterial cellulose synthase (*Bcs*) genes, *BcsA/B/C/D*, that are
179 members of the glycosyltransferase 2 (GT2) family. Homologs in higher plants were found by
180 screening a cotton cDNA library for sequence similarities with *A. xylinum* (Pear, Kawagoe,
181 Schreckengost, Delmer, & Stalker, 1996). Although the genes from cotton exhibited low sequence
182 homology with *A. xylinum*, as these proteins could bind to UDP-glucose *in vitro* they were putatively
183 named cellulose synthase (CESA) genes. Immuno-labelling of freeze-fractured terminal complexes in
184 azuki beans with CESA-specific antibodies, made the vital connection between cellulose synthesis
185 and terminal complexes and identified CESAs as a component of the terminal complexes (Kimura et
186 al., 1999) (Table 1). As a result, terminal complexes are commonly referred to as cellulose synthase
187 complexes (CSCs).

188 The exact number of CESA proteins that occur in CSCs has been widely debated and is still an
189 outstanding question in the field (Table 1). Originally, it was speculated that each rosette subunit
190 contains a hexamer of CESA proteins that each synthesize a single chain, producing a 36-chain
191 microfibril (Herth, 1983). Each CESA protein is still proposed to synthesize a single glucan chain,
192 based on strong homology between the catalytic domain of cotton CESA proteins and the *Bcs*
193 complex of *Rhodobacter sphaeroides*, that produces a single chain (Morgan, Strumillo, & Zimmer,
194 2013; Sethaphong et al., 2013). Recent evidence corroborates this hypothesis, as single CESA
195 isoforms purified from rice and poplar are capable of synthesizing cellulose *in vitro* (Olek et al., 2014;
196 Purushotham et al., 2016). However, the 36-chain model has been widely rejected as 3 nm wide
197 microfibrils are simply too narrow to accommodate 36 chains (Fernandes et al., 2011; Newman, Hill,
198 & Harris, 2013; Thomas et al., 2013), and 45 - 50 nm wide cytoplasmic domains of CSCs are predicted
199 to contain a maximum of four CESA proteins per rosette subunit (Bowling & Brown, 2008).

200

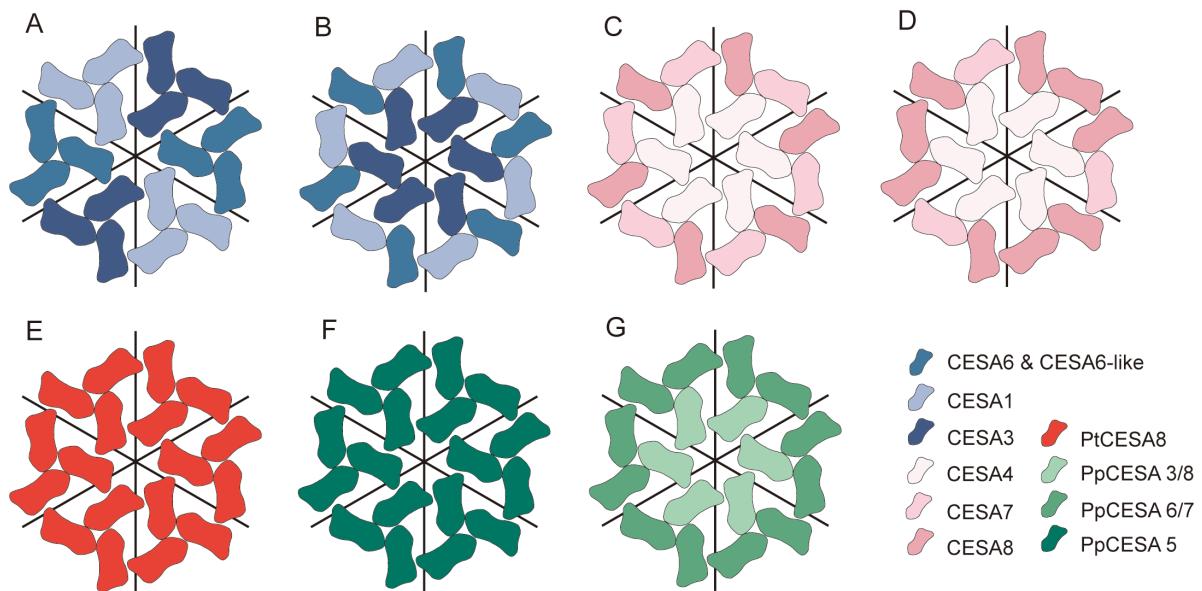
Table 1 - A summary of the major hypotheses made regarding the regulation of cellulose synthesis.

Original hypothesis	Studies	Current status	Studies
1. Cellulose is synthesized by a terminal complex in the plasma membrane	Observational (Roelofsen, 1958)	Widely accepted	Freeze-fracture TEM of <i>Oocystis apiculate</i> , maize and pine (Brown & Montezinos, 1976; Haigler & Brown, 1986; Mueller & Brown, 1980)
2. Terminal complex arrangement facilitates the coalescence of glucan chains	TEM of green algae cell walls (Giddings, Brower, & Staehelin, 1980; Herth, 1983)	Partially confirmed: Conflicting evidence	Live-cell imaging of <i>Arabidopsis</i> cell walls and <i>in vitro</i> studies of cellulose synthesis (Cho et al., 2017; Li et al., 2016; Purushotham et al., 2016; Watanabe et al., 2015)
3. Cellulose is synthesized from terminal complexes	Sequencing analysis of the <i>Bcs</i> operon in <i>Acetobacter xylinum</i> and <i>CESA</i> genes in cotton (Pear et al., 1996; Saxena et al., 1990; Wong et al., 1990)	Widely accepted	Immunolabelling of CESA proteins in freeze fractured azuki bean complexes (Kimura et al., 1999)
4. CSCs are composed of a 'hexamer of hexamers' that synthesize cellulose microfibrils containing 36 chains	Hypothesis based on TEM structure (Herth, 1983)	Modified: Microfibrils consist of 18-24 chains. More evidence suggests the CSC is a hexamer of trimers, synthesizing an 18-chain microfibril.	Physical studies of microfibril widths in mung bean, freeze fracture of <i>Physcomitrella patens</i> , stoichiometry of <i>Arabidopsis</i> and <i>in vitro</i> trimer formation in poplar (Gonneau, Desprez, Guillot, Vernhettes, & Hofte, 2014; Hill et al., 2014; Newman & Hemmingson, 1990; Nixon et al., 2016; Vandavasi et al., 2016)
5. Each CESA protein synthesizes one glucan chain	CSC crystallography in <i>Rhodobacter sphaeroides</i> (Morgan et al., 2013)	Recent evidence: In <i>PttCesa8</i> homotrimers, each CESA particle associates with a single glucan molecule	Cryogenic-EM structure of <i>PttCesa8</i> homotrimers produced <i>in vitro</i> (Purushotham, Ho, & Zimmer, 2020)
6. Three distinct CESA isoforms are required for cellulose synthesis	CESA mutant analysis in <i>Arabidopsis</i> (Desprez et al., 2007; Taylor, Howells, Huttly, Vickers, & Turner, 2003)	Modified: Some cross-over between isoforms	Functional complementation in <i>Arabidopsis</i> (Carroll et al., 2012; Li, Lei, & Gu, 2013)
7. CESA proteins have 8 transmembrane domains	Sequencing analysis of <i>A. xylinum</i> and cotton (Pear et al., 1996; Saxena et al., 1990; Wong et al., 1990)	Modified: CESA proteins have 7 transmembrane domains	Mutational analysis and functional complementation in <i>Arabidopsis</i> and <i>P. patens</i> and structural analysis of <i>PttCESA8</i> homotrimers (Purushotham et al., 2020; Slabaugh et al., 2016)
8. CESA transmembrane domains form a channel for glucan chain release	CSC crystallography in <i>R. sphaeroides</i> (Morgan et al., 2013)	Recent evidence: In <i>PttCesa8</i> homotrimers, the transmembrane domains of each CESA particle forms a channel	Cryogenic-EM structure of <i>PttCesa8</i> homotrimers produced <i>in vitro</i> (Purushotham et al., 2020)
9. Cellulose microfibrils are extended by the stepwise addition of glucose	CSC crystallography in <i>R. sphaeroides</i> (Morgan et al., 2013)	Not confirmed in plants	
10. Microfibrils are simultaneously crystallized and polymerized	Calcofluor white interference in <i>A. xylinum</i> (Benziman, Haigler, Brown, White, & Cooper, 1980)	Accepted with limited further study	

11. The rosette structure promotes the crystallization of glucan chains	Hypothesis based on TEM structure (Herth, 1983)	Accepted on little empirical evidence	Mutational studies in <i>Arabidopsis</i> and poplar (Arioli et al., 1998; Harris et al., 2012; Purushotham et al., 2016)
12. Polymerization drives CSC movement	Observational (Herth, 1983)	Widely accepted	Live-cell imaging and biophysical modelling in <i>Arabidopsis</i> (Diotallevi & Mulder, 2007; Paredez, Somerville, & Ehrhardt, 2006)
13. Multi-net growth hypothesis	TEM of <i>Nitella</i> and <i>Tradescantia</i> (Roelofsen & Houwink, 1951)	<i>Not universally accepted</i> : Cannot explain anisotropy in all tissue types	AFM and FESEM in <i>Arabidopsis</i> (Marga, Grandbois, Cosgrove, & Baskin, 2005; Wiedemeier et al., 2002; Xin et al., 2020)
14. Alignment hypothesis	TEM and polarizing microscopy (Green, 1962; Ledbetter & Porter, 1963)	<u>Partially confirmed</u> : Not representative of all tissue types	Live-cell imaging in <i>Arabidopsis</i> (Himmelspach, Williamson, & Wasteneys, 2003; Paredez et al., 2006; Sugimoto, Himmelspach, Williamson, & Wasteneys, 2003)
15. Direct-guidance model	TEM and live-cell imaging in <i>Arabidopsis</i> (Heath, 1974; Paredez et al., 2006)	<u>Updated</u> : <i>CSI1/POM2</i> links CSCs with microtubules in primary cell walls	Y2H and <i>csi1/pom2</i> mutant analysis in <i>Arabidopsis</i> (Bringmann et al., 2012; Gu et al., 2010)
16. CSCs are assembled in the Golgi	TEM and freeze fracture of <i>Zinnia elegans</i> (Haigler & Brown, 1986)	<u>In question</u> : ER assembly has been proposed but evidence is scarce	Live-cell imaging in <i>Arabidopsis</i> (Gardiner, Taylor, & Turner, 2003; Paredez et al., 2006; Park, Song, Shen, & Ding, 2019)
17. Microtubules define CSC delivery	TEM of <i>Z. elegans</i> and <i>Coleus</i> (Haigler & Brown, 1986; Hepler & Newcomb, 1964)	<u>Updated</u> : Microtubules coincide with Golgi pausing events and the insertion of SmaCC/MASCs	Live-cell imaging in <i>Arabidopsis</i> (Crowell et al., 2009; Gutierrez, Lindeboom, Paredez, Emons, & Ehrhardt, 2009)
18. CSCs are recycled	Live-cell imaging and mutagenesis in <i>Arabidopsis</i> (Bashline, Li, Anderson, Lei, & Gu, 2013; Bashline, Li, Zhu, & Gu, 2015)	<u>Partially confirmed</u> : Evidence of CME, but it is not known if they are recycled	

201

202


203 Updated models now predict that CSCs that are composed of a hexamer of trimers or tetramers,
204 producing 18- or 24-chain microfibrils, respectively (Table 1). SANS, WAXS and ssNMR examination
205 of secondary cell walls in spruce and primary cell walls in celery collenchyma are consistent with a
206 24-chain model (Fernandes et al., 2011; Thomas et al., 2013) whereas an 18-chain model is favored
207 in mung bean primary cell walls (Newman et al., 2013). Assuming all CESA proteins within a CSC are
208 active, evidence from studies of *Arabidopsis* leans towards an 18-chain model, as equimolar
209 concentrations of CESA proteins (Gonneau et al., 2014; Hill et al., 2014) and the formation of *CESA1*
210 homotrimers in solution are both incompatible with a 24-chain model (Vandavasi et al., 2016). In
211 *Arabidopsis*, models predict that CSCs composed of 18 CESA proteins contain either hetero or homo-
212 trimers. Each lobe contains either three distinct or identical CESA isoforms, based on the 1:1:1
213 stoichiometry of CESA proteins, the formation of homotrimers *in vitro* and the requirement of three
214 CESA isoforms for a functioning CSC *in vivo* (Figure 1A-B).

215 Due to the range of techniques, species and cell wall types adopted by different studies, it is hardly
216 surprising that there is no consensus amongst research groups. It is also plausible that both the 18-
217 and 24-chain model are correct under different circumstances, since microfibril diameters can vary
218 (Martinez-Sanz, Pettolino, Flanagan, Gidley, & Gilbert, 2017). For example, in poplar tension wood,
219 individual microfibrils are twice as wide in the G-layer compared to the adjacent secondary cell wall
220 layers (Müller, Burghammer, & Sugiyama, 2006) and in fruit tissues, the microfibril diameter can be
221 as low as 1 nm (Niimura, Yokoyama, Kimura, Matsumoto, & Kuga, 2009). Measuring the width of
222 microfibrils and estimating the number of CESA proteins as a proxy for the number of glucan chains
223 is not ideal, as microfibrils frequently interact with other matrix components and CESA proteins are
224 not necessarily all active within a rosette. However, deciphering accurate CSC compositions in
225 different cell walls and species may not be possible until CSCs and CESAs can be examined at higher
226 resolution.

227 2.3 CSCs – Architecture

228 Discovering CESA proteins hugely expanded our capabilities for studying cellulose synthesis, as it
229 became possible to identify CESA homologs by sequencing analysis in species where the complex
230 had not been visualized. During this time, *Arabidopsis* had gained popularity as a molecular model
231 and so became the preferred study system for cellulose synthesis. CESA homologs were successfully
232 identified in *Arabidopsis* by screening mutant populations for cellulose deficiencies. CESA proteins
233 were first described in the primary cell walls of the *radial swelling mutant*, *rsw1*, (Arioli et al., 1998)
234 which exhibited stunted growth and reduced cellulose content at 31°C and in three *irregular xylem*
235 *mutants*, *irx1/3/5*, exhibiting deformed secondary cell walls in vessels (Turner & Somerville, 1997).
236 After the *Arabidopsis* genome was sequenced, a total of 10 CESA genes (*CESA1-10*) were identified
237 (Richmond, 2000).

238

Figure 1 – Predicted arrangement of CESA proteins within the CSC. In *Arabidopsis* primary cell walls, CESA proteins exist as either (A) homotrimers or (B) heterotrimers within the CSC (Hill, Hammudi, & Tien, 2014). (C) Models of CSCs in the secondary cell walls of *Arabidopsis* and spruce predict that CESA proteins have a 1:1:1 stoichiometry (Zhang et al., 2018b). In the secondary cell walls of poplar, CSCs have a (D) 3:2:1 stoichiometry of *CESA8:4:7* in normal wood, and a (E) 8:3:1 stoichiometry in tension wood (Zhang et al., 2018b). Models of CSCs in *Physcomitrella patens* predict a (F) homo-oligomer composition of *PpCESA5* in primary cell walls (Goss, Brockmann, Bushoven, & Roberts, 2012) and a (G) hetero-trimer composition in secondary cell walls (Norris et al., 2017; Scavuzzo-Duggan et al., 2018).

239 With the identification of multiple CESAs, it was soon realized that CSCs were not made up of a
 240 homogenous population of CESA proteins. CESA proteins can be divided into two distinct families
 241 depending on the type of cell wall. In *Arabidopsis*, *CESA1*, *CESA3* and *CESA6/CESA6-like* proteins
 242 (*CESA2*, *CESA5*, *CESA9*) are required in the primary cell wall (Persson et al., 2007) and in secondary
 243 cell walls, *CESA4*, *CESA7* and *CESA8* are indispensable for plant growth (Taylor et al., 2003). Three
 244 distinct isoforms are required to form a functioning complex as individually mutating each of these
 245 CESA isoforms causes severe defects in cell wall synthesis (Desprez et al., 2007; Taylor et al., 2003).
 246 *CESA1* and *CESA3* are essential for primary cell wall synthesis because *cesa1* and *cesa3* mutants are
 247 gamete lethal, whereas *cesa6* mutants can still function due to partial redundancy with *CESA6-like*
 248 proteins, though they still exhibit a severe lack of cellulose and growth defects (Persson et al., 2007).
 249 Recent genetic work has shed uncertainty on the rigid distinction between primary and secondary
 250 cell wall CESAs, since primary cell wall CESAs can form functional complexes with secondary cell wall
 251 CESAs in both poplar and *Arabidopsis* (Carroll et al., 2012; Li et al., 2013; Song, Shen, & Li, 2010).
 252 Furthermore, primary cell wall CESAs can interact with secondary cell wall CESAs both *in vitro* and *in*
 253 *vivo*, and *pCESA7::CESA1* can partially rescue *cesa8* knock-outs (Carroll et al., 2012). *CESA6-like*
 254 proteins are also important in synthesizing specialized secondary cell walls, as cellulose defects are
 255 apparent in the seed coat of *cesa2*, *cesa5*, *cesa9* mutants and in the mucilage of *cesa5* mutants
 256 (Mendu et al., 2011). As cellulose synthesis is vital for plant growth, some promiscuity between CESA
 257 binding may exist to ensure cellulose production is maintained. Mixed complexes may represent
 258 ‘intermediates’ that facilitate the rapid changeover between primary and secondary cell wall
 259 synthesis. Whether functional compatibility between CESA isoforms is merely due to the high
 260 conservation between CESA catalytic domains is uncertain, as currently there is no evidence these
 261 mixed complexes are formed *in vivo*.

263 It is not known why the composition of CESAs in the CSC differs between primary and secondary cell
264 walls, but it must be essential to warrant such a significant energy investment in the changeover of
265 CESA isoforms between cell wall types. The ability of single CESA isoforms to synthesize cellulose
266 causes further confusion as to why multiple isoforms are needed (Purushotham et al., 2016). Only
267 25% of the microfibrils produced *in vitro* are crystalline, so perhaps microfibrils synthesized in the
268 absence of other CESAs are structurally defective. Differences between the composition of the CSC
269 in primary and secondary cell walls is ultimately driven by evolution, since the common ancestor of
270 moss and seed plants exhibited a rosette-CSC comprised of a single CESA isoform (Roberts &
271 Bushoven, 2007). Both moss and seed plants evolved two classes of CESA proteins independently,
272 stressing that a variety of isoforms evolved to fulfil separate functions in different cellular
273 environments and under different regulatory pathways. In *P. patens*, *PpCESA5* is required for
274 primary cell wall formation in leaf gametophores (Figure 1F), whereas *PpCESA3/8* and *PpCESA6/7*
275 are required for secondary cell wall deposition in stereids that resemble tracheary elements (Figure
276 1G). Convergent evolution of hetero-oligomeric CSCs suggests that the specialization of CESA was a
277 fundamental requirement for synthesizing cellulose under different *in vivo* conditions (Li et al.,
278 2019).

