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Abstract

We provide a large image parameter data set extracted from the Solar Dynamics Observatory (SDO) mission’s
Atmospheric Imaging Assembly (AIA) instrument, for the period of 2011 January through the current date, with
the cadence of 6 minutes, for nine wavelength channels. The volume of the data set for each year is just short of 1
TiB. Toward achieving better results in the region classification of active regions and coronal holes, we improve on
the performance of a set of 10 image parameters, through an in-depth evaluation of various assumptions that are
necessary for calculation of these image parameters. Then, where possible, a method for finding an appropriate
setting for the parameter calculations was devised, as well as a validation task to show our improved results. In
addition, we include comparisons of JP2 and FITS image formats using supervised classification models, by tuning
the parameters specific to the format of the images from which they are extracted and specific to each wavelength.
The results of these comparisons show that utilizing JP2 images, which are significantly smaller files, is not
detrimental to the region classification task that these parameters were originally intended for. Finally, we compute
the tuned parameters on the AIA images and provide a public API (see http://dmlab.cs.gsu.edu/dmlabapi/) to
access the data set. This data set can be used in a range of studies on AIA images, such as content-based image
retrieval or tracking of solar events, where dimensionality reduction on the images is necessary for feasibility of the
tasks.
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1. Introduction

Near-real-time monitoring and recording of the Sun’s
activities has opened new doors for solar physicists to better
understand the physics of different solar events. This was made
possible in 2010 February, when the Solar Dynamic Observa-
tory (SDO; Pesnell et al. 2012) was launched as the first
mission of NASA’s Living With a Star (LWS) Program, which
is a long-term project dedicated to the study of the Sun and its
impact on human life (Withbroe 2013). The SDO mission is
invaluable for monitoring of space weather and prediction of
solar events that produce high-energy particles and radiation.
Such activities can have significant impacts on space and air
travel, power grids, GPS, and communications satellites
(Council 2008). SDO started capturing and transmitting to
Earth approximately 70,000 high-resolution images of the Sun
per day, or about 0.55 PB of data per year (Martens et al.
2012). This volume of data will only increase in time and with
future missions. It is simply infeasible to take full advantage of
such a large collection of data by traditional, human-based
analysis of the images. But with the recent advances in other
domains, such as database management, computer vision,
machine learning, and many others, extracting knowledge from
such a large volume of data is now a well-defined task.

One of the primary objectives for improving the usability of
such a large data set is to reduce the size of the L1.5 FITS data
without a significant loss of the information contained within
the data. This can be done by utilizing either data compression
algorithms or feature extraction (i.e., summarization) techni-
ques, or both. While the features can be extracted from the
highest quality of available data (in our study, for instance,
from Atmospheric Imaging Assembly (AIA) images in FITS
format that we will discuss thoroughly later), the images may
only be needed in smaller sizes or in compressed formats such
as JP2000 or JPG. Of course, different approaches must be

tailored for different tasks for which the data are being
prepared, but an appropriate data reduction is extremely
beneficial regardless.
By significantly reducing the size of the data set, many

useful tasks are made possible that previously may have been
too costly to compute, if at all. To name a few, this would pave
the road for a more efficient search and retrieval of images,
clustering of similar regions of images across a wider temporal
window, classification of solar events based on their regional
texture, tracking of different events in time, and even real-time
prediction of solar phenomena, for which the total computation
time must comply with the streaming rate of the SDO images.
Such reduction in size not only allows faster operations but also
keeps the focus on some key aspects of the data, called
features. Reducing the raw data into some important features is
crucial owing to the fact that image repositories inherit the
“curse of dimensionality” as every pixel is represented in one
dimension. These high-dimensional spaces are problematic, as
they may yield misleading results in any analysis that requires
statistical significance, and this expands to affect almost all
machine learning techniques (Trunk 1979; Hinneburg et al.
2000; Verleysen & Franćois 2005). The curse is attributed to
the situation where the growth in dimensionality of the data
space is so fast that the number of available data samples
cannot properly fill up the high-dimensional space, which
renders machine learning models powerless. Another important
outcome of reducing the data volume is that by providing a
more manageable data repository that can be easily accessed
and managed by anyone without needing large and expensive
storage devices or being highly skilled in dealing with “big
data,” more researchers from different domains may be
encouraged to run different experiments on this collection of
data and possibly provide more insight about the data.
To be able to more efficiently and accurately extract a set of

important features from SDO’s image data, various means of
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data mining should be utilized. This study builds on a stack of
techniques to derive the important image parameters, for the
entire collection that is continuously being updated, starting
from 2011. Pre-processing of the original (L1.5) AIA image
data, integrating the data with the spatiotemporal information
such as the detected bounding boxes of different solar events’
instances and the time stamp of their occurrences, extracting
the important characteristics of the images, and labeling the
instances are some of the major steps we take to transform
the original data to the data that can be fed into the machine
learning models. We utilize supervised learning to tune the
features to reach their highest performance in classifying two
important solar events’ instances, namely, active regions and
coronal holes. In addition, we provide a comparative analysis
between the extracted features from different image formats, in
terms of their quality in distinguishing different solar events. In
addition to providing the data set as our primary goal, we hope
that our detailed discussion on these topics would be
informative for scientists interested in SDO images, or
extraction of image parameters in general.

Releasing the final data set in the form of a public API will
make the image-based analysis of the solar events easier and
may open new doors to not only solar physicists but also
computer scientists who are interested in feeding their models
with a data set different from the existing, general-purpose,
image repositories.

The remainder of this paper is organized in the following
way: A background overview on SDO data and the image
parameters that we are interested in is presented in Section 2. In
Section 3, we explain the different sources from which we
retrieve the data and discuss the image types we run our models
on. We then, in Section 4, analyze each of the image
parameters and their variables that require tuning. The tuning
process, as well as its evaluation using supervised learning, is
presented in Section 5. After finding the best setting for each of
the image parameters, we provide a thorough analysis of the
produced data in Section 6. In Section 7, we conclude this work
and discuss future work. Finally, in Appendix A, we present
some statistical analysis of the created data set to paint a more
accurate picture of the reliability and usability of the data.

2. Background

The Solar Dynamic Observatory (SDO) was launched on
2010 February 11, as the first mission of NASA’s Living With
a Star (LWS) Program, with a 5 yr prime mission lifetime. The
main goal of this project is to better understand the physics of
solar variations that influence life and society. Now that it has
been close to a decade since its launch, the observatory has
provided us with approximately 4 PB of data in total and is
currently continuing to record even more. The Atmospheric
Imaging Assembly (AIA), as one of the three SDO instruments,
focuses on the evolution of the magnetic environment in the
Sun’s atmosphere and its interaction with embedded and
surrounding plasma (Lemen et al. 2012).

The AIA images archived in the Joint SDO Operations
Center (JSOC)1 science-data processing (SDP) facility have
been processed by the SDO Feature Finding Team (FFT;2

Martens et al. 2012) using its 16 post-processing modules. The

modules are designed for detection of solar event classes such
as flares, active regions, filaments, and coronal mass ejections,
in near-real time, and others such as coronal holes, sunspots,
and jets. The results are posted at least twice a day to the
Heliophysics Event Knowledgebase (HEK) system (Hurlburt
et al. 2010) since 2010 March. One of the FFT’s modules,
which targets AR and CH events, is called the SPoCA suite
(Verbeeck et al. 2014). SPoCA, or the Spatial Possibilistic
Clustering Algorithm, is run in near-real time at Lockheed
Martin Solar and Astrophysics Laboratory and reports to the
AR and CH catalogs of the HEK. It works on a variety of data
sources, including SDO’s AIA images. SPoCA segments EUV
images into three classes, namely, AR, CH, and QS. That is, it
eventually attributes each pixel to one of the three classes, after
running different fuzzy clustering algorithms on the images and
applying some pre- and post-processing filters.
Due to the size of the data set produced by the SDO, an

efficient search and retrieval system over the entire archive is a
necessity. In 2010, this issue was first explored by Banda et al.,
and the ambitious task of creating a Content-Based Image
Retrieval (CBIR) system on the SDO AIA images was started
(Banda & Angryk 2010a). Given the volume and velocity of
the data stream, the 10 best image parameters (listed in Table 1)
were chosen based on their effectiveness in classification of the
solar events and also their processing time (Banda &
Angryk 2010b). The concern regarding the running time of
the implemented parameters is rooted in the ultimate goal of
near-real-time processing of the data and the prediction of solar
events. The processing window is therefore bounded by the rate
of eight 4096×4096 pixel images being transmitted to Earth
every 10 s. The performance of these parameters was further

Table 1
The 10 Image Parameters Computed on the AIA Images Used to Produce the

Data Set

Image Parameter Formula

1 Entropy ( ) · ( ( ))-å = p i p ilogi
L

0 2

2 Mean (μ) ( ) ·å = h i ii
L

0

3 Standard deviation (σ) ( ) · ( )må -= h i ii
L

0

4 Fractal dimension ( )
( )

-
e e
lim N

0

log

log

5 Skewness (μ3) ( )( )må -
s = h i ii

L1
0

3
3

6 Kurtosis (μ4) ( )( )må -
s = h i ii

L1
0

4
4

7 Uniformity ( )å = p ii
L

0
2

8 Relative smoothness -
s+

1 1

1 2

9 Tamura contrast s

m

2

4
0.25

10 Tamura directionality See Equation (3)

L: maximum intensity value (e.g., 255),
i: color intensity value (iä[0, L]),
p: probability (i.e., normalized histogram),
h: histogram,
N: number of counting boxes,
ε: side length of the counting box

1 JSOC; joint between Stanford and the Lockheed Martin Solar and
Astrophysics Laboratory (LMSAL).
2 An international consortium of groups selected by NASA to produce a
comprehensive set of automated feature recognition modules.
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experimented and confirmed by Banda et al. (2011, 2013). Due
to the variety of issues that must be addressed for a reliable
CBIR system to be created, this is still an active research with
the latest update in Schuh et al. (2017).

