A Randomized Controlled Trial on the Effects of Embedded
Computer Language Switching

P. Merlin Uesbeck

pmerlindrews@gmail.com
University of Nevada, Las Vegas
Las Vegas, Nevada, USA

Bonita Sharif
bsharif@unl.edu
University of Nebraska-Lincoln
Lincoln, Nebraska, USA

ABSTRACT

Polyglot programming, the use of multiple programming languages
during the development process, is common practice in modern
software development. This study investigates this practice through
a randomized controlled trial conducted under the context of data-
base programming. Participants in the study were given coding
tasks written in Java and one of three SQL-like embedded languages.
One was plain SQL in strings, one was in Java only, and the third
was a hybrid embedded language that was closer to the host lan-
guage. We recorded 109 valid data points. Results showed significant
differences in how developers of different experience levels code
using polyglot techniques. Notably, less experienced programmers
wrote correct programs faster in the hybrid condition (frequent,
but less severe, switches), while more experienced developers that
already knew both languages performed better in traditional SQL
(less frequent, but more complete, switches). The results indicate
that the productivity impact of polyglot programming is complex
and experience level dependent.

CCS CONCEPTS

« Human-centered computing — Empirical studies in HCI; «
Software and its engineering — Domain specific languages.

KEYWORDS

polyglot programming, programming languages, computer lan-
guage switching, productivity, database programming, experience,
randomized controlled trial

ACM Reference Format:

P. Merlin Uesbeck, Cole S. Peterson, Bonita Sharif, and Andreas Stefik. 2020.
A Randomized Controlled Trial on the Effects of Embedded Computer Lan-
guage Switching. In Proceedings of the 28th ACM Joint European Software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11...$15.00
https://doi.org/10.1145/3368089.3409701

410

Cole S. Peterson
cole.scott.peterson@huskers.unl.edu
University of Nebraska-Lincoln
Lincoln, Nebraska, USA

Andreas Stefik
andreas.stefik@unlv.edu
University of Nevada, Las Vegas
Las Vegas, Nevada, USA

Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE °20), November 8-13, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3368089.3409701

1 INTRODUCTION

Polyglot programming is commonplace in the software develop-
ment industry. Tomassetti and Torchiano found that ninety-seven
percent of open source projects used two or more computer lan-
guages [28]. Further, the average number of computer languages
in open source projects is about five [13, 28] and developers claim
in surveys that they “know” ten different computer languages [15].
Shrestha et al. observed that even experienced professional devel-
opers have significant challenges in learning new languages [16].
With programming in different languages comes the need to switch
between them, which we observe happens at three levels: 1) project
level, 2) file level, and 3) embedded level. In the linguistics liter-
ature and in reference to natural language, these ideas have sim-
ilar, but not exact, parallels. For example, embedded switching
has parallels to intra-sentential code switching [10, 12, 35], a rapid
switch between natural languages in conversation. File level switch-
ing might be considered a parallel to inter-sentential code switch-
ing [10, 12, 35], which is the process of switching languages between
utterances. Project level switches are a possible parallel to natural
language switching [3]. The analogies are not exact, but it is impor-
tant to recognize that the linguistics literature has shown evidence
that there is a cost to switching between natural languages [17, 18],
which might provide evidence for the underlying causes observed
by Shrestha et al. [16]. Given that program comprehension and
natural language comprehension may use the same areas of the
brain [21, 23], that the cost of hiring software developers is $103,560
per year [5], and given polyglot programming is so commonplace,
it is important to better understand this practice.

In this paper, we present a double-blind randomized controlled
trial focusing on one aspect of polyglot programming, i.e., embed-
ded switching in a database context. This is a large-scale replication
of a study presented at PLATEAU 2018 [30]. We illustrate a common
example using SQL to query databases from within general pur-
pose programming languages, as shown in the following SQL query
for querying in Java using the JDBC (Java Database Connectivity,
algorithm 1) API'.

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3368089.3409701
https://doi.org/10.1145/3368089.3409701
http://www.oracle.com/technetwork/java/javase/jdbc/index.html

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

1 stmt = conn.createStatement();
2 ResultSet rs = stmt.executeQuery("SELECT id,
< last, age FROM People");

first,

Algorithm 1: Example of a simple JDBC query

The goal was to determine whether polyglot programming would
impact developers at different experience levels, hypothesizing that
younger developers with less experience might have more diffi-
culty with the practice. To model different ways in which language
switching in an embedded context could occur, three different ver-
sions of querying APIs were created and these were evaluated with
freshman, sophomores, juniors, and seniors at the University of
Nevada, Las Vegas, in addition to professional programmers. The
results showed that the style of polyglot significantly impacts peo-
ple of different experiences in different ways and that the style of
polyglot is also impacted by experience.

Specifically, those that already knew both SQL and Java were
able to use a polyglot approach effectively, but that this was clearly
a skill learned through experience. Interestingly, we also found
that by altering an embedded language to be closer to the host,
our hybrid condition, even those as inexperienced as freshmen in
college were much more likely to be able to complete tasks. This
implies that polyglot programming is a complicated topic that needs
more study and that semantic mismatch in polyglot may impact
users.

We report this paper under an adapted CONSORT format [9]
used for reporting randomized controlled trials, which defines the
structure of this paper. As such, our section headers match this
externally vetted approach to reporting on our methodology. The
purpose is to engage the community in standardizing or making a
minimum bar for reporting in experiments thereby making it easier
to replicate and compare experiments.

2 RELATED WORK

The benefits and drawbacks of polyglot programming on a human-
factors level are under-explored in the scientific literature. The main
argument in favor of polyglot programming is about [...J choosing
the right tool for the job" [2], a view that seems to drive the field
of domain specific language research in regard to productivity or
maintenance [33]. Claims have been made that the use of a more
appropriate language for a task leads to better productivity and
easier maintenance by reducing the lines of code of a project [8].
In contrast, learning more languages may create a strain on the
developers or reduce the pool of developers able to maintain a
project [8]. In other work, researchers talk about several problems
in multi-language programming and guidelines for future research
efforts [14, 20].

This latter view, that additional languages causes strain, was
recently explored by Shrestha et al. as part of a study examining
professional developers and their questions on stack overflow, in ad-
dition to interviews [16]. Findings from that study showed that the
mismatch between programming languages may be a barrier even
for professionals and that this difference varies across language
pairs (e.g., Java to Kotlin vs. other pairs). We use a very different
methodology here, a randomized controlled trial on a larger variety
of experience levels as opposed to a mixed-method study on only

411

P. Merlin Uesbeck, Cole S. Peterson, Bonita Sharif, and Andreas Stefik

professionals, but our results are complementary. Notably, data
gathered in our study here suggests that these challenges are im-
pacted by experience level and the details of the particular polyglot
approach.

Programmer productivity is studied in a variety of aspects of
programming. Studies range from programming language features
such as syntax [24] and type systems [11], to API design [25] or the
effect of errors [4], to studies investigating cognitive processes [6,
23]. These studies on APIs, syntax, or others provided guidance to
this work, and while some have focused on the effect of polyglot
programming on code quality [28, 34], there is little in the literature
that contains actual measurements of human behavior.