279 Attempts to tease apart the different functions of CESA by systematic mutagenesis have
280 demonstrated that while their precise functions are not fully understood, CESAs clearly impart
281 unequal roles in cellulose synthesis. Mutating catalytic motifs in different CESA proteins differentially
282 impacts cellulose synthesis indicating CESA proteins vary in their catalytic ability. For instance, a
283 *cesa8* mutant exhibits severe reductions in cellulose content, whereas only mild decreases are
284 reported for *cesa4* (Kumar, Atanassov, & Turner, 2017). A popular hypothesis is that CESA isoforms
285 may determine crystallinity because secondary cell walls contain a higher proportion of crystalline
286 cellulose than primary cell walls. In particular, *CESA8* may be fundamental for mediating crystallinity,
287 as not only does it appear more catalytically active than other isoforms in the CSC (Kumar et al.,
288 2017), but it is more abundant than *CESA4* and *CESA7* in poplar secondary cell walls that have a high
289 degree of crystallinity (Zhang et al., 2018b). In *Arabidopsis* and Norway spruce, CESA proteins are
290 expressed in equimolar concentrations with a stoichiometry of 1:1:1 (Figure 1C). However, in poplar
291 the stoichiometry of *CESA8:4:7* is 3:2:1 (Figure 1D) (Zhang et al., 2018b). In poplar tension wood, a
292 significant increase in *PtCESA8b* mRNA transcripts produces a more exaggerated shift in
293 stoichiometry of 8:3:1 that coincides with cellulose that is almost completely crystalline (Figure 1E)
294 (Zhang et al., 2018b). Interestingly, *PtCESA7* transcripts do not change in abundance and *PtCESA4*
295 and *PtCESA8a* decreases, indicating different CESA isoforms confer different roles in tension wood.

296 In higher plants, CESA proteins have 8 transmembrane domains separated by a large catalytic
297 cytosolic loop between the 2nd and 3rd domain. The 8 transmembrane domain model has recently
298 been challenged by Slabaugh et al. (2016) who proposed that the 5th domain is an interfacial helix,
299 making CESA a 7 transmembrane domain protein (Table 1). The absence of this transmembrane
300 domain relocates a loop with a conserved FxVTxK motif to the cytoplasm. Here, it might assist in
301 substrate binding as it does in its bacterial counterpart. Based on the crystal structure of the BcsA-
302 BcsB complex, the transmembrane domains of CESA proteins are predicted to form a channel
303 through which newly synthesized glucan chains are released (Morgan et al., 2013). Recent structural
304 analysis of *PttCESA8* homotrimers indicates that the transmembrane domains of each CESA forms a
305 continuous channel across the membrane, similar to the bacterial complex (Purushotham et al.,
306 2020). Furthermore, these channels appear to converge in the center of the trimer to facilitate the
307 secretion and coalescence of nascent glucan chains, suggesting higher plant CESAs and the BcsA-
308 BcsB complex share a common mechanism for cellulose synthesis.

309 In CESA proteins, the catalytic domain contains the highly conserved motifs (D, D, DxxD and QxxRW)
310 common to all GT2 enzymes (Sethaphong et al., 2013). Point mutations in these motifs in
311 *Arabidopsis* and cotton have verified that they perform distinct roles in catalysis and substrate
312 binding. The first two aspartates (D, D) are involved in the binding of UDP-glucose substrates, DxxD
313 acts as a base for glucan chain extension and the QxxRW motif as a binding site for the final glucan
314 residues in the chain (Saxena, Brown, & Dandekar, 2001). Within the catalytic loop there is a plant-
315 conserved region (P-CR) between D and DxxD and a hypervariable region (HVR) at the other end of
316 the domain (Pear et al., 1996). The HVR contains a class-specific region (CSR) specific to each isoform
317 that is widely homologous between different species, yet highly diverse amongst different isoforms
318 (Vergara & Carpita, 2001). Intuitively, the CSR is thought to determine CESA isoform specificity.
319 However, chimeric studies in *Arabidopsis* and moss have firmly established that the CSR is largely
320 interchangeable between different CESA isoforms. Swapping domains between different CESA
321 proteins does not compromise catalytic ability and chimeric CESA proteins can successfully rescue
322 the corresponding mutants, indicating that class specificity is neither restricted, nor defined by these
323 regions (Hill, Hill, Roberts, Haigler, & Tien, 2018; Kumar et al., 2017; Scavuzzo-Duggan et al., 2018;
324 Sethaphong et al., 2016; Wang, Howles, Cork, Birch, & Williamson, 2006).

325 Alternatively, the CSR and P-CR are speculated to mediate CESA interactions, CESA positioning in the
326 CSC and rosette formation, since both these regions are absent from bacteria that do not form
327 rosettes. Indeed, when CSR and P-CR regions are included in structural models of the CESA catalytic
328 domain, they diverge significantly from the structure of *Bcs* (Olek et al., 2014; Purushotham et al.,
329 2016). Studies combining mathematical modelling with low-resolution SANS and SAXS analysis
330 provide conflicting evidence for the roles of P-CR and CSR in CSC formation. In rice, the CSR region is
331 predicted to assist in *OsCESA8* dimerization and the P-CR region is implicated in dimer-dimer
332 interactions (Olek et al., 2014), whereas in *Arabidopsis*, the P-CR region of *AtCESA1* is predicted to
333 recruit non-CESA proteins and the CSR is implicated in trimer-trimer assembly (Vandavasi et al.,
334 2016). Resolving the crystal structure of the P-CR region in *OsCESA8* revealed that it consists of two
335 α -helices linked by a large extended loop (Rushton et al., 2017). Incorporating the crystal structure
336 into previous SAXS-based models predicts that the P-CR is located in the catalytic core close to the
337 active site (Rushton et al., 2017), which is easily reconciled with the dimerization of CESA proteins
338 (Olek et al., 2014). Discrepancy between dimer- and trimer-models is likely caused by a low
339 homology of CSR between different isoforms and the purification of CESA isoforms under different
340 experimental conditions. As these studies report the formation of homodimers and homotrimers
341 from single CESA isoforms *in vitro*, it cannot be discounted that hetero-dimers and -trimers may be
342 formed in the presence of other CESA proteins *in vivo* due to the high conservation of catalytic
343 domains. While the precise role of P-CR and CSR in CSC assembly is ambiguous, it can be concluded
344 that these regions mediate CESA interactions in different capacities.

345 The N-terminal contains a zinc-finger domain that can dimerize with the same or different CESA
346 proteins under redox conditions in cotton (Kurek, Kawagoe, Jacob-Wilk, Doblin, & Delmer, 2002). A
347 recent study of the *Arabidopsis* acylome revealed that the zinc-finger is likely to be inactive in *CESA4*
348 and *CESA8* since the acylation of key cysteine residues compromise its ability for metal ion binding
349 (Kumar, Carr, & Turner, 2020). On the contrary, mutating key cysteines in the zinc-finger of *CESA7*
350 greatly impairs its function, suggesting *CESA7* may be essential for maintaining the integrity of the
351 CSC (Kumar et al., 2020). With more intricate examination of CESA structures, the exact functions of
352 CESA domains and individual CESA isoforms in the CSC are starting to unravel.

353 Continuing advancements in sequencing technology have facilitated the identification of CESA
354 homologs in a huge diversity of eukaryotes and prokaryotes. Assigning function to CESA homologs

355 represents the rate-limiting step as functional genetic analysis can take years in some species,
 356 particularly trees. Expression analysis has been used as an indirect indicator of CESA function in
 357 various tissues and points of development. However functional genomics is needed to definitively
 358 assign function to these orthologs. So far this has been achieved in several commercially important
 359 species such as rice, maize, poplar and eucalyptus. Further quantification is needed, particularly in
 360 woody species that have multiple copies of CESA isoforms that presumably have distinct roles in
 361 wood formation (Zhang et al., 2018b).

362 **2.4 Crystallization and polymerization**

363 Due to the lability of cellulose I, it was reasoned that crystallization and polymerization must be co-
 364 ordinated for cellulose I to acquire stability in the cell wall (Saxena & Brown, 2005). Inhibiting
 365 crystallization with Calcofluor white in *A. xylinum* increases the rate of polymerization by four-fold,
 366 suggesting that not only are these processes tightly coupled, but that crystallization limits
 367 polymerization (Benziman et al., 1980). In *R. sphaeroides*, newly synthesized glucan chains are
 368 elongated by the stepwise addition of glucose units (Morgan et al., 2016) - a mechanism thought to
 369 be shared with plants (Table 1). In higher plants, the close proximity of rosette subunits likely
 370 facilitates simultaneous crystallization with the coalescence of glucan chains (Table 1), since the loss
 371 of CSC organization is often concurrent with an increase in amorphous cellulose. For example,
 372 mutating the catalytic subunit or transmembrane domains of *AtCESAs* decreases crystalline cellulose
 373 (Arioli et al., 1998; Harris et al., 2012) and removing the zinc-finger domain in *pttcesa8* mutants
 374 produces amorphous cellulose exclusively, reinforcing that the structure of the rosette is mandatory
 375 for crystallization (Purushotham et al., 2016).

376 Continuous chain elongation was predicted to drive the movement of CSCs through the plasma
 377 membrane (Herth, 1983) (Table 1). A later study also suggested that the continuous synthesis of
 378 cellulose from CSCs generates the driving force to propel its movement, based on the migration of
 379 *YFP::CESA6* in the plasma membrane observed with spinning disc confocal microscopy (Paredes et
 380 al., 2006). Biophysical modelling of CSC movement based on crystallization and polymerization
 381 alone, predicted that the CSC could move in the plasma membrane at a speed of $10^{-9} - 10^{-8} \text{ m s}^{-1}$
 382 (Diotallevi & Mulder, 2007), similar to reported values of $5-8 \times 10^{-9} \text{ m s}^{-1}$ (Paredes et al., 2006).

383 **2.5 Non-catalytic genes involved in cellulose synthesis**

384 Identifying non-catalytic genes essential for cellulose synthesis was relatively straightforward in
 385 bacterial genomes, where functionally related genes often cluster together. For plants that have
 386 more complex genomes, candidates were initially identified using forward genetic screens with
 387 cellulose biosynthesis inhibitors. One of the first non-CESA genes to be identified was the putative
 388 membrane-spanning endo-1,4 β -D-glucanase, *KORRIGAN* (*KOR1*) (Nicol et al., 1998). Determining the
 389 precise role of *KOR1* has not been possible, because mutating *KOR1* causes a range of phenotypes
 390 including reduced crystalline cellulose (Maloney & Mansfield, 2010); altered CSC velocity (Vain et al.,
 391 2014); and perturbed microfibril orientation (Lei et al., 2014). Since the evolution of *KOR1* pre-dates
 392 the appearance of CESA in green algae, *KOR1* may have been fully responsible for synthesizing
 393 cellulose in primitive life forms (Lampugnani et al., 2019). As *KOR1* is still functional in higher plants
 394 it must have had a selective advantage, possibly by assisting with cellulose synthesis in conjunction
 395 with CESA proteins. With the exception of *CESA7*, *KOR1* can bind to all cell wall CESA proteins in
 396 yeast two hybrid (Y2H) assays (Mansoori et al., 2014) and fluorescent tagging of *KOR1* revealed that
 397 it associates with CSCs in the Golgi, TGN, secretory vesicles and the plasma membrane (Lei et al.,
 398 2014; Vain et al., 2014). Together, this strongly indicates that *KOR1* is a permanent resident of the
 399 CSC that modulates CSC function throughout its lifespan. Due to its tight association with the CSC,
 400 defects observed in *kor1* mutants may be an indirect consequence of gene perturbation, further

401 complicating the assignment of *KOR1* function. Another early non-CESA gene identified was the
 402 glycosyl-phosphatidyl inositol-anchored protein, *COBRA* (*COB*) (Benfey et al., 1993; Roudier et al.,
 403 2005). *COB* has been described as a 'scaffold' for maintaining microfibril orientation and binding in
 404 *Arabidopsis* (Roudier et al., 2005). *COB* evolved alongside CESA, coinciding with the shift in linear
 405 arrays to rosette-shaped CSCs (Lampugnani et al., 2019), and therefore may be important in
 406 synthesizing glucan chains in close proximity to one another.

407 Significant advancements in genetic techniques have now made it possible to identify genetic
 408 candidates based on their physical interactions with CSC machinery. Many CESA-interacting proteins
 409 have been discovered from Y2H assays, GFP-TRAP, co-immunoprecipitation combined with mass-
 410 spectrometry, *in vitro* pull downs and biomolecular fluorescence complementation (BiFC). In
 411 particular, key proteins integral for maintaining the relationship between CSC and underlying
 412 microtubules have been described including, *CELLULOSE SYNTHASE MICROTUBULE UNCOUPLING*
 413 *PROTEIN* (*CMU*) that prevents the lateral displacement of microtubules from the hypothesized
 414 pressure generated by CSC migration (Liu et al., 2016); *CELLULOSE-SYNTHASE INTERACTIVE PROTEIN*
 415 *1* (*CSI1/POM2*) that links CSCs with microtubules and marks regions for CSC exocytosis (Bringmann et
 416 al., 2012; Gu et al., 2010; Zhu, Li, Pan, Xin, & Gu, 2018); and *COMPANION OF CELLULOSE SYNTHASE*
 417 (*CC*) that promotes microtubule dynamics for CSC localization under specific stress conditions
 418 (Endler et al., 2015). *CMU*, *CSI1* and *CC* were some of the most recent cellulose-related genes to
 419 evolve, appearing in a group of *Charophyceae* algae known as *Zygnematophyrae* (Lampugnani et al.,
 420 2019). The evolution of a specialized microtubule band involved in cytokinesis in *Zygnematophyrae*
 421 strongly suggests that *CMU*, *CSI1* and *CC* evolved for the succinct co-ordination of microfibrils and
 422 microtubules – a feature that was retained by higher plants (Lampugnani et al., 2019).

423 In general, the roles of non-catalytic proteins in cellulose synthesis have been described in the
 424 context of primary cell walls. However, there is increasing evidence that many of these genes have
 425 reciprocal or divergent functions in secondary cell walls. For instance, *kor1* mutants exhibit defects
 426 in vessel secondary cell wall formation in *Arabidopsis* (Szyjanowicz et al., 2004) and *KOR1* can
 427 physically interact with secondary cell wall CESAs (Mansoori et al., 2014; Vain et al., 2014). The role
 428 of *CSI1* in secondary cell walls is disputed (Zhu, Xin, & Gu, 2019). No cellulose defects are apparent in
 429 *csi1* mutants (Gu et al., 2010), yet it is abundant in induced *Arabidopsis* tracheary elements
 430 (Derbyshire et al., 2015) and in *pom2-4* mutants, xylem vessels have irregular wall patterns and
 431 *CESA7* is mis-aligned with microtubules (Schneider et al., 2017). An alternative isoform of *COB*,
 432 *COBL4*, may be specifically involved in producing highly crystalline cellulose in secondary cell walls.
 433 *COBL4* is upregulated in secondary cell walls (Brown, Zeef, Ellis, Goodacre, & Turner, 2005) and
 434 tension wood (Andersson-Gunnerås et al., 2006) and the *COBL4* homolog in rice, *BRITTLE CULM1*
 435 (*bcl*), can bind to crystalline microfibrils (Liu et al., 2013). As many non-catalytic genes clearly
 436 participate in various aspects of both primary and secondary cell wall formation, perhaps assigning
 437 precise functions is not possible or biologically accurate.

438 2.6 Biochemistry of cellulose synthesis

439 Studying the biochemical aspects of cellulose synthesis has been notoriously problematic over the
 440 last 30 years. A persistent problem has been that β -1,3 linked callose was preferentially synthesized
 441 over β -1,4 linked cellulose from plant membrane extracts, hampering efficient cellulose production
 442 (Amor, Haigler, Johnson, Wainscott, & Delmer, 1995). Moderate improvements were achieved from
 443 *in vitro* cultures of hybrid aspen that produced almost 50% cellulose (Ohlsson et al., 2006) and
 444 microsome preparations of blackberries that yielded up to 1 mg cellulose (Lai-Kee-Him et al., 2002),
 445 but poor yields and callose contamination were still major concerns. Significant advances have
 446 recently been achieved from the heterologous expression of CESA isoforms from poplar and *P.*

447 *patens* in yeast (Cho et al., 2017; Purushotham et al., 2016). Reconstituting *PttCESA8* and *PpCESA5* in
 448 proteoliposomes that mimic the lipid bi-layer environment proved essential for successful synthesis,
 449 as disrupting the bilayer with detergent eliminated catalytic activity. Radio-active tracing of UDP-
 450 [³H]-Glc, determined that catalysis was maintained for 90-150 minutes, a considerable improvement
 451 from previous *in vitro* reactions that terminated after 10 minutes (Amor et al., 1995). Whether these
 452 cellulose microfibrils are representative of microfibrils *in vivo* presents the next major challenge.

453 Despite significant advancements in the synthesis of cellulose *in vitro*, the purification and
 454 reconstitution of the entire CSC has so far not been possible and remains a major research priority.
 455 Biochemical inferences of CESAs have been made from low resolution SAXS analysis that does not
 456 depend on protein crystallization and comparisons with the crystal structure of the BcsA-BcsB
 457 complex. Recent structural analysis of a *PttCESA8* homotrimer with cryogenic-EM suggested that
 458 plants and bacteria share a common mechanism for synthesizing cellulose (Purushotham et al.,
 459 2020). However, this mechanism may not be entirely indicative of CSC function in higher plants since
 460 it has not been established if these homotrimers exist *in vivo*. Furthermore, the cellulose microfibrils
 461 produced by recombinant *PttCESA8* homotrimers expressed in insect cells, do not resemble
 462 microfibrils produced by previous *in vitro* assays or microfibrils synthesized *in vivo*. Microfibrils were
 463 40 times narrower (10-15 Å) than the 4.3 and 4.8 nm wide microfibrils produced by re-constituted
 464 *PttCESA8* and *PpCESA5* proteoliposomes (Cho et al., 2017; Purushotham et al., 2016), and
 465 microfibrils were amorphous, contrary to higher plants that contain a high proportion of crystalline
 466 cellulose. Whilst heterologous expression of CESAs in different systems may be the cause of this
 467 discrepancy, inconsistencies in the *in vitro* cellulose production of *PttCESA8* casts some doubt on the
 468 proposed mechanism of *PttCESA8* homotrimers. Nonetheless, the ability to study the structure of
 469 purified CESAs with cryogenic-EM, represents a major breakthrough in the study of CSC structure
 470 (Table 1) that will facilitate a more complete understanding of cellulose synthesis in the future.

