
Efficient LiDAR point cloud data encoding
for scalable data management
within the Hadoop eco-system

Anh Vu Vo
School of Computer Science

University College Dublin
Dublin, Ireland
anhvu.vo@ucd.ie

Chamin Nalinda Lokugam Hewage
School of Computer Science

University College Dublin
Dublin, Ireland

chamin.lokugamhewage@ucdconnect.ie

Gianmarco Russo
Department of Computer Science

University of Salerno
Fisciano, Italy

g.russo159@studenti.unisa.it

Neel Chauhan
Center for Urban Science + Progress

New York University
New York, USA
nc1682@nyu.edu

Debra F. Laefer
Center for Urban Science + Progress

New York University
New York, USA

debra.laefer@nyu.edu

Michela Bertolotto
School of Computer Science

University College Dublin
Dublin, Ireland

michela.bertolotto@ucd.ie

Nhien-An Le-Khac
School of Computer Science

University College Dublin
Dublin, Ireland

an.lekhac@ucd.ie

Ulrich Oftendinger
School of Natural and Built Environment

Queen’s University Belfast
Belfast, Northern Ireland
u.ofterdinger@qub.ac.uk

Abstract—This paper introduces a novel LiDAR point cloud
data encoding solution that is compact, flexible, and fully sup-
ports distributed data storage within the Hadoop distributed
computing environment. The proposed data encoding solution is
developed based on Sequence File and Google Protocol Buffers.
Sequence File is a generic splittable binary file format built in
the Hadoop framework for storage of arbitrary binary data. The
key challenge in adopting the Sequence File format for LiDAR
data is in the strategy for effectively encoding the LiDAR data
as binary sequences in a way that the data can be represented
compactly, while allowing necessary mutation. For that purpose,
a data encoding solution, based on Google Protocol Buffers
(a language-neutral, cross-platform, extensible data serialisation
framework) was developed and evaluated. Since neither of the
underlying technologies is sufficient to completely and efficiently
represent all necessary point formats for distributed computing,
an innovative fusion of them was required to provide a viable data
storage solution. This paper presents the details of such a data
encoding implementation and rigorously evaluates the efficiency
of the proposed data encoding solution. Benchmarking was done
against a straightforward, naive text encoding implementation
using a high-density aerial LiDAR scan of a portion of Dublin,
Ireland. The results demonstrated a 6-times reduction in data
volume, a 4-times reduction in database ingestion time, and up
to a 5 times reduction in querying time.

Index Terms—LiDAR, point cloud, Big Data, Hadoop, HBase,
Google Protocol Buffers, spatial database, data encoding, dis-
tributed database, distributed computing

I. INTRODUCTION

Globally, three-dimensional (3D) data of the Earth’s to-
pography is being collected at an unprecedented rate using
aerial Light Detection and Ranging (LiDAR). As an example,
the United States is undertaking its first nationwide LiDAR
mapping. As part of that, more than 53% of the country has
been mapped and more than 10 trillion collected data points
have been made available publicly [1]. Similarly, in Europe,
many countries, including Czech, Denmark, England, Finland,
the Netherlands, Poland, Slovenia, Spain, and Switzerland,
have completed nation-wide LiDAR mapping with many more
in progress [2]. Extensive, country-scale, LiDAR mapping
projects have also been undertaken in Asia in Japan and the
Philippines [3] [4]. These projects highlight the need for an
efficient LiDAR data access system that [1] stores data and
serves retrieval requests (transactional querying), [2] streams
data to other applications (data streaming), and [3] periodically
analyses the accumulated data (batch processing) [5].

This paper focuses on presenting a robust and scalable
data encoding solution. The data encoding is a component
within a complete data storage system that integrates the
encoding with other components including data indices, search
algorithms, and cache strategies. Readers may consult the
authors’ previous works for information explicitly on those
other topics [6], [7]).

978-1-7281-0858-2/19/$31.00 © 2019 IEEE

II. BACKGROUND

LiDAR data are most often available in the format of point
clouds, which are collections of discrete, sampling points of
visible surfaces. The essential component of each LiDAR
data point is its coordinates (i.e. x, y, and z). Apart from
the point coordinates, each point may have other attributes
such as the timestamp and the intensity of the reflected laser
signal. The exact number and type of point attributes depend
on the sensing platform and the data processing procedures.
For example, aerial LiDAR data often contains the scan angle
rank and edge of flight line, which do not exist in terrestrial
LiDAR data. Additionally, depending on how the data are
processed, a LiDAR point cloud can be enriched with attributes
derived from the post-processing such as classification tags,
colour integrated from imagery data, and physical simulation
data (e.g. [8], [9]). LiDAR data density varies significantly
within a dataset as the density depends on range, incident
angle, and other project-specific or equipment-specific factors.
Thus, an assemblage of LiDAR data points collected by
multiple platforms (i.e. different aerial and terrestrial sensors)
and/or processed by different procedures are highly likely
to be heterogeneous in data schema and distribution. Such
heterogeneity must be accommodated, especially when data
integration is needed. The variation of data density can be
even more extreme when multiple datasets are aggregated from
disparate sensing platforms (e.g. different aerial and terrestrial
sensors).