3 EXPERIMENT OVERVIEW

This section introduces the study hypotheses and provides a brief
overview of how we designed the study.

3.1 Objective and Hypotheses

The experiment described in this paper compares how differing
kinds of computer language switching impact the development time
of software by utilizing three APIs. An object-oriented API requires
no language switches and exclusively uses Java (monoglot), while a
string-based API requires language switches from Java to SQL and
back when a query is being written (polyglot). A hybrid approach
is still polyglot, while recognizing that different scholars can and
do think of the word in different ways, but we carefully controlled
the word choices and syntax to be closer to the host language of
Java. The different API designs will be discussed in more detail in
section 4.4. To keep the tasks simple for participants, this study
focuses on the implementation of relatively straightforward queries.
The null-hypotheses are as follows:

Hy1: There is no relationship between polyglot style and produc-
tivity.

Hy2: Programmers do not notice that they switch between computer
languages.

Hy3: There is no difference between the productivity of native and
non-native English speakers in regard to productivity.

The alternative hypotheses can be derived from the null-hypo-
theses. The first hypothesis is asking whether there is a cost to
switching between two computer languages. In this experiment it
was chosen to test this cost by checking for time differences between
groups. Answers to this hypothesis might give more insight into the
connection between how humans understand natural language text
and code as suggested in existing research [19, 21, 23] by showing
a similar switching cost as found when switching between natural
languages [17, 18]. Note that productivity is measured in terms of
time taken to complete the task.

The second hypothesis was analyzed qualitatively based on an
exit survey in the experiment. The exit survey contains a question
asking whether participants noticed that they switched between
languages and whether they felt that this switching impacted their
progress. For example, while previous work looked at professionals,
for the younger end of our experience spectrum, we wanted to know

A Randomized Controlled Trial on the Effects of Embedded Computer Language Switching

whether students even realized they were doing polyglot program-
ming, and if so, whether their perceptions of their performance
matched with our observations.

The aim of hypothesis three was to investigate the impact of
natural languages on programming productivity. We recorded par-
ticipants’ primary language to be able to compare the performance
of primary English speakers and other participants. This is again
motivated by wanting to test the intersection of natural languages
and coding [6].

3.2 Design Process

We pilot tested our experiment in several ways. First, our research
lab loosely follows a “doubling rule” when creating experiments.
This approach, which is useful when an effect size is not known
and thus a power test cannot be determined to estimate effect size
in advance, is to take small scale pilots and then approximately
double the sample size on each iteration of the pilot while making
evidence based adjustments to the methodology. In this case, we
ran five preliminary pilot studies, each evaluating a larger number
of participants. The results of each pilot study were analyzed to
detect problems with the methodology. Specific focus of these it-
erations lay on general task design and on the design of the APL
The first three iterations had only the string-based and the object-
oriented group. After these initial iterations were completed, a
hybrid between the groups was created for pilots 4 and 5. This
extensive piloting process, with iteration at each step, provided us
an evidence-based way for us to critique our experiment over time,
get feedback from our research team and other stakeholders, and
improve our reporting before submitting and reporting our results
for publication. During the experiment iterations, we also received
feedback on the tasks used in the experiment to make sure they
were valid and realistic tasks one might find in software projects.

3.3 Reporting Structure

The layout of this write-up was inspired by the CONSORT (Consol-
idated Standards of Reporting Trials) standard as it is used in the
medical sciences [1], which defines what should be included in the
publication of a research study to allow for “complete and trans-
parent reporting". Use of the standard helps to improve complete
reporting of randomized controlled trials [29]. Hence, the rest of
this paper is structured as follows: First, we will cover the design of
the experiment in section 4. That section will include information
about the design of the trial in subsection 4.1, the participants in
subsection 4.2, the study setting in subsection 4.3, the intervention
in subsection 4.4, the outcome variables in subsection 4.5, the sam-
ple size in subsection 4.6, the randomization in 4.7, and the blinding
in subsection 4.8. Results will be shown and discussed in subsec-
tion 5, followed by qualitative results in section 6 and a discussion
in section 7. We point out that CONSORT reports studies somewhat
differently than is sometimes observed in our field and we cannot
match it exactly (e.g., computer science venues typically lack state-
of-the-art procedures like trial registration), but this was a simple
way to ensure our reporting was as rigorous and transparent as it
could be.

412

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

4 METHODS
4.1 Trial Design

The experiment is a repeated measures design in which participants
were randomly assigned to one of three experimental groups. Par-
ticipants were asked to solve 6 programming tasks in each group.
The randomization was based on the participants’ year in college,
or alternatively their status as a professional developer. The experi-
ment tested the effect of using an object oriented API against the
established use of SQL strings and a hybrid approach.

4.2 Participants

We recruited people over the age of 18 years who had at least some
programming experience. The programming experience was self-
reported by the participants in a survey included in the study and
were recruited in computer science classes at the University of
Nevada, Las Vegas. We also recruited professional programmers
on Twitter and Reddit. A factor used to distinguish participants
was level of education measure for programming experience for
university students [22] and significant differences between levels
have been found in respect to time to solution [31]. We want to
note that the curriculum taught at UNLV is well known to us and
the average student only gains database knowledge in junior or
senior year in the program. We also recorded other measures of ex-
perience alongside levels. The participants were informed about the
study during class time by a researcher reading the advertisement
pamphlet while every student was given a copy. Then, students
were able to go to the URL posted on the pamphlet and start the
experiment whenever they had time. Students were offered extra
credit for participation in the experiment and the amount of extra
credit was based on what the professor was willing to give the
students and ranged between 0-3% of total class points. Alterna-
tively to participating in the study, students were able to achieve
the same amount of extra credit by submitting an essay on a com-
puter science topic, as is required under ethics guidelines at our
university.

4.3 Study Setting

The study was conducted using an online platform that informed
the participants about their rights and recorded their consent to
participate. Then, the participants were asked to fill out a survey to
classify them into one of the experience groups by college status
(undergraduate year, graduate, post-graduate, non-degree seeking,
or professional). The survey also recorded additional information
about the participant for analysis purposes, such as their total
programming experience and primary natural language, as well
as if they have any disabilities. When the survey was completed,
participants were then informed about the details of the study by
being shown the experimental protocol.

When the participants were done reading the protocol, they had
5 minutes to read a code sample and move on to a coding task.
Participants were able to refer back to the code sample during the
coding phase of the task. The coding screen was a text box loaded
with code, to give the participant some scaffolding for the solution
and a testing framework for evaluating their answer. The coding
screen also showed a timer with the remaining task time on it,

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

as all tasks were limited to 45 minutes per task. Generally, time
requirements are both practical and required under sensible ethical
guidelines, but also imply what is obviously true for all experiments:
they are only a snapshot of behavior.