471 3. When is cellulose synthesized?

472 Plant growth and shape is achieved predominately by cell expansion as opposed to cell division
 473 (McFarlane, Doring, & Persson, 2014). Cell expansion is permitted by internal stresses generated by
 474 turgor pressure and the slow yielding of the primary cell wall (Cosgrove, 2016). Unsurprisingly, the
 475 organization of cellulose microfibrils and the cell wall architecture is tightly linked with cell
 476 expansion. Early hypotheses regarding the role of cellulose microfibrils in cell expansion were
 477 developed solely from TEM-based observations. While TEM is a useful tool for visualizing the cell
 478 wall architecture in its entirety, sample preparation can disrupt native cell wall structures.
 479 Developing techniques that preserve the cell wall architecture with higher fidelity, such as field
 480 emission scanning electron microscopy (FESEM) and AFM, meant that these predictions could be
 481 more rigorously scrutinized, but only in the innermost cell wall layer. Cell expansion studies have
 482 been fairly limited to cell-types with thin cell walls, which lend themselves to high resolution
 483 imaging, particularly the epidermal tissues from onion (Suslov, Verbelen, & Vissenberg, 2009) and
 484 the dark-grown hypocotyl and root elongation zone from *Arabidopsis*.

485 3.1 Cell elongation and expansion

486 Directional growth in plant cells is achieved by anisotropic expansion, whereby cells stretch
 487 longitudinally and undergo minimal lateral expansion. As the load bearing structure, cellulose
 488 microfibrils are important in generating differential resistance to turgor pressure and determining
 489 the direction of growth. Consequently, anisotropic expansion is highly reliant on efficient cellulose
 490 biosynthesis. In fact, many cellulosic biosynthetic genes were initially identified from mutants
 491 exhibiting abnormal cell elongation, such as *cesa1^{rsw1}* (Arioli et al., 1998); *cesa6^{prc1-1}* (Fagard et al.,
 492 2000); *cob* (Benfey et al., 1993); *kor1* (Nicol et al., 1998); and *pom1/2* (Hauser, Morikami, & Benfey,

493 1995). For some mutants, including *cesa6^{prc1-1}* and *pom1*, the microfibril deposition is not altered
494 (Baskin, 2005; Pagant et al., 2002; Refregier, Pelletier, Jaillard, & Hofte, 2004) meaning these defects
495 in anisotropic expansion may be a knock-on effect of cellulose perturbation caused by hormonal
496 changes or compensational responses of other cell wall components.

497 Cellulose microfibrils was first connected with anisotropic growth from TEM-based observations of
498 the primary cell walls of *Tradescantia* stamen hairs (Roelofsen & Houwink, 1951). In the newly
499 formed central lamellae, cellulose microfibrils were deposited perpendicular to the direction of cell
500 growth, whereas new lamellae deposited towards the outside of the cell tended to have a
501 longitudinal orientation, parallel to the growth axis. Changes in microfibril orientation led to the
502 concept of 'multi-net growth' (Table 1). Under the multi-net growth hypothesis, the progressive re-
503 alignment of microfibrils towards the outer cell layers causes the cell to elongate (Roelofsen &
504 Houwink, 1953). Identical observations were subsequently reported in algae (Tsekos, 1999) and
505 *Arabidopsis* (Anderson et al., 2010). The transverse orientation of microfibrils was predicted to
506 generate differential resistance to turgor pressure by physically restricting lateral expansion and
507 promoting rapid longitudinal elongation (Green, 1960, 1962).

508 The multi-net growth hypothesis is one of the longest standing hypotheses in cellulose biosynthesis,
509 but it has lost considerable backing as many of the conditions required by the multi-net growth
510 hypothesis are no longer satisfied when complex tissues of higher plants are considered (Table 1).
511 This is particularly true of cross polylamellate walls in the epidermis of hypocotyls, stems and
512 coleoptiles that exhibit parallel microfibrils that alternate by 30-90° between successive lamellae
513 (Chan et al., 2010; Zhang et al., 2016a). Furthermore, transverse microfibril orientation does not
514 consistently induce anisotropy (Wiedemeier et al., 2002; Xin et al., 2020) and expansion can be
515 achieved without the passive reorientation of microfibrils (Bashline, Lei, Li, & Gu, 2014; Marga et al.,
516 2005). In the stem and hypocotyl epidermis, cell elongation is achieved despite having longitudinally
517 or randomly orientated microfibrils. To explain this discrepancy, it has been suggested that the inner
518 cell layers control the direction of expansion by imparting the necessary axial force to the outer
519 epidermis (Baskin, 2005), or by generating sufficient anisotropic expansion than negates the
520 isotropic expansion of the epidermis (Fujita et al., 2011). Indeed, examining the innermost cell wall
521 layer of etiolated *Arabidopsis* hypocotyls with FESEM demonstrated that the transverse microfibril
522 orientation of the inner regions could induce growth anisotropy of the outer epidermal layers (Chan
523 et al., 2011; Crowell et al., 2011). Additionally, Baskin (2005) discovered that anisotropic expansion
524 was reduced when microfibril alignment was not uniform within tissues, suggesting that the net
525 alignment of microfibrils between cells is more crucial than within cells for determining the degree
526 of anisotropic expansion. It is important to note that hypotheses regarding cell expansion are
527 predominately tested in model systems and are unlikely to be representative of other cell types and
528 developmental stages that differ in their extent of expansion, due to differences in turgor pressure
529 and microfibril orientation.

530 3.2 Relationship with microtubules

531 In early studies of cellulose synthesis, one of the most frequent observations made was the
532 relationship between cellulose microfibril orientation and cortical microtubules patterns (Hepler &
533 Newcomb, 1964). 'Cortical cytoplasmic elements', later realized to be microtubules, were proposed
534 to guide the positioning of nascent cellulose microfibrils (Green, 1962). Based on the parallel
535 alignments of cortical microtubules with cellulose microfibrils, the 'alignment hypothesis' was
536 developed (Ledbetter & Porter, 1963) (Table 1). The complementary association between
537 microtubules and microfibrils was initially confirmed in TEM studies of green algae (Tsekos, 1999),
538 and later by confocal microscopy, where *YFP::CESA6* and *RFP::TUA6* signals co-localized in the

539 plasma membrane of *Arabidopsis* primary cell walls (Li et al., 2016; Paredez et al., 2006). Early
540 studies showed that disrupting microtubule dynamics prevented cell elongation, providing a direct
541 link between microfibril orientation and microtubules (Morejohn, 1991). Live-cell imaging provided
542 further confirmation that CSCs are directly guided by underlying cortical microtubules, by
543 demonstrating that the trajectories of CSCs and newly synthesized microfibrils were re-orientated to
544 align with new patterns of microtubules, following microtubule disruption (Paredez et al., 2006).

545 Whilst many studies largely support the alignment model, there are some notable inconsistencies. It
546 was soon realized that the relationship is not as simple as when first proposed since microtubules
547 are not ubiquitously required for the alignment of CSCs and microfibrils (Chan & Coen, 2020; Mizuta
548 & Okuda, 1987). In the innermost layers of the root and hypocotyl epidermis, the parallel
549 trajectories of CSCs and the transverse orientations of cellulose microfibrils are maintained in the
550 absence or disorder of microtubules (Himmelsbach et al., 2003; Sugimoto et al., 2003; Xin et al.,
551 2020), suggesting that microfibril assembly is not reliant on microtubules. Under these
552 circumstances, CSCs that are not linked with underlying microtubules may maintain their alignments
553 by tracking previous microtubule trajectories, as observed with light microscopy (Chan & Coen,
554 2020). Alternatively, microtubules may influence cell expansion and cellulose synthesis by
555 determining the extent of cellulose crystallinity. When cell expansion is stimulated at 29°C, the
556 proportion of crystalline cellulose simultaneously decreases, however when the abundance of
557 microtubules is reduced in the temperature-sensitive *mor1-1* mutant, cells can no longer expand and
558 cellulose crystallinity content does not change at 29°C (Fujita et al., 2011). Microtubules may
559 modulate crystallinity by controlling the fluidity of the plasma membrane or the interaction with
560 non-cellulosic components (Fujita, Lechner, Barton, Overall, & Wasteneys, 2012). It is also true that
561 cellulose microfibrils may determine the distribution of cortical microtubules. Tobacco BY2 cells and
562 *Arabidopsis* roots treated with cellulose biosynthesis inhibitors exhibit a dispersed, unordered
563 microtubule array (Fisher & Cyr, 1998; Himmelsbach et al., 2003) and in *cesa2* and *cesa6* mutants'
564 cortical microtubules have a distorted alignment (Chu et al., 2007; Paredez, Persson, Ehrhardt, &
565 Somerville, 2008). A bi-directional interaction between microtubules and microfibrils is not
566 necessarily incompatible with the alignment hypothesis, but it indicates that revisions need to be
567 made. A more suitable model may be the 'cellulose-constraint' model proposed by Giddings and
568 Staehelin (1991) whereby cortical microtubules constrain paths for CSC movement and cellulose
569 microfibrils exert biophysical forces on cortical microtubules as part of a self-reinforcing feedback
570 loop.

571 The next step in understanding the relationship between microtubules and microfibrils was to
572 establish the basis of their association. Whilst live-cell imaging confirms that their trajectories are
573 correlated, it does not indicate whether CSC and microtubules are in direct contact, or if other
574 factors are involved. Heath (1974) proposed the popular 'direct guidance model', whereby CSCs
575 directly interact with microtubules (Table 1). Genetic evidence now supports that CSCs indirectly
576 interact with microtubules through a linker protein known as *CS1* (Gu et al., 2010; Li, Lei, Yingling, &
577 Gu, 2015). *CS1* interacts with both microtubules and the catalytic domain of CESA proteins *in vitro*
578 and *RFP::CS1* co-localizes with *YFP::CESA6* *in vivo* (Bringmann et al., 2012; Gu et al., 2010; Li, Lei,
579 Somerville, & Gu, 2012). In *cs1-1* mutants, CSC trajectories are uncoupled from microtubules and
580 CSC velocity is slower (Gu et al., 2010; Li et al., 2012), although when microtubules are removed,
581 CSCs can maintain ordered trajectories. This may be explained if *CS1* is essential for the initial
582 alignment of microtubules with CSCs, after which the trajectory does not depend on microtubule
583 presence (Schneider et al., 2017). *CC1* also directly interacts with microtubules and the CSC.
584 Mutating two tyrosine residues essential for microtubule-binding in the *CC1* gene, disrupts the
585 parallel alignment between CSCs and microtubules, suggesting *CC1* has an important role in

586 maintaining the relationship between CSCs and microtubules (Kesten et al., 2019). A wealth of
 587 studies has convincingly demonstrated that CSCs and microtubules are co-dependent and both are
 588 important for cell anisotropy. Ultimately our ideas match those originally proposed by Green (1962),
 589 but the relationship is clearly more nuanced than first proposed and so these early hypotheses have
 590 been more rigorously scrutinized.

591 **4. CSC trafficking**

592 A huge breakthrough that facilitated the study of CSC trafficking was the development of live-cell
 593 imaging that allowed CSC dynamics to be visualized within the cell. Functional complementation of
 594 the non-lethal *cesa6^{prc1-1}* mutant, with fluorescently tagged *CESA6* proteins, enabled CSC movements
 595 in primary cell walls to be traced with confocal microscopy (Paredez et al., 2006). Studies are
 596 preferentially performed on dark-grown *Arabidopsis* hypocotyls, due to the high abundance of CSCs
 597 coupled with thin primary cell walls that enhance imaging resolution. On the other hand, high quality
 598 imaging of CSC movements in secondary cell walls, which can be deeply embedded within tissues,
 599 has been a much greater challenge. With the development of inducible lines, it is now possible to
 600 visualize tracheary elements with greater resolution (Yamaguchi et al., 2010). Together with live-cell
 601 imaging, proteomic analysis has been ground-breaking in identifying key proteins that interact with
 602 CSCs during trafficking.

603 **4.1 CSC assembly**

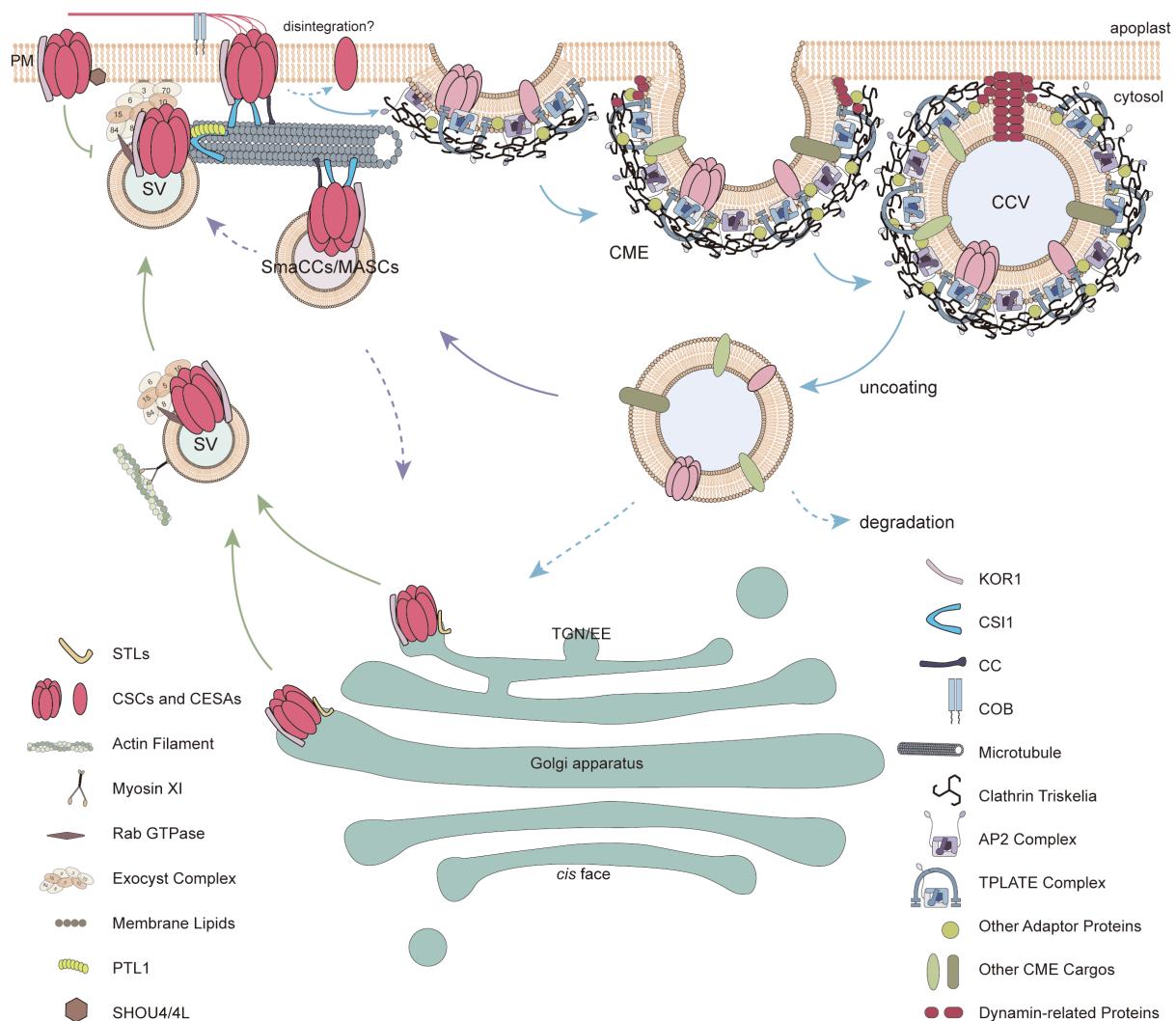
604 Terminal complex assembly was hypothesized to occur in either the ER or the Golgi, before being
 605 transported to the plasma membrane (Table 1). Evidence for Golgi assembly was first indicated from
 606 TEM-based observations of fully formed terminal complexes embedded in the Golgi, TGN and post-
 607 Golgi vesicles in algae (Brown, Franke, Kleinig, Falk, & Sitte, 1970; Giddings et al., 1980). For algal
 608 species that produce large linear complexes, such as *Erthyrocladia* and *Vaucheria*, assembly is
 609 partially completed at the membrane as vesicles containing single particles, multi-subunits and
 610 precursor-complexes all fuse with the membrane (Mizuta & Brown, 1992; Tsekos, 1999). In
 611 multicellular organisms, rosettes were first observed in the TGN and post-Golgi vesicles in
 612 differentiating tracheary elements of *Zinnia elegans* mesophyll cells (Haigler & Brown, 1986).

613 Little progress has been made in uncovering how the CSC assembles, due to the difficulties in
 614 visualizing pre-Golgi processes, particularly in the ER. During live-cell imaging, *YFP::CESA*
 615 fluorescence is either very weak or undetectable in the ER (Crowell et al., 2009; Gutierrez et al.,
 616 2009; Paredez et al., 2006), presumably due to the quenching of fluorescence deeper in the cell. In
 617 the *cesa6^{D395N}* mutant, diffuse signals of *YFP::CESA6* below the Golgi was interpreted as the retention
 618 of malformed CSCs in the ER (Park et al., 2019). However, as no ER marker was used, and the
 619 distribution of *CESA1* and *CESA3* was not examined in conjunction with *CESA6*, it is not possible to
 620 differentiate whether the entire CSC or single *CESA6* proteins are retained in the ER (Park et al.,
 621 2019). In secondary cell walls, the co-localization of *GFP::CESA4* and *GFP::CESA8* with the ER binding
 622 protein, BiP, in *cesa7^{rx3}* mutants further supports the idea that incomplete CSCs cannot be
 623 transported from the ER (Gardiner et al., 2003). Despite the limited evidence, it is generally accepted
 624 that CSCs are assembled in the ER where they would undergo quality control (Strasser, 2018).
 625 Dissecting specific molecular partners in CSC assembly in the ER is problematic, as ER-secreted
 626 proteins rely on a set of shared molecular chaperons for folding, so mutating these genes will likely
 627 exert pleiotropic effects unrelated to cellulose synthesis.

