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We developed a domain-independent Python package to facilitate the preprocessing routines required
in preparation of any multi-class, multivariate time series data. It provides a comprehensive set of 48
statistical features for extracting the important characteristics of time series. The feature extraction
process is automated in a sequential and parallel fashion, and is supplemented with an extensive
summary report about the data. Using other modules, different data normalization methods and
imputation are at users’ disposal. To cater the class-imbalance issue, that is often intrinsic to real-world
datasets, a set of generic but user-friendly, sampling methods are also developed.
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1. Motivation and significance

1.1. A research tool for multivariate time series

Time series is one of the first data types that has been intro-
duced and heavily used even before the emergence of the digital
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world, in the form of sheets of numeric and categorical values.
When several variables on the subject of study are observed and
recorded simultaneously, the result essentially becomes multi-
variate time series data (hereafter abbreviated to ‘mvts’ data). A

quick perusal of the literature reveals that most of the studies
utilizing such a data type, share a set of preprocessing routines

such as distribution analysis of the raw data [1], time series
feature engineering [2], feature extraction [3], getting a set of
summary statistics from the extracted features and visualization
of the summary statistics, treatment of the missing and invalid
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values, normalization over variables, and proper undersampling
and oversampling of a given dataset. A careful implementation
of these steps is often a time consuming endeavor and due to
lack of a comprehensive and rigorous testing of the code, as it
is often not in the capacity of individual researchers to create
production-ready, fully-tested, and deployable software products,
small errors in generating useful features can go unnoticed; lead-
ing to inconclusive or altogether incorrect interpretations of the
results. To this end, we decided to expand the implementation
of our recent research project [4] and share it as a domain-
independent toolkit for a broader audience in the data-driven,
research community.

1.2. Initial motivation

This project was initially developed for preprocessing of a
specifically challenging mvts dataset, named Space Weather ANa-
lytics for Solar Flares, in short SWAN-SF [5]. The dataset is created
as a benchmark to be served for standardization of the ambitious
task of flare forecasting. However, the challenges, for which we
implemented the automated pre-processor, are not specific to
any particular domain, task, or dataset. Therefore, we decided
to expand it to a general-purpose, Python package, that is well-
documented and properly tested, for extraction and analysis of
mvts.

1.3. Comparison with existing tools

This toolkit is comparable with a few other open-source,
Python packages that are already available. The most recent one
of them is Time Series Feature Extraction Library (abbreviated
to TSFEL) [6]. This package is solely dedicated to the automatic
feature-extraction functionality for over 60 statistical, temporal,
and spectral features appropriate for time series data. An inter-
esting aspect of TSFEL is that it allows users to add personalized
features to the existing ones using a JSON format. The current
version of TSFEL, however, does not support parallel processing;
an important capability that is often essential when dealing
with large datasets of mvts and complex statistical features with
expensive execution time. Another package that is more invested
in the statistical and computational aspects of feature extraction
is Time Series FeatuRe Extraction on basis of Scalable Hypothesis
tests (in short, tsfresh) [3]. Although, it does not seem to support
mvts,! it is equipped with both parallel and distributed compu-
tation capabilities, as well as customization of features by users.
tsfresh allows extraction of many features based on 63 time series
characteristics and also provides automatic hypothesis testing to
help the feature selection process.

Comparing the above-mentioned packages with ours, MVTS-
Data Toolkit provides both parallel and sequential, feature ex-
traction, on multi-class, mvts datasets. It also gives statistical
overview on each time series of the raw mvts dataset, as well
as an automated analysis of the dataset of the extracted features.
Moreover, two more preprocessing steps, namely normalization
and sampling, are implemented in this toolkit. Although, we un-
derstand why other developers may find such steps out of scope
of their packages, we found it very useful in our own research to
be able to finalize our dataset using one single library before we
start the learning phase. More specifically, since the program is
already familiar with the data structure of the extracted features,
it can seamlessly perform the other preprocessing steps, without
any extra modification effort such as dealing with time-stamps,
class-labels, and other non-numerical values in normalization.

1 see the conversation at https://github.com/blue-yonder/tsfreshfissues/566.

There are other packages that are designed for analysis of
time series but they have little or no intersection with our work
(e.g., statsmodels [7]) and/or they are implemented in languages
other than Python (e.g., hctsa [8] in MATLAB or MTS [9] in R). We
exclude them from this comparison.

1.4. Limitations

It is worth noting that while MVTS-Data Toolkit provides a
set of flexible and generic sampling techniques that can be easily
called on the extracted features, more sophisticated approaches
exist that may significantly improve the learning process of dif-
ferent models on datasets. Dealing with the class-imbalance is-
sue is not particularly the objective of this package, and the
implemented sampling methods are included only to provide
quick remedies for this issue. In this regard, Imbalance-learn
package [10] provides such methods and can be easily used on
the pandas.DataFrame of the extracted features our toolkit
produces.