When the participants felt that they had solved the task suffi-
ciently, they could click the “Check Task" button. Then, the code
they had written was sent to a server. On the server, the code was
compiled in combination with the other classes needed and run
against a number of test-cases. The test-cases determined if the
task was solved successfully. If the code was sufficient, the output
window on the page printed that the test was successful and then
the website showed an overlay, telling the participants that they
can move on to the next task with the click of a button. If the test
was not successful, then the output of the test-case displayed in
the output window. Participants were able to keep going with the
same task until they either successfully solved it or until they run
out of time for the specific task. Once all of the tasks had ended,
participants were asked to give some feedback on the experiment
and they were thanked for their participation.

To test the difference between traditional SQL-like, string-based
query building and the new design of query building using objects,
as well as the hybrid approach, a small table library was built using
the Java programming language. The table contains data in columns
and the queries written in this experiment are all run using table
objects, so that this table class takes over the role of the actual
database. The table class design is part of the design idea for a new
data management library. To keep groups as similar as possible in
this experiment, the SQL-like queries were parsed and transformed
to a similar kind of query object as the object-oriented API and
hybrid API used behind the scenes.

4.4 Intervention

Three different groups were designed to represent different levels
of language switching. The design of the experiment was addition-
ally motivated by the desire to test different methods for writing
database queries.

1 public Table query(Table table) throws Exception {

2 Query query = new Query();

3 query.Prepare("SELECT Fieldl, Field2 "

4 +"FROM table WHERE Fieldl < 234 AND Field2 > 42
s "

5 +"ORDER BY Field3 DESC");

6 Table result = table.Search(query);

7 return result;

8 3

Algorithm 2: Example of the String-based Design

The first design (see example in algorithm 2) using the string
approach requires a user of the API to know the syntax of the
desired SQL query they want to write and does not feature any
amount of type checking support for the query. All error checking
for this approach is done by the database and the programmer must
rely on the feedback of the database’s error reporting (for details
on SQL errors see [27]). Further, the SQL dialect in use on the side
of the server must be considered and matched completely. This
approach also enables the use of modularization in which the SQL

413

P. Merlin Uesbeck, Cole S. Peterson, Bonita Sharif, and Andreas Stefik

queries are stored in external files instead of within the compiled
source code, which allows reuse without recompilation.

1 public Table query(Table table) throws Exception {

2 Query query = new Query();

3 query.AddField("Field1")

4 .AddField("Field2");

5 query.Filter (q.Where("Field1").LessThan(234).And("
< Field2").GreaterThan(42));

6 query.SortHighToLow("Field3");

7 Table result = table.Search(query);

8 3

Algorithm 3: Example of the Object-Oriented Design

The second design (see example in listing 3) requires a program-
mer to use a number of method calls to produce a query. This
approach loses the flexibility that comes with using strings by re-
moving the possibility to load the strings from a file or other source.
However, the evaluation of the statement is made in the program-
ming language itself and type checking and run-time error checking
can be leveraged to rule out certain syntax errors. Another differ-
ence in this approach is that programmers do not have to switch
between programming languages to write a query. It is currently
unknown in the literature whether this switching has a productivity
cost and, if so, for whom and under what conditions.

public Table query(Table table) throws Exception {

return result;

1

2 Query query = new Query();

3 query.AddFields("Field1, Field2");

4 query.Filter ("Fieldl < 234 AND Field2 > 42");
5 query.SortHighToLow("Field3");

6 Table result = charts.Search(query);

7

8

Algorithm 4: Example of the Hybrid Design

The third design is a hybrid between the two approaches in which
the query building process is separated into different method calls,
but combines steps such as adding multiple fields by allowing the
programmer to write a comma-separated list similar to what they
would do in a SQL query in string form. This approach avoids the
use of objects to build a filter statement and SQL syntax. This custom
syntax is thus somewhere in between a switch from SQL to Java
because the syntax is closer to the host language. We can imagine
many different kinds of hybrid conditions being interesting to study
empirically, but derived ours by looking at pilot data and trying
to keep the language as close to the host as we could, while also
removing the object mapping required in the monoglot condition.

In other words, we see polyglot as a spectrum of language design
decisions. On one side, if SQL is embedded raw into Java, there is
no direct connection between the languages—they were designed
separately and are embedded. On the other side of the spectrum
is a monoglot approach, where users create objects inside of Java
and manipulate them to do SQL-like operations. Finally, the hybrid
condition was designed to be embedded and is cognizant of its
application. Any of these design decisions, and others, might impact
productivity and our study is one of the first to evaluate this issue
formally.

A Randomized Controlled Trial on the Effects of Embedded Computer Language Switching

1 package library;

2 import library.x;

3 public class Taskl {

4 /*% Please write this method to return a Table object
< containing all columns for all entries with

5 * an id smaller than 32 and sorted from high salary to low
< salary

6 * Table information:

7 * - prof -

8 * id (int) | firstname (String) | lastname (String) | salary
< (int)

9 * Use the technique shown to you in the samples given

10 */

11 public Table query(Table prof) throws Exception {

12 // Your Code here

13 return null;

14 }

15 3}

Algorithm 5: Task 1 scaffolding.

The difference in intervention in this experiment is based on
which kind of code sample the participants were exposed to. Each
group got one compilable code sample demonstrating a number of
different queries in the library. Each sample includes code equiv-
alent to four different SELECT statements in SQL, one UPDATE
statement and one INSERT statement in SQL. The first select state-
ment was a selection of all columns with ordering of entries from
high to low, the second was a simple select of a number of columns
with a where condition, the third included a join, and the last select
statement was a simple selection of multiple columns with a where
condition and a sorting statement. The UPDATE and INSERT state-
ments were simple versions of their respective types. The difference
between the samples is that each sample shows the code required
to use the specific approach that was being tested in the respective

group.

1 public Table query(Table prof) throws Exception {
2 Query g = new Query();
3 q.Prepare("SELECT * FROM professors" +
4 " WHERE id < 32 ORDER BY salary DESC");
5 Table r = prof.Search(q);
6 return r;
7 3
Algorithm 6: Task 1 Solution for group SQL.
1 public Table query(Table prof) throws Exception {
2 Query q = new Query();
3 g.SortHighToLow("salary");
4 q.Filter(qg.Where("id").LessThan(32));
5 Table r = prof.Search(q);
6 return r;
7 }

Algorithm 7: Task 1 Solution for the object-oriented group.

An example of what the tasks looked like to the participants can
be seen in algorithm 5, which shows the first task of both groups.
The instructions are in the comment at the top and the code to
solve the task has to be filled in where the command says “Your
code here". All other tasks had the same empty method structure

414

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

public Table query(Table prof) throws Exception {
Query g = new Query();
q.SortHighToLow("salary");
q.Filter("id < 32");
Table r = prof.Search(q);
return r;

NG W N e

}
Algorithm 8: Task 1 Solution for the hybrid group.

with an instructional comment at the top. The comments always
described the structure of the table object. Possible solutions to the
first task as shown in listing 5 can be seen in algorithm 6, 7, and 8.
All the code used for tasks and to perform the experiment can be
found the replication package artifact [32].