628 Assembled CSCs are assumed to be transported via direct streaming or in COPII vesicles to the Golgi
 629 where they are then modified before export (Neumann, Brandizzi, & Hawes, 2003). One study on
 630 *Arabidopsis* has indicated that CSCs may assemble in the Golgi with the assistance of Golgi-localized

631 *STELLO* proteins (*STL1/2*) that have a glycosyltransferase (GT) domain. In *stl1 stl2* double mutants,
632 primary and secondary CSCs were less abundant, CSC delivery rates were reduced and *CESA3*
633 distribution was altered in the Golgi (Zhang et al., 2016b), which are all phenotypes consistent with
634 defective Golgi assembly. Split-ubiquitin and BiFC assays confirmed that *STL1* and *STL2* could bind to
635 all primary and secondary cell wall CESAs, but whether the precise interactions involve the *STELLO*
636 GT domain was not tested (Zhang et al., 2016b). CSC assembly may also be facilitated by *KOR1* and
637 *COB* that co-localize with CESA proteins in the Golgi (Lei et al., 2014; Roudier et al., 2005; Vain et al.,
638 2014), however, this has not been functionally assessed. Identifying how CESA proteins interact with
639 accessory proteins in the Golgi or ER will fill in some of the crucial gaps in our understanding of CSC
640 assembly.

641 4.2 CSC delivery


642 Although progress on CSC assembly has been slow, considerable knowledge has been gained in the
643 trafficking of CSCs to the plasma membrane (Figure 2). Early observations of intact CSCs in the Golgi
644 and TGN/EE (Giddings et al., 1980; Haigler & Brown, 1986) were later reinforced by live-cell imaging
645 of fluorescent CESA particles in the Golgi and TGN/EE (Crowell et al., 2009; Paredez et al., 2006).
646 Therefore, trafficking of the CSC to the plasma membrane may occur from the Golgi via the TGN, or
647 independently from the Golgi. The main route for CSC delivery is thought to occur via the Golgi, as
648 various TGN markers, *VHA-a1* and *SYP61*, do not co-localize with CSC membrane insertion events
649 (Crowell et al., 2009). However, confirming this is problematic since the TGN/EE acts as both a
650 secretory and recycling organelle, harbouring populations of both newly synthesized and recycled
651 CSCs (Viotti et al., 2010). Two types of CSC trafficking vesicles have been identified depending on
652 their microtubule associations: small cellulose synthase compartments (SmaCCs) (Gutierrez et al.,
653 2009) and microtubule associated SmaCCs (MASCs) (Crowell et al., 2009). Partial co-localization of
654 SmaCCs/MASCs with TGN/EE molecular markers implicates SmaCCs/MASCs in both the secretion of
655 *de novo* synthesized CSCs, and CSC internalisation. In general, SmaCCs/MASCs are regarded as
656 endocytotic vesicles, though it has become evident that they confer multiple roles in CSC trafficking,
657 complicating their study.

658 CSC delivery was observed in early TEM observations whereby vesicles containing terminal
659 complexes frequently coincided with cortical microtubules underlying cell wall thickenings (Haigler &
660 Brown, 1986; Hepler & Newcomb, 1964). Live-cell imaging of *CESA3* and *CESA6* with tubulin further
661 corroborated the tight overlap between cortical microtubules and CSC delivery events in primary cell
662 walls (Crowell et al., 2009; Gutierrez et al., 2009). Microtubules mark specific sites for CSC delivery as
663 disrupting intact microtubules networks causes the random insertion of SmaCCs/MASCs into the
664 membrane (Gutierrez et al., 2009; Paredez et al., 2006), and newly delivered CSCs track microtubule
665 arrays after photo bleaching (Crowell et al., 2009). CSC insertion into the plasma membrane also
666 coincides with Golgi pausing events immediately beneath sites of cortical microtubules (Crowell et
667 al., 2009), implicating the Golgi in mediating CSC delivery. Although microtubule distribution also
668 coincides with sites of secondary cell wall deposition in developing vessels, removing microtubules
669 does not influence Golgi pausing events in the delivery of *CESA7* (Wightman & Turner, 2008).
670 Instead, transverse actin defines CSC delivery sites and actin cables indirectly transport CSCs to the
671 plasma membrane, since actin depolymerization prevents CSC delivery and halts Golgi movement of
672 CSCs (Wightman & Turner, 2008). While actin is not required for CSC insertion in primary cell walls
673 (Sampathkumar et al., 2013), it may play a role in delivering CSCs to the membrane, as disrupting
674 actin polymerization causes *CESA3* and *CESA6* Golgi bodies to aggregate beneath the membrane
675 (Crowell et al., 2009; Gutierrez et al., 2009). Microtubules and actin involvement in CSC delivery may
676 be spatially separated because subcortical SmaCCs have reduced velocity when actin cables were
677 disrupted (Gutierrez et al., 2009). In the subcortical regions, actin may be responsible for the

678 movement of the Golgi to sites of microtubules in the cell cortex that define domains for secretion.
679 Recently, the actin-based motor protein, myosin *XI*, was implicated in the trafficking of CSCs in
680 primary cell walls (Figure 2). In triple *xi1 xi2 xi3* mutants and wild-type plants treated with myosin
681 inhibitors, CSC delivery is reduced and vesicles containing CSC vesicles accumulate below the
682 membrane (Zhang, Cai, & Staiger, 2019). Failed delivery was attributed to defective vesicle tethering
683 and fusion due to the overlap of *XI* with *CESA6* fluorescent signals near the membrane. Whether this
684 is an indirect effect of defective Golgi pausing is unclear.

685

686

687

Figure 2 – A model of CSC trafficking in primary cell walls. CSC assembly is predicted to occur in the Golgi, with the help of Golgi-localized *STELLO* (STLs) proteins. CSCs are then transported from the TGN/EE and the Golgi via secretory vesicles (SV) and are delivered to specific sites on the plasma membrane that are marked by *CS1* proteins linked to microtubules. Myosin XI may also help deliver SV containing CSCs to the plasma membrane along actin filaments. Physical interactions between *PATROL1* (PTL1) and the exocyst complex with SVs are required for the insertion of CSCs into the plasma membrane. *SHOU4/4L* negatively regulates CSC delivery. Various non-CESA proteins are required for optimal cellulose biosynthesis, including *COB* and *CC* that associate with CSCs at the plasma membrane and *KOR1* that additionally associates with the CSC during trafficking. Intact or degraded CSCs can be internalized into clathrin-coated vesicles (CCV) and undergo clathrin-mediated endocytosis (CME). Various CME components, such as the adaptor protein 2 complex (AP2), TPLATE complex are essential for CME. Internalized CSCs can be recycled back to the plasma membrane via SmaCCs/MASCs.

701

702 Trafficking of any protein complex relies on four key phases - vesicle budding, cytosolic transport,
703 tethering and ultimately fusion with the destination membrane. From studies on bacteria, yeast and
704 animals it is obvious that delivery is co-ordinated by a complex interplay of proteins. Key players that
705 have been identified include, Rab GTPases that target vesicles towards the destination membrane
706 and mediate the fusion of the two membranes; tethering factors such as soluble *N*-ethylmaleimide-
707 sensitive factor attachment protein receptor (SNAREs) that assist with fusion; and the exocyst
708 complex. Identifying candidates specific for CSC trafficking has been challenging due to the vast
709 genetic redundancies of these families in *Arabidopsis*, combined with the fact that Rab GTPases and
710 SNAREs associate with multiple cargoes (Uemura et al., 2012; Vernoud, Horton, Yang, & Nielsen,
711 2003). Some candidates have been identified, including the Golgi-localized Rab-H1B, whereby *CESA6*
712 has reduced motility and impaired exocytosis in loss of function mutants (He et al., 2018). However,
713 their direct involvement in CSC trafficking has not been clear. Co-purification of *CESA6* with the
714 syntaxin *SYP61*, a sub-family of SNAREs, implicated *SYP61* vesicles in the tethering of *CESA6* to the
715 membrane (Drakakaki et al., 2012). However, as *SYP61* is a major component of post-Golgi vesicles it
716 is unlikely to be specific for CSC trafficking. Ideally the purification of CESA specific compartments
717 such as SmaCCs/MASCs would provide more insight into CSC delivery. However, due to their small
718 size and low fluorescence signal this may prove difficult unless aggregated populations are
719 extracted. Furthermore, extracting SmaCCs/MASCs during different points of CSC trafficking may be
720 informative of the different genetic components involved in recycling and delivery, allowing the
721 identification of specific markers of these processes.

722 Unsurprisingly, the precise temporal and spatial insertion of CSCs into the membrane is under tight
723 genetic control. Co-immunoprecipitation of *CSI1* identified several genetic components that assist
724 with CSC delivery in primary cell walls (Figure 2), including *PATROL 1* (*PTL1*) and the exocyst subunits,
725 *SEC5B* and *SEC10* (Zhu et al., 2018). Mutagenesis combined with *in vitro* pull downs demonstrated
726 that CSC delivery relies on intricate physical interactions between *CESA6*, *CSI1*, *PTL1* and exocyst
727 subunits. A model was developed for CSC delivery by carefully examining the temporal and spatial
728 localization of these proteins during a live-cell imaging time-course (Zhu et al., 2018). *CSI1* defines
729 the domain in the plasma membrane for delivery and possibly acts as a direct tether of SmaCCs to
730 the membrane, since SmaCC formation is reliant on the interaction between *CSI1* and microtubules
731 (Lei et al., 2015). After *CSI1* interacts with the vesicle, *PTL1* primes the vesicle for fusion by subunits
732 of the exocyst complex, *SEC5B* and *SEC10*, that complete fusion. The association of *PTL1* is fleeting
733 but essential, as delivery rates are slower in *ptl1*, and *ptl1 csi1* double mutants have an additive
734 phenotype. Whether this mechanism is shared by secondary cell walls has not yet been established,
735 although the accumulation of exocyst subunits and *CSI1* during secondary cell wall deposition
736 indicates that this could be a strong possibility (Derbyshire et al., 2015). Recently, *SHOU4* proteins
737 were identified as negatively regulators of CSC exocytosis (Polko et al., 2018). In *shou4 shou4l* double
738 mutants enhanced CSC delivery is evident from an elevated density of *CESA6* at the plasma
739 membrane and an increase in amorphous cellulose content (Polko et al., 2018). Direct binding of the
740 cytoplasmic domain of *SHOU4* proteins with the catalytic domains of primary cell wall CESAs may
741 cause the retention of CSCs in the cytoplasm, though this is speculative at present.

742 4.3 CSC endocytosis and recycling

743 The population of CSCs at the plasma membrane at any given time is determined by a balance
744 between exocytosis and endocytosis and is often used as a proxy for the rate of cellulose synthesis.
745 How this interplay is regulated is unknown, but it is possible that the plasma membrane can monitor
746 the density of CSC and subsequently mediate CSC delivery and recycling as part of a self-regulating
747 feedback system. Supporting evidence has been provided from *rabh1b* CSC trafficking mutants that
748 are defective in both exocytosis and endocytosis, suggesting that the two processes are inter-

dependent (He et al., 2018). CSC recycling is inherently difficult to quantify, but it is widely believed to be a dominant process for several reasons. Firstly, CSCs have an average longevity of 30 minutes (Jacob-Wilk, Kurek, Hogan, & Delmer, 2006), yet typically, CSC membrane lifespan is only 7 - 8 minutes (Sampathkumar et al., 2013) suggesting CSC may be recycled several times before they are degraded. Secondly, as CSCs are large protein complexes, repeatedly constructing CSCs every 7 minutes would exert huge energetic costs on the cell. Finally, SmaCC/MASC populations tend to accumulate in cells not actively synthesizing cellulose, or cells under osmotic stress (Crowell et al., 2009; Gutierrez et al., 2009). In adverse conditions, SmaCCs/MASCs may accumulate underneath the membrane as a 'temporary store' of CSCs that are rapidly recycled back once stress is alleviated. Furthermore, when protein and cellulose synthesis is inhibited, *CESA3* accumulates in MASCs within 7 minutes suggesting internalisation is more likely than *de novo* secretion (Gutierrez et al., 2009).

Clathrin-mediated endocytosis (CME) is a dominant process in Eukaryotes but it is only in the last two decades that its importance has been appreciated in plants (Holstein, 2002; Reynolds, Wang, Pan, & Bednarek, 2018). Clathrin coated vesicles were first observed in the TGN in the 1980s (Coleman, Evans, & Hawes, 1988) and 30 years later they were shown to be integral for CSC internalisation (Figure 2). Two components of CME machinery, *AP2M* and *TWD40-2*, have been implicated in CSC endocytosis (Bashline et al., 2013; Bashline et al., 2015). *AP2M* is homologous with a medium subunit of the adaptor protein complex 2 (AP2) that assists with docking and recruiting CME machinery (Bashline et al., 2013) and *TWD40-2* is a potential member of a TPLATE complex (TPC) that is unique to plants (Gadeyne et al., 2014). In *ap2m* and *twd40-2* mutants, reductions in endocytosis were inversely correlated with a higher density of CSC at the membrane (Bashline et al., 2013; Bashline et al., 2015). Co-operation of *TWD40-2* with *AP2M* is required for CME, as not only do they directly interact, but reductions in endocytosis and cellulose content are exacerbated in *ap2m twd40-2* double mutants (Bashline et al., 2015). However, they may confer distinct roles in CME, since hypocotyls exhibit reduced elongation in *twd40-2* but have increased elongation in *ap2m*. *TWD40-2* also has a much longer lifespan than *AP2M* during CME so it may be involved in scission from the membrane or quality control. Another TPC subunit, *TML*, can also interact with *CESA6* catalytic units. *tml* knock-down lines exhibit similar decreases in cellulose content and an increased population of CSC at the membrane that is not attributable to increased delivery rates (Sanchez-Rodriguez et al., 2018). CME represents one route of CSC endocytosis, as SmaCCs/MASCs abundance is reduced, but not completely abolished in *ap2m* mutants (Lei et al., 2015). The TPLATE may have evolved to specifically tailor CME in plants or mediate endocytosis independently, so continued study of this complex will be revealing about CSC endocytosis.

CESAs have been described as *AP2M* cargo because *AP2M* can bind to *CESA6* and *CESA3* in split-ubiquitin assays and *in vitro* pull downs, and *mCHERRY::CESA6* patterns overlap with *YFP::AP2M* (Bashline et al., 2013). But discrepancies in their physical dimensions questions whether CSC can be internalized by CME, as the catalytic core of CSCs is 50% wider than the lumen of typical CME particles (Bashline, Li, & Gu, 2014; Li et al., 2014). De-constructed complexes may be internalized as an increased number of CSC particles at the membrane coupled with decreased cellulose content in *twd40-2* mutants indicates CSC breakdown may start prior to internalisation (Bashline et al., 2015). CSCs readily form monomers, dimers and trimers in solution under a range of conditions suggesting that CSCs may be easily broken down *in vivo* by local alterations in the membrane environment (Atanassov, Pittman, & Turner, 2009; Olek et al., 2014; Vandavasi et al., 2016). Alternatively, CSCs may appear larger if it is bound to other components that may be released prior to endocytosis.

Whether endocytosed CSCs destined for proteolysis are trafficked to the vacuole directly or go via the TGN/EE is unclear, as both seem plausible (Crowell et al., 2009). Likewise, it is not known

795 whether SmaCCs go to the TGN/EE before re-inserting CSCs into the membrane or bypass the
 796 TGN/EE altogether. At least some recycled CSCs pass through the TGN/EE as poor acidification of the
 797 TGN/EE in *det3* mutants causes defects in both secretion and recycling (Luo et al., 2015). As the
 798 TGN/EE is a sorting hub it would be convenient if all internalized CSCs travelled to the TGN/EE and
 799 were then exported for either recycling or degradation. Differentiating between populations of
 800 newly synthesized and recycled proteins that cross-over at the TGN/EE is a taxing question and has
 801 impeded research in this area. Determining the protein composition of vesicles involved at each
 802 stage of CSC trafficking may reveal markers that signify the destination of the vesicle, alleviating this
 803 problem. During the rapid changeover between primary and secondary cell wall synthesis, CSC
 804 exocytosis and endocytosis are temporally separated briefly, so could be probed to answer some of
 805 these outstanding questions. At the onset of secondary cell wall deposition in inducible *VND7*
 806 tracheary elements, the *tdTomato::CESA6* signal decreases in the membrane and increases at the
 807 Golgi, representing recently endocytosed primary cell wall CSCs. Once *YFP::CESA7* starts appearing at
 808 the Golgi, the *tdTomato::CESA6* signal disappears from the Golgi and a diffuse signal re-appears in
 809 the vacuole, indicating that the recently endocytosed *tdTomato::CESA6* are transported to the
 810 vacuole during secondary cell wall deposition (Watanabe et al., 2018).

811 5. How is cellulose synthesis regulated?

812 Probing the molecular regulation of cellulose synthesis has only been possible in the last 20 years,
 813 due to significant advances in the generation of genetic mutants, genetic constructs, and next
 814 generation sequencing technologies. High-throughput sequencing has been used to explore the
 815 regulation of cellulose synthesis at multiple aspects including, genomic (DNA), transcriptional
 816 (mRNA), translational (proteins), and post translational processes (metabolites and small RNA),
 817 causing a marked shift in research focus from structural to molecular studies.

818 5.1 Transcriptional regulation

819 Since all cells have a primary cell wall and cells are continuously made throughout development,
 820 genes involved in primary cell wall synthesis are ubiquitously expressed (Hamann et al., 2004). As
 821 such, transcriptional regulators are likely to be housekeeping genes that are not specific for cellulose
 822 synthesis. Potential candidates have been identified in the *ETHYLENE-RESPONSE-FACTOR (ERF)* IIId
 823 and IIle transcription factor family. Overexpressing *ERF35* produces thick cell walls with a primary
 824 cell wall composition in *nst1 nst3* mutants that lack secondary cell walls (Sakamoto et al., 2018).
 825 Since many *ERF* transcription factors are co-expressed with *CESA1*, *CESA3* and *CESA6*, and *ERF34-ERF43*
 826 can physically bind to the promoters of primary cell wall *CESA* genes, the *ERF* transcription
 827 factor family may have a central role in regulating cellulose deposition in primary cell walls (Saelim
 828 et al., 2019; Sakamoto et al., 2018). Additionally, a brassinosteroid responsive transcription factor,
 829 *BES1*, can increase *CESA* expression by binding to the E-box (CANNTG) element in the promoters of
 830 *CESA1*, *CESA3* and *CESA6* (Xie, Yang, & Wang, 2011). However, *BES1* is unlikely to be a specific
 831 activator of primary *CESAs*, as *BES1* can simultaneously induce *CESA4* and *CESA8* expression.