As a LiDAR point cloud dataset is essentially a collec-
tion of point records, each of which contains the point’s
coordinates and a set of numeric attributes, a straightforward
method to encode the data is a textual data encoding method.
Most LiDAR and point cloud software (e.g. Leica’s Cyclone,
Riegl’s RiSCAN Pro, Riegl’s RiPROCESS, PointCloudLi-
brary, CloudCompare) support text formats. A typical text-
based point cloud data file has each point record stored as
a separate line in the file. The coordinates and attributes are
separated by defined delimiters such as commas and spaces.
Each numeric digit is represented as a character via a standard
coded character set (e.g. ASCII, Unicode). A coded character
set is a protocol for transforming each character in a defined
set to a unique number and, ultimately, to a sequence of digital
bits (i.e. code unit) for storage in digital computing systems.
Depending upon the coded character set being selected, the
code units can be fixed-length1 or variable-length2. Decimal
digits and delimiters between the numbers can be encoded as
characters in the same way. Text-based encoding is straightfor-
ward. The encoded data are human-readable and can be easily
manipulated with a wide range of text displaying and editing
software. However, text-based encoding is inefficient in terms
of file size. Furthermore, parsing numeric values from a text
file is usually slower than parsing an equivalent binary file.

1Such as, 7 bits in the original ASCII, 8 bits in the extended ASCII, and
32 bits in the UTF-32

2From 8 to 32 bits in UTF-8

Binary encoding is an alternative to text-based encoding.
Depending on the expected values and distribution of each
attribute, a data type can be selected for each attribute (e.g.
1-bit Boolean value, 1-byte, 2-, 4-, or 8-byte integer, single, or
double-floating point number). Binary encoding offers greater
flexibility, file size compactness, and better data parsing speed.
The main challenge in using binary format is in interoperabil-
ity. Data encoding and decoding require an agreed file format
specification. Additionally, multiple encoders and decoders
might have to be implemented and maintained, if data are
intended to be transferrable across software written in various
programming languages. A variety of binary file formats have
been developed for LiDAR data. In fact, raw data captured by
the LiDAR sensors are typically stored in proprietary binary
formats, which can only be interpreted by proprietary software
provided by the sensors’ manufacturers (e.g. Leica, Riegl).
There are also many vendor-neutral, binary file formats created
for LiDAR point cloud data. Most common among them
is the LAS file format developed by the American Society
of Photogrammetry and Remote Sensing (ASPRS) for aerial
LiDAR data exchange. As of version 1.4 revision 14, the
LAS file specification [10] provides 10 different formats for
point data records. Each of the point record formats has a
fixed structure of attributes and an optional block of extra
bytes. The extra bytes are provided to make the file format
more extensible and to permit storage of user-defined data.
Presently, users must choose one amongst the 10 point data
record formats to match their data. If the selected point record
format does not perfectly match the actual data to be stored,
the mismatch will leave storage space unoccupied, which
unnecessarily increases the file size, as well as the file parsing
time. This problem is especially common when the LAS
format is adopted for storing point cloud derived from non-
aerial systems. In addition, the LAS format is intended for
storing LiDAR sensing data only. Furthermore, LAS does not
support derived data from post-processing (e.g. the shadowing
and solar potential calculations shown in [8] and [9]).

Other binary formats commonly used for storing LiDAR
point clouds include the E57 format [11] and the HDF5
format [12]. The E57 format, specified by the American
Society for Testing and Materials, serves as a format for data
derived from generic 3D imaging systems. Unlike LAS, which
mostly relies on fixed length attribute structures, E57 mixes
both fixed sized and XML-based, self-documenting, variable-
length structures. The hybrid solution offers a balance between
multiple criteria. Variable length structures are more flexible
and provide a higher level of extensibility but at a cost of
higher complexity and slower implementation. While E57 can
encode extremely large files up to 9 Exabytes in length [11],
the solution was not meant to serve Big Data analytics, in
which parallelisation is of paramount importance. In terms
of parallelisation supports, Hierarchical Data Format version
5 (HDF5), originally developed by the National Center for
Supercomputing Applications, is a more suitable candidate. At
the logical level, an HDF5 file is a container that can possess a
heterogeneous collection of datasets of different types, which

may include images, tables, graphs, and documents. Even
though HDF5 was not specifically designed for 3D imaging
data or point cloud data, the file format has been successfully
employed for storing LiDAR point clouds [13], as well as
LiDAR full waveform LiDAR data [14]. HDF5 has certain
high scalability, high performance computing capabilities. For
example, there is no limit in the size of a HDF5 file, and
the parallel version of the file format (i.e. Parallel HDF5) was
designed to natively support distributed-memory programming
with Message Passing Interface (MPI).

As LiDAR data are being aggregated at extremely large
scales (e.g. billions to trillions of data points), there is an
obvious demand for scalable data storage and management
solutions for LiDAR data. Amongst the technologies that have
emerged in the recent decades, distributed-memory systems
have the greatest prospects for management and analysis of
datasets at extreme scales [5]. MPI and Hadoop are two
of the most common programming frameworks to program
distributed memory systems. While HDF5 appears to be a
promising LiDAR file format for MPI, there is not an equiv-
alent Hadoop format rigorously designed for LiDAR data.
Systems such as Geowave by Whitby et al. [15] allows storage
of point cloud data in a scalable Accumulo key-value data
store, which is also built atop Hadoop distributed file system.
However, Geowave treats point cloud data as a standard vector
data type. More specifically, point cloud data are sequentially
parsed by PDAL (PDAL contributors, 2018) and ingested into
Accumulo as a set of 2D MultiPoint features according to the
Simple Features specification (ISO 19125). While a thorough
evaluation of such a vector-based solution is not within the
aim of this paper, the previous research by van Oosterom [16]
suggests that such a solution is impractical because of inherent
inefficiencies.