4.5 Outcomes

The first dependent variable of this experiment, time to a correct
solution, was measured by taking a time stamp when the partic-
ipant started a task and a time stamp when the correct solution
was submitted. Alternatively, if the participant did not finish the
task, the time stamp of the moment the time ran out was taken as
the endpoint of the measurement. The difference between the two
time stamps was then used as the time to correct solution measure.
The experiment platform in use for the experiment automatically
measured the task times and saved them to a database together with
timestamped snapshots of the code each participant produced. As
a random factor, the platform also recorded the participants’ expe-
rience in using SQL and if they had taken a database management
systems class, which was then combined into a binary measure
representing whether a participant had database experience or not.
Finally, a question about switching computer languages was added
to the end of the experiment to help gain insight about if partici-
pants realized that they were working in two different languages.
The exact wording of the question was: Did you feel like you had
to switch between languages during the experiment and how do you
think did this affect your progress while solving the tasks?".

4.6 Sample Size

The experiment was conducted in five different versions before
the current one, having 2, 4, 12, 9, and 11 participants respectively.
While we loosely follow a doubling rule, we did not double the
number of participants in pilot 4 and 5 because we changed the
tasks significantly and wanted more feedback before going to scale.
The results from previous versions of the experiment cannot be
compared to the current version as changes affecting the results
have been made. There are 5 levels of education to target for this
experiment: freshman, sophomores, juniors, seniors, and profes-
sionals.

4.7 Randomization

The process of assigning participants to three groups was done on
the online platform and followed the covariate adaptive randomiza-
tion approach [26]. After entering their college year or professional
status into the survey at the beginning of the experiment, the par-
ticipants were assigned to a experience category based on that

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

information. The platform kept track which groups were already
assigned to in each category until each group was assigned once,
then all groups were free to be assigned again until each has been
filled again. This mechanism was in place to keep the distribution
to the groups as even as possible.

4.8 Blinding

The experiment was double blind, as the assignment of participants
to their group was automatic. The researchers could not determine
who was assigned to each group, nor did participants know what
group they were assigned to or even that there were groups. Since
the experiment was conducted online, there was no direct inter-
action with the participants and therefore the proctors had fewer
avenues to accidentally or intentionally bias them.

The participants were not informed about which group they were
assigned to or what the hypothesis of the study might be. They
were only aware of the information right in front of them during
the experiment. Information about the content of the experiment
at time of recruitment was limited to the fact that the participants
are being recruited to participate in a programming experiment,
but no information about the topic was provided. Broadly, we do
this to prevent issues like the good subject effect or rivalry.

5 OQUANTITATIVE RESULTS

This section presents the results of the experiment. The script to
analyze the data can be found in the accompanying replication
packet artifact [32].

5.1 Recruitment

We recruited 149 participants for this study. Of the 149 participants,
40 had to be excluded from analysis for not having finished all 6
tasks or clearly not following the rules of the experiment (such as
waiting out the experiment until the end without taking actions),
leaving 109 participants. 12 of the participants were classified as
freshmen, 23 as sophomores, 36 as juniors, and 29 as seniors. Addi-
tionally, 9 were professionals. Of the 109 participants, 36 identified
as female. On average, the participants were 24 years old (M = 23.74,
SD = 5.28). Of the participants in the experiment, 38 were in the hy-
brid group, 35 were in the polyglot group, and 36 were in the object
group. Of the 109 participants, 14 had previous database experi-
ence. Eight of those experienced participants were professionals, 5
were seniors, and the last was a junior. Twenty-seven participants
(32.92%) indicated that English was not their first language.

5.2 Baseline Data

An overview of the participants’ average time per group and per
task can be found in Table 1. On average, it took participants 30
minutes (M = 1769.50s, SD = 931.50) to solve task 1, 26 minutes
to solve task 2 (M = 1571.20s, SD = 1005.40), 32 minutes for task 3
(M = 1894.91s, SD = 932.56), 19 minutes for task 4 (M = 1122.88s,
SD = 1083.42), 16 minutes for task 5 (M = 951.77s, SD = 1079.98),
and 21 minutes for task 6 (M = 1244.41s, SD = 1035.28). Meaning
that task 3 was the longest, while task 5 was the shortest task on
average. When comparing the groups, the average time per task
was the highest for the object-oriented group (M = 1656.83s, SD =

415

P. Merlin Uesbeck, Cole S. Peterson, Bonita Sharif, and Andreas Stefik

2700

2000

Time [s]

1000

hybrid

string-based object
Task

Figure 1: Boxplot of results between the groups

2700

2000
)
s L
E —
1000 L

ST == h
hybrid string—based object

Task
Group © Freshman & Sophomore & Junior & Senior & Professional

Figure 2: Boxplot of results between the groups based on
their level of education

1043.20). The average task time was the second highest in the string-
based group (M = 1357.54s, SD = 1057.53), while the hybrid group
had the shortest average task time (M = 1269.74s, SD = 1043.20).
Figure 1 shows the average task times between the three groups.
Figure 2 shows the difference in task times broken down by level
of education.

Not all participants finished the experiment. On inspection, of
the 109 participants, 60.55% encountered a task they couldn’t fin-
ish completely. Of the 654 task instances worked on by the 109
participants (6 tasks and therefore 6 data points per participant),
35.62% weren’t completed in time, making the average amount of
tasks remaining uncompleted for each participant about 2 (M =
2.14, SD = 2.44). When broken down to which groups missed the
most tasks, the object-oriented group failed to complete the most
tasks with 44.91% of all task instances remaining uncompleted, the
string-based group missed 33.33% of tasks, and the hybrid group
missed 28.95% of tasks. A breakdown of the percentages of failed
tasks per group by level of education can be seen in Figure 3.

5.3 Analysis

To analyze the results, a mixed designs repeated measures ANOVA
was run using the R programming language with respect to time
to solution, using task as a within-subjects variable and group and
level of education as between-subjects variable. Sphericity was
tested using Mauchly’s test for sphericity, which shows that the

A Randomized Controlled Trial on the Effects of Embedded Computer Language Switching

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

Table 1: Times per task in seconds

Object-Oriented String-based Hybrid Total
Task | N mean SD N mean SD N mean SD mean SD
Task 1 | 36 2016.11 881.60 35 1633.60 898.97 38 1661.05 98294 | 1769.50 931.50
Task 2 | 36 1763.22 988.24 35 1268.11 1040.29 || 38 1651.87 95542 | 1571.20 1005.40
Task 3 | 36 2080.78 833.97 35 171871 965.51 38 1881.11 980.18 | 1894.91 932.56
Task 4 | 36 1394.58 1134.82 || 35 1073.06 1146.47 || 38 911.36 938.12 | 1122.88 1083.42
Task 5 | 36 1228.86 1203.05 || 35 1073.60 113552 || 38 577.05 785.88 | 951.77 1079.98
Task 6 | 36 1457.44 1072.06 || 35 1360.17 1031.53 || 38 935.97 953.41 | 1244.41 1035.28
100 2700
375 2000
8
2 50 =
=)
= [0}
3 o5 1000
0 \
hybrid string—based object 0
Group No Yes

Year B Freshman @ Sophomore [Junior [Senior [Professional

Figure 3: Barchart of results between the groups showing the
percentage of failed tasks by level of education

assumption of sphericity was violated for the variable task, the
interaction between group and task, level of education and task,
and the three-way interaction between group, task, and level of
education. We used the standard Greenhouse-Geisser corrections
when appropriate.