At the current version of this package, normalization of the
raw mvts data is not yet included. Although it is not difficult to
implement the standard normalization methods on mvts data,
the simplicity of such functionalities could result in misleading
outcomes. To properly normalize a dataset, one would need to
rigorously study the distribution of values and the outliers in
each dimension of the data and make domain-specific and task-
specific decisions regarding their normalization approach. For
example, what is sometimes known as the “common practice”,
e.g., outlier removal based on the interquartile ranges, is often
a naiive approach when it comes to the real-world datasets. To
this end, we decided to not include any normalization module
on the raw-data level. However, in the future releases, we may
include tools that could pave the road for making decisions about
normalization of any mvts dataset.

In the following sections, we present the design and appli-
cation of MVTS-Data Toolkit. In Section 2 we first explain the
architecture and the main components of the software, and then
discuss the incorporated functionalities and the implementation
details, such as the collection of statistical features, the sequential
and parallel implementation of the mvts data analysis and the
feature-extraction process, and other important preprocessing
steps such as normalization and sampling of mvts datasets. In
Section 3 we highlight the impact of this software from different
angles. Finally, we conclude this work in Section 4.

2. Software description

MVTS-Data Toolkit is an open-source package implemented
fully in Python, and is available at PyPI, a popular online reposi-
tory called The Python Package Index, ready to be installed using
the pip install command. This package is supplemented with
detailed documentation that is embedded in the code and also
available online (see Code metadata and Software metadata). The
source code is publicly accessible in our Bitbucket repository in
two permanent branches: the master branch that tracks the latest
stable version of the software, and the dev branch where all the
new developments, after they are implemented and tested in
temporary branches, are merged into.

2.1. Software architecture

MVTS-Data Toolkit follows a simple architecture that gives
priority to robustness, having a user-friendly interface for its
classes and methods, and code extensibility. In the following
sections, we highlight the important aspects of the architecture
and design choices.
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Fig. 1. The main components of MVTS-Data Toolkit package.

2.1.1. Main components

This package is composed of four main components that are
illustrated in Fig. 1. The Feature Extraction component allows an
easy and fast computation of a large set of statistical features
on the dataset. The Data Analysis component gives high-level
exploratory analyses for both the mvts (raw) datasets and the
extracted features computed by the Feature Extraction compo-
nent. The other two components, namely, Data Normalization
and Data Sampling, as the names suggest, provide various pre-
processing methods for data transformation, undersampling, and
oversampling.

2.1.2. Scalability

The Feature Extraction and Data Analysis components are
equipped with both the sequential and parallel execution capa-
bilities. The incorporated parallelism, which comes without any
additional complexity for the end users, is particularly useful
when the dataset under study is considered to be ‘large’.

The execution time of the parallel version is essentially lin-
early scalable with respect to the number of available processes.
Moreover, the feature extraction process is designed to divide the
input data into partitions, and then assign one partition to each
process. Every process starts its job by receiving a list of file paths,
instead of the actual files. As a result, the memory constraint is
only determined by the size of the largest MVTS file. That is, as
long as there is enough memory available for the largest MVTS to
be loaded into, there will be no out-of-memory issue, regardless
of the size of the entire dataset. This improves the robustness of
the package’s scalability.

The scalability mentioned above is only possible by the means
of statistical techniques to obtain accurate estimations of the
rank-based statistics the we would like to return. In other words,
without loading the entire dataset into memory, it is only possible
to estimate the percentiles of each time series. In this regard,
we utilize an on-line algorithm, called t-digest [11], that accu-
rately estimates the desired summary statistics by clustering real-
valued samples and retaining the mean and the sample size. The
clustering produces instances of a data structure called t-digest,
which has a constant memory consumption as the algorithm
proceeds iterations of estimations.

2.1.3. Dependencies of components

While the four components of the toolkit work independently,
some components are designed to further process the output of
the others, if desired. For example, MVTS Data Analysis package,
from the Data Analysis component, gives general statistics about,
and are based on, the raw MVTS data, and Feature Extractor
package, from the Feature Extraction component, extracts a set
of statistical features, also from the raw MVTS data. However, the
Extracted Feature Analysis package, as the name suggests, ana-
lyzes the extracted features produced by the Feature Extraction
component. The relation between these two components is illus-
trated in Fig. 2. Similarly, normalization and sampling provided
by the other components also process the extracted features.