Generally, Hadoop offers several different data formats,
including text encoding formats and a framework called Se-
quence File for encoding data in binary. A Sequence File
is essentially a data structure composed of a sequence of
binary key-value pairs. Sequence Files are splittable, meaning
multiple processes can work concurrently on the same file to
reduce the data processing time. The file format has certain
built-in compression mechanisms that allows both individual
record compression and block compression to reduce file sizes
and I/O costs. In addition to the key-value sequence, which is
the main content of a Sequence File, each file also contains
a header block that stores metadata (e.g. format version, file
version, compression mechanism, and user-defined metadata
records). In this paper, the Hadoop Sequence File format is
adopted to develop a distributed file format for efficiently
encoding LiDAR data in the Hadoop eco-system. Adoption
of a high scalability platform such as Hadoop for LiDAR data
management and analysis is not always straightforward. The
core characteristics of LiDAR must be taken into account. At
the same time, consideration must be paid to maximising the
computational efficiency of the adopted technologies, which
has mostly developed for generic and unrelated use cases
and data types. Through an adoption of a generic Hadoop

file format for storage of LiDAR point cloud data, those
considerations are described, justified, and evaluated in this
paper via a set of performance criteria.

III. CRITERIA FOR A COMPACT AND FLEXIBLE LIDAR
DATA ENCODING SOLUTION FOR HADOOP-BASED DATA

SYSTEMS

As a step towards building a high-scalability LiDAR data
system, this paper introduces a data encoding solution, which
aims to meet 4 criteria, as described below.

Criterion I: Compatibility to the Hadoop eco-system
The proposed file format must be fully compatible to the
Hadoop distributed computing platform, which allows storage,
querying, and processing the data in parallel on distributed-
memory computing clusters. The critical criterion is to ensure
the system can cope with the growth in data volumes and
computational loads. This criterion is primary.

Criterion II: Compactness
Data compactness is needed to restrict storage space require-
ments, as well as to reduce the input/output (IO) cost, which
often controls overhead in computing systems.

Criterion III: Versatility
Being versatile means that the file format can be conveniently
mutated to accommodate point attributes emerged anytime
during the data processing pipeline. That feature enables
the proposed format to be used as a working data format
by allowing storage of data produced from post-processing.
Examples of derived point attributes include classification tags,
colour values integrated from external imagery sources, and
per-point labelling and simulation data. This feature distin-
guishes the proposed format from the majority of other LiDAR
data formats (e.g. LAS, E57), which are aimed at hosting
sensing data only. In addition, data heterogeneity should be
allowed, as multiple point attribute structures may co-exist in a
single point cloud dataset. Such complexity commonly occurs
when data are integrated from multiple sources (e.g. different
terrestrial and aerial sensing platforms) or partial data mutation
is performed on the dataset.

Criterion IV: Neutrality in programming languages
Data stored in the data system are intended to be consumed
by applications written in multiple languages. For example, as
most of the software in the Hadoop eco-system is written in
Java and supports Java as the primary language, data ingestion
and low-level data manipulation are performed most efficiently
through a Java client. However, once data reside in the
database, they may be requested to serve disparate applications
written in different languages (e.g. Python, Javascript). Typi-
cally, implementation of a data format in multiple languages
is time consuming and requires significant maintenance costs.

IV. COMPACT AND FLEXIBLE LIDAR DATA ENCODING
SOLUTION FOR HADOOP-BASED DATA SYSTEMS

The proposed data encoding solution is a strategic fusion of
the Hadoop Sequence File format and a binary data encoding
solution based on Google Protocol Buffers. As described in
Section II, Sequence File is the primary binary data encoding

framework built-in Hadoop that possesses all features of the
Hadoop Distributed File System (i.e. distributed, scalable, fault
tolerant, and suitable for high-throughput data processing)
[Criterion I]. Sequence Files are inherently splittable, meaning
a file can be partitioned into multiple splits (i.e. segments) for
processing in parallel when necessary. Thus, the file format
is suitable for high-throughput data processing in Hadoop,
typically via a MapReduce or a Spark job [Criterion I]. At the
logical level, a Sequence File consists of a sequence of key-
value pairs, in which the keys and values can be any arbitrary
byte sequences. Encoding and decoding the binary keys and
values are up to the users, typically via custom encoders and
decoders. Binary data encoding allows the data to be stored
in a compact manner [Criterion II]. The major challenge in
adopting the Sequence File format for LiDAR data storage is
in devising a data encoding method to effectively represent
LiDAR data records as binary sequences within the structure
of a Sequence File.

Instead of establishing an ad-hoc binary format for encoding
LiDAR data as binary key-value pairs in Sequence Files, the
authors opted to base the proposed binary encoding solution
on Protocol Buffers, a binary data serialisation framework
developed by Google originally for serialising inter-machine
communication messages. Google Protocol Buffers (GPB) is a
convenient solution to ensure the file format is compact [Cri-
terion II], highly versatile [Criterion III], and language-neutral
[Criterion IV]. All of those criteria are fully present in the Li-
DAR data encoding solution proposed in the paper. While GPB
was selected for the implementation presented in the paper,
there are several binary encoding alternatives such as Thrift
(https://thrift.apache.org/), and Avro (https://avro.apache.org/)
that are based on analogous principles and offer similar
capabilities; readers interested in an in-depth comparison of
the data encoding alternatives may consult [17].

An implementation of GPB data serialisation for LiDAR
data requires a message format file (i.e. proto file) to map all
foreseeable point attributes to GPB data types (e.g. Boolean,
32-bit integer, unsigned 64-bit integer, double-floating number,
string). The PointP message in Listing 1 (lines 8-50) serves
as an example of such a format. In that example, the point
data are assumed to be sourced from an aerial LiDAR dataset
in LAS format. The attributes are derived from point record
format 1 defined within the LAS specification [10]. Notably,
GPB allows the format to evolve. Therefore, other point
attributes not envisioned at the initial time of defining can
be appended to the format. Once that happens, the extended
format remains back-compatible with all earlier versions of
the format, which have fewer attributes.