832 In contrast to primary cell walls, the transcriptional network responsible for regulating cellulose
 833 synthesis during secondary cell wall formation has been extensively characterized in *Arabidopsis*
 834 (Yamaguchi et al., 2010; Zhong, Lee, Zhou, McCarthy, & Ye, 2008) and it is functionally conserved in
 835 woody species (Zhang, Xie, Tuskan, Muchero, & Chen, 2018a) and grasses (Rao & Dixon, 2018). Two
 836 main transcription factor families containing either NAC- or MYB domains, co-ordinate the
 837 expression of *CESA* biosynthetic genes. The NAC transcription factors, *NAC SECONDARY WALL*
 838 *THICKENING PROMOTING FACTORS (NST1/2)* and *SECONDARY WALL-ASSOCIATED NAC DOMAIN*
 839 *PROTEIN (SND1)* can activate cellulose synthesis in fibers, with *snd1 nst1* double mutants exhibiting
 840 reduced cellulose content and impaired secondary cell wall formation (Zhong, Richardson, & Ye,

841 2007). NAC-domain transcription factors activate two downstream transcription factors, *MYB46* and
842 *MYB83*, which are functionally redundant and *MYB103* (Zhong et al., 2008). *MYB103* can activate the
843 expression of GUS reporter genes driven by the *CESA8* promoter, implicating *MYB103* as a specific
844 regulator of cellulose deposition (Zhong et al., 2008). In cellulose-rich cotton fibers, *MYB103* is one
845 of the first transcription factors that is expressed during the changeover between primary and
846 secondary cell wall deposition, providing further support that it is an important regulator of cellulose
847 synthesis (MacMillan et al., 2017). Overexpressing *MYB46* and *MYB83* causes an increase in *CESA*
848 expression that is accompanied by excessive cellulose deposition in ectopic cell walls, implicating
849 *MYB46/83* as direct activators of cellulose synthesis (Ko, Kim, & Han, 2009; McCarthy, Zhong, & Ye,
850 2009). *MYB46* can specifically regulate *CESA* expression by binding to 8-bp *MYB46*-responsive *cis*
851 regulatory elements (M46RE) in *CESA* promoters (Kim et al., 2013b). Introducing *CESA* genes with
852 point mutations in the M46RE into *cesa* mutants could not restore cellulose synthesis,
853 demonstrating that *MYB46* binding is crucial for regulating cellulose synthesis in *Arabidopsis* (Kim,
854 Kim, Ko, Kim, & Han, 2013a). Other direct targets of *MYB46* include the CCCH zinc finger genes,
855 *C3H14* and *C3H15* (Ko et al., 2009), which cause ectopic deposition of cellulose and upregulate *CESA*
856 genes when overexpressed (Chai et al., 2015). More recently other transcription factor families have
857 been implicated in cellulose synthesis regulation, such as *WRKY* and *ERF*. Cellulose deposition is
858 stimulated in *wrky12* mutants (Wang et al., 2010) or when the *ERF* transcription factor, *PdSHINE2*, is
859 overexpressed in tobacco (Liu et al., 2017).

860 5.2 Post-translational regulation

861 Constitutive expression of *CESA* genes in primary cell walls implies that post-transcriptional
862 regulation may be more important for regulating cellulose synthesis (Hamann et al., 2004). Arguably,
863 the best studied form of post-translational regulation is phosphorylation (Speicher, Li, & Wallace,
864 2018). Phosphoproteomic analysis of primary *CESA* proteins demonstrated that many sites in the N-
865 terminus and HVR of the central loop contain conserved serine (S) and threonine (T) residues that
866 have the potential to be phosphorylated (Durek, Schudoma, Weckwerth, Selbig, & Walther, 2009;
867 Nuhse, Stensballe, Jensen, & Peck, 2004). The effects of phosphorylation were first examined by
868 mutating S and T sites to alanine (A) that eliminates phosphorylation, or glutamine (E) that mimics
869 phosphorylation. Inhibiting phosphorylation at $T^{166}A$, $S^{686}A$ and $S^{688}A$ residues in the HVR of *cesa1^{rsw1}*
870 mutants produced a variety of cellulose defective phenotypes, including reduced cellulose content,
871 poor anisotropic cell expansion, reduced CSC velocity and the loss of bi-directional movement, which
872 were all rescued when phosphorylation was restored (Chen, Ehrhardt, & Somerville, 2010). In
873 contrast, permitting phosphorylation at $S^{162}E$, $T^{165}E$ and $S^{167}E$ in *cesa1^{rsw1}* mutants caused cellulose
874 defective phenotypes, indicating that a balance between de-phosphorylation and phosphorylation
875 finely tunes the regulation of *CESA1* (Chen et al., 2010). Removing microtubules with oryzalin
876 rescued the velocity and bi-directional movement of *CESA1* at the membrane, supporting the idea
877 that the phosphorylation of *CESA* proteins may modulate microfibril synthesis and anisotropic
878 growth by its interaction with microtubules (Chen et al., 2010). Similar studies on *CESA3* and *CESA5*
879 have reinforced that phosphorylation is critical for cellulose synthesis regulation in primary cell
880 walls. For example, phosphorylation of $S^{211}A$ and de-phosphorylation of $T^{212}E$ of *CESA3* is crucial for
881 maintaining anisotropy, deposition, bundling and bi-directional microtubule-based motility at the
882 membrane (Chen et al., 2016) and phosphorylating *CESA5* alters the migration of CSC in a
883 phytochrome dependent manner (Bischoff et al., 2011). Phosphorylation may also be important for
884 mediating *CESA* endocytosis in the secondary cell wall since *in vitro* phosphorylation of *CESA7* causes
885 its degradation via the proteosome (Taylor, 2007). Identifying the corresponding protein kinases that
886 activate phosphorylation has proved troublesome, with conflicting evidence in the literature and
887 large genetic redundancies in kinase families (McFarlane et al., 2014). In *Arabidopsis*, the protein

888 kinase *BRASSINOSTEROID INSENSITIVE 2 (BIN2)* can phosphorylate a *CESA1* peptide, *CESA1*^{T157}, *in*
889 *vitro* (Sanchez-Rodriguez et al., 2017). In *cesa1 bin2-1* double mutants, the CSC moves significantly
890 faster at the membrane, implicating *BIN2* as a negative regulator of cellulose synthesis in the
891 primary cell wall (Sanchez-Rodriguez et al., 2017). *BIN2* phosphorylation impacts the activity of the
892 entire CSC, even though it cannot phosphorylate *CESA3* or *CESA6* peptides, demonstrating the
893 importance of phosphorylation as a regulatory mechanism.

894 More recently it was revealed that secondary cell wall CESAs are heavily modified by the attachment
895 of the fatty acid palmitate at conserved cysteine residues, also known as S-acylation. Mutating four
896 cysteines in the VR2 and two cysteines in the C-terminal domain of *CESA7* prevented the trafficking
897 of *CESA7* to the plasma membrane from the Golgi (Kumar et al., 2016). The role of S-acylation may
898 be broadened to include other aspects of cellulose biosynthesis, since many important non-CESA
899 proteins such as *KOR1*; *CMU*; *CC*; *SHOU*; *PTL1*; and CME components are also acylated (Kumar et al.,
900 2020). Furthermore, heavy S-acylation of *CESA3* and *CS1* suggests S-acylation may function in
901 primary cell walls (Kumar et al., 2020; Kumar et al., 2016). Although many of these assumptions have
902 not been yet been functionally tested, it is probable that S-acylation is a dominant regulator of post-
903 translational processes that we have only just begun to understand.

904 6. Significant achievements and future directions

905 Remarkably, many of the original hypotheses that were based on simple TEM observations and X-ray
906 diffraction patterns in bacteria and algae, have stood the test of time and have been verified in
907 higher plants by using a range of more accurate techniques (Table 1). Although, re-visiting other
908 long-standing hypotheses with more sensitive techniques has revealed that some concepts are too
909 simplistic to account for the diversity in cell wall architecture. Most notably the multi-net growth
910 hypothesis is insufficient to explain anisotropy in all conditions and the relationship between CSCs
911 and microtubules is not universally coupled. Significant progress in our capacities to study cellulose
912 synthesis *in vivo* with live-cell imaging, AFM, FESEM and molecular genetics has resulted in some
913 drastic changes in our understanding of some key aspects of cellulose synthesis, and in some cases
914 has divided research groups. In the last 10 years, the 36-glucan chain model has been disregarded in
915 favor of an 18-24 chain model, new models of cell elongation have been proposed and even the
916 classic 8 transmembrane CESA-model has been brought into question (Table 1). While *Arabidopsis*
917 has proved an invaluable model for enhancing our understanding of cellulose synthesis, these results
918 need to be approached with caution as this system may not be representative of higher plants in
919 general. Broadening the sample types may help settle variable findings between research groups
920 and will strengthen the validity of hypotheses across higher plants. With many unanswered or
921 modified hypotheses still requiring verification (Table 1), we can expect many great discoveries and
922 changes in the field during this century. Adopting multidisciplinary strategies that link together the
923 biophysical and biochemical properties of cellulose with underlying genetics and cell wall
924 architecture, will be fundamental for this venture. Successful purification of CSCs, imaging the entire
925 CSC *in situ* and assigning functions to microfibril properties are arguably the next major
926 breakthroughs on the agenda in order to advance the study of cellulose synthesis, as such
927 fundamental knowledge will be critical to eventually manipulate cellulose synthesis for desired use.

928 Acknowledgements

929 H.A. and Y.G. were supported by National Science Foundation Grant 1951007. D.W. was supported
930 by the Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center
931 funded by the Department of Energy, Office of Science, Basic Energy Sciences under Award
932 DESC0001090. S.L. was supported by startup funds from the Department of Biochemistry and
933 Molecular Biology at Pennsylvania State University.

934 References

935 Amor, Y., Haigler, C. H., Johnson, S., Wainscott, M., & Delmer, D. P. (1995). A membrane-associated
936 form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants.
937 *Proc Natl Acad Sci U S A*, 92(20), 9353-9357. doi:10.1073/pnas.92.20.9353

938 Anderson, C. T., Carroll, A., Akhmetova, L., & Somerville, C. (2010). Real-time imaging of cellulose
939 reorientation during cell wall expansion in *Arabidopsis* roots. *Plant Physiol*, 152(2), 787-796.
940 doi:10.1104/pp.109.150128

941 Andersson-Gunnerås, S., Mellerowicz, E., Love, J., Segerman, B., Ohmiya, Y., Coutinho, P., ...
942 Sundberg, B. (2006). Biosynthesis of cellulose-enriched tension wood in *Populus*: global
943 analysis of transcripts and metabolites identifies biochemical and developmental regulators
944 in secondary wall biosynthesis. *Plant Journal*, 45(2), 144-165. doi:10.1111/j.1365-
945 313X.2005.02584.x

946 Arioli, T., Peng, L., Betzner, A. S., Burn, J., Wittke, W., Herth, W., ... Williamson, R. E. (1998).
947 Molecular analysis of cellulose biosynthesis in *Arabidopsis*. *Science*, 279(5351), 717-720.
948 doi:10.1126/science.279.5351.717

949 Atalla, R. H., & Vanderhart, D. L. (1984). Native cellulose: a composite of two distinct crystalline
950 forms. *Science*, 223(4633), 283-285. doi:10.1126/science.223.4633.283

951 Atanassov, II, Pittman, J. K., & Turner, S. R. (2009). Elucidating the mechanisms of assembly and
952 subunit interaction of the cellulose synthase complex of *Arabidopsis* secondary cell walls. *J
953 Biol Chem*, 284(6), 3833-3841. doi:10.1074/jbc.M807456200

954 Bashline, L., Lei, L., Li, S., & Gu, Y. (2014). Cell wall, cytoskeleton, and cell expansion in higher plants.
955 *Mol Plant*, 7(4), 586-600. doi:10.1093/mp/ssu018

956 Bashline, L., Li, S., Anderson, C. T., Lei, L., & Gu, Y. (2013). The endocytosis of cellulose synthase in
957 *Arabidopsis* is dependent on mu2, a clathrin-mediated endocytosis adaptin. *Plant Physiol*,
958 163(1), 150-160. doi:10.1104/pp.113.221234

959 Bashline, L., Li, S., & Gu, Y. (2014). The trafficking of the cellulose synthase complex in higher plants.
960 *Ann Bot*, 114(6), 1059-1067. doi:10.1093/aob/mcu040

961 Bashline, L., Li, S., Zhu, X., & Gu, Y. (2015). The TWD40-2 protein and the AP2 complex cooperate in
962 the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis.
963 *Proc Natl Acad Sci U S A*, 112(41), 12870-12875. doi:10.1073/pnas.1509292112

964 Baskin, T. I. (2005). Anisotropic expansion of the plant cell wall. *Annu Rev Cell Dev Biol*, 21, 203-222.
965 doi:10.1146/annurev.cellbio.20.082503.103053

966 Benfey, P. N., Linstead, P. J., Roberts, K., Schiefelbein, J. W., Hauser, M. T., & Aeschbacher, R. A.
967 (1993). Root Development in *Arabidopsis*: Four Mutants With Dramatically Altered Root
968 Morphogenesis. *Development*, 119(1), 57-70.

969 Benziman, M., Haigler, C. H., Brown, R. M., White, A. R., & Cooper, K. M. (1980). Cellulose biogenesis:
970 Polymerization and crystallization are coupled processes in *Acetobacter xylinum*. *Proc Natl
971 Acad Sci U S A*, 77(11), 6678-6682. doi:10.1073/pnas.77.11.6678

972 Bischoff, V., Desprez, T., Mouille, G., Vernhettes, S., Gonneau, M., & Hofte, H. (2011). Phytochrome
973 regulation of cellulose synthesis in *Arabidopsis*. *Curr Biol*, 21(21), 1822-1827.
974 doi:10.1016/j.cub.2011.09.026

975 Bowling, A. J., & Brown, R. M., Jr. (2008). The cytoplasmic domain of the cellulose-synthesizing
976 complex in vascular plants. *Protoplasma*, 233(1-2), 115-127. doi:10.1007/s00709-008-0302-2

977 Brett, C. (2000). Cellulose microfibrils in plants: biosynthesis, deposition, and integration into the cell
978 wall. *International Review of Cytology*, 199, 161-199. doi:10.1016/s0074-7696(00)99004-1

979 Bringmann, M., Li, E., Sampathkumar, A., Kocabek, T., Hauser, M. T., & Persson, S. (2012). POM-
980 POM2/cellulose synthase interacting1 is essential for the functional association of cellulose
981 synthase and microtubules in *Arabidopsis*. *Plant Cell*, 24(1), 163-177.
982 doi:10.1105/tpc.111.093575

983 Brown, D. M., Zeef, L., Ellis, J., Goodacre, R., & Turner, S. (2005). Identification of novel genes in
 984 Arabidopsis involved in secondary cell wall formation using expression profiling and reverse
 985 genetics. *Plant Cell*, 17(8), 2281-2295. doi:10.1105/tpc.105.031542

986 Brown, R. (1996). The Biosynthesis of Cellulose. *Journal of Macromolecular Science - Pure and*
 987 *Applied Chemistry*, 33(10), 1345-1373. doi:10.1080/10601329608014912

988 Brown, R., & Montezinos, D. (1976). Cellulose microfibrils: visualization of biosynthetic and orienting
 989 complexes in association with the plasma membrane. *Proc Natl Acad Sci U S A*, 73(1), 143-
 990 147. doi:10.1073/pnas.73.1.143

991 Brown, R. J., Franke, W. W., Kleinig, H., Falk, H., & Sitte, P. (1970). Scale formation in chrysophycean
 992 algae. I. Cellulosic and noncellulosic wall components made by the Golgi apparatus. *J Cell*
 993 *Biol*, 45(2), 246-271. doi:10.1083/jcb.45.2.246

994 Brown, R. M. J., & Saxena, I. M. (2000). Cellulose biosynthesis: A model for understanding the
 995 assembly of biopolymers. *Plant Physiology and Biochemistry*, 38(1-2), 57-67.
 996 doi:doi.org/10.1016/S0981-9428(00)00168-6

997 Carroll, A., Mansoori, N., Li, S., Lei, L., Vernhettes, S., Visser, R. G., . . . Trindade, L. M. (2012).
 998 Complexes with mixed primary and secondary cellulose synthases are functional in
 999 Arabidopsis plants. *Plant Physiol*, 160(2), 726-737. doi:10.1104/pp.112.199208

1000 Chai, G. H., Kong, Y. Z., Zhu, M., Yu, L., Qi, G., Tang, X. F., . . . Zhou, G. K. (2015). Arabidopsis C3H14
 1001 and C3H15 have overlapping roles in the regulation of secondary wall thickening and anther
 1002 development. *Journal of Experimental Botany*, 66(9), 2595-2609. doi:10.1093/jxb/erv060

1003 Chan, J., & Coen, E. (2020). Interaction between Autonomous and Microtubule Guidance Systems
 1004 Controls Cellulose Synthase Trajectories. *Curr Biol*, 30(5), 941-947 e942.
 1005 doi:10.1016/j.cub.2019.12.066

1006 Chan, J., Crowell, E., Eder, M., Calder, G., Bunnewell, S., Findlay, K., . . . Lloyd, C. (2010). The rotation
 1007 of cellulose synthase trajectories is microtubule dependent and influences the texture of
 1008 epidermal cell walls in Arabidopsis hypocotyls. *J Cell Sci*, 123(Pt 20), 3490-3495.
 1009 doi:10.1242/jcs.074641

1010 Chan, J., Eder, M., Crowell, E. F., Hampson, J., Calder, G., & Lloyd, C. (2011). Microtubules and CESA
 1011 tracks at the inner epidermal wall align independently of those on the outer wall of light-
 1012 grown Arabidopsis hypocotyls. *J Cell Sci*, 124(Pt 7), 1088-1094. doi:10.1242/jcs.086702