In addition to the analysis performed in the previously
mentioned works, these parameters have also been used for the
classification of filaments in Hα images from the Big Bear
Solar Observatory (BBSO), and similar success was reported
by Schuh & Angryk (2014). Schuh et al. also employed these
10 image parameters for the development of a trainable module
for use in the CBIR system (Schuh et al. 2015), along with a
thorough analysis on 3 yr of SDO data (from 2012 January 1
through 2014 December 31). Yet another sequence of studies
benefits from the same set of image parameters for tracking of
the solar phenomena in time (Kempton & Angryk 2015;
Kempton et al. 2016b, 2018). In that work, their tracking model
utilizes sparse coding to classify solar event detections as either
the same detected event at a later time or an entirely different
solar event of the same type. This model links the individually
reported object detections into sets of object detection reports
called tracks, using a multiple hypothesis tracking algorithm.
This was accomplished through the consideration of the same
set of image parameters on which we concentrate in this study.
We hope that our thorough analysis, which results in a
significant improvement in effectiveness of the 10 image
parameters, helps all of the above studies in their performance
noticeably.

2.1. Image Parameters

All parameters in Table 1, except for fractal dimension and
Tamura directionality, capture some information about the
distribution of the pixel intensity values of the images,
and none of them preserve the spatial information of the
pixels. Even though the spatial information is not preserved,
the distribution-related data provide many clues as to the
characteristics of the image. For example, a narrowly
distributed histogram indicates a low-contrast image. A
bimodal distribution often suggests that the image contains
an object or a region with a narrow amplitude range against a
background of differing amplitude. However, the location and
shape of the solar phenomena, similar to the temporal
information, are the crucial aspects of our data. In order to
help preserve some of the spatial information of the data, we
apply a grid-based segmentation on the images. This is a
widely used technique already experimented on the AIA
images by Banda & Angryk (2009, 2010b) that has shown
good results. Each 4096×4096 pixel AIA image is segmented
by a fixed 64×64 cell grid. For each grid cell that spans over
a square of 64×64 pixels of the image, the 10 image
parameters will be calculated. In Figure 1, such segmentation,
as well as the heat map of the mean parameter (μ) as an
example, is visualized. Since we are processing 10 parameters
for each image (see Figure 2), the image then forms a data cube
of size 64×64×10. Additionally, for each time step, we
process nine images from different wavelength filter channels
of the AIA instrument.

The image parameters can also be categorized in two main
groups: those that describe purely statistical characteristics of
an image, and those that capture the textural information. The
former further divides into two subcategories: (1) parameters
such as mean, standard deviation, skewness, kurtosis, relative
smoothness, and Tamura contrast that solely depend on the

pixel intensity values of the image, and (2) parameters such as
uniformity and entropy that, in addition to the pixel values,
depend on the choice of the bin size required for construction
of the normalized histogram of the color intensities.3 The latter
captures the characteristics of the image texture within the
regions of interest (i.e., solar events). In the following text, we
elaborate more on the four image parameters that require
deeper attention.

2.1.1. Entropy

Entropy, as an image parameter, has been widely utilized in
a variety of interdisciplinary studies ranging from medical
images (Pluim et al. 2003) to astronomical (Starck et al. 2001)
and satellite (Barbieri et al. 2011) images. Depending on the
specific goal in each study, different approaches might be
needed. All of the suggested models try to measure the disorder
or uncertainty of pixel values in an image (or bits of data in
general). Almost all of them are inspired, one way or another,
from the definition of entropy introduced by Shannon (2001) of
the Information Theory domain. Despite the valuable achieve-
ments in this direction, the Monkey Model Entropy (MME;
Justice 1986; Skilling 1989), which is identical to what
Shannon introduced for decoding communication bits, is still
the most popular model in the image processing community. In
this model, the random variable ix, y, i.e., the intensity value of
the pixel at position (x, y), is assumed to be independent and
identically distributed (i.i.d), and therefore the entropy is

Figure 1. Grid-based segmentation of an AIA image with a grid of 64×64
cells, each of side length 64 pixels. As an example, the mean image parameter
is calculated on each cell, and the resultant 64×64 pixel heat map of the
output is shown in the lower right corner. The heat map is enlarged for better
visibility.

3 Note that in Table 1, in order to have a unified formulation for different
parameters, whenever possible we used the histogram function (i.e., h(i)) to
formulate the parameter; however, it is only for two parameters, namely,
uniformity and entropy, that the calculation of the normalized histogram (i.e.,
p(i)) is necessary.

3
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measured as follows:

( ) · ( ( )) ( )å= -
=

p i p ientropy log , 1
i

L

MME
0

2

where p is the probability distribution function of the pixel
intensity value i, and L is the number of gray levels minus one
(e.g., 255 for a typical 8 bit quantized image). This can be
computed directly from the intensity-based histogram of an
image. As an intuitive interpretation of this parameter, one
could say that an image with low entropy is more homogeneous
than one with higher entropy.

This model of entropy was utilized previously by Banda
et al., as one of 10 selected image parameters in their research
(Banda & Angryk 2010a). It is worth noting that we are aware
of the fact that the assumption of i.i.d pixel intensities
disregards the presence of spatial order or contextual dep-
endency of the image pixels; however, the segmentation step
discussed above provides some compensation for this loss of
spatial information. In addition, the simplicity of this model is
in line with the previously discussed focus on prioritizing the
computation cost of the parameter choices. The MME is indeed
the simplest model and can be computed faster than other
approaches, for instance, those that require the computation of
the joint probability distribution function of the pixel values
(Razlighi & Kehtarnavaz 2009).

2.1.2. Uniformity

Similar to entropy, uniformity is also a popular statistical
measure that is widely used to quantify the randomness of the
color intensities and to characterize the textural properties of an
image. Uniformity is calculated as

( ) ( )å=
=

p iuniformity 2
i

L

0

2

and reaches its highest value when gray level distribution has
either a constant or a periodic form (Davis et al. 1979). In this
formula, the variables p, i, and L are similar to those in
Equation (1), where p is the probability distribution function of
the pixel intensity value i, and L is the number of gray levels
minus one.

2.1.3. Fractal Dimension

Fractal dimension is another well-known measure utilized by
scientists of different domains. However, unlike the parameters
discussed so far, which are purely statistical measures, fractal
dimension and Tamura directionality focus more on the textural
aspects that we believe are of particular importance for
distinction of at least some of the solar phenomena, such as
active regions and coronal holes. Whenever it comes to
analyzing scientific image data, this parameter seems to be a
useful choice. In solar physics, as a relevant example, fractal
dimension was used for a variety of purposes, including
detection of active regions (Revathy et al. 2005), and to exhibit
fractal scaling of solar flares in EUV wavelength channels
(Aschwanden & Aschwanden 2008).
Historically, fractal dimension was once used as a clever

solution to a problem that is now known as the coastline
paradox (Richardson 1961). It was the idea of measuring the
length of the coast of Britain, independent from the scale of
measurement (Mandelbrot 1967), that provided the basis for
the definition of this parameter. Fractal dimension is a measure
of nonlinear growth, which reflects the degree of irregularity
over multiple scales. In other words, it measures the complexity
of fractal-like shapes or regions. A larger dimension indicates a
more complex pattern, while a smaller quantity suggests a
smoother and less noisy structure. Among the several different
methods for measuring the fractal dimension (Annadhason
2012), the box counting method, also known as the
Minkowski–Bouligand dimension, is the most popular one.

Figure 2. Heat map plots of the 10 image parameters extracted from an AIA JP2 image captured on 2017 September 6 at 12:55:00, from the 171 Å channel.
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The general approach for the box counting method can be
described as follows. The fractal surface, in an n-dimensional
space, is first partitioned with a grid of n-cubes with a side
length of ε. Then, N(ε) is used to denote the number of n-cubes
overlapping with the fractal structure. The counting process is
then repeated for the n-cubes of different sizes, and the slope β
of the regression line fitting the plot of ε against N(ε) gives
the dimension of this fractal. In a 2D space such as ours, the
n-cubes are simply squares with a side length of ε. More details
of employing this parameter for measuring the complexity of
solar events are discussed in Section 4.

2.1.4. Tamura Directionality

Directionality as a texture parameter is a well-known concept
in image processing and texture analysis domains. This
parameter was extensively investigated by Bajcsy (1973) and
later on by Tamura et al. (1978). The proposed method by
Tamura, used to measure the directionality, has become a
popular texture parameter and has been used in a variety of
studies. The well-known examples are in QBIC (Flickner et al.
1995) and Photobook (Flickner et al. 1995) projects, which are
content-based image retrieval (CBIR) systems. Some more
domain-specific examples would be the solar image data
benchmark gathered by Schuh & Angryk (2014) and the
tracking of the solar events by Kempton & Angryk (2015). In
addition to Banda’s work (Banda & Angryk 2010a) on
evaluating the effectiveness of Tamura directionality on AIA
solar images, Islam et al. (2008), a discipline-independent
study, showed that directionality is indeed one of the most
important texture features when human perception is consid-
ered the ground truth.

Tamura directionality is a measurement of changes in
directions visually perceivable in image textures. Tamura
formulated this parameter as follows:

· · ( ) · ( ) ( )å å f f f= - -
f wÎ

T r n h1 , 3dir p
p

n

p
2

p

p

with variables defined as follows:
p: a peak’s index,
np: the total number of peaks,
fp: the angle corresponding to the pth peak,
ωp: a neighborhood of angles around the pth peak,
r: the normalizing factor for quantization level of f,
f: the quantized direction code (cyclically in modulo 180°).
In statistical terms, this parameter calculates the weighted

variance of the gradient angles, f, for each peak, p, of the
histogram of angles, h(f), within each peak’s domain, ωp,
considering the angle corresponding to each peak to be the
mean value of the angles within that peak’s domain. It then
aggregates across the identified peaks, and after rescaling the
result to the range [0, 1], it subtracts the final value from one to
achieve a monotonically increasing function. That is, it returns
greater quantities for a more directional texture.