The spatialCode on line 24 of Listing 1 is an example of
an extra attribute added after the initial definition. The attribute
is added to hold spatial indexing codes (e.g. Morton, Hilbert,
Peano codes) when they are computed during post-processing
or analysis of the original sensing data. Inapplicable attributes
(i.e. attributes with empty values) do not occupy storage space
in a GPB file. Another important feature is that GPB optimises
the data compactness by automatically adjusting the code

unit lengths according to the numeric values being encoded.
In addition to the PointP message, the example format in
Listing 1 also consists of PointSequenceP, which allows
packing an arbitrary point set into a single message. The
PointSequenceP message contains the point sequence
itself (line 60) together with metadata about the sequence
(lines 52-59). In the example format, the point coordinates and
timestamps are internally stored as integral numbers, which
are transformed to real coordinates via the offset and scale
factors. As explained by Isenburg [18], the data encoding
strategy is effective in preserving the uniformity of the spatial
and temporal sampling, as well as avoiding the precision loss
that happens when large numbers are encoded as floating-point
numbers. The offset and scale factors are retained as part of
the metadata in the PointSequenceP message (lines 52-59
in Listing 1).

Listing 1. Google Protocol Buffers messages for point and point sequence
1
2s y n t a x = ” p r o t o 2 ” ;
3
4o p t i o n j a v a p a c k a g e = ”umg . c o r e . l i d a r . p r o t o b u f
5. l a s p o i n t ” ;
6o p t i o n j a v a o u t e r c l a s s n a m e = ” LASPoin tP ro tos ” ;
7
8message P o i n t P {
9r e q u i r e d i n t 3 2 x = 1 ;
10r e q u i r e d i n t 3 2 y = 2 ;
11r e q u i r e d i n t 3 2 z = 3 ;
12o p t i o n a l u i n t 3 2 i n t e n s i t y = 4 ;
13o p t i o n a l u i n t 3 2 re tu rnNumber = 5 ;
14o p t i o n a l u i n t 3 2 numberOfReturns = 6 ;
15o p t i o n a l boo l s c a n D i r e c t i o n F l a g = 7 ;
16o p t i o n a l b oo l e d g e O f F l i g h t L i n e = 8 ;
17o p t i o n a l P o i n t C l a s s P c l a s s i f i c a t i o n = 9 ;
18o p t i o n a l boo l s y n t h e t i c = 1 0 ;
19o p t i o n a l boo l k e y P o i n t = 1 1 ;
20o p t i o n a l boo l w i t h h e l d = 1 2 ;
21o p t i o n a l i n t 3 2 scanAngleRank = 1 3 ;
22o p t i o n a l u i n t 3 2 p o i n t S o u r c e I D = 1 4 ;
23o p t i o n a l u i n t 6 4 gpsTimestamp = 1 5 ;
24r e p e a t e d b y t e s s p a t i a l C o d e = 1 6 ;
25
26enum P o i n t C l a s s P {
27NEVER CLASSIFIED = 0 ;
28UNCLASSIFIED = 1 ;
29GROUND = 2 ;
30LOW VEGETATION = 3 ;
31MEDIUM VEGETATION = 4 ;
32HIGH VEGETATION = 5 ;
33BUILDING = 6 ;
34NOISE = 7 ;
35MODEL KEY POINT = 8 ;
36WATER = 9 ;
37RAIL = 1 0 ;
38ROAD SURFACE = 1 1 ;
39WIRE GUARD = 1 2 ;
40WIRE CONDUCTOR = 1 3 ;
41TRANSMISSION TOWER = 1 4 ;
42WIRE STRUCTURE CONNECTOR = 1 5 ;
43BRIDGE DECK = 1 6 ;
44HIGH NOISE = 1 7 ;
45OVERLAP POINT = 1 8 ;
46RESERVED = 1 9 ;
47USER DEFINABLE = 2 0 ;
48}
49}
50

https://thrift.apache.org/
https://avro.apache.org/

51message P o i n t S e q u e n c e P {
52r e q u i r e d do u b l e x O f f s e t = 1 ;
53r e q u i r e d do u b l e y O f f s e t = 2 ;
54r e q u i r e d do u b l e z O f f s e t = 3 ;
55r e q u i r e d do u b l e x S c a l e = 4 ;
56r e q u i r e d do u b l e y S c a l e = 5 ;
57r e q u i r e d do u b l e z S c a l e = 6 ;
58r e q u i r e d do u b l e t O f f s e t = 7 ;
59r e q u i r e d do u b l e t S c a l e = 8 ;
60r e p e a t e d P o i n t P p o i n t = 9 ;
61}

Once the GPB message formats are defined, a code com-
piler can be used to automatically generate data encoders
and decoders in the selected language with minimal efforts.
GPB version 2 supported languages include C++, C#, Java,
Python. The list is extended in version 3 to include Javascript,
Objective C, PHP, and Ruby. An encoder generated by a
GPB compiler allows encoding a data source (e.g. a LiDAR
point cloud) in the format defined by the message format and
serialising the encoded data to a persistant format (e.g. a file,
or a binary object in a database). This GPB encoding is the first
step (LAS2Proto) in preparing a LiDAR dataset for distributed
computing in Hadoop. The complete workflow is presented in
Figure 1.