1013 Chen, S., Ehrhardt, D. W., & Somerville, C. R. (2010). Mutations of cellulose synthase (CESA1)
 1014 phosphorylation sites modulate anisotropic cell expansion and bidirectional mobility of
 1015 cellulose synthase. *Proc Natl Acad Sci U S A*, 107(40), 17188-17193.
 1016 doi:10.1073/pnas.1012348107

1017 Chen, S., Jia, H., Zhao, H., Liu, D., Liu, Y., Liu, B., . . . Somerville, C. R. (2016). Anisotropic Cell
 1018 Expansion Is Affected through the Bidirectional Mobility of Cellulose Synthase Complexes
 1019 and Phosphorylation at Two Critical Residues on CESA3. *Plant Physiol*, 171(1), 242-250.
 1020 doi:10.1104/pp.15.01874

1021 Cho, S. H., Purushotham, P., Fang, C., Maranas, C., Diaz-Moreno, S. M., Bulone, V., . . . Nixon, B. T.
 1022 (2017). Synthesis and Self-Assembly of Cellulose Microfibrils from Reconstituted Cellulose
 1023 Synthase. *Plant Physiol*, 175(1), 146-156. doi:10.1104/pp.17.00619

1024 Chu, Z., Chen, H., Zhang, Y., Zhang, Z., Zheng, N., Yin, B., . . . Xie, Q. (2007). Knockout of the AtCESA2
 1025 gene affects microtubule orientation and causes abnormal cell expansion in Arabidopsis.
 1026 *Plant Physiol*, 143(1), 213-224. doi:10.1104/pp.106.088393

1027 Coleman, J., Evans, D., & Hawes, C. (1988). Plant coated vesicles. *Plant, Cell and Environment*, 11(8),
 1028 669-684. doi:10.1111/j.1365-3040.1988.tb01150.x

1029 Cosgrove, D. J. (2016). Plant cell wall extensibility: connecting plant cell growth with cell wall
 1030 structure, mechanics, and the action of wall-modifying enzymes. *J Exp Bot*, 67(2), 463-476.
 1031 doi:10.1093/jxb/erv511

1032 Cosgrove, D. J., & Jarvis, M. C. (2012). Comparative structure and biomechanics of plant primary and
 1033 secondary cell walls. *Front Plant Sci*, 3, 204. doi:10.3389/fpls.2012.00204

1034 Cousins, S. K., & Brown, R. M. (1997). X-ray diffraction and ultrastructural analyses of dye-altered
 1035 celluloses support van der Waals forces as the initial step in cellulose crystallization.
 1036 *Polymer*, 38(4), 897-902. doi:10.1016/s0032-3861(96)00589-7

1037 Crowell, E. F., Bischoff, V., Desprez, T., Rolland, A., Stierhof, Y. D., Schumacher, K., . . . Vernhettes, S.
 1038 (2009). Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase
 1039 complexes in *Arabidopsis*. *Plant Cell*, 21(4), 1141-1154. doi:10.1105/tpc.108.065334

1040 Crowell, E. F., Timpano, H., Desprez, T., Franssen-Verheijen, T., Emons, A. M., Hofte, H., &
 1041 Vernhettes, S. (2011). Differential regulation of cellulose orientation at the inner and outer
 1042 face of epidermal cells in the *Arabidopsis* hypocotyl. *Plant Cell*, 23(7), 2592-2605.
 1043 doi:10.1105/tpc.111.087338

1044 Delmer, D. P. (1999). CELLULOSE BIOSYNTHESIS: Exciting Times for A Difficult Field of Study. *Annu
 1045 Rev Plant Physiol Plant Mol Biol*, 50, 245-276. doi:10.1146/annurev.arplant.50.1.245

1046 Derbyshire, P., Menard, D., Green, P., Saalbach, G., Buschmann, H., Lloyd, C. W., & Pesquet, E.
 1047 (2015). Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem
 1048 Tracheary Element Formation in *Arabidopsis*. *Plant Cell*, 27(10), 2709-2726.
 1049 doi:10.1105/tpc.15.00314

1050 Desprez, T., Juranić, M., Crowell, E. F., Jouy, H., Pochylova, Z., Parcy, F., . . . Vernhettes, S. (2007).
 1051 Organization of cellulose synthase complexes involved in primary cell wall synthesis in
 1052 *Arabidopsis thaliana*. *Proc Natl Acad Sci U S A*, 104(39), 15572-15577.
 1053 doi:10.1073/pnas.0706569104

1054 Diotallevi, F., & Mulder, B. (2007). The cellulose synthase complex: a polymerization driven
 1055 supramolecular motor. *Biophys J*, 92(8), 2666-2673. doi:10.1529/biophysj.106.099473

1056 Drakakaki, G., van de Ven, W., Pan, S., Miao, Y., Wang, J., Keinath, N. F., . . . Raikhel, N. (2012).
 1057 Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic
 1058 trafficking in *Arabidopsis*. *Cell Res*, 22(2), 413-424. doi:10.1038/cr.2011.129

1059 Durek, P., Schudoma, C., Weckwerth, W., Selbig, J., & Walther, D. (2009). Detection and
 1060 characterization of 3D-signature phosphorylation site motifs and their contribution towards
 1061 improved phosphorylation site prediction in proteins. *BMC Bioinformatics*, 10, 117.
 1062 doi:10.1186/1471-2105-10-117

1063 Endler, A., Kesten, C., Schneider, R., Zhang, Y., Ivakov, A., Froehlich, A., . . . Persson, S. (2015). A
 1064 Mechanism for Sustained Cellulose Synthesis during Salt Stress. *Cell*, 162(6), 1353-1364.
 1065 doi:10.1016/j.cell.2015.08.028

1066 Engelhardt, J. (1995). Sources, Industrial Derivatives and Commercial Applications of Cellulose.
 1067 *Carbohydr. Eur.*, 12, 5-14.

1068 Fagard, M., Desnos, T., Desprez, T., Goubet, F., Refregier, G., Mouille, G., . . . Hofte, H. (2000).
 1069 PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in
 1070 roots and dark-grown hypocotyls of *Arabidopsis*. *Plant Cell*, 12(12), 2409-2424.
 1071 doi:10.1105/tpc.12.12.2409

1072 Felten, J., & Sundberg, B. (2013). Biology, Chemistry and Structure of Tension Wood. . *Cellular
 1073 Aspects of Wood Formation*, Fromm, J. ed: Springer Berlin Heidelberg, 203-224.
 1074 doi:10.1007/978-3-642-36491-4_8,#Springer-Verlag

1075 Fernandes, A. N., Thomas, L. H., Altaner, C. M., Callow, P., Forsyth, V. T., Apperley, D. C., . . . Jarvis,
 1076 M. C. (2011). Nanostructure of cellulose microfibrils in spruce wood. *Proc Natl Acad Sci U S
 1077 A*, 108(47), E1195-1203. doi:10.1073/pnas.1108942108

1078 Fisher, D. D., & Cyr, R. J. (1998). Extending the Microtubule/Microfibril paradigm. Cellulose synthesis
 1079 is required for normal cortical microtubule alignment in elongating cells. *Plant Physiol*,
 1080 116(3), 1043-1051. doi:10.1104/pp.116.3.1043

1081 Foston, M., Hubbell, C. A., Samuel, R., Jung, S., Fan, H., Ding, S., . . . Ragauskas, J. (2011). Chemical,
 1082 ultrastructural and supramolecular analysis of tension wood in *Populus tremula x alba* as a
 1083 model substrate for reduced recalcitrance. *Energy & Environmental Science*, 4, 4962-4971.

1084 Fujita, M., Himmelsbach, R., Hocart, C. H., Williamson, R. E., Mansfield, S. D., & Wasteneys, G. O.
 1085 (2011). Cortical microtubules optimize cell-wall crystallinity to drive unidirectional growth in
 1086 *Arabidopsis*. *Plant J*, 66(6), 915-928. doi:10.1111/j.1365-313X.2011.04552.x

1087 Fujita, M., Lechner, B., Barton, D. A., Overall, R. L., & Wasteneys, G. O. (2012). The missing link: do
 1088 cortical microtubules define plasma membrane nanodomains that modulate cellulose
 1089 biosynthesis? *Protoplasma*, 249 Suppl 1, S59-67. doi:10.1007/s00709-011-0332-z

1090 Gadeyne, A., Sanchez-Rodriguez, C., Vanneste, S., Di Rubbo, S., Zauber, H., Vanneste, K., . . . Van
 1091 Damme, D. (2014). The TPLATE adaptor complex drives clathrin-mediated endocytosis in
 1092 plants. *Cell*, 156(4), 691-704. doi:10.1016/j.cell.2014.01.039

1093 Gardiner, J. C., Taylor, N. G., & Turner, S. R. (2003). Control of cellulose synthase complex localization
 1094 in developing xylem. *Plant Cell*, 15(8), 1740-1748. doi:10.1105/tpc.012815

1095 Gardner, K. H., & Blackwell, J. (1974). The structure of native cellulose. *Biopolymers*, 13(10), 1975-
 1096 2001. doi:<http://dx.doi.org/10.1002/bip.1974.360131005>

1097 Giddings, T. H., Jr., Brower, D. L., & Staehelin, L. A. (1980). Visualization of particle complexes in the
 1098 plasma membrane of *Micrasterias denticulata* associated with the formation of cellulose
 1099 fibrils in primary and secondary cell walls. *J Cell Biol*, 84(2), 327-339.
 1100 doi:10.1083/jcb.84.2.327

1101 Giddings, T. H., Jr., & Staehelin, L. A. (1991). Microtubule-mediated control of microfibril deposition:
 1102 A re-examination of the hypothesis. In C. W. Lloyd (Ed.), *In The Cytoskeletal Basis of Plant*
 1103 *Growth and Form* (pp. 85-100). San Diego, CA: Academic Press.

1104 Gonneau, M., Desprez, T., Guillot, A., Vernhettes, S., & Hofte, H. (2014). Catalytic subunit
 1105 stoichiometry within the cellulose synthase complex. *Plant Physiol*, 166(4), 1709-1712.
 1106 doi:10.1104/pp.114.250159

1107 Goss, C. A., Brockmann, D. J., Bushoven, J. T., & Roberts, A. W. (2012). A CELLULOSE SYNTHASE
 1108 (CESA) gene essential for gametophore morphogenesis in the moss *Physcomitrella patens*.
 1109 *Planta*, 235(6), 1355-1367. doi:10.1007/s00425-011-1579-5

1110 Green, P. B. (1960). Multinet growth in the cell wall of *Nitella*. *J Biophys Biochem Cytol*, 7, 289-296.
 1111 doi:10.1083/jcb.7.2.289

1112 Green, P. B. (1962). Mechanism for Plant Cellular Morphogenesis. *Science*, 138(3548), 1404-1405.
 1113 doi:10.1126/science.138.3548.1404

1114 Gu, Y., Kaplinsky, N., Bringmann, M., Cobb, A., Carroll, A., Sampathkumar, A., . . . Somerville, C. R.
 1115 (2010). Identification of a cellulose synthase-associated protein required for cellulose
 1116 biosynthesis. *Proc Natl Acad Sci U S A*, 107(29), 12866-12871. doi:10.1073/pnas.1007092107

1117 Guerriero, G., Fugelstad, J., & Bulone, V. (2010). What do we really know about cellulose
 1118 biosynthesis in higher plants? *J Integr Plant Biol*, 52(2), 161-175. doi:10.1111/j.1744-
 1119 7909.2010.00935.x

1120 Gutierrez, R., Lindeboom, J. J., Paredes, A. R., Emons, A. M., & Ehrhardt, D. W. (2009). *Arabidopsis*
 1121 cortical microtubules position cellulose synthase delivery to the plasma membrane and
 1122 interact with cellulose synthase trafficking compartments. *Nat Cell Biol*, 11(7), 797-806.
 1123 doi:10.1038/ncb1886

1124 Haigler, C. H., & Brown, R. M. (1986). Transport of rosettes from the golgi apparatus to the plasma
 1125 membrane in isolated mesophyll cells of *Zinnia elegans* during differentiation to tracheary
 1126 elements in suspension culture. *Protoplasma*, 134(2-3), 111-120. doi:10.1007/bf01275709

1127 Haigler, C. H., & Roberts, A. W. (2018). Structure/function relationships in the rosette cellulose
 1128 synthesis complex illuminated by an evolutionary perspective. *Cellulose*, 26(1), 227-247.
 1129 doi:10.1007/s10570-018-2157-9

1130 Hamann, T., Osborne, E., Youngs, H. L., Misson, J., Nussaume, L., & Somerville, C. (2004). Global
 1131 expression analysis of CESA and CSL genes in *Arabidopsis*. *Cellulose*, 11(3/4), 279-286.
 1132 doi:10.1023/b:Cell.0000046340.99925.57

1133 Harris, D. M., Corbin, K., Wang, T., Gutierrez, R., Bertolo, A. L., Petti, C., . . . Debolt, S. (2012).
 1134 Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region

1135 residues CESA1A903V and CESA3T942I of cellulose synthase. *Proc Natl Acad Sci U S A*,
 1136 109(11), 4098-4103. doi:10.1073/pnas.1200352109

1137 Hauser, M. T., Morikami, A., & Benfey, P. N. (1995). Conditional root expansion mutants of
 1138 *Arabidopsis*. *Development*, 121, 1237-1252.

1139 He, M., Lan, M., Zhang, B., Zhou, Y., Wang, Y., Zhu, L., . . . Fu, Y. (2018). Rab-H1b is essential for
 1140 trafficking of cellulose synthase and for hypocotyl growth in *Arabidopsis thaliana*. *J Integr
 1141 Plant Biol*, 60(11), 1051-1069. doi:10.1111/jipb.12694

1142 Heath, I. B. (1974). A unified hypothesis for the role of membrane bound enzyme complexes and
 1143 microtubules in plant cell wall synthesis. *J Theor Biol*, 48(2), 445-449. doi:10.1016/s0022-
 1144 5193(74)80011-1

1145 Hepler, P. K., & Newcomb, E. H. (1964). Microtubules and Fibrils in the Cytoplasm of Coleus Cells
 1146 Undergoing Secondary Wall Deposition. *J Cell Biol*, 20, 529-532. doi:10.1083/jcb.20.3.529

1147 Hermans, P., de Booys, J., & Maan, C. (1943). Form and mobility of cellulose molecules. *Kolloid-Z*,
 1148 102, 169.

1149 Herth, W. (1983). Arrays of plasma-membrane "rosettes" involved in cellulose microfibril formation
 1150 of *Spirogyra*. *Planta*, 159(4), 347-356. doi:10.1007/BF00393174

1151 Herth, W. (1985). Plasma-membrane rosettes involved in localized wall thickening during xylem
 1152 vessel formation of *Lepidium sativum* L. *Planta*, 164(1), 12-21. doi:10.1007/BF00391020

1153 Hill, J. L., Jr., Hammudi, M. B., & Tien, M. (2014). The *Arabidopsis* cellulose synthase complex: a
 1154 proposed hexamer of CESA trimers in an equimolar stoichiometry. *Plant Cell*, 26(12), 4834-
 1155 4842. doi:10.1105/tpc.114.131193

1156 Hill, J. L., Jr., Hill, A. N., Roberts, A. W., Haigler, C. H., & Tien, M. (2018). Domain swaps of *Arabidopsis*
 1157 secondary wall cellulose synthases to elucidate their class specificity. *Plant Direct*, 2(7),
 1158 e00061. doi:10.1002/pld3.61

1159 Himmelspach, R., Williamson, R. E., & Wasteneys, G. O. (2003). Cellulose microfibril alignment
 1160 recovers from DCB-induced disruption despite microtubule disorganization. *Plant J*, 36(4),
 1161 565-575. doi:10.1046/j.1365-313x.2003.01906.x

1162 Holstein, S. E. (2002). Clathrin and plant endocytosis. *Traffic*, 3(9), 614-620. doi:10.1034/j.1600-
 1163 0854.2002.30903.x

1164 Jacob-Wilk, D., Kurek, I., Hogan, P., & Delmer, D. P. (2006). The cotton fiber zinc-binding domain of
 1165 cellulose synthase A1 from *Gossypium hirsutum* displays rapid turnover in vitro and in vivo.
 1166 *Proc Natl Acad Sci U S A*, 103(32), 12191-12196. doi:10.1073/pnas.0605098103

1167 Kesten, C., Wallmann, A., Schneider, R., McFarlane, H. E., Diehl, A., Khan, G. A., . . . Persson, S.
 1168 (2019). The companion of cellulose synthase 1 confers salt tolerance through a Tau-like
 1169 mechanism in plants. *Nat Commun*, 10(1), 857. doi:10.1038/s41467-019-08780-3

1170 Kim, W. C., Kim, J. Y., Ko, J. H., Kim, J., & Han, K. H. (2013a). Transcription factor MYB46 is an obligate
 1171 component of the transcriptional regulatory complex for functional expression of secondary
 1172 wall-associated cellulose synthases in *Arabidopsis thaliana*. *J Plant Physiol*, 170(15), 1374-
 1173 1378. doi:10.1016/j.jplph.2013.04.012

1174 Kim, W. C., Ko, J. H., Kim, J. Y., Kim, J., Bae, H. J., & Han, K. H. (2013b). MYB46 directly regulates the
 1175 gene expression of secondary wall-associated cellulose synthases in *Arabidopsis*. *Plant
 1176 Journal*, 73(1), 26-36. doi:10.1111/j.1365-313x.2012.05124

1177 Kimura, S., & Itoh, T. (1996). New cellulose synthesizing complexes (terminal complexes) involved in
 1178 animal cellulose biosynthesis in the tunicate *Metandrocarpa uedai*. *Protoplasma*, 194(3-4),
 1179 151-163. doi:10.1007/bf01882023

1180 Kimura, S., Laosinchai, W., Itoh, T., Cui, X., Linder, C. R., & Brown, R. M., Jr. (1999). Immunogold
 1181 labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant *vigna
 1182 angularis*. *Plant Cell*, 11(11), 2075-2086. doi:10.1105/tpc.11.11.2075

1183 Ko, J. H., Kim, W. C., & Han, K. H. (2009). Ectopic expression of MYB46 identifies transcriptional
 1184 regulatory genes involved in secondary wall biosynthesis in *Arabidopsis*. *Plant J*, 60(4), 649-
 1185 665. doi:10.1111/j.1365-313X.2009.03989.x