There are significant effects at p < 0.05 for the within-subjects
variable task, F(5,470) = 28.83, p < 0.001 (17127 = 0.064), as well
as for the between-subjects variable group, F(2,94) = 3.69, p =
0.029 (r]?, = 0.039). There was also a significant effect for year
F(4,94) = 8.05, p < 0.001 (r]f, = 0.175). The interaction effect of
group and task was significant, F(10,470) = 2.66, p = 0.008 (5, =
0.013).

A t-test between participants that reported their primary lan-
guage to be English and the participants who reported another
language shows a significant effect $(274.58) = 3.98,p < 0.001.
Primary English speakers had a lower average time during the ex-
periment (M = 1331.62, SD = 1054.31) than non-primary English
speakers (M = 1711.75, 1054.89). The effect size of the t-test was
r =0.223, or r? = 0.0545. A visual representation of the differences
can be seen in Figure 4. Testing the natural language differences for
only professional programmers showed a non-significant results
£(21.83) = 1.70, p = 0.104, r = 0.341.

The differences between groups were tested using a t-test with
Bonferroni correction. The t-test shows a significant difference be-
tween the average times of the hybrid and object-oriented groups (p
=0.0037) and the average times of the polyglot and object-oriented
groups (p = 0.0106). The difference between the hybrid and string-
based groups was not significant (p = 1.0000).

416

English as Primary Language

Figure 4: Boxplot of time to completion results between pri-
mary English speakers and non-primary English speakers

To test the number of unfinished tasks in more detail, we con-
ducted a three-way log-linear analysis on education, group, with
maxtime indicating whether a task time hit a ceiling. A log-linear
analysis is a test for more than two categorical variables in which
at first, a saturated log-linear model is created that fits the data.
Then the model is reduced through backward elimination, mean-
ing that highest order interactions between variables are elimi-
nated first. After each elimination of an interaction, the chi-squared
statistic is recomputed to test whether the model still fits the data.
Or in other words, both models are compared, and if there is a
significant difference between the models, the model cannot be
reduced in this way without resulting in a model that does not
accurately fit the data [7]. In this case likelihood ratio of the result-
ing model was x2(0) = 0,p = 1, as the highest order interaction
between level of education, group, and maxtime was significant,
x?(12) = 51.08,p < 0.001. This means the model could not be
reduced from the saturated model. While reporting a model with 0
degrees of freedom and p = 1 might look wrong, it is in the nature
of a model fitting the data “perfectly” as the term is defined in the
cited literature.

To further analyze this finding, a number of chi-square tests
were performed on different combinations of two groups each
and all levels of education. For freshmen, a significant associa-
tion between the string based and the hybrid group was found
regarding whether or not participants could finish the task in time
x2(1) = 9.64,p = 0.002, an effect that was also found for sopho-
mores y2(1) = 15.46,p < 0.001, juniors y?(1) = 5.34,p < 0.02,
and seniors y%(1) = 7.08,p < 0.008. The odds ratios showed that

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

freshmen and sophomores were more likely to fail to complete a
task in the string based group compared to the hybrid group (5.327
times higher odds and 6.131 times higher odds respectively), while
juniors and seniors were less likely to fail to complete a task in the
string based group than in the hybrid group (odds ratios 0.436 and
0.196 respectively). Odds ratios below 1 indicate an inverse effect
to odds ratios above 1, i.e. lower odds. Professionals overall only
failed to complete two tasks in the object group, making this sort
of comparative analysis infeasible.

Comparisons between the hybrid and object oriented group show
significant effects for freshmen y?(1) = 18.48,p < 0.001 and sopho-
mores y?(1) = 8.61, p = 0.003 with an infinitely high odds ratio for
the freshmen due to the fact that no freshman finished object ori-
ented tasks and an odds ratio of 3.46 for the sophomore comparison,
indicating that they were more likely to fail object oriented tasks
compared to hybrid tasks. Chi-square tests for juniors and seniors
for the same comparison were not significant. Finally, looking at the
comparison between the string based and object group, significant
effects were found for freshmen y%(1) = 5.25,p = 0.022, juniors
x2(1) = 14.03,p < 0.001, and seniors y?(1) = 8.08,p = 0.004. The
odds ratios show that freshmen were once again “infinitely,” not
literally but as defined by the numbers above, more likely to fail a
task in the object oriented group, while juniors had 3.91 higher odds
to not complete a task in the object oriented group compared to the
string-based group, and seniors’ odd ratio was 5.59. A chi-squared
test between a binary measure of database experience and succeed-
ing in a task was significant y%(1) = 43.18,p < 0.001 with 18.21
higher odds to complete a task successfully when a participant had
previous experience.

A log-linear analysis of the relationship between database expe-
rience, group, and notmaxtime (the inverse of maxtime for easier
to understand results) resulted in a model with likelihood ratio
x%(4) = 6.65,p = 0.16. The interaction between group and not-
maxtime was significant, y%(4) = 18.96,p < 0.001, as was the
interaction between database experience and notmaxtime, y?(3) =
63.15,p < 0.001. This leaves us with a model with the three main
effects: database experience, group, and notmaxtime, as well as
the two-way interaction effects between database experience and
notmaxtime and group and notmaxtime.

Further analysis of the relationship between database experience
and notmaxtime was conducted by running separate chi-squared
tests of one group at a time in combination with the database
experience measure. A significant effect was found in the object
group x2(1) = 17.16,p < 0.001, with 9.12 times higher odds that
a participant might complete a task if they had previous database
experience. In the polyglot group, there was also a significant effect
with y2(1) = 13.55,p < 0.001. In this case, no participants with
previous database experience failed any task (out of 24 data points
in that group), making the odds ratio infinite. Finally, in the hybrid
group the effect is also significant with y2(1) = 14.07,p < 0.001
and once again no participant with previous experience failed any
of the tasks (n = 30).

6 QUALITATIVE RESULTS

Atthe end of the experiment, the participants answered the question
“Did you feel like you had to switch between languages during the

417

P. Merlin Uesbeck, Cole S. Peterson, Bonita Sharif, and Andreas Stefik

experiment and how do you think did this affect your progress while
solving the tasks?" This section will present some selected answers
to this question. We explored answers to this question thematically
as a way to check our assumptions about our experiment, but we
did not formally code these answers. As such, while we think these
responses are interesting, they should be interpreted as preliminary.