In that first step, the input point clouds are re-encoded
into the GPB message format defined in Listing 1. The point
data are partitioned into segments of a pre-defined length
(e.g. 1 million points/segment). Each segment is encoded as
a PointSequenceP message and stored as a binary file.
Subsequently, the point Sequence Files are wrapped into a
Hadoop Sequence format (via PCProto2SEQ), in which each
point record is stored as a key-value pair. The key can contain
any of the point attributes depending on the intended use of
the data or can be left as empty, to reduce the file sizes. In the
particular implementation in this paper, the point timestamps
are used as keys. Both LAS2Proto and PCProto2SEQ are
multi-threading Java applications, which can parallelise the
computation on multiple CPU threads. Even though these data
preparation steps are not capable of making use of the Hadoop
multiple nodes, these steps are only required once during the
life-cycle of a dataset.

Immediately after the two preparation steps, the LiDAR
data in Hadoop Sequence format can be uploaded into the
Hadoop Distributed File System (HDFS) and fully exploit
the advantages of the scalable computing framework. For
example, the Sequence Files can be indexed and ingested
in HBase (i.e. a key-value database within the Hadoop eco-
system) for data retrieval. Multiple applications can retrieve
the GPB data residing in the database and may decode them
using a decoder automatically generated by a compatible GPB
compiler. Additionally, the Sequence Files can be used as input
for any MapReduce or Spark job, which may perform batch
processing or data analytic tasks on the data. New point clouds
derived from MapReduce and Spark jobs can also be stored in
the proposed file format or any extension of the format. In all
of those scenarios, the encoded data are effectively structured
to best use the efficiency and scalability built-in the Hadoop
framework.

LAS2Proto

1

NOTATION

Process

Data flow

Data store

Point Cloud Files in LAS Format

GPB Message Files

GPB Sequence Files

PCProto2SEQ

2

HBase Tables

Data Ingestion

3

GPB Sequence Files

MapReduce/ Spark
Analysis

4

Fig. 1. GPB Sequence File preparation and possible uses

V. EVALUATION

To evaluate the efficiency of the data encoding solution
presented in Sections III–IV, the encoding is applied to 1.5
km2 of real aerial LiDAR data from Dublin, Ireland (Figure 2)
[19]. The data were collected with a Riegl LMS-Q680i scanner
operating at 400 kHz in March 2015. This data set is known
to be the densest publicly available aerial laser scanning data
with its density of more than 300 points/m2. The original
dataset contains more than 1.4 billion LiDAR points. The tests
presented in this paper are based on 4 subsets of the original
data (with a maximum of 812 million points). The complete
dataset of 1.4 billion data points was not used for testing
since the required time for ingesting it in the text format was
excessive. The original point cloud data are available in both
LAS and text formats. The data in their text format are used
in this paper as a benchmark to evaluate the binary encoding
solution. The data in their LAS format are re-encoded using
the proposed binary format. Both the text and binary data
are ingested into HBase. Data sizes, data ingestion times,
and querying times are recorded and used as the basis for
performance evaluation of the proposed file format. All tests
were conducted on a 35-node Hadoop cluster provided by New

York University’s High-Performance Computing Center. The
cluster specifications are described in Table I.

Fig. 2. 2015 aerial LiDAR point cloud data of Dublin city

TABLE I
HADOOP CLUSTER TESTING CONFIGURATION

Number of data nodes 35
Disk 16 × 2 TB per node
Memory 128 GB per node
CPU 2×8 cores Intel Haswell of 2.5 GHz
Network 10 Gb Ethernet
Operating System Linux (Centos 6.9)
HBase version 1.2.0
Hadoop version 2.6.0
HBase replication factor 3

The pivotal objective of this work was to evaluate the
performance and effectiveness of the proposed data encoding
technique. To focus on that data encoding, this paper employs
a minimal data indexing strategy, in which the point records
are indexed only by their timestamps. In the original encoded
according to the LAS format [10], each timestamp in the
testing dataset was a double floating point number representing
the time at which the corresponding laser pulse was emitted
from the LiDAR sensor. The timestamps were in GPS Week
Times (i.e. the number of seconds counted from the midnight
Saturday night to Sunday morning of the week). When rep-
resented in the text format, each timestamp has 6 significant
digits and 6 decimal digits (i.e. temporal precision up to 1
milli-second).

Four subsets [i.e. D1-D4 in Tables III–IV] were selected
from the 2015 high-resolution aerial LiDAR dataset of Dublin
city to serve the performance and scalability evaluation. Each
subset was indexed and ingested into a HBase database
sequentially in the proposed binary format and in the ref-
erence text format. Data ingestion times and file sizes were
recorded for comparison. Finally, point and range queries were
performed on each of the subsets to evaluate the effects of
the data encoding on querying response times. The following
subsections provide details of the testing results.

A. Influence of data encoding format on data ingestion speed
and data volumes

To ingest a LiDAR point cloud subset into HBase (Process
3 in the data flow in Figure 1), the dataset (either in the
text or the binary format) was copied from the local file
system to Hadoop Distributed File System (HDFS). Once
copied to HDFS, the dataset was automatically partitioned
into chunks and was replicated multiple times (3 times by
default) for fault tolerance and parallelisation. A MapReduce
job was performed to index the data and to transform the
point cloud data into HFiles, the internal distributed file format
in HBase, for bulk ingestion. Subsequently, the data were
loaded into the database. Among the three steps, generating
HFiles was the most time consuming and dominated the
difference in data ingestion time between the two encoding
formats. After data ingestion, the data in both formats were
compressed using the generic Snappy data compression library
(https://github.com/google/snappy) to investigate the effect of
data compression on data volumes and querying times. The
data ingestion times and the data sizes inside the database
under various formats and settings are presented in Tables II–
IV, and Figures 3–4.