1186 Kumar, M., Atanassov, I., & Turner, S. (2017). Functional Analysis of Cellulose Synthase (CESA)
 1187 Protein Class Specificity. *Plant Physiol*, 173(2), 970-983. doi:10.1104/pp.16.01642

1188 Kumar, M., Carr, P., & Turner, S. (2020). doi:10.1101/2020.05.12.090415

1189 Kumar, M., Wightman, R., Atanassov, I., Gupta, A., Hurst, C. H., Hemsley, P. A., & Turner, S. (2016). S-
 1190 Acylation of the cellulose synthase complex is essential for its plasma membrane
 1191 localization. *Science*, 353(6295), 166-169. doi:10.1126/science.aaf4009

1192 Kurek, I., Kawagoe, Y., Jacob-Wilk, D., Doblin, M., & Delmer, D. (2002). Dimerization of cotton fiber
 1193 cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains. *Proc
 1194 Natl Acad Sci U S A*, 99(17), 11109-11114. doi:10.1073/pnas.162077099

1195 Lai-Kee-Him, J., Chanzy, H., Muller, M., Putaux, J. L., Imai, T., & Bulone, V. (2002). In vitro versus in
 1196 vivo cellulose microfibrils from plant primary wall synthases: structural differences. *J Biol
 1197 Chem*, 277(40), 36931-36939. doi:10.1074/jbc.M203530200

1198 Lampugnani, E. R., Flores-Sandoval, E., Tan, Q. W., Mutwil, M., Bowman, J. L., & Persson, S. (2019).
 1199 Cellulose Synthesis - Central Components and Their Evolutionary Relationships. *Trends Plant
 1200 Sci*, 24(5), 402-412. doi:10.1016/j.tplants.2019.02.011

1201 Ledbetter, M. C., & Porter, K. R. (1963). A "Microtubule" in Plant Cell Fine Structure. *J Cell Biol*, 19(1),
 1202 239-250. doi:10.1083/jcb.19.1.239

1203 Lei, L., Singh, A., Bashline, L., Li, S., Yingling, Y. G., & Gu, Y. (2015). CELLULOSE SYNTHASE
 1204 INTERACTIVE1 Is Required for Fast Recycling of Cellulose Synthase Complexes to the Plasma
 1205 Membrane in Arabidopsis. *Plant Cell*, 27(10), 2926-2940. doi:10.1105/tpc.15.00442

1206 Lei, L., Zhang, T., Strasser, R., Lee, C. M., Gonneau, M., Mach, L., . . . Gu, Y. (2014). The jiaoyao1
 1207 Mutant Is an Allele of korrigan1 That Abolishes Endoglucanase Activity and Affects the
 1208 Organization of Both Cellulose Microfibrils and Microtubules in Arabidopsis. *Plant Cell*, 26(6),
 1209 2601-2616. doi:10.1105/tpc.114.126193

1210 Li, S., Bashline, L., Lei, L., & Gu, Y. (2014). Cellulose synthesis and its regulation. *Arabidopsis Book*, 12,
 1211 e0169. doi:10.1199/tab.0169

1212 Li, S., Bashline, L., Zheng, Y., Xin, X., Huang, S., Kong, Z., . . . Gu, Y. (2016). Cellulose synthase
 1213 complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary
 1214 cell walls of plants. *Proc Natl Acad Sci U S A*, 113(40), 11348-11353.
 1215 doi:10.1073/pnas.1613273113

1216 Li, S., Lei, L., & Gu, Y. (2013). Functional analysis of complexes with mixed primary and secondary
 1217 cellulose synthases. *Plant Signal Behav*, 8(3), e23179. doi:10.4161/psb.23179

1218 Li, S., Lei, L., Somerville, C. R., & Gu, Y. (2012). Cellulose synthase interactive protein 1 (CSI1) links
 1219 microtubules and cellulose synthase complexes. *Proc Natl Acad Sci U S A*, 109(1), 185-190.
 1220 doi:10.1073/pnas.1118560109

1221 Li, S., Lei, L., Yingling, Y. G., & Gu, Y. (2015). Microtubules and cellulose biosynthesis: the emergence
 1222 of new players. *Curr Opin Plant Biol*, 28, 76-82. doi:10.1016/j.pbi.2015.09.002

1223 Li, X., Speicher, T. L., Dees, D., Mansoori, N., McManus, J. B., Tien, M., . . . Roberts, A. W. (2019).
 1224 Convergent evolution of hetero-oligomeric cellulose synthesis complexes in mosses and
 1225 seed plants. *Plant J*, 99(5), 862-876. doi:10.1111/tpj.14366

1226 Liu, L., Shang-Guan, K., Zhang, B., Liu, X., Yan, M., Zhang, L., . . . Zhou, Y. (2013). Brittle Culm1, a
 1227 COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.
 1228 *PLoS Genet*, 9(8), e1003704. doi:10.1371/journal.pgen.1003704

1229 Liu, Z., Schneider, R., Kesten, C., Zhang, Y., Somssich, M., Zhang, Y., . . . Persson, S. (2016). Cellulose-
 1230 Microtubule Uncoupling Proteins Prevent Lateral Displacement of Microtubules during
 1231 Cellulose Synthesis in Arabidopsis. *Dev Cell*, 38(3), 305-315.
 1232 doi:10.1016/j.devcel.2016.06.032

1233 Luo, Y., Scholl, S., Doering, A., Zhang, Y., Irani, N. G., Rubbo, S. D., . . . Russinova, E. (2015). V-ATPase
 1234 activity in the TGN/EE is required for exocytosis and recycling in Arabidopsis. *Nat Plants*, 1,
 1235 15094. doi:10.1038/nplants.2015.94

1236 MacMillan, C. P., Birke, H., Chuah, A., Brill, E., Tsuji, Y., Ralph, J., . . . Pettolino, F. A. (2017). Tissue and
 1237 cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the
 1238 diversity of plant secondary cell walls. *BMC Genomics*, 18(1), 539. doi:10.1186/s12864-017-
 1239 3902-4

1240 Maloney, V. J., & Mansfield, S. D. (2010). Characterization and varied expression of a membrane-
 1241 bound endo-beta-1,4-glucanase in hybrid poplar. *Plant Biotechnol J*, 8(3), 294-307.
 1242 doi:10.1111/j.1467-7652.2009.00483.x

1243 Mansoori, N., Timmers, J., Desprez, T., Alvim-Kamei, C. L., Dees, D. C., Vincken, J. P., . . . Trindade, L.
 1244 M. (2014). KORRIGAN1 interacts specifically with integral components of the cellulose
 1245 synthase machinery. *PLoS One*, 9(11), e112387. doi:10.1371/journal.pone.0112387

1246 Marga, F., Grandbois, M., Cosgrove, D. J., & Baskin, T. I. (2005). Cell wall extension results in the
 1247 coordinate separation of parallel microfibrils: evidence from scanning electron microscopy
 1248 and atomic force microscopy. *Plant J*, 43(2), 181-190. doi:10.1111/j.1365-313X.2005.02447.x

1249 Martinez-Sanz, M., Pettolino, F., Flanagan, B., Gidley, M. J., & Gilbert, E. P. (2017). Structure of
 1250 cellulose microfibrils in mature cotton fibres. *Carbohydr Polym*, 175, 450-463.
 1251 doi:10.1016/j.carbpol.2017.07.090

1252 McCarthy, R. L., Zhong, R. Q., & Ye, Z. H. (2009). MYB83 Is a Direct Target of SND1 and Acts
 1253 Redundantly with MYB46 in the Regulation of Secondary Cell Wall Biosynthesis in
 1254 *Arabidopsis*. *Plant and Cell Physiology*, 50(11), 1950-1964. doi:10.1093/pcp/pcp139

1255 McFarlane, H. E., Doring, A., & Persson, S. (2014). The cell biology of cellulose synthesis. *Annu Rev
 1256 Plant Biol*, 65, 69-94. doi:10.1146/annurev-arplant-050213-040240

1257 Meents, M. J., Watanabe, Y., & Samuels, A. L. (2018). The cell biology of secondary cell wall
 1258 biosynthesis. *Ann Bot*, 121(6), 1107-1125. doi:10.1093/aob/mcy005

1259 Mendum, V., Griffiths, J. S., Persson, S., Stork, J., Downie, A. B., Voiniciuc, C., . . . DeBolt, S. (2011).
 1260 Subfunctionalization of cellulose synthases in seed coat epidermal cells mediates secondary
 1261 radial wall synthesis and mucilage attachment. *Plant Physiol*, 157(1), 441-453.
 1262 doi:10.1104/pp.111.179069

1263 Mizuta, S., & Brown, R. M. (1992). High resolution analysis of the formation of cellulose synthesizing
 1264 complexes in *Vaucheria hamata*. *Protoplasma*, 166(3-4), 187-199. doi:10.1007/bf01322781

1265 Mizuta, S., & Okuda, K. (1987). Boodlea Cell Wall Microfibril Orientation Unrelated to Cortical
 1266 Microtubule Arrangement *Botanical Gazette*, 148(3), 297-307.

1267 Morejohn, L. (1991). The molecular pharmacology of plant tubulin and microtubules. In C. W. Lloyd
 1268 (Ed.), *The Cytoskeletal Basis of Plant Growth and Form* (pp. 29-44). San Diego, CA: Academic
 1269 Press.

1270 Morgan, J. L., McNamara, J. T., Fischer, M., Rich, J., Chen, H. M., Withers, S. G., & Zimmer, J. (2016).
 1271 Observing cellulose biosynthesis and membrane translocation in crystallo. *Nature*,
 1272 531(7594), 329-334. doi:10.1038/nature16966

1273 Morgan, J. L., Strumillo, J., & Zimmer, J. (2013). Crystallographic snapshot of cellulose synthesis and
 1274 membrane translocation. *Nature*, 493(7431), 181-186. doi:10.1038/nature11744

1275 Mueller, S. C., & Brown, R. M., Jr. (1980). Evidence for an intramembrane component associated
 1276 with a cellulose microfibril-synthesizing complex in higher plants. *J Cell Biol*, 84(2), 315-326.
 1277 doi:10.1083/jcb.84.2.315

1278 Müller, M., Burghammer, M., & Sugiyama, J. (2006). Direct investigation of the structural properties
 1279 of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction.
 1280 *Holzforschung*, 60(5), 474-479. doi:10.1515/hf.2006.078

1281 Neumann, U., Brandizzi, F., & Hawes, C. (2003). Protein transport in plant cells: in and out of the
 1282 Golgi. *Ann Bot*, 92(2), 167-180. doi:10.1093/aob/mcg134

1283 Newman, R., & Hemmingson, J. (1990). Determination of the Degree of Cellulose Crystallinity in
 1284 Wood by Carbon-13 Nuclear Magnetic Resonance Spectroscopy. *Holzforschung*, 44(5), 351-
 1285 355.

1286 Newman, R. H., Hill, S. J., & Harris, P. J. (2013). Wide-angle x-ray scattering and solid-state nuclear
 1287 magnetic resonance data combined to test models for cellulose microfibrils in mung bean
 1288 cell walls. *Plant Physiol*, 163(4), 1558-1567. doi:10.1104/pp.113.228262

1289 Nicol, F., His, I., Jauneau, A., Vernhettes, S., Canut, H., & Hofte, H. (1998). A plasma membrane-
 1290 bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell
 1291 elongation in *Arabidopsis*. *EMBO J*, 17(19), 5563-5576. doi:10.1093/emboj/17.19.5563

1292 Niimura, H., Yokoyama, T., Kimura, S., Matsumoto, Y., & Kuga, S. (2009). AFM observation of
 1293 ultrathin microfibrils in fruit tissues. *Cellulose*, 17(1), 13-18. doi:10.1007/s10570-009-9361-6

1294 Nixon, B. T., Mansouri, K., Singh, A., Du, J., Davis, J. K., Lee, J. G., . . . Haigler, C. H. (2016).
 1295 Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases
 1296 in the Plant Cellulose Synthesis Complex. *Sci Rep*, 6, 28696. doi:10.1038/srep28696

1297 Norris, J. H., Li, X., Huang, S., Van de Meene, A. M. L., Tran, M. L., Killeavy, E., . . . Roberts, A. W.
 1298 (2017). Functional Specialization of Cellulose Synthase Isoforms in a Moss Shows Parallels
 1299 with Seed Plants. *Plant Physiol*, 175(1), 210-222. doi:10.1104/pp.17.00885

1300 Nuhse, T. S., Stensballe, A., Jensen, O. N., & Peck, S. C. (2004). Phosphoproteomics of the *Arabidopsis*
 1301 plasma membrane and a new phosphorylation site database. *Plant Cell*, 16(9), 2394-2405.
 1302 doi:10.1105/tpc.104.023150

1303 Ohlsson, A. B., Djerbi, S., Winzell, A., Bessueille, L., Staldal, V., Li, X., . . . Berglund, T. (2006). Cell
 1304 suspension cultures of *Populus tremula x P. tremuloides* exhibit a high level of cellulose
 1305 synthase gene expression that coincides with increased in vitro cellulose synthase activity.
 1306 *Protoplasma*, 228(4), 221-229. doi:10.1007/s00709-006-0156-4

1307 Olek, A. T., Rayon, C., Makowski, L., Kim, H. R., Ciesielski, P., Badger, J., . . . Carpita, N. C. (2014). The
 1308 structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers.
 1309 *Plant Cell*, 26(7), 2996-3009. doi:10.1105/tpc.114.126862

1310 Pagant, S., Bichet, A., Sugimoto, K., Lerouxel, O., Desprez, T., McCann, M., . . . Hofte, H. (2002).
 1311 KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of
 1312 cellulose during cell expansion in *Arabidopsis*. *Plant Cell*, 14(9), 2001-2013.
 1313 doi:10.1105/tpc.002873

1314 Paredez, A. R., Persson, S., Ehrhardt, D. W., & Somerville, C. R. (2008). Genetic evidence that
 1315 cellulose synthase activity influences microtubule cortical array organization. *Plant Physiol*,
 1316 147(4), 1723-1734. doi:10.1104/pp.108.120196

1317 Paredez, A. R., Somerville, C. R., & Ehrhardt, D. W. (2006). Visualization of cellulose synthase
 1318 demonstrates functional association with microtubules. *Science*, 312(5779), 1491-1495.
 1319 doi:10.1126/science.1126551

1320 Park, S., Song, B., Shen, W., & Ding, S. Y. (2019). A mutation in the catalytic domain of cellulose
 1321 synthase 6 halts its transport to the Golgi apparatus. *J Exp Bot*, 70(21), 6071-6083.
 1322 doi:10.1093/jxb/erz369

1323 Pear, J. R., Kawagoe, Y., Schreckengost, W. E., Delmer, D. P., & Stalker, D. M. (1996). Higher plants
 1324 contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose
 1325 synthase. *Proc Natl Acad Sci U S A*, 93(22), 12637-12642. doi:10.1073/pnas.93.22.12637

1326 Persson, S., Paredez, A., Carroll, A., Palsdottir, H., Doblin, M., Poindexter, P., . . . Somerville, C. R.
 1327 (2007). Genetic evidence for three unique components in primary cell-wall cellulose
 1328 synthase complexes in *Arabidopsis*. *Proc Natl Acad Sci U S A*, 104(39), 15566-15571.
 1329 doi:10.1073/pnas.0706592104

1330 Polko, J. K., Barnes, W. J., Voiniciuc, C., Doctor, S., Steinwand, B., Hill, J. L., Jr., . . . Kieber, J. J. (2018).
 1331 SHOU4 Proteins Regulate Trafficking of Cellulose Synthase Complexes to the Plasma
 1332 Membrane. *Curr Biol*, 28(19), 3174-3182 e3176. doi:10.1016/j.cub.2018.07.076

1333 Preston, R. D. (1974). *The Physical Biology of Plant Cell Walls*.

1334 Preston, R. D., Nicolai, E. R., & Millard, A. (1948). An electron microscope study of cellulose in the
 1335 wall of *Valonia ventricosa*. *Nature*, 162(4121), 665-667. doi:10.1038/162665a0.