2.1.4. Global configuration

In order to provide a user-friendly package, a set of input
arguments can be configured using YAML language prior to any
execution. A yml configuration file can be stored at any directory
in the host machine, as long as its path is passed to the class
instance that needs such metadata, through a class-constructor.
The keywords in this file are pre-defined, as described below:

e PATH_TO_MVTS: A relative or absolute path to where the
mvts dataset is stored.

e PATH_TO_EXTRACTED_FEATURES: A relative or absolute
path to where the extracted features will be stored (Feature
Extraction component uses this path).

e META_DATA_TAGS: A list of tags based on which some
pieces of information can be extracted from the file-names
of the mvts. For example, if timestamps are encoded in
the file-names, e.g., _st [YYYY-MM-DD HH:MM: SS], then the
string st (without brackets) is a tag that can be included in
this list. In the feature extraction process, this adds what
is wrapped in the square brackets in each filename, as an
extra column to the data-frame of the extracted features.
Generally, using this functionality, any extra metadata can
be encoded in the file-names and consequently passed into
the extracted features.

e MVTS_PARAMETERS: A list of parameter names that are used
in the mvts dataset and their statistical features are of
interest. These are, in other words, the column-names in the
mvts files.

e STATISTICAL_FEATURES: A list of statistical features of
interest to be extracted from the mvts. They must be chosen
from the provided methods in the module
features.feature_collection.py. For example,
get_min is a valid feature-name as this method is imple-
mented in the package.

The keywords documented in this manuscript may change as
new releases of the package come out. We will update the online
manual (the README . md file) in our repository based on the latest
changes.

2.2. Software functionalities

MVTS-Data Toolkit provides an array of preprocessing routines
applicable for any mvts dataset, to prepare them for further
analyses, e.g., to be fed into machine learning algorithms. In
the following sections, we give a high-level description of these
functionalities.

2.2.1. MVITS statistical features

One of the primary contributions of MVTS-Data Toolkit lies
in its comprehensive set of statistical features. The list of all
statistical features that are available in this toolkit is given in
Table 1, categorized in 9 groups. These features are collected
from different domains of research, after a rigorous exploration
over a large number of applied research on time series data.
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Fig. 2. Block diagram of the data analysis and feature extraction components.

Table 1
List of all statistical features available in MVTS-Data Toolkit package.
Group Features Description
1 min(ts), max(ts), med(ts), u(ts), o(ts), sk(ts), ku(ts) Descriptive statistics on the time series ts
2 |min(ts™) — min(ts")|, |max(ts™) — max(ts™)|, |med(ts™) — med(ts™)|, Absolute differences between the descriptive statistics of the
lo(ts™) — o (ts), |sk(ts™) — sk(ts™)|, |ku(ts™) — ku(ts™)| first and the second halves of the time series ts
3 |{local_minima(ts)}|, |{local_maxima(ts)}|, |{local_extrema(ts)}|, Several representations of time series in form of their extrema
|{zero_crossings(ts)}|, p{local_minima(ts)}, u{local_maxima(ts)},
pflocal_maxima_upsurges(ts)}, n{local_minima_downslides(ts)}
4 u(ts'), o(ts’), sk(ts’), ku(ts') Descriptive statistics on derivative (i.e., windowing differences)
of the time series
5 w(dts), o(0ts), a2(dts), sk(dts), ku(dts) Descriptive statistics on derivative (i.e., approximation of
analytic gradient) of the time series
6 lwa(ts), qwa(ts), ju(|ts']), 1¢(10ts]) Linear and quadratic weighted average of times series, and
changes of the derivatives
7 M' M Positive and negative fractions of records in a times series of
length n
8 Tog=1(ts), > (lug=10(ts)), p(lvg=10(ts)) Description of time series in terms of their k last values
(Tvk(ts))
9 longest_positive_run, longest_negative_run, longest_monotonic_increase, Long-run trends of the time series ts

longest_monotonic_decrease, slope(longest_monotonic_increase),
slope(longest_monotonic_decrease), ({slope(monotonic_increases)}),
1({slope(monotonic_decreases)})

Notations. ts: time series, ;: mean, med: median, o: standard deviation, sk: skewness, ku: kurtosis, ts™: first half of ts, ts": second half of ts, {-}: set, |-|: absolute
value(s), ts’: difference derivative of ts, dts: gradient derivative of ts, |{-}|: set cardinality, lwa: linear weighted average, qwa: quadratic weighted average, lv;: last k

values.

They can, individually or in groups, describe many unique char-
acteristics of time series parameters that have a reasonable de-
gree of stochasticity. For more details on each of these fea-
tures, we suggest the interested reader consult the documen-
tation and open-sourced implementation of the toolkit (see the
module features.feature_collection.py).