6.1 Object-Oriented Group

The expectation for the responses in this group was that they would
not notice a switch, as they exclusively wrote Java code with a
few uses of strings to name fields of the table. A common type of
response to this question was that participants were not experi-
encing a switch, mostly from more experienced participants. This
is generally the picture one gets from the responses. Additionally,
some of the participants report on the experience of having had
to switch between languages to work on the experiment, as they
are mostly familiar with another language, in those responses their
main computer language (CL1) tends to be C++. Understandably,
some participants were confused by the question as there was no
switching in this group.

6.2 String-Based Group

This group was expected to experience a switch between languages,
as they would have to switch between Java and SQL to complete the
tasks. Only 3 of the participants reported on experiencing the switch
as intended as said by a professional: “yes, java to SQL and back.
Minimal" The other two participants that noticed the switch were
another professional and a senior. Only one of them remarked that
there might have been an impact on their productivity regarding
the equality operator in both languages being different. All three
were familiar with SQL and Java.

Of the 36 participants in this group that left comments, 24 indi-
cated that they did not switch languages. Some of their remarks
focus on the overall switch between their CL1 (typically C++) and
Java, instead of the switch within the tasks, similar to the findings
in the object-oriented group. One junior answered the question:
“No, I did not feel like [needed to switch languages during the exper-
iment. I think this increased my velocity while solving the tasks."
Participants not noticing the differences between the languages is
remarkable, however, since the syntax and semantics of SQL are
very different from Java and C++. It might suggest that participants
take the languages they are not familiar and imagine they are one
combined language.

6.3 Hybrid Group

The hybrid group was also expected to notice a language switch,
at least when it comes to writing conditions, as the syntax of the
conditions in SQL and boolean statements in Java is different. Once
again, the majority of participants did not notice the switch. How-
ever, a hand full of participants did notice such as this statement by
a junior: “I felt like it had a bit of SQL and Java." Once again, partici-
pants were more likely to discuss the switch from their CL1 to Java
and most did not think there was a performance impact, regardless
of the fact that there was. Succinctly, beliefs of the participants did
not match reality.

A Randomized Controlled Trial on the Effects of Embedded Computer Language Switching

7 DISCUSSION
7.1 Limitations

While much care was taken in creating the study in a way to adhere
to high standards of reporting [1], this experiment has limitations.
First, the design of generalizable tasks is always a significant chal-
lenge in any experiment. The typical trade-off is that easy to com-
plete and short tasks are tractable in a study, whereas real-world
(or some definition of the term) tasks “might” be longer, harder, or
have other properties. In our case, we threaded the needle by first
choosing tasks that were clearly relevant in the real world (e.g.,
inserting, deleting rows, joins), while pilot testing to ensure partici-
pants could actually complete them in a reasonable time frame. This
natural limitation is one reason why it is important to cross-tab
across experimental methodologies in multiple studies. For exam-
ple, in reviewing the work of Shrestha et al. [16], our observations
largely match despite very different methodologies. Despite this,
no matter what tasks we ultimately choose, variations in the design
of the tasks can change the results and, as such, it is important that
our broader community replicate such findings in new and unique
ways to know when they apply and when they do not. Finally, our
tasks used APIs created in a specific way, which may not apply
everywhere. For example, in our tasks, we pass code to the API via
strings, but the impact of alternative strategies should be evaluated
and compared.

Second, the use of an automatic web platform to conduct the
experiment simplified recruiting and removed certain kinds of ex-
perimental bias (e.g., automatic group assignment). However, while
our system took extensive logs, online users may not be in full
compliance with the rules and have no direct oversight. Partici-
pants’ environment is therefore only controlled by the participants
themselves, making distractions and cheating possible. This is one
reason why we carefully analyzed logs after the fact and removed
participants that clearly were not in compliance, but it is important
to consider that direct observation can mitigate these issues, while
also providing its own pros and cons.

The experiment had a relatively small sample at each experi-
ence level. Despite clear statistical findings, we want to point out
that while the results show clear trends that seem worth further
investigation, more work is needed to know when and where these
findings generalize. Further, neither students nor professionals are
homogeneous groups. All people have different backgrounds and
experiences. To really understand the impact of polyglot, signifi-
cantly more tests, under different conditions, with different kinds
of people, will be necessary to understand the big picture. For ex-
ample, very young students are now learning computer science in
K-12 education and polyglot may impact them or their teachers.
Further, professionals at different points in their careers, or at dif-
ferent companies, might have unique experiences that impact our
results under various conditions.

7.2 Interpretation

7.2.1 Relationship between Language Switching and Productivity.
The results of the ANOVA show that there was a significant differ-
ence between the productivity of the different groups at p = 0.029,
which reflect different amount of code switching. Therefore we
can reject Hy1 that there is no relationship between switching and

418

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

productivity. When looking at the differences between groups in
Figure 1 and at the post-hoc t-test, we can see that there are no
significant differences between the hybrid and the string-based
groups while there is a significant difference between each of those
two groups and the object-oriented group. Both the string-based
group and the hybrid group have lower average task times than
the object-oriented group, indicating that switching to a second
language while solving programming tasks might have a positive
impact on programming productivity. The common assumption
being that choosing the right language for a specific use-case might
help express the instructions to the computer more appropriately,
which in turn makes the task easier [2, 8]. It is important to note that
the overall effect size is relatively small with 3.9% of the variance
accounted for.

While the object-oriented group appears to be the slowest group
in the experiment, the other two groups are closer together in solu-
tion time. Figure 2 allows for a more detailed look at the differences
between the two groups in terms of level of education as a represen-
tation of participant experience. The graph shows that participants
in the string-based group that were freshmen or sophomores took
longer on average to solve the tasks than participants which were
juniors, seniors, or professionals. The medians for freshmen and
sophomores being at the maximum time for tasks indicates that the
subjects of those levels of education might have struggled to com-
plete the tasks in time. A look at Figure 3 shows a clearer picture
of proportions of missed tasks per level of education and reveals
that both freshmen and sophomores clearly failed more tasks in the
string-based group than their more experienced counterparts. On
the other hand, looking at the hybrid group’s percentage of missed
tasks reveals that participants in that group did not miss as many
tasks. A fact that is also reflected in the lower average times for
those two levels of education in the hybrid group compared to the
string-based group (see Figure 2). This results in this group hav-
ing a lower mean solution time (M = 1269.74s, SD = 1043.20) than
the string-based group (M = 1357.54s, SD = 1057.53) even though
more experienced participants (junior, senior, and professional)
completed tasks faster in the string-based group than in the hybrid
group.

This observation is confirmed in the loglinear analysis and chi-
squared tests of task failures, which shows that there is an inter-
action between level of education, group, and the occurrence of
maximum time task events. There are clear significant effects for
all college levels between the string-based and the hybrid group
with odds ratios indicating that freshmen and sophomores were
5 and 6 times more likely to fail a task in the string-based group,
respectively. Juniors and seniors, on the other hand, were less likely
to fail in the string-based than in the hybrid group, which makes
sense that these students were likely exposed to both languages
at this point in time. This is interesting because keep in mind that
those in our hybrid group could not have taken a course that in-
cluded the programming language—it was one we generated only
for the experiment. As such, language designers that some language
designs might negatively impact younger programmers without
providing real benefits to older ones, as we found here.