1336 Purushotham, P., Cho, S. H., Diaz-Moreno, S. M., Kumar, M., Nixon, B. T., Bulone, V., & Zimmer, J.
 1337 (2016). A single heterologously expressed plant cellulose synthase isoform is sufficient for
 1338 cellulose microfibril formation in vitro. *Proc Natl Acad Sci U S A*, 113(40), 11360-11365.
 1339 doi:10.1073/pnas.1606210113

1340 Purushotham, P., Ho, R., & Zimmer, J. (2020). Architecture of a catalytically active homotrimeric
 1341 plant cellulose synthase complex. *Science*. doi:10.1126/science.abb2978

1342 Rao, X., & Dixon, R. A. (2018). Current Models for Transcriptional Regulation of Secondary Cell Wall
 1343 Biosynthesis in Grasses. *Front Plant Sci*, 9, 399. doi:10.3389/fpls.2018.00399

1344 Refregier, G., Pelletier, S., Jaillard, D., & Hofte, H. (2004). Interaction between wall deposition and
 1345 cell elongation in dark-grown hypocotyl cells in *Arabidopsis*. *Plant Physiol*, 135(2), 959-968.
 1346 doi:10.1104/pp.104.038711

1347 Reynolds, G. D., Wang, C., Pan, J., & Bednarek, S. Y. (2018). Inroads into Internalization: Five Years of
 1348 Endocytic Exploration. *Plant Physiol*, 176(1), 208-218. doi:10.1104/pp.17.01117

1349 Richmond, T. (2000). Higher plant cellulose synthases. *Genome Biol*, 1(4), REVIEWS3001.
 1350 doi:10.1186/gb-2000-1-4-reviews3001

1351 Roberts, A. W., & Bushoven, J. T. (2007). The cellulose synthase (CESA) gene superfamily of the moss
 1352 *Physcomitrella patens*. *Plant Mol Biol*, 63(2), 207-219. doi:10.1007/s11103-006-9083-1

1353 Roelofsen, P. A. (1958). Cell-Wall Structure as Related to Surface Growth Some Supplementary
 1354 Remarks on Multinet Growth. *Acta Botanica Neerlandica*, 7(1), 77-89. doi:10.1111/j.1438-
 1355 8677.1958.tb00609.x

1356 Roelofsen, P. A., & Houwink, A. L. (1951). Cell wall structure of staminal hairs of *Tradescantia virginica*
 1357 and its relation with growth. *Protoplasma*, 40(1), 1-22. doi:10.1007/bf01247932

1358 Roelofsen, P. A., & Houwink, A. L. (1953). Architecture and Growth of the Primary Cell Wall in Some
 1359 Plant Hairs and in the Phycomyces Sporangiothore. *Acta Botanica Neerlandica*, 2(2), 218-
 1360 225. doi:10.1111/j.1438-8677.1953.tb00272.x

1361 Roudier, F., Fernandez, A. G., Fujita, M., Himmelsbach, R., Borner, G. H., Schindelman, G., . . . Benfey,
 1362 P. N. (2005). COBRA, an *Arabidopsis* extracellular glycosyl-phosphatidyl inositol-anchored
 1363 protein, specifically controls highly anisotropic expansion through its involvement in
 1364 cellulose microfibril orientation. *Plant Cell*, 17(6), 1749-1763. doi:10.1105/tpc.105.031732

1365 Rushton, P. S., Olek, A. T., Makowski, L., Badger, J., Steussy, C. N., Carpita, N. C., & Stauffacher, C. V.
 1366 (2017). Rice Cellulose SynthaseA8 Plant-Conserved Region Is a Coiled-Coil at the Catalytic
 1367 Core Entrance. *Plant Physiol*, 173(1), 482-494. doi:10.1104/pp.16.00739

1368 Saelim, L., Akiyoshi, N., Tan, T. T., Ihara, A., Yamaguchi, M., Hirano, K., . . . Ohtani, M. (2019).
 1369 *Arabidopsis* Group IIId ERF proteins positively regulate primary cell wall-type CESA genes. *J
 1370 Plant Res*, 132(1), 117-129. doi:10.1007/s10265-018-1074-1

1371 Sakamoto, S., Somssich, M., Nakata, M. T., Unda, F., Atsuzawa, K., Kaneko, Y., . . . Mitsuda, N. (2018).
 1372 Complete substitution of a secondary cell wall with a primary cell wall in *Arabidopsis*. *Nat
 1373 Plants*, 4(10), 777-783. doi:10.1038/s41477-018-0260-4

1374 Sampathkumar, A., Gutierrez, R., McFarlane, H. E., Bringmann, M., Lindeboom, J., Emons, A. M., . . .
 1375 Persson, S. (2013). Patterning and lifetime of plasma membrane-localized cellulose synthase
 1376 is dependent on actin organization in *Arabidopsis* interphase cells. *Plant Physiol*, 162(2), 675-
 1377 688. doi:10.1104/pp.113.215277

1378 Sanchez-Rodriguez, C., Ketelaar, K., Schneider, R., Villalobos, J. A., Somerville, C. R., Persson, S., &
 1379 Wallace, I. S. (2017). BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose
 1380 synthesis in *Arabidopsis* by phosphorylating cellulose synthase 1. *Proc Natl Acad Sci U S A*,
 1381 114(13), 3533-3538. doi:10.1073/pnas.1615005114

1382 Sanchez-Rodriguez, C., Shi, Y., Kesten, C., Zhang, D., Sancho-Andres, G., Ivakov, A., . . . Persson, S.
 1383 (2018). The Cellulose Synthases Are Cargo of the TPLATE Adaptor Complex. *Mol Plant*, 11(2),
 1384 346-349. doi:10.1016/j.molp.2017.11.012

1385 Saxena, I. M., & Brown, R. M., Jr. (2005). Cellulose biosynthesis: current views and evolving concepts.
 1386 *Ann Bot*, 96(1), 9-21. doi:10.1093/aob/mci155

1387 Saxena, I. M., Brown, R. M., Jr., & Dandekar, T. (2001). Structure--function characterization of
 1388 cellulose synthase: relationship to other glycosyltransferases. *Phytochemistry*, 57(7), 1135-
 1389 1148. doi:10.1016/s0031-9422(01)00048-6

1390 Saxena, I. M., Lin, F. C., & Brown, R. M., Jr. (1990). Cloning and sequencing of the cellulose synthase
 1391 catalytic subunit gene of *Acetobacter xylinum*. *Plant Mol Biol*, 15(5), 673-683.
 1392 doi:10.1007/bf00016118

1393 Scavuzzo-Duggan, T. R., Chaves, A. M., Singh, A., Sethaphong, L., Slabaugh, E., Yingling, Y. G., . . .
 1394 Roberts, A. W. (2018). Cellulose synthase 'class specific regions' are intrinsically disordered
 1395 and functionally undifferentiated. *J Integr Plant Biol*, 60(6), 481-497. doi:10.1111/jipb.12637

1396 Schneider, R., Tang, L., Lampugnani, E. R., Barkwill, S., Lathe, R., Zhang, Y., . . . Persson, S. (2017). Two
 1397 Complementary Mechanisms Underpin Cell Wall Patterning during Xylem Vessel
 1398 Development. *Plant Cell*, 29(10), 2433-2449. doi:10.1105/tpc.17.00309

1399 Sethaphong, L., Davis, J. K., Slabaugh, E., Singh, A., Haigler, C. H., & Yingling, Y. G. (2016). Prediction
 1400 of the structures of the plant-specific regions of vascular plant cellulose synthases and
 1401 correlated functional analysis. *Cellulose*, 23(1), 145-161. doi:10.1007/s10570-015-0789-6

1402 Sethaphong, L., Haigler, C. H., Kubicki, J. D., Zimmer, J., Bonetta, D., DeBolt, S., & Yingling, Y. G.
 1403 (2013). Tertiary model of a plant cellulose synthase. *Proc Natl Acad Sci U S A*, 110(18), 7512-
 1404 7517. doi:10.1073/pnas.1301027110

1405 Slabaugh, E., Scavuzzo-Duggan, T., Chaves, A., Wilson, L., Wilson, C., Davis, J. K., . . . Haigler, C. H.
 1406 (2016). The valine and lysine residues in the conserved FxVTxK motif are important for the
 1407 function of phylogenetically distant plant cellulose synthases. *Glycobiology*, 26(5), 509-519.
 1408 doi:10.1093/glycob/cwv118

1409 Somerville, C. (2006). Cellulose synthesis in higher plants. *Annu Rev Cell Dev Biol*, 22, 53-78.
 1410 doi:10.1146/annurev.cellbio.22.022206.160206

1411 Song, B., Zhao, S., Shen, W., Collings, C., & Ding, S. Y. (2020). Direct Measurement of Plant Cellulose
 1412 Microfibril and Bundles in Native Cell Walls. *Front Plant Sci*, 11, 479.
 1413 doi:10.3389/fpls.2020.00479

1414 Song, D., Shen, J., & Li, L. (2010). Characterization of cellulose synthase complexes in *Populus* xylem
 1415 differentiation. *New Phytol*, 187(3), 777-790. doi:10.1111/j.1469-8137.2010.03315.x

1416 Speicher, T. L., Li, P. Z., & Wallace, I. S. (2018). Phosphoregulation of the Plant Cellulose Synthase
 1417 Complex and Cellulose Synthase-Like Proteins. *Plants (Basel)*, 7(3).
 1418 doi:10.3390/plants7030052

1419 Strabala, T. J., & Macmillan, C. P. (2013). The *Arabidopsis* wood model-the case for the inflorescence
 1420 stem. *Plant Sci*, 210, 193-205. doi:10.1016/j.plantsci.2013.05.007

1421 Strasser, R. (2018). Protein Quality Control in the Endoplasmic Reticulum of Plants. *Annu Rev Plant
 1422 Biol*, 69, 147-172. doi:10.1146/annurev-arplant-042817-040331

1423 Sugimoto, K., Himmelspach, R., Williamson, R. E., & Wasteneys, G. O. (2003). Mutation or drug-
 1424 dependent microtubule disruption causes radial swelling without altering parallel cellulose
 1425 microfibril deposition in *Arabidopsis* root cells. *Plant Cell*, 15(6), 1414-1429.
 1426 doi:10.1105/tpc.011593

1427 Suslov, D., Verbelen, J. P., & Vissenberg, K. (2009). Onion epidermis as a new model to study the
 1428 control of growth anisotropy in higher plants. *J Exp Bot*, 60(14), 4175-4187.
 1429 doi:10.1093/jxb/erp251

1430 Szyjanowicz, P. M., McKinnon, I., Taylor, N. G., Gardiner, J., Jarvis, M. C., & Turner, S. R. (2004). The
 1431 irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of
 1432 *Arabidopsis thaliana*. *Plant J*, 37(5), 730-740. doi:10.1111/j.1365-313x.2003.02000.x

1433 Taylor, N. G. (2007). Identification of cellulose synthase AtCesA7 (IRX3) in vivo phosphorylation sites-
 1434 -a potential role in regulating protein degradation. *Plant Mol Biol*, 64(1-2), 161-171.
 1435 doi:10.1007/s11103-007-9142-2

1436 Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K., & Turner, S. R. (2003). Interactions among
 1437 three distinct CesA proteins essential for cellulose synthesis. *Proc Natl Acad Sci U S A*, 100(3),
 1438 1450-1455. doi:10.1073/pnas.0337628100

1439 Thomas, L. H., Forsyth, V. T., Sturcova, A., Kennedy, C. J., May, R. P., Altaner, C. M., . . . Jarvis, M. C.
 1440 (2013). Structure of cellulose microfibrils in primary cell walls from collenchyma. *Plant*
 1441 *Physiol*, 161(1), 465-476. doi:10.1104/pp.112.206359

1442 Tsekos, I. (1999). The Sites of Cellulose Synthesis in Algae: Diversity and Evolution of Cellulose-
 1443 Synthesizing Enzyme Complexes. *Journal of Phycology*, 35(4), 635-655. doi:10.1046/j.1529-
 1444 8817.1999.3540635.x

1445 Turner, S. R., & Somerville, C. R. (1997). Collapsed xylem phenotype of *Arabidopsis* identifies
 1446 mutants deficient in cellulose deposition in the secondary cell wall. *Plant Cell*, 9(5), 689-701.
 1447 doi:10.1105/tpc.9.5.689

1448 Uemura, T., Kim, H., Saito, C., Ebine, K., Ueda, T., Schulze-Lefert, P., & Nakano, A. (2012). Qa-SNAREs
 1449 localized to the trans-Golgi network regulate multiple transport pathways and extracellular
 1450 disease resistance in plants. *Proc Natl Acad Sci U S A*, 109(5), 1784-1789.
 1451 doi:10.1073/pnas.1115146109

1452 Vain, T., Crowell, E. F., Timpano, H., Biot, E., Desprez, T., Mansoori, N., . . . Vernhettes, S. (2014). The
 1453 Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex. *Plant Physiol*, 165(4), 1521-
 1454 1532. doi:10.1104/pp.114.241216

1455 Vandavasi, V. G., Putnam, D. K., Zhang, Q., Petridis, L., Heller, W. T., Nixon, B. T., . . . O'Neill, H.
 1456 (2016). A Structural Study of CESA1 Catalytic Domain of *Arabidopsis* Cellulose Synthesis
 1457 Complex: Evidence for CESA Trimers. *Plant Physiol*, 170(1), 123-135.
 1458 doi:10.1104/pp.15.01356

1459 Vergara, C. E., & Carpita, N. C. (2001). Beta-D-glycan Synthases and the CesA Gene Family: Lessons to
 1460 Be Learned From the Mixed-Linkage (1-->3),(1-->4)beta-D-glucan Synthase *Plant Mol Biol*,
 1461 47, 145-160.

1462 Vernoud, V., Horton, A. C., Yang, Z., & Nielsen, E. (2003). Analysis of the small GTPase gene
 1463 superfamily of *Arabidopsis*. *Plant Physiol*, 131(3), 1191-1208. doi:10.1104/pp.013052

1464 Viotti, C., Bubeck, J., Stierhof, Y. D., Krebs, M., Langhans, M., van den Berg, W., . . . Schumacher, K.
 1465 (2010). Endocytic and secretory traffic in *Arabidopsis* merge in the trans-Golgi network/early
 1466 endosome, an independent and highly dynamic organelle. *Plant Cell*, 22(4), 1344-1357.
 1467 doi:10.1105/tpc.109.072637

1468 Wang, J., Howles, P. A., Cork, A. H., Birch, R. J., & Williamson, R. E. (2006). Chimeric proteins suggest
 1469 that the catalytic and/or C-terminal domains give CesA1 and CesA3 access to their specific
 1470 sites in the cellulose synthase of primary walls. *Plant Physiol*, 142(2), 685-695.
 1471 doi:10.1104/pp.106.084004

1472 Watanabe, Y., Meents, M. J., McDonnell, L. M., Barkwill, S., Sampathkumar, A., Cartwright, H. N., . . .
 1473 Mansfield, S. D. (2015). Visualization of cellulose synthases in *Arabidopsis* secondary cell
 1474 walls. *Science*, 350(6257), 198-203. doi:10.1126/science.aac7446

1475 Watanabe, Y., Schneider, R., Barkwill, S., Gonzales-Vigil, E., Hill, J. L., Jr., Samuels, A. L., . . . Mansfield,
 1476 S. D. (2018). Cellulose synthase complexes display distinct dynamic behaviors during xylem
 1477 transdifferentiation. *Proc Natl Acad Sci U S A*, 115(27), E6366-E6374.
 1478 doi:10.1073/pnas.1802113115

1479 Wiedemeier, A. M. D., Judy-March, J. E., Hocart, C. H., Wasteneys, G. O., Williamson, R. E., & Baskin,
 1480 T. I. (2002). Mutant alleles of *Arabidopsis RADIALLY SWOLLEN* 4 and 7 reduce growth
 1481 anisotropy without altering the transverse orientation of cortical microtubules or cellulose
 1482 microfibrils. *Development*, 129, 4821-4830.

1483 Wightman, R., & Turner, S. R. (2008). The roles of the cytoskeleton during cellulose deposition at the
 1484 secondary cell wall. *Plant J*, 54(5), 794-805. doi:10.1111/j.1365-313X.2008.03444.x

1485 Wolf, S., Hematy, K., & Hofte, H. (2012). Growth control and cell wall signaling in plants. *Annu Rev*
 1486 *Plant Biol*, 63, 381-407. doi:10.1146/annurev-arplant-042811-105449

1487 Wong, H. C., Fear, A. L., Calhoon, R. D., Eichinger, G. H., Mayer, R., Amikam, D., . . . et al. (1990).
 1488 Genetic organization of the cellulose synthase operon in *Acetobacter xylinum*. *Proc Natl
 1489 Acad Sci U S A*, 87(20), 8130-8134. doi:10.1073/pnas.87.20.8130

1490 Xie, L., Yang, C., & Wang, X. (2011). Brassinosteroids can regulate cellulose biosynthesis by
 1491 controlling the expression of CESA genes in *Arabidopsis*. *J Exp Bot*, 62(13), 4495-4506.
 1492 doi:10.1093/jxb/err164

1493 Xin, X., Lei, L., Zheng, Y., Zhang, T., Pingali, S. V., O'Neill, H., . . . Gu, Y. (2020). CELLULOSE SYNTHASE
 1494 INTERACTIVE1 and Microtubule-Dependent Cell Wall Architecture Is Required for Acid
 1495 Growth in *Arabidopsis* Hypocotyls. *J Exp Bot*. doi:10.1093/jxb/eraa063

1496 Yamaguchi, M., Goue, N., Igarashi, H., Ohtani, M., Nakano, Y., Mortimer, J. C., . . . Demura, T. (2010).
 1497 VASCULAR-RELATED NAC-DOMAIN6 and VASCULAR-RELATED NAC-DOMAIN7 effectively
 1498 induce transdifferentiation into xylem vessel elements under control of an induction system.
 1499 *Plant Physiol*, 153(3), 906-914. doi:10.1104/pp.110.154013

1500 Zhang, J., Xie, M., Tuskan, G. A., Muchero, W., & Chen, J. G. (2018a). Recent Advances in the
 1501 Transcriptional Regulation of Secondary Cell Wall Biosynthesis in the Woody Plants. *Front
 1502 Plant Sci*, 9, 1535. doi:10.3389/fpls.2018.01535

1503 Zhang, T., Zheng, Y., & Cosgrove, D. J. (2016a). Spatial organization of cellulose microfibrils and
 1504 matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force
 1505 microscopy. *Plant J*, 85(2), 179-192. doi:10.1111/tpj.13102

1506 Zhang, W., Cai, C., & Staiger, C. J. (2019). Myosins XI Are Involved in Exocytosis of Cellulose Synthase
 1507 Complexes. *Plant Physiol*, 179(4), 1537-1555. doi:10.1104/pp.19.00018

1508 Zhang, X., Dominguez, P. G., Kumar, M., Bygdell, J., Miroshnichenko, S., Sundberg, B., . . . Niittyla.
 1509 (2018b). Cellulose Synthase Stoichiometry in Aspen Differs from *Arabidopsis* and Norway
 1510 Spruce. *Plant Physiol*, 177(3), 1096-1107. doi:10.1104/pp.18.00394

1511 Zhang, Y., Nikolovski, N., Sorieul, M., Velloillo, T., McFarlane, H. E., Dupree, R., . . . Dupree, P.
 1512 (2016b). Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose
 1513 synthase complexes in *Arabidopsis*. *Nat Commun*, 7, 11656. doi:10.1038/ncomms11656

1514 Zhong, R., Lee, C., Zhou, J., McCarthy, R. L., & Ye, Z. H. (2008). A battery of transcription factors
 1515 involved in the regulation of secondary cell wall biosynthesis in *Arabidopsis*. *Plant Cell*,
 1516 20(10), 2763-2782. doi:10.1105/tpc.108.061325

1517 Zhong, R., Richardson, E. A., & Ye, Z. H. (2007). Two NAC domain transcription factors, SND1 and
 1518 NST1, function redundantly in regulation of secondary wall synthesis in fibers of *Arabidopsis*.
 1519 *Planta*, 225(6), 1603-1611. doi:10.1007/s00425-007-0498-y

1520 Zhu, X., Li, S., Pan, S., Xin, X., & Gu, Y. (2018). CSI1, PATROL1, and exocyst complex cooperate in
 1521 delivery of cellulose synthase complexes to the plasma membrane. *Proc Natl Acad Sci U S A*,
 1522 115(15), E3578-E3587. doi:10.1073/pnas.1800182115

1523 Zhu, X., Xin, X., & Gu, Y. (2019). Cellulose and Hemicellulose Synthesis and Their Regulation in Plant
 1524 Cells. In E. Cohen & H. Merzendorfer (Eds.), *Extracellular Sugar-Based Biopolymers Matrices.*
 1525 *Biologically-Inspired System* (Vol. 12): Springer, Cham.

1526