3. Data Sources

Tuning the calculation of image parameters for achieving an
effective set of features requires an evaluation process. The
evaluation process we utilize relies on reported solar events to
evaluate the performance of each image parameter individually
for each wavelength channel we are utilizing. In order to
accomplish this, we use supervised learning to measure the

performance of each of the image parameters in detecting some
of the solar events. In this section, we detail our data sources
for our images and the event-related metadata that were
collected. We also briefly explain the FITS format, a commonly
used format in astronomy that is employed by the SDO
repository as the primary way for digitizing the AIA images.
Understanding of the structure of this format and how the AIA
images are stored in such a format is crucial for our pre-
processing steps.

3.1. HEK: Event Data

HEK is the source of the spatiotemporal data used in this
study. The HEK system, as a centralized archive of solar event
reports, is populated with the events detected by its Event
Detection System (EDS) from SDO data. There are considered
to be 18 different classes of events, such as active region,
coronal hole, and flare. For each event class, a unique set of
required and optional attributes is defined. Each event must
have a duration and a bounding box that contains the event in
space and time. We use this information to map the metadata of
the reported events to the corresponding AIA images.
For the evaluation of image parameters performed in this

study, we utilize two of the reported solar event types, active
region and coronal hole. There are multiple reporting sources
for active regions that are reported to HEK, and those reported
by the Space Weather Prediction Center (SWPC) of NOAA
(National Oceanic and Atmospheric Administration) are
assigned numbers daily. The NOAA active region observa-
tions, as Hurlburt et al. (2010) explains, is an event bounded
within a 24 hr time interval, and therefore HEK considers all
NOAA active regions with the same active region number to be
the same active region. However, there is a second automated
module from the Feature Finding Team that reports both active
regions and coronal holes described by Verbeeck et al. (2014),
called the SPoCa module, which reports detections every 4 hr.
It is the reports from this module that are utilized as the solar
events of interest in this study.

3.2. SDO: AIA Image Data

The atmospheric imaging assembly (AIA) has four tele-
scopes that provide narrowband imaging of seven EUV
bandpasses (94, 131, 171, 193, 211, 304, and 335Å) and
two UV channels (1600 and 1700Å) (Lemen et al. 2012). The
captured 4k images of the Sun, which are full-disk snapshots
with a cadence of 12 s, are compressed on board, and without
being recorded on orbit, and are transmitted to SDO ground
stations. The received raw data (Level 0) are archived on
magnetic tapes in the JSOC science-data processing facility.
The uncompressed data are then exported as FITS files with the
data represented as 32 bit floating values. At this point, images
are already calibrated; however, some corrections and cleaning
are still required owing to the existence of a small residual roll
angle between the four AIA telescopes. At this stage (level
1.5), the data are ready for analysis. In some repositories,
including Helioviewer, the FITS files are converted to JP2
format to reduce the volume of their database. In this study, we
use the level 1.5 (in short L1.5) FITS files and the JP2 images
to achieve a comparative analysis. In the following subsections,
we elaborate more on how FITS files are different from the JP2
images and why a fair comparison should take into account the

5

The Astrophysical Journal Supplement Series, 243:18 (23pp), 2019 July Ahmadzadeh, Kempton, & Angryk



differences in the distribution of pixel intensities in these two
image formats.

3.2.1. AIA Images in FITS

FITS, short for Flexible Image Transport System, is a data
format for recording digital images of scientific observations.
This format was proposed as a solution to the data transport
problem. For details on FITS format we refer the interested
reader to Greisen et al. (1980). Here, we only mention a few
key points about this format to provide the basic knowledge
needed for understanding the pre-processing steps that will be
discussed later. For processing of the FITS files we use the
nom-tam-fits4 Java library.

A FITS file consists of a header where the basic and optional
metadata are stored, and immediately following that is the data
matrix representing the image starts. In the header of AIA
images, a plethora of information is stored (Nightingale 2011)5

that might be useful for different purposes, such as the
minimum and maximum color intensities, the date of creation
of the file, the exposure time of CCD detectors of the AIA
instrument, the name of the telescope (e.g., SDO/AIA) and the
instrument (e.g., AIA), wavelength in units of angstroms (e.g.,
94Å), several descriptive statistics about the captured inten-
sities, radius of the Sun in pixels on the CCD detectors, and so
on. It is important to note that unlike the typical 8 bit quantized
image formats such as JP2, JPG, or PNG, which are limited to
256 different intensity levels, the intensity level in FITS format
is only bound to the sensitivity of the sensors of the camera.
Since the AIA cameras use a 14 bit analog-to-digital converter
(ADC) to translate the charge read-out from each pixel to a
digital number value (Boerner et al. 2011), the FITS color
intensity value has an upper bound at 16,384 (i.e., 214). Such a
level of precision comes at the cost of introducing a significant
degree of skewness in the distribution of intensities. In the next
section, this will be discussed in greater detail.

3.2.2. Distribution of Pixel Intensities

Since in this study we run all of our experiments on both JP2
and FITS images, it is important to have a good understanding
of the distribution of pixel intensities in these two formats, the
differences and similarities. We begin the discussion with the
theoretical pixel intensity extrema in FITS files, i.e., 0 and
16,383. For instance, in FITS format, the appearance of pixels
with the maximum brightness is not as frequent as it is in the
JP2 images. This is, of course, the result of the JP2 lossy
compression, which transforms the pixel intensity domain of
the FITS file into a much narrower range of 0–255. However,
these extreme values are very likely to appear in FITS images,
in the bright regions caused by the strong flares. In the other
extreme, for FITS format images, some negative values might
be present, which appear to be a by-product of the post-
processing data transformation (level 0 to level 1.5) since the
CCD detectors are not capable of recording negative values. As
a pre-processing step, we replace all the negative values with
zeros in order to clean the data. It is interesting to note that such
an extreme skewness in the distribution of pixel intensities is
not limited to a specific wavelength channel and is held true
across all EUV and UV channels.

Next, we would like to learn about the amount of
contribution of the extreme values in the distribution of pixel
intensities. In this, we are interested in knowing the percentage
of pixels in each image that carry such extreme values. To
answer this question, we studied 1 month worth of AIA FITS
images, from 2010 September 1 through 2010 September 30,
with the cadence of 2 hr, from nine wavelength channels
(excluding the visible wavelength, 4500Å), which sums up to a
total of 3240 images. In Figure 13, the pth percentile of the
observed intensities for each of the images within this period is
shown. The maximum values in these plots should be
compared against the maximum intensity reached during this
period, which is the theoretical maximum, i.e., 16,383 for all
nine wavelength channels. By looking at the spike in the first
plot (i.e., wavelength 94Å), we can see that 99.5% of the pixels
in the corresponding image had color intensities less than 44,
while pixels as bright as 16,383 existed in that very image.
Such significant gaps between the mean values of the
distributions and the maxima are summarized in Table 2.
The above statistical analysis suggests an extreme skewness

in the distribution of pixel intensities in FITS images. This is
illustrated in panel (a) of Figure 3. The visual effect of such
skewness is “underexposure.” In other words, if the pixel
values of a FITS image are (linearly) transformed to the range
of 8 bit images (i.e., [0, 255]), the output would be mostly
black, with few to no small, extremely bright regions. It is
important to note that our image parameters, which are utilized
in supervised machine learning models to distinguish the
different solar phenomena, are pixel-based features. That is, the
relative differences between the pixels’ brightness will be taken
into account and not their absolute values. Therefore, providing
the classifiers with the original L1.5 AIA data containing such
far-out values, and not treating the outliers appropriately, could
bias the fit estimates and distort the classification results. We
provide more details on how this issue is addressed in the next
section.

3.3. FITS, Clipped FITS, and JP2

In this section, we will explain how we pre-process FITS
files prior to the feature extraction and classification tasks. It is
worth noting that, since such pre-processing steps introduce
some changes on the pixel values of the original L1.5 FITS

Table 2
Maximum Percentiles of the Pixel Intensities of AIA FITS Images, Observed
from Nine Wavelength Channels, for the Period of 2010 September 1–2010

September 30, with the Cadence of 2 hr

W 80th 90th 95th 99th 99.5th Max

94 Å 7 10 15 34 44 16383

131 Å 19 30 43 88 123 16383

171 Å 568 777 1034 1935 2602 16383

193 Å 574 904 1354 2884 3968 16383

211 Å 154 258 429 1159 1673 16383

304 Å 116 151 188 327 431 16383

335 Å 16 26 43 171 305 16383

1600 Å 196 242 289 427 509 16046

1700 Å 1801 2205 2558 3517 4138 16215

4 Library: http://nom-tam-fits.github.io/nom-tam-fits/.
5 Documentation of FITS header keywords: http://jsoc.stanford.edu/~jsoc/
keywords/AIA/.
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files, for the sake of completeness of our later comparisons and
to avoid any bias in our study, we extend our experiments to
cover the three data types, JP2, L1.5 FITS, and clipped FITS,
as defined in the following sections.

3.3.1. Clipping FITS Images

Treating the outliers is a common practice in the process of
cleaning the data for any machine learning task, as they may
introduce a significant bias to the learning process and hence
reduce the effectiveness of the extracted features for the
classification goal. In the case of outliers being the extreme
values, the general approaches are (a) removal of the outliers,
(b) replacing them with some statistics (imputation), (c) altering
with expected extrema (capping), and (d) predicting their
“expected” values based on the local changes of the intensities.
Of course, the removal of the outliers and rescaling the values
into the quantized range of 8 bit values would leave us with
results not so much different from the existing JP2 images. This
would void our attempt to study the potential differences in
analysis of FITS versus JP2.