Table II compares the proposed file format (i.e. data gener-
ated by Process 2 of the data flow in Figure 1) with several
common LiDAR file formats in terms of the data volume. To
ensure a fair comparison, the formats were evaluated using
one single dataset (i.e. D4 - the largest testing dataset of
812 million points) and with the same set of point attributes.
The proposed binary file format had 12.3 bytes per point,
which is less than half of the size of the data in the ASPRS’
LAS format (i.e. 29.1 bytes/point, including the overheads).
Compared to the reference text format, the proposed binary
format was 5 times more compact. Among the investigated
formats, the compressed LAZ format was the only one capable
of encoding the point cloud with less disc consumption (with
4.2 bytes/point).

Tables III–IV describe the difference between the proposed
file format and the referenced text format in terms of data
ingestion times and data sizes. Ingesting point cloud data
in the proposed GPB Sequence File into a HBase database
took approximately a quarter of the time taken for ingesting
the corresponding datasets in the text format. The ratio is
consistent for all of the variously sized data subsets (Table III
and Figure 3). For both of the binary and the text formats,
the data volumes increased significantly when being ingested
into the database. The binary data increased by less than
7 times, while the text data grew more than 8 times. As
a result, the data stored in the proposed file format were
even more compact compared to the text counterpart after
being ingested into the database even without compression
(Figure 4). The increase in data volume due to data ingestion
is attributable to the HBase data index, and other Hadoop
and HBase metadata and overheads. The proposed binary
file format reduced the data volume difference by more than
6-fold inside the database when compared to the reference

https://github.com/google/snappy

text format prior to data compression. The database ingestion
time was also significantly reduced (a quarter of that of
the reference text format), while the splittable characteristic
needed for distributed computing was retained. When Snappy
compression was performed, the per-point disc consumption
of the text format was approximately 100 bytes, whereas each
point in the binary format cost under 30 bytes. The difference
in terms of data volumes between the text and the binary
formats was a reduction of 3.5 times.

TABLE II
COMPARISON OF DATA SIZES OF A POINT CLOUD IN DIFFERENT FORMATS

Format Number of Data size
points Total Per point

(GB) (bytes)
Proposed format 812,779,644 9.3 12.3
Text format 812,779,644 49.0 64.7
LAS format 812,779,644 22.0 29.1
LAZ format 812,779,644 3.2 4.2

TABLE III
DATA INGESTION TIME

Format Data- Number of Input data size Inges-
set input points Total Per point tion

(GB) (bytes) (mins)

Text
format

D1 51,146,333 3.1 65.1 14.2
D2 160,402,182 9.7 64.9 42.0
D3 272,562,565 17.0 67.0 72.7
D4 812,779,644 49.0 64.7 224.2

Proposed
format

D1 51,146,333 0.6 12.6 3.8
D2 160,402,182 1.9 12.7 10.5
D3 272,562,565 3.1 12.2 17.0
D4 812,779,644 9.3 12.3 52.3

TABLE IV
DATA SIZES AFTER DATABASE INGESTION

Format Data- Number of HBase table size
set DB records Uncompressed Compressed

Total Per- Total Per-
point point

(GB) (bytes) (GB) (bytes)

Text
format

D1 45,288,694 22.6 535.8 4.2 99.6
D2 140,118,458 69.9 535.7 13.0 99.6
D3 241,733,335 120.5 535.2 22.5 99.9
D4 695,979,083 347.0 535.3 65.1 100.4

Proposed
format

D1 45,288,690 3.5 83.3 1.2 28.5
D2 140,118,455 11.5 88.1 3.7 28.3
D3 241,733,329 18.4 81.7 6.3 28.0
D4 695,979,074 52.2 80.5 18.1 27.9

B. Influence of data encoding format on querying time

A set of point and range queries were performed on the
HBase tables to evaluate the influence of the data encoding
format on querying times. For point queries (i.e. look-up by
key), 5 randomly selected timestamps were selected (so called
P1 to P5). Each point query was executed 50 times to achieve

Fig. 3. HFile generation times

Fig. 4. Data sizes inside HBase

statistically robust response times. Similarly, 5 temporal ranges
(R1 to R5) with different sizes (i.e. 1, 5, 10, 30, and 60
seconds) were selected, and each range was also executed 50
times. To analyse the influence of data compression on query
times, the point and range queries were performed on both the
original, uncompressed datasets and the compressed data. The
response times of all queries are presented in the format of
box plots (Figures 5–8).

1) Point queries: Table V presents details of the point
queries (P1-P5). The response times of the point queries
against the uncompressed and compressed datasets are, re-
spectively, reported in Figure 5 and Figure 6. There is not an
obvious difference between the point queries run on the binary-
based and the text-based HBase tables. The median response
times were between 0.85 and 0.90 seconds for both formats
when the data were not compressed. The median response
times slightly increased by less than 0.05 seconds when the
data were compressed. Each point query always returned one
point record, which cost less than 1 KB. Thus, the difference
in terms of the size of the returned data was insignificant,
irrespective of the difference in the data encoding formats.

The most dominant part of the querying processing time was
in processing the database index to locate a record. As both the
binary and the text data were indexed by the timestamps of the
point records, the query processing times were similar. When
the data were compressed, the cost for data decompression
became an additional overhead which led to a slight increase
in the total querying time.