2.2.2. Data analysis

The toolkit provides a functionality to get some general in-
sight about the dataset under study and the extracted features.
The Data Analysis component gives summary on three different
levels: (1) on the size and volume of the mvts files, (2) on the time
series parameters; it gives the count of missing values, and the
six-number summary, i.e., min, 1st quartile, mean, median, 3rd
quartile, and max, for each parameter, and (3) on the extracted
features using the similar statistics. The scalability in the design
of this component, as discussed in Section 2.1, makes this a handy
tool.

2.2.3. Normalization

The extracted-features data, calculated by the Feature Extrac-
tion component, often needs to go through a data transformation
filter to be ready for further analyses or being fed into a ma-
chine learning model. The MVTS-Data Toolkit has a wrapper class

around four data transformation methods implemented in the
sklearn.preprocessing module in scikit-learn package. This
wrapper assists the data normalization procedure such that users
can normalize the extracted features without having to worry
about the details such as dropping the non-numeric columns and
appending them back to the data-frame after transformation of
numeric columns; or protecting numeric columns that only pre-
serve the uniqueness of each record (such as id or index columns)
against such a transformation.

2.2.4. Sampling

A dataset is said to be class imbalanced when populations
of the classes are of different sizes. In real-world problems the
datasets are often imbalanced, i.e., the events of main interest oc-
cur significantly less frequently than others. This imbalance issue
must be treated properly before it is passed into a machine learn-
ing model. One of the main resolutions is to impose a balance in
populations of the classes, through means of random sampling.
To this end, a sampler module is incorporated into this toolkit
with several generic and flexible methods that together provide
a large number of possibilities for tackling the class-imbalance
issue. Fig. 3 illustrates some of these possible outcomes. For more
details, see the documentation of the methods in the module
sampling.sampler.py.
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Fig. 3. An illustration of some of the possible sampling methodologies available through the Sampler module. In this example, it is assumed that there are five
different classes in the dataset, where A, B, and C, together form the majority class (i.e., super-class ABC), and X and Y form the minority class (i.e., the super-class
XY). US1 and OS1 result in a balance between ABC and XY while the ratios within the super-classes are preserved. OS2 is similar to 0S1, with the additional
constraint that it suppresses the largest class (i.e. here A). This is important as in some cases, this majority class might be too large such that its original size would
dwarf other classes in subsampling. US2 and US3 impose a balance by taking X and Y classes, respectively, as a reference for undersampling other classes, and thus
making a balance between the sub-classes as well. 0S3 takes the class C as a reference for oversampling. Note how in each case, the sampled data is balanced with

respect to the super-classes ABC and XY.
3. Impact

Any degree of success in discovering knowledge from time
series datasets often goes hand in hand with the relevance of the
chosen engineered features (unless automated feature-selection
is utilized, that is often a product of Deep Neural Networks). We
implemented a comprehensive collection of statistical features
that gives researchers the opportunity to study various character-
istics of their time series, those that might have previously gone
unnoticed. Availability of such a collection encourages a truly
data-driven research environment, which in the past decade has
proven its importance in scientific domains of research.

MVTS-Data Toolkit is and will be progressively updated. We
envision that its feature-collection module be extended contin-
uously as we come across other time series features, in our
ongoing research. In addition, contributors with relevant exper-
tise can also add new features to this collection by submitting
pull-requests to the repository. Therefore, this package serves as
a framework for creation of out-of-the-box time series features.

Preprocessing of data often consists of several domain-
independent routines that together bake the raw data for the
actual analyses. Our generic implementation of some of these
common routines, which caters mvts datasets, saves other re-
searchers from re-implementing similar tasks for their specific
research. Moreover, before each new release, the development
pipeline passes the entire package through numerous test-cases
to ensure that new changes do not yield erroneous or inaccu-
rate outcomes. This necessary part adds a significant degree of
reliability to the package.

The last but not least impact of this package is on flare-
forecasting research, those of which that rely on time series data.
To help advancing in this area of research, our lab at Georgia
State University recently produced a new benchmark dataset,
called Space Weather ANalytics for Solar Flares (SWAN-SF) [5].
It is made entirely of mvts, aiming to carry out an unbiased
flare forecasting. So far, several studies have already utilized this
package, or parts of it, [4,12,13]. With the official release of the
benchmark dataset, we expect to see that other researchers show
interest in using this package as a supplementary tool, next to
the benchmark, that can help the community in their flare trend
analysis and forecasting research.

4. Conclusions

We presented a Python package to help some of the pre-
processing routines in working with mvts data. We discussed
the main architecture of the package and the functionalities it
provides. We also highlighted the several ways that this package

contributes to the applied research on time series datasets, and
how it can easily expand to have more tools and newer function-
alities implemented. We hope that this package find its way into
interdisciplinary research on time series data, as a useful toolkit.
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