So, instead of removing outliers all together, we will employ
the capping approach, which is also known as clipping if
applied to images. The process involves finding a global
cutting point on the skewed tail of the probability distribution
function and shifting all the pixel intensities above this
threshold to this point. By “global” cutting points, we mean
thresholds that are fixed across all AIA images for each
wavelength channel. This ensures that the clipping filter affects
all of the images uniformly. The result of such data
transformation is that while no data points are removed (but
shifted to the cutting point), the extreme skewness of the
distribution is slightly mitigated. We use the maximum of the
99.5th percentiles of pixel intensities as the global cutting point
for each wavelength. That is, in the worst-case scenario, 0.5%
of the observed pixel intensities will be shifted to the new
maximum point. The chosen cutting points for each wavelength
are highlighted in Table 2.

3.3.2. Pixel Intensity Transformation

After having used the statistically derived cutoff points for
capping outlier pixel values, an additional processing step that
should be done is to rescale the now capped values. Note that
after clipping the FITS images, although the distribution of pixel
intensities is now more naturally skewed, they do not have the
same distribution as the pixels in JP2 images have. This is due to
the nonlinear transformation of the data in conversion of FITS to
JP2 format. This transformation is done by Helioviewer’s
JP2GEN project.6 The transformation model, as well as their
choice of the cutoff points, is primarily based on what the AIA
project recommended at the time and what the Helioviewer
project team wanted the images to look like. As applying a
transform function does not introduce a loss of information in
the data, and to ensure that the two sets of distributions are
similar in shape, we apply the same data transformation
functions that were used in the JP2GEN module.
The transformation methods differ depending on the

wavelength channel of the image. A linear transformation is
used for 1700Å images, a square root transformation for
images from 171Å, and a logarithm transformation for the
remaining channels. Note that, this is a bijection ( ⟶ t: )
and no data points are removed. The result of such
transformation is illustrated in Figure 3, on a sample AIA
image. It compares the distribution of pixel intensities in a FITS
image before clipping (panel (a)) and after clipping and
transformation (panel (b)), as well as the one derived from the
corresponding JP2 image (panel (c)). By looking at such a
comparison, one can see how the hidden bimodal shape of the
distribution is perfectly restored after clipping and transforma-
tion. This verifies both the correctness and the importance of
this step for an unbiased comparison of different image types.
In addition to that, a 3D model of the same AIA image in JP2
and in FITS both before and after clipping and transformation
is illustrated in Figures 4 and 5. In these visualizations, the
spikes (representing the magnitude of brightness) reach their
highest values at 16,383, 51 (i.e., » 2602 ), and 255 in FITS,
clipped FITS, and JP2, respectively. From this point on we
refer to the unclipped FITS images as L1.5 FITS and to the
clipped and transformed FITS as the clipped FITS.
In this pre-processing step, before clipping of the extreme

far-out values, we also take into account the exposure time of
the CCD detectors of the AIA instrument for each image. We
normalize the pixel intensities based on the specific exposure
time with which the image was captured. This is important
since it provides us a uniform brightness in our image
collection. These values are stored in the header section of
each image, under the keyword “EXPTIME,” as floating points
in double precision (in s; Nightingale 2011).
In summary, we analyze the AIA images in three different

formats: L1.5 FITS (as archived in JSOC), clipped FITS, and
JP2 (as provided by Helioviewer API) images. The L1.5 FITS
and JP2 images are on the two extreme ends of the pre-
processing path. L1.5 FITS image are only pre-processed in
JSOC for cleaning and calibration in the process of digitizing
the images and are relatively large files (varying from ≈5 to
≈14 MB), whereas JP2 images are fully pre-processed and
compressed (down to ≈1 MB) to a typical 8 bit quantized
image format. Clipped FITS images lie somewhere in between.
They do not have the extreme far-out intensities as the L1.5

Figure 3. Distribution of pixel intensities in (a) a FITS image, (b) a clipped
FITS image, and (c) a similar image in JP2 format. The illustration shows how
clipping of the raw FITS image can reveal the hidden shape of the bimodal
distribution, which is not visible in panel (a) owing to the large number of bins.

6 JP2GEN: https://github.com/Helioviewer-Project/jp2gen.
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FITS images do, but at the same time, they are not limited to
255 gray levels as JP2 images are. As we mentioned before, we
use all these three image types to evaluate our image
parameters in Section 5.

4. Settings of Image Parameters

Now that we have studied our data types and the image
parameters to be tuned, we need to spot the variables in each
image parameter that can determine the performance of that
parameter. In this section, we provide more information about
each of the four image parameters and the implementation
details of their computation that allow for the tuning of specific
variables and their domains of changes.

4.1. Entropy and Uniformity

As discussed in Section 2.1.2, entropy and uniformity
parameters solely depend on the normalized histogram of the

image color intensities. And it is in the nature of histograms
that different choices of the bin size result in different levels of
smoothing the histogram. In other words, p in Equations (1)
and (2), which is the probability density function of the random
variable i, is defined differently for different bin sizes.
Although there are several general rules for determining the
bin size, such as Sturges’s formula (Sturges 1926) or Scott’s
rule (Scott 1979), often the best choice is the one that is data
driven and can be verified by the target classes of the data.
So, for these two parameters, the optimal bin size is the

variable that will be tuned for utilizing the experiments
described in Section 5. The optimal value of the variable is
independently evaluated for each wavelength of image, and a
set of these values are obtained through the experimental
evaluation, one for each wavelength of image we included in
the resultant data set. The domain set for this variable is the set
( ) Ì  I0, or , depending on the image type, where I is the
max color intensity for the image type under study. For
example, the domain set for this variable on the JP2 images
from Helieoviewer will be the set of [ ] Î 0, 255 , whereas the
domain set for L1.5 FITS will be the set of [ ] Î 0, 16383 .

4.2. Fractal Dimension

Earlier, in Section 2.1.3, we explained how fractal dimension
utilizes the box counting method to measure the dimension of
the fractal-like shapes. However, there are a number of
different decisions on the implementation of this method that
can have an effect on the resultant values that it produces. For
instance, the decision on what edge detection algorithm and
what values are used for variables of each of the different
algorithms will produce differing results. In the following
sections, we will explain how this method will be applied to
AIA images and what variables will need tuning in our
experimental evaluations of Section 5.

4.2.1. Box Counting on AIA Images

To compute the fractal dimension image parameter, we first
need to know how the box counting method that we discussed
before can be applied on the AIA images. Let us assume that an
edge detection algorithm has been chosen and the appropriate
settings were found for the algorithm. We can then apply an
edge detection algorithm to an AIA image and then treat the
detected edges as the fractals’ contour whose dimension is to
be measured. Then, for each ε (box’s side length) from a
predefined domain, we count the number of grid cells that
overlaps with an edge. Considering the resultant pairs,

( )e eá ñN, , as a set of points in the 2D feature space of box
sizes and the number of boxes, the slope β of the fitted
regression line can then be measured. β is the fractal dimension
corresponding to this region. Since the patch size of our image
segmentation discussed before is 64×64 pixels, the box size
in the above procedure will have an upper bound of 64 pixels.
To have a natural sequence of side lengths for these boxes, we

Figure 4. 3D view of an AIA FITS image from the 171 Å channel, with values ranging from 0 to 16,383.

Figure 5. 3D views of an AIA image from the 171 Å channel, in different
formats. The z-axis represents the pixel intensities. Notice that due to the
extremely large spikes in the raw FITS image, the full size of the model for raw
FITS image, with the same proportions used in the other two, could not fit here.
An uncut version of this model can be seen in Figure 4.
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use the set of all powers of two within this range, i.e., {2, 4, 8,
16, 32, 64}, as the domain of the box side length.

Fractal dimension provides a measure to quantify the
complexity of the shapes’ contour, with larger values indicating
higher complexity. In Figure 6, we show how the complexity of
a shapes’ contour affects the fractal dimension value by using
two groups of test signals that are generated to mimic fractal-
like shapes. One set is created by adding an incrementally
increasing random noise to a sine wave, and the other one is
created by adding an incrementally increasing frequency of
another sine wave to the base sine wave. Measuring the
dimension of each signal, a roughly linear growth of fractal
dimension is observed that conforms to our expectation.

4.2.2. Edge Detectors

The brief explanation of the box counting method tells us
that the effectiveness of the fractal dimension parameter in
describing the textural feature of an image relies on the quality
of the edge detector method that provides the fractal-like
shapes. That is, a noisy input, as well as an overly smoothed
image, may render this parameter completely ineffective. This
fact is the motivation for the following survey of existing edge
detection methods and their performance on AIA images. Note
that for this application, both the quality of the detected edges
that are to be the input to the box counting method and the
execution time of each of the edge detection methods are
important, as a longer execution time will require more
computational resources for the near-real-time constraint to
be met.

Among the existing edge detection methods, we choose
Sobel (Sobel 1973), Prewitt (Prewitt 1970), and Roberts Cross
(Roberts 1963) edge detectors as the classical candidates;
Canny’s (Canny 1986) edge detector as a popular, modern
method; and also SUSAN (Smith & Brady 1997) as a less
popular but a more recent approach. It has been shown in
several different comparative analyses (Heath et al. 1996;
Sharifi et al. 2002; Maini & Aggarwal 2009) that the Canny
edge detection algorithm performs better than all of its

ancestors in most scenarios, especially on noisy images. Given
the special noisy nature of the AIA solar images, with layers of
noisy textures instead of solid foreground objects and back-
ground landscapes, the classical methods are likely to fail. That
being said, we do not wish to simply rely on general knowledge
about the performance of these methods on textural inputs.
Instead, we apply these filters on AIA images and compare the
quality of the detected edges that are to be the input to the box
counting method.
The first three edge detection methods, Sobel, Prewitt, and

Roberts Cross, are relatively simple algorithms. They each
begin by estimating the first derivative of the image by their
corresponding gradient operators (masks). Then, since the
magnitudes of the gradient vectors do not give thin and clear
edges, nonmaximum suppression is also applied (as it is done
in Canny) to eliminate the multiple representations of each
edge. The results of the Sobel, Prewitt, and Roberts Cross
methods can be seen in Figures 7(b), (c), and (d) respectively.
Canny edge detection, however, is more complicated and

starts with a prior smoothing step using a 5×5 Gaussian
kernel. This mitigates the effect of noise on calculation of the
gradient. Then, using a 3×3 Sobel operator, the gradient of
each pixel, g=(gx, gy), which is a vector with magnitude

Figure 6. Experiment that shows the growth of fractal dimension on a series of
sine waves in two different situations: (a) with an iterative increase of random
noise to the signal and (b) with an iterative increase of frequency of another
sine wave to the signal. The results confirm the sensitivity of this parameter to
the complexity of the shapes’ contour.