Two main explanations appear viable from these experimen-
tal results. For one, code switching in the string-based group was
designed to be a more complete, less frequent, switch between

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

languages within the context of the experiment. Meaning that par-
ticipants switched from Java to SQL to write a complete SQL string
and then switched back to Java. Code switching in the hybrid group,
on the other hand, was a switch to a smaller section of SQL-like
code that didn’t fully require the understanding of a new language.
This quicker switch might be easier to handle for inexperienced pro-
grammers, while a more experienced programmer might experience
a more intense interruption in their programming concentration on
one language. Inexperienced programmers might be more flexible
to changes between languages because they think less about the
constraints of the language they are currently using and might be
thinking about both languages being part of a whole than more
experienced developers as indicated by some of the comments made
in the exit survey.

The other explanation could be that more experienced program-
mers might be more familiar with SQL than the less experienced
freshmen and sophomores and therefore feel more familiar with the
straight integration of SQL into a Java instruction. Since freshmen
and sophomores likely had no exposure to this practice and SQL
before, confirmed by the fact that all participants that indicated
experience with databases were juniors, seniors, and professionals,
they had a harder time understanding the syntax and could not
adapt as quickly as more experienced developers. A caveat to this
explanation is the fact that of the 109 participants, only 14 indicated
they had any experience related to databases and most of those were
professional developers, making the analysis of the relationship
between database experience and success in solving tasks difficult,
as it became more of a proxy for experienced developers.

Overall, the results regarding the differences between the groups
seem clear: The monoglot object-oriented group was the slowest
and had the most failed tasks across the board. Both the hybrid
and the string-based groups are on par regarding their average
time and a closer look shows that the hybrid group was easier than
the string-based group for less experienced developers while the
string-based group was easier for more experienced developers
that already had training in this approach coming in to the experi-
ment. The evidence suggests that inexperienced developers either
do better at switching rapidly because they have a less rigid under-
standing of the language they are using or that more experienced
developers had more familiarity with SQL and string-based data-
base programming because they had already practiced it before
entering the experiment.

7.2.2 Participant Experience of Computer Language Switching. From
the answers in the exit survey, the majority of the participants in
the groups switching between languages did not notice that they
were switching. Only 3 participants from the string-based group
directly acknowledged the switching, while 66.66% denied that any
switching was taking place. On top of that, most of the participants
of the hybrid group also did not remark that they noticed switching.
In both of these groups, participants that noticed switching also
tended to incorrectly minimize the effect they imagined it had on
their performance.

Overall, Hy2, the hypothesis that programmers do not consciously
notice that they switch between computer languages, cannot be
outright rejected with current evidence. It appears that most par-
ticipants do not notice the switch or don’t feel like their switching

419

P. Merlin Uesbeck, Cole S. Peterson, Bonita Sharif, and Andreas Stefik

actually affects their productivity. Especially when keeping in mind
that the group switching the least, the object-oriented group, took
the longest to complete the tasks, it becomes reasonable to assume
that the effect of computer language switching might be limited on
the embedded language switching level.

7.2.3 Productivity Difference Based on Native Language. With re-
spect to the measures used in this study, we have to reject Hy3,
but we have doubts about the validity of the measures as good
representations of language skill. Participants that stated their pri-
mary language is different from English solved tasks significantly
slower than participants that stated that their primary language
is English. However, testing only experienced programmers, there
was no significant difference. The survey did not track language
history in sufficient detail and while we report this finding here
for completeness, we are doubtful it provides a sufficient look at
how natural language impacts polyglot. An attempt to use the profi-
ciency scores given by the participants to analyze the differences in
performance failed because the scores were inconsistent with their
performance. In fact, some primary English speakers rated their
own proficiency as 8 (out of 10). A better assessment of language
skill and language history of participants is necessary to make real
conclusions from these data. In the future, other study techniques,
perhaps like the TOEFL test 2, might give more or better insight.
This caveat stated, given only the data we gathered here, we did
observe that there was reduced productivity for participants that
were not primary English speakers, but that this effect disappears
with experience.

8 CONCLUSIONS AND FUTURE WORK

This paper describes an experiment on the impact of computer
language switching on software development productivity moti-
vated by findings in linguistic research, suggesting that there is a
time cost to switching between natural languages and the ubiquity
of computer language switching in software development. Three
groups were tested, a monoglot group, a polyglot group with SQL
and Java, and a hybrid group. Results showed that the impact of
polyglot programming is not simple. We observed significant im-
pacts based on experience level, and the designs of the languages.
We also observed that the mismatch between languages, as ob-
served in our hybrid group, impacted people differently depending
on experience level. We believe future studies should investigate
different kinds of polyglot approaches, in addition to formalizing
how much mismatch there is between such polyglot approaches.
Further, language designers themselves should consider that lan-
guage embedding can have large impacts on different kinds of users,
especially less experienced developers, and that reducing this mis-
match may have positive impacts without sacrificing ease of use
for professionals.

ACKNOWLEDGMENT

This work is supported in part by the United States National Science
Foundation under grant numbers DRL 16-44491, CCF 18-55756 and
CNS 18-55753.

Zhttps://www.ets.org/toefl

A Randomized Controlled Trial on the Effects of Embedded Computer Language Switching

REFERENCES

(1]

[2

—

(3]

[10]

[11

[12

[13]

[14]

[17]

[18]

[19

[n.d.]. Consort - Welcome to the CONSORT Website.
statement.org/

[n.d.]. Polyglot Programming. http://nealford.com/memeagora/2006/12/05/
Polyglot_Programming.html. Accessed: 2018-04-25.

Jubin Abutalebi and David W Green. 2008. Control mechanisms in bilingual
language production: Neural evidence from language switching studies. Language
and cognitive processes 23, 4 (2008), 557-582.

Brett A Becker. 2016. A new metric to quantify repeated compiler errors for
novice programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education. ACM, 296-301.

BLS. [n.d.]. Software Developers - Summary. https://www.bls.gov/ooh/computer-
and-information-technology/software-developers.htm. Accessed: 2018-04-20.
Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Pater-
son, Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye movements in
code reading: Relaxing the linear order. In Program Comprehension (ICPC), 2015
IEEE 23rd International Conference on. IEEE, 255-265.

Andy Field, Jeremy Miles, and Zoé Field. 2012. Discovering statistics using R. Sage
publications.

Hans-Christian Fjeldberg. 2008. Polyglot programming. a business perspective.
Master’s thesis. Norwegian University of Science and Technology.

The CONSORT Group. [n.d.]. CONSORT: Transparent Reporting of Trials.
http://www.consort-statement.org/. Accessed: 2017-10-13.

Roberto R Heredia and Jeanette Altarriba. 2001. Bilingual language mixing: Why
do bilinguals code-switch? Current Directions in Psychological Science 10, 5 (2001),
164-168.