TABLE V
POINT QUERIES

Query ID Timestamp
(seconds)

P1 400061.002059
P2 388610.002820
P3 388562.239010
P4 400010.003452
P5 388570.000848

P1 P2 P3 P4 P5
Query

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Qu
er

y
re

sp
on

se
 ti

m
e

(s
)

Text Format

P1 P2 P3 P4 P5
Query

Proposed Format

Fig. 5. Response times of point queries for uncompressed data

P1 P2 P3 P4 P5
Query

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Qu
er

y
re

sp
on

se
 ti

m
e

(s
)

Text Format

P1 P2 P3 P4 P5
Query

Proposed Format

Fig. 6. Response times of point queries for compressed data

2) Range queries: Details of the five range queries (R1-R5)
are presented in Table VI, along with the querying window
size and the number of points returned in the querying result

set. Unlike what was observed with the point queries, the data
encoding format had a clear influence on the response times
of the range queries (Figures 7–8). Range queries performed
on the binary tables responded significantly faster compared
to those performed on the text tables, irrespective of whether
the data were compressed or not. The speed difference was
three-fold faster for R1 (the smallest query returns 0.2 million
points in a 1s time interval), and the difference was more than
five-fold faster for all of the larger range queries (R2 - R5).
The improvement in querying speed was mostly attributable
to the compactness of the point data, which was encoded
using the proposed binary format. As there were less data
that needed to be fetched from the discs and transferred
over the network, the range queries against the binary tables
were significantly faster. Notably, the difference in querying
times between the compressed and uncompressed datasets was
insignificant. While Snappy reduced the data sizes inside the
database (Table IV and Figure 4), in response to a query, the
data has to be decompressed on the server side prior to being
transferred over the network to the client. Thus, ultimately, the
amount of data being carried over the network remained the
same. Consequently, compressing the data inside the database
did not lead to a higher querying speed as was the case of the
proposed binary encoding. This highlights the benefit of data
compactness achieved by the proposed binary data encoding
versus data compression approaches.

TABLE VI
RANGE QUERIES

Query ID Start timestamp Range size Number of
(seconds) (seconds) returned records

R1 388590.000000 1 263,761
R2 399505.000000 5 1,321,484
R3 400051.000000 10 2,636,943
R4 388580.000000 30 7,904,950
R5 388570.000000 60 13,498,454

1 5 10 30 60
Interval (s)

0

50

100

150

200

250

qu
er

y
ex

ec
ut

io
n

tim
e

(s
)

R1
R2

R3

R4

R5

Text Format

1 5 10 30 60
Interval (s)

R1 R2 R3
R4

R5

Proposed Format

Fig. 7. Response times of range queries for uncompressed data

1 5 10 30 60
Interval (s)

0

50

100

150

200

250

qu
er

y
ex

ec
ut

io
n

tim
e

(s
)

R1
R2

R3

R4

R5

Text Format

1 5 10 30 60
Interval (s)

R1 R2 R3
R4

R5

Proposed Format

Fig. 8. Response times of range queries for compressed data

VI. CONCLUSIONS

This paper presents and evaluates the design and usage
of an efficient data encoding mechanism for point cloud
LiDAR data in the Hadoop distributed computing environ-
ment. The proposed LiDAR data encoding was designed to
satisfy 4 criteria: (1) Compatible to Hadoop, (2) Compact,
(3) Versatile, and (4) Neutral to programming languages. The
encoding solution was implemented based on the Google
Protocol Buffers framework. Subsequently, the encoded data
were embedded in Hadoop Sequence Files to be used within
the distributed computing platform. The resulting format is
capable of representing every LiDAR point attributes derived
from sensing platforms, as well as post processing and anal-
yses. Data stored with the proposed format are compact,
versatile, schemaless, and independent of the sensing platform.
Data encoders and decoders can be automatically generated in
multiple programming languages by exploiting the flexibility
of GPB framework. This feature can significantly reduce
implementation time, as well and minimise human errors.
Most importantly, the point cloud format is fully compatible
with the Hadoop distributed computing environment for both
data analysis and management.

The proposed data encoding format was rigorously evalu-
ated through a set of tests on actual LiDAR data. Prior to a data
compression, point data encoded in the proposed format was
twice as compact as the ASPRS’s LAS format and more than
5 times smaller than the data stored in the text format. Inside
HBase, the data encoded in the proposed format consumed 6
times less disc space, as compared to the text format. Data
ingestion was 4 times faster with the proposed binary format.
The data in both formats were further compressed with the
Snappy compression library. After the compression, the binary
data were approximately 3.5 times more compact than the text
counterpart. The data compression did not have clear influence
on the querying times. Range queries were 3-5 times faster
with the proposed binary-based format irrespective of whether
the data were compressed or not. Point querying was the
only case where no evidence of performance enhancement was

observed. In summary, the data format proposed in this paper
for encoding point clouds in the Hadoop distributed computing
environment was proven to have many superior characteristics
in data volumes, processing speed, convenient implementation,
and suitability to distributed computing. Future work may
consider the integration of point cloud data from multiple plat-
forms (i.e. aerial, mobile, terrestrial) to evaluate the efficiency
of the proposed approach in handling data heterogeneity.

ACKNOWLEDGMENT

Funding for this project was provided by the National
Science Foundation as part of the project “UrbanARK: Assess-
ment, Risk Management, & Knowledge for Coastal Flood Risk
Management in Urban Areas” NSF Award 1826134, jointly
funded with Science Foundation Ireland (SFI - 17/US/3450)
and Northern Ireland Trust (NI - R3078NBE). The Hadoop
cluster used for the testing was provided by NYU High
Performance Computing Center. The implementation and test-
ing were jointly enabled through computing resources pro-
vided under sub-allocation “TG-IRI180015” from the Extreme
Science and Engineering Discovery Environment (XSEDE),
supported by National Science Foundation grant ACI-1548562
[20]. The aerial LiDAR data of Dublin were acquired with
funding from the European Research Council [ERC-2012-
StG-307836] and additional funding from Science Foundation
Ireland [12/ERC/I2534].