Figure 7. Cut-out of an active region instance observed on 2012 March 7 at
00:24:14:12 UT from the 171 Å channel, as well as the outputs of different
edge detector methods. In panel (a), the relative size of the boxes (i.e., 64, 32,
16, 8, 4, and 2 pixels) used in the box counting method is also illustrated.
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2 2 and orientation ( )g garctan y x , is calculated. Each

pixel having nine adjacent neighbors allows nine different
angles for the edge passing through that pixel. Since only the
orientations of the edges matter (and not the direction), the
choices will be limited to four. Therefore, the continuous
range of the calculated angles should be quantized and mapped
to one of the following choices: 0°, 45°, 90°, or 135°. This is
followed by a thinning process of the edges (i.e., nonmaximum
suppression), which eliminates the pixels that are labeled as
edges, but their locations are not in line with the calculated
orientation of the edges. At the end, a hysteresis thresholding
comes to clean up the disconnectivity of the edges by using two
thresholds: a low threshold, lt, and a high threshold, ht. Any
pixel with gradient magnitude greater than ht is labeled as an
edge, and it is labeled as a nonedge if its magnitude is less than
lt. For pixels with magnitudes between lt and ht, they are
considered part of an edge if and only if they are connected to a
pixel that is already labeled as an edge. This last step, next to
the initial smoothing step, makes the Canny edge detector an
expensive filter, but this cost pays off by producing less broken
edges and a less noisy output.

The SUSAN edge detector, on the other hand, adopts a very
different approach by not using any image derivatives, which
makes it a good candidate for noisy images like ours. This is
the very reason for including it in our list, despite its
computation cost. This edge detector has a core concept called
Univalue Segment Assimilating Nucleus (in short USAN),
which is the central point (nucleus) of the circular masks,
and a principle called the SUSAN principle, which is stated
as follows: “An image processed to give as output inverted
USAN area has edges and two-dimensional features strongly
enhanced, with the two-dimensional features more strongly
enhanced than edges.” The intensity of the nucleus and the
second moment of the area of USAN masks are used to find the
edge directions. And eventually, similar to Canny, a nonmax-
imum suppression will be applied to clean up the edges. In this
study, we use the implementation of this method from the
OpenIMAJ library (Hare et al. 2011).

To compare the quality of these edge detectors, we fed each
of those methods with a variety of AIA images varying in the
queried time of the solar events, wavelength channels, and the
appearing event types. Figure 7 illustrates one of the visual
comparisons: a cut-out of an active region instance observed on
2012 March 7 from the 171Å channel and the output of each of
the above-mentioned edge detectors. As it is visible in this
comparison, the Canny edge detector provides much cleaner
edges and maintains the orientation of the coronal loops (that
electrified plasma flows along) of the flaring region, whereas
others barely distinguish the texture caused by the powerful
magnetic fields from the quieter (darker) areas. Given that the
edges detected are to be passed to the box counting method
with the box sizes as large as those shown in Figure 7(a), it is
visually convincing that for the Sobel-like methods (i.e., Sobel,
Prewitt, and Roberts) such a uniform distribution of the
extremely short and broken edges does not lead to a reliable
measure of the dimension corresponding to different regions.
About SUSAN’s output (see Figure 7(e)), although the results
are very different from the others, it does not seem to be a good
choice for noisy textures, as it does very little in identifying the
visible edges.

Another argument in favor of the Canny edge detector is the
tunability of this method, which is possible by adjusting its

three variables: the standard deviation of the Gaussian
smoothing (σ) and the lower (lt) and higher (ht) thresholds,
as discussed in Section 4.2.2. In Figure 8, the effect of such
tuning on the same sample active region used before is shown.
Note the smooth decrease in the noise level as σ increases,
while the general patterns and directions are maintained.
Regarding the running time of these methods, Table 3

summarizes our comparisons. Although the execution time of
the utilized methods is an important factor in general, in this
case it does not seem that there are many choices left for us,
except the relatively most expensive one, i.e., the Canny edge
detector. This is because only this method is producing the
relevant input for the box counting method of the fractal
dimension parameter. The decision is between a faster method
that mostly produces uniform noise and a relatively more
expensive one that provides the right input (where the physical
characteristics such as the coronal loops as the curving lines of
powerful magnetic fields are enhanced) for fractal dimension.
The results listed in Table 3 are the average execution times

measured by running each of the algorithms on a group of 100
full-disk AIA images of size 4096×4096 pixels in 10
different wavelength channels, having different event types.
To put the numbers in context, it is worth noting that these
experiments are conducted on a Linux machine with a core
i5− 6200U CPU, 2.30 GHz×4, and 8 GB of memory, while
for any operational task a much more powerful machine would
be used to process the images. Therefore, the running time of
the Canny edge detector is expected to be less than 3.619 s for a
single image.
Having the Canny edge detector chosen as the method to

filter the input AIA images and pass them to the box counting

Figure 8. Canny edge detector on an active region instance, with lt=0.02,
ht=0.08, and σ varying from 1 to 6, starting at the top left image and ending
at the bottom right.

Table 3
Average Execution Time for Different Edge Detection Methods on

4096×4096 Pixel AIA Images

Method Execution Time (s)

1 Sobel 2.267

2 Prewitt 2.208

3 Roberts 1.809

4 SUSAN 0.674

5 Canny 3.619
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method, tuning of the fractal dimension parameter would then
depend on the choices of lt, ht, and σ of the edge detector. Our
experiments show that by changing σ while having lt and ht
fixed at a narrow interval close to zero (e.g., lt=0.02 and
ht=0.08), we could cover almost the entire spectrum of the
possible outputs. This observation leaves only one variable, σ,
for the tuning of this image parameter.

4.3. Tamura Directionality

The general formula to compute the directionality parameter
was explained in Section 2.1.4. As it calculates the weighted
variance of the gradient angles, it requires the gradient of the
image to be calculated beforehand. For an image I, the gradient
vector is
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There are different kernel convolution matrices used to
approximate the gradient vector of an image. Since no pre-
processing such as smoothing is required for this task, their
computation time depends only on the kernel size. Therefore,
we limit our choices to the simple but well-known gradients,
such as Sobel–Feldman (Sobel 1973), Prewitt (Prewitt 1970),
and Roberts Cross (Roberts 1963). The last one has a 2×2
kernel matrix that makes it slightly faster but more sensitive to
noise, due to its smaller kernel matrix compared to the 3×3
matrices of the other two. After we visually studied the
remaining two kernels, we observed that both their gradient
outputs and the histograms of angles are fairly similar.
Therefore, we decided to utilize Sobel–Feldman as our gradient
mask, which seems to be more popular and widely used in
different libraries and applications.

From the derived gradient matrix, the histogram of angles
can be computed and passed to Equation (3). Now, the tuning
of Tdir has come down to a peak detection method that
identifies the “dominant” peaks. Therefore, to achieve any
improvement on this parameter, a peak detection algorithm
must be utilized. There has been a great deal of effort in
identification of peaks and valleys, especially in the domain of
time series analysis and signal processing (Palshikar 2009). But
it is important to note that peak identification is a subjective
task that is often determined by the general behavior of the data
under study. Since peak detection tends to be a domain-specific
task, where each domain has different criteria for the definition
of peaks, it is logical to design a peak detection method that is
more compatible with the type of the data we have, i.e., the
distribution of the gradient angles of the AIA images. The
method that we have chosen to utilize is explained in greater
detail in Ahmadzadeh et al. (2017). In the next section, we
briefly review this approach.

4.3.1. Peak Detection

In general, the peak identification task is to determine the
domains, di, within which the local maxima of the data
sequence C={c1, c2, L, cn} are located. In other words, the

goal is to identify di values such that $ Î " Î c d c d c c, ,i i i i .
We build our algorithm on the basis of a naive assumption that
it is enough for each data point to be compared only with its
adjacent points in the sequence, meaning that for a local
maximum ci, the domain would be { }= - +d c c c, ,i i i i1 1 . If ci
satisfies the condition, we consider it a candidate peak. Then,
we pass the candidate peaks to a threefold filtering process to
pick only the most significant ones. At each step, we check one
of the user-defined criteria, namely, the threshold, t, the
minimum distance, d, and the maximum number of peaks, n.
First, we remove all candidate peaks that lie below the
threshold t. The peaks that are too close to a dominant one will
be removed in the next step. Starting from the identified peaks
with greater values, we simply remove their neighbors within
the radius of d. And finally, just to provide a control tool for the
cases where a certain count of the peaks is of interest, we keep
the top n peaks and drop the rest.
The proposed algorithm, in spite of its simplicity, provides a

flexible tool to determine the significance of the dominant
peaks in a data-driven fashion. Using this algorithm, tuning of
this parameter is bound to the three above-mentioned variables
of the peak detection method.

4.4. Summary of Settings

In summary, for each image parameter we managed to
identify the variables and their domains that play a role in
tuning of that parameter. We use these variables to find the best
settings for the image parameters to obtain the highest accuracy
in prediction of the solar events. The variables of interest for
each of the four image parameters are summarized below:

1. Uniformity: the number of bins, n.
2. Entropy: the number of bins, n.
3. Fractal dimension: the Gaussian smoothing parameter

used in the Canny edge detector, σ.
4. Tamura directionality: the threshold, t, the minimum

distance, d, and the maximum number of peaks, n, used
in our peak detection method.

