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ABSTRACT Tallying the number of correct responses to the comprehension

Bias in machine learning has manifested injustice in several areas,
with notable examples including gender bias in job-related ads [4],
racial bias in evaluating names on resumes [3], and racial bias
in predicting criminal recidivism [1]. In response, research into
algorithmic fairness has grown in both importance and volume over
the past few years. Different metrics and approaches to algorithmic
fairness have been proposed, many of which are based on prior legal
and philosophical concepts [2]. The rapid expansion of this field
makes it difficult for professionals to keep up, let alone the general
public. Furthermore, misinformation about notions of fairness can
have significant legal implications.!

Computer scientists have largely focused on developing mathe-
matical notions of fairness and incorporating them in fielded ML
systems. A much smaller collection of studies has measured public
perception of bias and (un)fairness in algorithmic decision-making.
However, one major question underlying the study of ML fairness
remains unanswered in the literature: Does the general public un-
derstand mathematical definitions of ML fairness and their behavior
in ML applications? We take a first step towards answering this
question by studying non-expert comprehension and perceptions
of one popular definition of ML fairness, demographic parity [5].
Specifically, we developed an online survey to address the following:
(1) Does a non-technical audience comprehend the definition and
implications of demographic parity? (2) Do demographics play a
role in comprehension? (3) How are comprehension and sentiment
related? (4) Does the application scenario affect comprehension?

We present participants (n = 147) with one of three simple, but
realistic, decision-making scenarios where fairness plays a role
— Art Project (AP): distributing awards for art projects amongst
primary school students, Employee Awards (EA): distributing
employee awards at a sales company, and Hiring (HR): distribut-
ing job offers to applicants. Each scenario is accompanied by a
fairness rule (corresponding to demographic parity), expressed in
each scenario’s context. We ask several questions related to the
participants’ comprehension of and sentiment towards this rule.

!https://www.cato.org/blog/misleading-veritas-accusation-google-bias-could-result-
bad-law
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questions gives us a comprehension score for each participant.

We find that this comprehension score is a consistent and reli-
able indicator of understanding demographic parity. Exploratory
analysis reveals that education level is an important predictor for
comprehension, and that negative sentiment is associated with
greater comprehension of demographic parity. Moreover, the na-
ture of the scenario (AP, EA, or HR) does not appear to influence
comprehension. These findings inspire several areas for future work.
Moreover, our work could be extended to similar investigation of
other fairness definitions such as equal opportunity [6], equalized
odds [6], calibration [8], and causal fairness [7].
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