REFERENCES

[1] US Geological Survey, “USGS program updates,” 2019, (Last accessed
by 20/10/2019). [Online]. Available: https://ilmf-static.s3.amazonaws.
com/uploads/2019/04/USGS-Program-Updates.pdf

[2] A. Vo, D. Laefer, and M. Bertolotto, “Airborne laser scanning data
storage and indexing: State of the art review,” International Journal
of Remote Sensing, vol. 37, no. 24, pp. 6187–6204, 2016.

[3] A. Lagmay, B. Racoma, K. Aracan, J. Alconis-Ayco, and I. Saddi,
“Disseminating near-real-time hazards information and flood maps in
the Philippines through Web-GIS,” Journal of Environmental Sciences,
vol. 59, pp. 13–23, sep 2017.

[4] GSI, “Geographical Survey Institute Map Service,” 2016, (Last accessed
by 20/10/2019). [Online]. Available: http://maps.gsi.go.jp/

[5] M. Kleppmann, “Reliable, scalable, and maintainable applications,” in
Designing data-intensive applications - The big ideas behind reliable,
scalable, and maintainable systems. O’Reilly Media, 2017, pp. 3–22.

[6] A. Vo, N. Konda, N. Chauhan, H. Aljumaily, and D. Laefer, “Lessons
learned with laser scanning point cloud management in Hadoop HBase,”
in Lecture Notes in Computer Science. Lausanne: Springer, 2018, pp.
231–253.

[7] A. Vo, N. Chauhan, D. Laefer, and M. Bertolotto, “Lessons learned
with laser scanning point cloud management in Hadoop HBase,” in
ISPRS International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, vol. XLII-4, 2018, pp. 671–378.

[8] A. Vo and D. Laefer, “A Big Data approach for comprehensive urban
shadow analysis from airborne laser scanning point clouds,” in ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. IV-4/W8, 2019, pp. 131–137.

[9] A. Vo, D. Laefer, A. Smolic, and S. Zolanvari, “Per-point processing for
detailed urban solar estimation with aerial laser scanning and distributed
computing,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 155, no. June, pp. 119–135, sep 2019.

[10] ASPRS, “LAS specification version 1.4 - R14,” 2019, (Last accessed
by 20/10/2019). [Online]. Available: http://www.asprs.org/wp-content/
uploads/2019/03/LAS 1 4 r14.pdf

[11] D. Huber, “The ASTM E57 File Format for 3D Imaging Data Exchange,”
in SPIE 7864 Three dimensional imaging, interaction, and measurement,
78640A. International Society for Optics and Photonics, 2011.

https://ilmf-static.s3.amazonaws.com/uploads/2019/04/USGS-Program-Updates.pdf
https://ilmf-static.s3.amazonaws.com/uploads/2019/04/USGS-Program-Updates.pdf
http://maps.gsi.go.jp/
http://www.asprs.org/wp-content/uploads/2019/03/LAS_1_4_r14.pdf
http://www.asprs.org/wp-content/uploads/2019/03/LAS_1_4_r14.pdf

[12] The HDF Group, “Hierachical data format, version 5,” 2016, (Last
accessed by 20/10/2019). [Online]. Available: http://www.hdfgroup.org/
HDF5/

[13] M. Ingram, “Advanced point cloud format standards. Open Geospatial
Consortium meeting presentation,” 2015, (Last accessed by 20/10/2019).
[Online]. Available: https://portal.opengeospatial.org/files/?artifact id=
67558

[14] P. Bunting, J. Armston, R. Lucas, and D. Clewley, “Sorted pulse data
(SPD) library. Part I: A generic file format for LiDAR data from pulsed
laser systems in terrestrial environments,” Computers & Geosciences,
vol. 56, pp. 197–206, 2013.

[15] M. Whitby, R. Fecher, and C. Bennight, “GeoWave: Utilizing distributed
key-value stores for multidimensional data,” in Advances in Spatial and
Temporal Databases. Springer International Publishing, 2017, pp. 105–
122.

[16] P. van Oosterom, O. Martinez-Rubi, M. Ivanova, M. Horhammer,
D. Geringer, S. Ravada, T. Tijssen, M. Kodde, and R. Gonçalves,
“Massive point cloud data management: Design, implementation and
execution of a point cloud benchmark,” Computers & Graphics, vol. 49,
pp. 92–125, 2015.

[17] M. Kleppmann, “Encoding and evolution,” in Designing data-intensive
applications - The big ideas behind reliable, scalable, and maintainable
systems. O’Reilly Media, 2017, pp. 111–143.

[18] M. Isenburg, “LASzip: Lossless compression of LiDAR data,” Pho-
togrammetric Engineering & Remote Sensing, vol. 79, no. 2, pp. 209–
217, 2013.

[19] D. Laefer, S. Abuwarda, A. Vo, L. Truong-Hong, and H. Gharibi, “2015
Aerial Laser and Photogrammetry Survey of Dublin City Collection
Record,” 2017, (Last accessed by 20/10/2019). [Online]. Available:
https://geo.nyu.edu/catalog/nyu 2451 38684

[20] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. Peterson, R. Roskies, J. Scott,
and N. Wilkins-Diehr, “XSEDE: accelerating scientific discovery,” Com-
puting in Science and Engineering, vol. 16, no. October, pp. 62–74,
2014.

http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://portal.opengeospatial.org/files/?artifact_id=67558
https://portal.opengeospatial.org/files/?artifact_id=67558
https://geo.nyu.edu/catalog/nyu_2451_38684