5. Experimental Analysis

In this section we discuss the tuning process of the image
parameters listed in Table 1. We start with explaining our
methodology as our general approach toward tuning the
parameters, and then we elaborate on the details of the task
for each of the four image parameters separately. Finally, we
report the performance of each of the parameters in classifica-
tion of active region, coronal hole, and quiet-Sun event
instances.

5.1. Methodology

Among the 10 image parameters, the descriptive statistics
(i.e., μ, σ, μ3, μ4) depend only on the intensity value of the
pixels. On the basis of these statistics, relative smoothness and
Tamura contrast can be then calculated. None of these six
parameters have any constraints; thus, they are not tunable. For
the remaining four parameters, we run a univariate parameter
tuning process on their constraints, which we identified in
Section 4.
For each parameter we first find the set of n key constraints

(or variables) and identify appropriate numeric domains, di, for
each constraint { }Îi n1, 2, ..., . As a result, we will have a
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feature space of dimension ∣ ∣ ∣ ∣ ∣ ∣´ ´ ´d d d... n1 2 for that
particular image parameter, where ∣ ∣di is the cardinality of the
domain set di. In addition, to describe a particular event, a
region of interest must be processed that spans over a variable
number of grid cells. This presents the problem of comparing
variable-sized regions of interest in order to find the optimal
setting for the various parameter variables. For instance, if the
region spans over k grid cells, it will then be represented by a
vector of length k, for each image parameter.

So, in order to compare the variable-sized regions of interest
that produce different-length vectors, we use a seven-number
statistical summary on the resultant vectors. This process will
map each variable-sized parameter vector that is computed on a
region to a consistent length vector of seven different values.
These vectors are computed independently for each of the nine
UV and EUV wavelength channels from the AIA that we
include in our investigations. Since these channels produce
significantly different images of the Sun, we expect that each
channel will require individual tuning of the parameter
calculation variables in order to take such differences into
consideration and produce the best results for each wavelength.

Clearly, even for a very small domain for the constraints of
any one parameter, a high-dimensional space will be generated
by this statistical summary method, and therefore dimension-
ality reduction is necessary to minimize the effect of the well-
known curse of dimensionality. To this end, we use the F-test
statistic to rank each of the settings and then select the best
ones per wavelength. We use only the best settings to produce
our final feature space, which is then utilized to provide a
comparison of the three different input image types through a
supervised classification of solar events. The ranking process in
the F-test relies on grouping of the data and measuring the ratio
of between-group variability and within-group variability.

Our methodology can be summarized in the following five
steps:

1. Determining the dimension of the feature space (i.e.,
identifying the constraints and their domains).

2. Building the feature space for the period of 1 month (i.e.,
2012 January).

3. Reducing the dimensionality of the feature space using an
F-test (i.e., finding the best settings per wavelength).

4. Building the (reduced) feature space for the period of 1
year (i.e., 2012).

5. Measuring the quality of the parameter using supervised
learning.

In the following sections, after we talk about the data set we
used for our experiments, we explain the specific details of our
methodology for each parameter.

5.2. Data Set for Supervised Learning

For the learning and classification phase, we employed the
same methodology in collection of data that was used by Schuh
et al. (2017) to collect 1 yr worth of AIA images over the entire
2012 calendar year and the spatiotemporal data related to the
solar events reported in this period. Here, we only briefly
explain the data acquisition process and refer the interested
reader to the article where the entire process is explained in
great detail.

We target two solar event types, namely, active region (AR)
and coronal hole (CH), which are in particular of interest for
heliophysicists and also because of their similar reporting

characteristics that make region identification easier. As our
ground truth, we rely on the AR and CH catalogs of the HEK,
which are detected by SPoCA (Hurlburt et al. 2010). In year
2012, HEK reported 13,518 AR and 10,780 CH event
instances, at an approximately 4 hr cadence. Since there are
more AR instances, we first collect all of those instances and
then look for CH instances within a time window of ±60
minutes from each report of an AR instance. Those AR
instances that could not be paired with a temporally close CH
instance are dropped. The report of each event contains both
temporal and spatial information. We use the time stamps of
the reports to retrieve the corresponding AIA images (in JP2
and FITS format). The spatial data of each instance consist of a
center point for the reported event, its bounding box, and a
polygonal outline. We use the bounding boxes to extract the
image parameters on the region corresponding to each event
instance in our training and test phase. With such constraints,
we managed to retrieve 2116 unique pairs of AR and CH
instances. As our supervised learning model requires a control
class, an event type that points to a region of solar disk with no
report of any other solar events, an artificial event called quiet
Sun (QS) is introduced. To collect a set of such instances
temporally linked to our AR-CH collection, for each report of
an AR event, the bounding box of that event is used to
randomly search for regions that have no intersection with any
reports of AR or CH events.

5.3. Determining the Feature Space

Generally, in the machine learning discipline, a feature is a
measurable property of a data point being observed. For
instance, for AIA images as the data points in our study,
entropy of the pixel intensities of an image is a feature derived
from that image. Given d different features, a feature space is a
d-dimensional space where each of its dimensions corresponds
to one of the features. Here, we are trying to tune our image
parameters one by one, and we may have one or more variables
for each image parameter. Hence, instead of having multiple
features, we are dealing with multiple variations of a single
feature. In other words, we derive multiple features from one
single parameter and consider them as different features.
Therefore, the feature space defined by an image parameter
with one variable that takes ∣ ∣d different values is a d-
dimensional space. Similarly, for an image parameter with two
variables, a (∣ ∣ ∣ ∣´d d1 2 )-dimensional space will be generated,
where ∣ ∣di is the cardinality of the domain set for the ith
variable.

5.3.1. Feature Space for Entropy and Uniformity

The admissible feature space suggested by entropy or
uniformity parameter is a d-dimensional space, where d is the
cardinality of the candidate set for the number of bins. The
evaluation of both entropy and uniformity is therefore defined as
a search over a uniformly distributed number of bins to find the
best performing set for our classification task. For the original
images in both JP2 and FITS format, the pixel intensities vary
within a fixed range, and therefore the general form of the
candidate set can be formulated by the following formula:

· { }
⎧⎨⎩

⎢
⎣⎢

⎥
⎦⎥

⎫⎬⎭-
Î Îk

l
l k l

max min
; , 1, 2, 3, , ,

where l is the bin size and k is a scalar.
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For JP2 images (min=0, max=255), our visual experi-
ments show that l=20, and letting the number of bins be
chosen from the set { }= 12, 24, 36, ,255JP2 gives us a
comprehensive enough candidate set for creating the feature
space. Using such a set, 21 different entropy (similarly
uniformity) parameters will be generated, with bin widths
ranging from 1 to 21 units. Similarly, for L1.5 FITS images
(min=0, max=16383), the number of bins will be chosen
from the candidate set { }= 780, 1560, 2340, , 16383FITS .

For the clipped FITS images, however, since the max values
differ from one wavelength to another, the candidate set should
also adapt to the corresponding range. As the new maxima are
much smaller than the global maximum, due to the transforma-
tion of the pixel values (discussed in Section 3.3.2), the above
model results in bagging of most of the pixel intensities in one
single bin and leaving the other bins empty. To avoid such an
overly smoothed histogram, in addition to substituting the after-
clipping maxima instead of the global maximum, we downsize
the bins by a factor of 10. This is, of course, meaningful since for
the clipped images the pixel intensities are real numbers, as
opposed to the integer intensities in the L1.5 FITS images. For
example, for AIA images from the 94Å channel, since the after-
clipping range of the pixel intensities is [0, 44], the candidate set
for the number of bins would be {20, 41, 62, L, 440}, where in
the most extreme case the bin size will be as small as 1/10 of a
unit (i.e., 440 bins for the interval 0–44). In general, regardless of
the wavelength, ∣ ∣ ∣ ∣ ∣ ∣= = =   21JP2 FITS cFITS .

5.3.2. Feature Space for Fractal Dimension

Our experiments in Section 4.2 conclude that the feature
space formed by this image parameter will be determined only
by the domain of the variable σ in the Canny edge detection
method. They also show that for σ greater than 5 (when
lt=0.02 and ht=0.08) the results are very similar to one
another and they all maintain only the very strong edges.
Observing the amount of changes in the output as σ increases,
this suggests that the candidate set { }= 0.0, 0.5, 1.0, , 5.0
generates an admissible space.

5.3.3. Feature Space for Tamura Directionality

As our analysis in Section 4.3 shows, the variables in our
peak detection method, i.e., t and d, determine the feature space
for Tamura directionality. As for the threshold on the frequency
domain of the peak detection method, we consider the first,
second, and third quartiles of the frequency, below which the
peaks would be ignored, as our candidates. We also add the
90th percentile to allow observing the results for the cases in
which only the significantly dominant peaks are to be taken
into account. The domain for this variable is therefore the
set { }= 0.25, 0.50, 0.75, 0.90 .

To determine the domain for d, the minimum distance
between the peaks, we should take a look at the histogram of
angles. With n bins, such a histogram can be generated as
follows:
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where Nθ(x) is the frequency of the angles within the interval

)( )⎡⎣ +p pk k, 1
n n2 2

. Since what Tamura directionality targets is
not the angle but the direction of the lines, the resultant

histogram will be symmetric around θ=0°. To avoid
redundant computation, we consider only the angles within
the interval [0, 180°). Setting n to 90 gives us a histogram with
the breaks at 0°, 2°, 4°, L, 180°. For this domain of angles, the
set { }= 1, 3, 5, , 29 is an admissible domain for the
minimum distance between two peaks. Note that those values
indicate the minimum distance (in number of bins) for a peak to
have from an already-identified peak, to be considered a
dominant peak. In Figure 9, the heat maps of Tamura
directionality for three different settings of d are shown.