Michael Hoppe and Stefan Hanenberg. 2013. Do developers benefit from generic
types?: an empirical comparison of generic and raw types in java. In Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013,
Indianapolis, IN, USA, October 26-31, 2013. ACM, 457-474.

Ping Li. 1996. Spoken word recognition of code-switched words by Chinese—
English bilinguals. Journal of memory and language 35, 6 (1996), 757-774.
Philip Mayer and Alexander Bauer. 2015. An empirical analysis of the utilization
of multiple programming languages in open source projects. In Proceedings
of the 19th International Conference on Evaluation and Assessment in Software
Engineering. ACM, 4.

Philip Mayer, Michael Kirsch, and Minh Anh Le. 2017. On multi-language
software development, cross-language links and accompanying tools: a sur-
vey of professional software developers. J. Softw. Eng. Res. Dev. 5 (2017), 1.
https://doi.org/10.1186/s40411-017-0035-z

Leo A. Meyerovich and Ariel S. Rabkin. 2013. Empirical Analysis of Programming
Language Adoption. SIGPLAN Not. 48, 10 (Oct. 2013), 1-18. https://doi.org/10.
1145/2544173.2509515

Titus Barik Nischal Shrestha, Colton Botta and Chris Parnin. 2020. Here We Go
Again: Why Is It Difficult for Developers to Learn Another Programming Lan-
guage?. In Proceedings of the 42nd International Conference on Software Engineering
(ICSE 2020). ACM, New York, NY, USA. https://doi.org/3377811.3380352
Daniel J Olson. 2016. The gradient effect of context on language switching and
lexical access in bilingual production. Applied Psycholinguistics 37, 3 (2016),
725-756.

Daniel J Olson. 2017. Bilingual language switching costs in auditory comprehen-
sion. Language, Cognition and Neuroscience 32, 4 (2017), 494-513.

Chantel S Prat, Tara M Madhyastha, Malayka] Mottarella, and Chu-Hsuan Kuo.
2020. Relating natural language aptitude to individual differences in learning
programming languages. Scientific reports 10, 1 (2020), 1-10.

http://www.consort-

420

[20]

[21]

[22]

[23

[24]

[25

[26]

[27

[28

[30

[31

[33

[34

(35]

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

N. Shrestha and C. Parnin. 2019. Instrument Designs for Validating Cross-
Language Behavioral Differences. In 2019 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). 205-209.

Janet Siegmund, Christian Kastner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. 2014. Understanding
understanding source code with functional magnetic resonance imaging. In
Proceedings of the 36th International Conference on Software Engineering. ACM,
378-389.

Janet Siegmund, Christian Kastner, Jorg Liebig, Sven Apel, and Stefan Hanenberg.
2014. Measuring and modeling programming experience. Empirical Software
Engineering 19, 5 (2014), 1299-1334.

Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister,
Christian Késtner, Andrew Begel, Anja Bethmann, and André Brechmann. 2017.
Measuring neural efficiency of program comprehension. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering. ACM, 140-150.
Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. Trans. Comput. Educ. 13, 4, Article 19 (Nov.
2013), 40 pages.

Jeffrey Stylos and Brad A Myers. 2008. The implications of method placement on
APl learnability. In Proceedings of the 16th ACM SIGSOFT International Symposium

on Foundations of software engineering. ACM, 105-112.
KP Suresh. 2011.” An overview of randomization techniques: an unbiased assess-

ment of outcome in clinical research. Journal of human reproductive sciences 4, 1
(2011), 8.

Toni Taipalus, Mikko Siponen, and Tero Vartiainen. 2018. Errors and compli-
cations in SQL query formulation. ACM Transactions on Computing Education
(TOCE) 18, 3 (2018), 15.

Federico Tomassetti and Marco Torchiano. 2014. An empirical assessment of
polyglot-ism in GitHub. In Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering. ACM, 17.

Lucy Turner, Larissa Shamseer, Douglas G Altman, Kenneth F Schulz, and David
Mobher. 2012. Does use of the CONSORT Statement impact the completeness
of reporting of randomised controlled trials published in medical journals? A
Cochrane review a. Systematic reviews 1, 1 (2012), 60.

Phillip Merlin Uesbeck and Andreas Stefik. 2019. A Randomized Controlled Trial
on the Impact of Polyglot Programming in a Database Context. In 9th Workshop
on Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018)
(OpenAccess Series in Informatics (OASIcs)), Titus Barik, Joshua Sunshine, and
Sarah Chasins (Eds.), Vol. 67. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 1:1-1:8. https://doi.org/10.4230/OASIcs. PLATEAU.2018.1
Phillip Merlin Uesbeck, Andreas Stefik, Stefan Hanenberg, Jan Pedersen, and
Patrick Daleiden. 2016. An empirical study on the impact of C++ lambdas and
programmer experience. In Proceedings of the 38th International Conference on
Software Engineering. ACM, 760-771.

P. Merlin Uesbeck, Andreas Stefik, Bonita Sharif, and Cole Peterson. 2020. A
Randomized Controlled Trial on the Effects of Embedded Computer Language
Switching Replication Packet. https://doi.org/10.5281/zenodo.3911750

Arie Van Deursen, Paul Klint, and Joost Visser. 2000. Domain-specific languages:
An annotated bibliography. ACM Sigplan Notices 35, 6 (2000), 26-36.

Antonio Vetro, Federico Tomassetti, Marco Torchiano, and Maurizio Morisio. 2012.
Language interaction and quality issues: an exploratory study. In Proceedings of
the ACM-IEEE international symposium on Empirical software engineering and
measurement. ACM, 319-322.

W Quin Yow, Jessica Sh Tan, and Suzanne Flynn. 2017. Code-switching as a
marker of linguistic competence in bilingual children. Bilingualism: Language
and Cognition (2017), 1-16.

http://www.consort-statement.org/
http://www.consort-statement.org/
http://nealford.com/memeagora/2006/12/05/Polyglot_Programming.html
http://nealford.com/memeagora/2006/12/05/Polyglot_Programming.html
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://doi.org/10.1186/s40411-017-0035-z
https://doi.org/10.1145/2544173.2509515
https://doi.org/10.1145/2544173.2509515
https://doi.org/3377811.3380352
https://doi.org/10.4230/OASIcs.PLATEAU.2018.1
https://doi.org/10.5281/zenodo.3911750

	Abstract
	1 Introduction
	2 Related Work
	3 Experiment Overview
	3.1 Objective and Hypotheses
	3.2 Design Process
	3.3 Reporting Structure

	4 Methods
	4.1 Trial Design
	4.2 Participants
	4.3 Study Setting
	4.4 Intervention
	4.5 Outcomes
	4.6 Sample Size
	4.7 Randomization
	4.8 Blinding

	5 Quantitative Results
	5.1 Recruitment
	5.2 Baseline Data
	5.3 Analysis

	6 Qualitative Results
	6.1 Object-Oriented Group
	6.2 String-Based Group
	6.3 Hybrid Group

	7 Discussion
	7.1 Limitations
	7.2 Interpretation

	8 Conclusions and Future Work
	References