5.4. Building the Feature Space

For each of the four image parameters, we compute its
feature space by calculating all different variations of that
parameter on one month worth of 4k AIA images (2012
January). This is done on JP2, FITS, and clipped FITS images,
separately.

5.5. Dimensionality Reduction

To reduce the dimensionality of the computed feature
spaces, the F-test in one-way analysis of variance (ANOVA)
is used to pick the feature (per wavelength) that has the highest
rank in separation of the three solar event types, active region,
coronal holes, and quiet Sun. The score of each feature is
computed as the ratio of between-group variability and within-
group variability, where all the instances of each solar event
type form a single group. The ranking procedure is as follows:
for each feature, or setting, all the instances of the three event
types reported by HEK will be collected. Using random
undersampling, we make sure that the number of instances in
all three categories is the same to remedy the class-imbalance
problem. After computing the features of interest on the image
cells spanning the bounding boxes of events, the results will be
summarized using the seven-number summary. With a 10-fold
sampling, we use the F-test to rank the settings. We then
aggregate the scores per setting on its seven-number summary,
and finally we sort the settings by their scores and report the
highest per wavelength. As an example, the parameter Tamura
directionality on JP2 AIA images in the 94Å wavelength
channel, with t= 25 and d= 1, was ranked the best compared
to any other variation of that image parameter. Table 4
summarizes the best setting per wavelength channel, for each
of the three image formats.
To help understand how the best setting for an image

parameter provides a better distinction between the instances
of different event types, an example is illustrated in
Figure 10. In this visualization, the image parameter is

Figure 9. AIA image in JP2 format from the 171 Å channel, and the heat maps of
Tamura directionality with different values for the variable d, where t=90%.
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Tamura directionality, and the chosen statistics is Q1 (first
quartile). The difference between the distributions of Q1 of
this parameter with the best setting as opposed to an arbitrary
setting, on the three event types, is shown. Note how in panel
(a), where the best setting is used, the three distributions are
much more distinguishable compared to panel (b), where an
arbitrary setting is used.

After this step, for each of the four image parameters, the
dimensionality of the defined space shrinks down significantly,
from several thousands to 63 (for nine wavelength channels
and seven summary statistics).

5.6. Building the Reduced Feature Space

After reducing the dimensionality, the best setting for each
image parameter is used to form the reduced feature space. This
new feature space will then be generated based on 1 yr (2012
January 1 through December 31) worth of AIA images, for JP2,
L1.5 FITS, and Clipped FITS images, with a cadence of 6
minutes.

5.7. Classification

To measure the performance of the four image parameters
after finding the best setting for each of them, we employ two
classifiers, namely, Naïve Bayes and Random Forest.7 The
Naïve Bayes classifier (Maron 1961) is a simple statistical
model that learns by applying Bayes’s theorem with a strong
independence assumption on the labeled data and classifies
based on the maximum a posteriori rule. In the context of our
data points, for an event instance et reported at time t, which
can be of type AR, CH, or QS, it calculates the feature vector

{ }=v x x, ,t n1 , where n is the dimension of the defined
feature space, and then classifies etʼs event type, denoted by ŷt,
as follows:

ˆ ( ) ( ∣ ) ( )
{ }

=
Î =

y p C p x Cargmax . 7t
C

k
i

n

i k
AR,CH,QS 1k

Since the Naïve Bayes classifier relies only on the
probability of the occurrences of the events, the model is
expected to perform poorly in classification of the less trivial
cases. For the sake of completeness, we also employ Random
Forest classifier (Ho 1995) for evaluation of the image
parameters. This is an ensemble learning model that builds
the decision trees on samples of data (a process called bootstrap
aggregating) and classifies the class label by taking the majority
vote of the trees classifying each data point. For our data, we
generate a forest of 60 different trees, each of which classifies
the event types of the instances, and at the end, the ensemble
model makes the final decision by taking the majority vote of
the trees.
For both classification models, we perform a k-fold cross-

validation by sampling the events’ instances on all combina-
tions of any group of 4 months in the year 2012, resulting in

⎜ ⎟⎛
⎝

⎞
⎠ =

12

4
495 different trials. This allows having the test sets

unbiased to the potential patterns in occurrence of solar events.

Table 4
Best Settings per Wavelength for the Four Image Parameters across Three

Image Formats

Wavelength Uniformity
Fractal

Dimension

Tamura
Direc-
tionality Entropy

(Å) n σ t d n

JP2 94 12 2.0 25 1 12
131 36 1.0 25 1 60
171 60 4.5 75 1 12
193 97 1.0 25 1 24
211 84 1.5 25 1 12
304 36 3.5 75 1 12
335 97 2.0 25 1 12
1600 109 2.5 90 1 12
1700 48 4.0 90 3 12

Clipped
FITS

94 62 4.5 7 5 104

131 1230 4.0 7 4 175
171 3717 4.5 9 3 1239
193 1889 5.0 6 2 1889
211 796 2.0 9 4 796
304 615 5.0 9 4 615
335 1888 4.0 7 4 435
1600 5090 4.5 7 4 2666
1700 1970 3.0 4 3 1970

L1.5 FITS 94 12 4.0 25 21 3900
131 36 5.0 90 1 780
171 60 0.0 25 23 780
193 97 1.0 75 1 780
211 84 1.0 75 1 780
304 36 5.0 75 1 780
335 97 4.0 25 21 2340
1600 109 5.0 90 3 780
1700 48 3.5 25 23 780

Note. In this table, n indicates the number of bins used to compute entropy or
uniformity, t are d are the threshold and peak-to-peak distance, respectively,
used to measure directionality, and finally the variable σ stands for the
Gaussian smoothing parameter required in computing fractal dimension. For
more details about these variables, see Section 4.4.

Figure 10. Difference between the distribution of statistics of the best setting
for (a) an image parameter and (b) an arbitrary setting, on 1 month worth of 4K
AIA images. The three colors distinguish the distributions of different solar
event types (active region, coronal hole, and quit Sun), and the dotted lines
indicate the mean values of the distributions. (Note how in panel (a) the three
distributions are more distinguishable. In this example, the image parameter is
Tamura directionality, the wavelength is 94 Å, and the statistics is the first
quartile.)

7 We use the Statistical Machine Intelligence and Learning Engine (smile)
Java library: http://haifengl.github.io/smile/.
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Using repetitive random undersampling, we avoid the negative
effect of imbalanced data sets as well.

For reporting the performance of these models we choose the
f1-score measure (also known as F-Score or F-Measure), which
is the harmonic average of the precision and recall. Letting
precision p be the number of correct positive classification
divided by the total number of (correct or incorrect) positive
results returned by the model, and letting r be the number of
correct positive classifications divided by the total number of
instances of positive class, f1-score can be formulated as
follows:

· ( )
⎛
⎝⎜

⎞
⎠⎟- =

´
+

p r

p r
f1 score 2 . 8

Since we have three classes (AR, CH, and QS) for our
classification models, f1-score should be reported for each class
separately. To measure p and r for our ternary model, we use
the one-against-all strategy, which aims to classify an object of
one type compared to the other two, whereas the one-against-
one strategy would consider all pairs of classes and report the
classification performance separately, which is unnecessary for
our task. Furthermore, it is important to note that the

undersampling step employed in the k-fold cross-validation
provides balanced data for the models. Therefore, our choice of
the performance measure does not need to be class-imbalance
resistant, e.g., True Skill Score.
The results of our experiments, using both Naïve Bayes and

Random Forest models, are illustrated in Figure 11. The key
points about the results are enumerated below:

1. The performance of the two models is based on single
image parameters and not their combinations. Random
Forest, as we predicted before, performs significantly
better. Using this model, one can observe that each of the
four image parameters can individually classify active
region instances fairly well (f1-score>0.8) regardless of
the image format. For the coronal hole instances, the
results are only slightly lower but consistent (≈0.7 when
JP2 images are used). The fact that such high confidence
levels are reached using a set of very basic image
parameters that are not domain specific (i.e., not tailored
for classification of phenomena such as solar events)
should stress the importance of our choices.

2. Note that the relatively poor performance of both of the
models in classification of QS is not a large concern,

Figure 11. Classification results on the three event types (active region, coronal hole, and quiet Sun) using Naïve Bayes (first row) and Random Forest (second row)
classifiers are illustrated here, separately for each event type using the f1-score measure. Each reported measure is averaged over 495 trials of a 10-fold cross-
validation sampling. Each trial was executed on a random sample of events’ instances from 13,518 AR, 10,780 CH, and 13,518 QS event instances, within the period
of 2012 January 1 through 2012 December 31. For each bar, the number on the bottom represents the f1-score value, and the error interval shows the standard
deviation of the f1-score. The image parameters are entropy (EN), uniformity (UN), Fractal Dimension (FD), and Tamura Directionality (TD).
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since it is just a synthesized event and some other event
types that are reported to HEK but not used in this study
could be adding noise to the instances labeled as QS,
resulting in lower purity in the class labels. However, the
results are still above those expected if the samples were
simply assigned a random label and therefore indicate the
possibility that these parameters can transfer to another
event type classification.

3. Another very important aspect of the results is in the
comparison of the classification on different image
formats, as the plots depict. For the Random Forest
classifier, in almost all cases, the JP2 format is shown to
be the better input for the model, compared to both FITS
and clipped FITS. Even for the Naïve Bayes classifier,
which did not perform as well as Random Forest did,
there is no consistent superiority when FITS or clipped
FITS images were used compared to the JP2 format. This
is despite the fact that the FITS format theoretically
contains more information than the compressed JP2 and
therefore produces much larger files. In fact, an image in
FITS format is 5–14 times larger than its JP2 version,
depending on the wavelength channel used. With such
understanding, we can now make our entire image
repository ≈10 times smaller in size, with even some
improvement in classification of solar events.

As one of our main contributions was to provide a data set of
tuned image parameters, we compare the classification of the
solar events before and after the tuning steps on the image
parameters. As shown in Figure 12, our tuning results in
significant improvement for all of the four image parameters
across the event types. Note that the performance on the image
parameters without tuning is only slightly above the random
guess, which is 0.33. This is simply because the previous
computation of the image parameters lacks the thorough
analysis of the individual parameters and the tailored tuning
steps.

Of course, the scope of this study is limited to tuning the
image parameters, and the results in Figures 11 and 12 reflect
only the impact of the obtained image parameters, while better
models (with higher performance or more robustness) can

potentially be trained by exploring different classifiers, such as
SVM or even deep neural networks, and tuning their
hyperparameters in a data-driven fashion.

6. The Resultant Data Set

Having demonstrated the effectiveness of utilizing tuned
parameter settings for JP2 format AIA images, we then set
out to produce a data set (≈1TiB/year) that is easily accessible
for researchers wishing to utilize these data. The data set we
have created contains the 10 image parameters listed in
Table 1, which are processed from images captured by the
SDO spacecraft and are extracted from the AIA images at a
6-minute cadence for each wavelength we process. As
previously mentioned, the original images are high-resolution
(4096×4096 pixel), full-disk snapshots of the Sun, taken in
10 EUV channels (the nine channels that we utilize in this work
are 94, 131, 171, 193, 211, 304, 335, 1600, and 1700Å; Lemen
et al. 2012). The original high-resolution images are accessible
upon request from the Joint Science Operations Center, but our
data set is processed from the the JP2 compressed images
available through the random access API at the Helioviewer
repository.8

We have created an API9 that allows for the random access
of the produced image parameter data. The processed data set
starts with observations from 2011 January 1 00:00:00 UTC,
and our intent is to continue to keep the data set updated with
the current observations for as long as the source of our data
continues to provide new observations. The methods used for
calculating the parameter values are released as part of our
Open Source library DMLabLib.10 The settings for each of
the parameter calculation methods that require some sort of
setting value are listed in Table 4 in Appendix A. Note that
each of the nine waveband channels that we process has its
own set of settings for each of the parameter calculation
methods.

Figure 12. Comparison of the performances of the Random Forest classifier in classification of three solar event types using each of the four image parameters, before
and after tuning. The image parameters are entropy (EN), uniformity (UN), Fractal Dimension (FD), and Tamura Directionality (TD).

8 https://api.helioviewer.org
9 http://dmlab.cs.gsu.edu/dmlabapi/
10 https://bitbucket.org/gsudmlab/dmlablib

16

The Astrophysical Journal Supplement Series, 243:18 (23pp), 2019 July Ahmadzadeh, Kempton, & Angryk

https://api.helioviewer.org
http://dmlab.cs.gsu.edu/dmlabapi/
https://bitbucket.org/gsudmlab/dmlablib


One already-established use case for this data set is tracking
solar events that have been reported to the HEK (Kempton &
Angryk 2015; Kempton et al. 2018), where the parameters are
used to perform visual comparisons of detections forming
different possible paths a tracked event could take. Another is
the use of the parameters to perform whole image comparisons
for similarity search in the context of content-based image
retrieval (Kempton et al. 2016a). Similarly, the parameters have
also been used to perform region comparison for similarity
search in the context of region-based, content-based image
retrieval (Schuh et al. 2017). These are just a few of the
possible use cases that we know have utilized a smaller and
unoptimized previous version of this data set. Appendix A
provides some additional analysis of the data set produced by
this work.

7. Conclusion and Future Work

We presented the background information about the AIA
images produced by the SDO mission and compared the FITS
and JP2 image formats and the distribution of the pixel
intensities in each of them. We also reviewed different aspects
of each of the 10 image parameters that we have selected to
extract the important features of those images and then explained
how we designed several different experiments to find the best
settings for each of the features on different wavelength channels
and the different image formats. After we obtained the best
settings for each of the image parameters, we processed 1 yr
worth of data and extracted those features from the images
queried with the cadence of 4 hr. Finally, we presented our
public data set as an API by running several statistical analyses
to illustrate a more accurate picture of the ready-to-use data set.

We hope that our public data set interests more researchers
of different backgrounds and attracts more interdisciplinary
studies to solar images. While we aim to keep our API data up
to date with the stream of data coming from the SDO, we
would like to expand it by adding more interesting image
parameters, specifically computed for different solar events,
which could lead to a better understanding of solar phenomena
and higher classification accuracy.

This work was supported in part by two NASA grant awards
(Nos. NNX11AM13A and NNX15AF39G) and one NSF grant
award (No. AC1443061). The NSF grant award has been
supported by funding from the Division of Advanced
Cyberinfrastructure within the Directorate for Computer and
Information Science and Engineering, the Division of Astro-
nomical Sciences within the Directorate for Mathematical and
Physical Sciences, and the Division of Atmospheric and
Geospace Sciences within the Directorate for Geosciences.
Also, we would like to mention that all images used in this
work are courtesy of NASA/SDO and the AIA, EVE, and HMI
science teams.

Appendix A
Statistical Analysis of Data Set

In this section, we present more statistical insight about the
prepared data set through a number of figures. Figure 13

illustrates the changes in the distribution of pixel intensities of
FITS images for the month of 2012 September, with the
cadence of 2 hr. We use this to support our argument for the
cutoff point used in clipping of the FITS files in every
wavelength channel (see Section 3.2.2). Observing the changes
of the 99.5th percentile of the pixel intensities in FITS images,
knowing that several pixels with the maximum intensity value
(i.e., 16383) are present within this period, tells us that clipping
at the highest point reached by this percentile while reducing
the range of the intensities significantly only affects 0.5% of the
pixels.
As an example, for images in 94Å (see the first plot at the

top of this figure), the highest value reached by the 99.5th
percentile of the pixel values is equal to 44, while pixels as
bright as 16,383 are present. Among the five different
percentiles, the one with the minimum effect on the images,
i.e., 99.5th, is chosen for clipping of the FITS images to
generate the new set of images that we referred to as clipped
FITS. The few sudden changes of the pixel intensities in
Figure 13, as we investigated, are mainly due to the several C-
and M-class flares reported in this period. In some cases, the
magnetically charged particles reaching the CCD detectors of
the AIA instrument also result in overexposed images, hence
the spikes.
To present a big picture of the flow of data in the data set, we

show the mean value of each of the 10 image parameters after
they are extracted from the AIA images, for the entire month of
2012 January (Figure 14). The 10 image parameters for this
plot are computed on the entire full-disk images, and the mean
statistics is then extracted from the resultant matrix. To present
the continuity of the collected and computed data, we present
the time differences between the image data points of our data
set, for the entire calendar year of 2012, with the cadence of 6
minutes, in Figure 15 and for 1 month, across nine wavelength
bands, in Figure 16.
The small periods where the values go to zero in Figure 14

are artifacts of missing input data and/or corrupted images that
are uniformly black. Similarly, the periods where the time
between reports peaks for some period is another indication of
missing input data. This can be caused by any of numerous
possible reasons that could cause a step in the processing
pipeline to fail to receive an image from the previous step in the
pipeline. These can range from the satellite not transmitting the
data in the first place to an error at any one of the processing
steps prior to our processing of the JP2 image from
Helioviewer. The missing data can also be caused, as found
in Schuh et al. (2015), by the Moon or Earth itself occluding
the view of the Sun from the satellite on almost a daily basis, as
seen in 2012 March in Figure 15. In all, this does not represent
a significant portion of the data set given that the data
corresponding to a few months in 2012 are missing the largest
portion compared to other years.
At the end, the best settings derived and used to generate this

data set are presented in Table 4. The numeric values
mentioned in this table are mostly useful for the purpose of
reproducibility of the data set, since this is possible for those
who find the creation steps of the data set interesting, thanks to
our open source library, DMLabLib.11

11 https://bitbucket.org/gsudmlab/dmlablib
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Figure 13. Different percentiles of pixel intensities for ≈3240 AIA FITS images (i.e., approximately 360 images per wavelength channel). Each of the nine plots
corresponds to one wavelength channel of the AIA instrument, specified in cyan, on the left. Each curve tracks the changes of the pixel intensity distribution of images
captured every 2 hr, within the period of 2012 December.
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Figure 14. Mean of the 10 image parameters extracted from images queried for a period of 1 month (2012 January). With a cadence of 6 minutes, the plot represents
7440 AIA images from the wavelength channel 171 Å.
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Figure 15. Time differences (in minutes) between image parameter files for AIA images, from the wavelength channel 171 Å, over the entire period of the year 2012.
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Appendix B
Impact of Nonzero Quality Observations

In this appendix, we address the specific concern regarding
the impact of the AIA instrument degradation, as well as usage
of the “low-quality” images, on our data set. By “low-quality”
we mean images whose QUALITY flag in their header is set to
a nonzero value (Nightingale 2011). This value is an integer
whose 32 bit binary representation describes 32 different
issues, such as missing flat-field data, missing orbit data, and
the like.

B.1. Impact of CCD Degradation

The charge coupled devices (CCDs) of the AIA instrument,
like any electronic devices, are subject to degradation. The
impact of CCD degradation was known prior to the launch
of SDO (Boerner et al. 2011) and has been studied ever
since (e.g., Fontenla et al. 2016). The effect of instrument
degradation is a secular decrease over time in the data counts of

the FITS files, which results in a gradual decrease in the pixel
intensities of the AIA images. This trend, although very subtle
and only visible when the average data counts of FITS files are
monitored over the course of several years, can potentially
impact many pixel-based analyses of solar events (to the best of
our knowledge, no study has provided sufficient evidence for
such impact, and the characteristics of the tasks impacted are
not clearly known). To this end, a periodic recalibration of the
instrument was planned prior to the launch of SDO and has
been and will continue to be carried out periodically to ensure
the quality of the data. The details of such a calibration process
are described in Boerner et al. (2011). Our data set is based on
the level 1.5 data utilized by Helioviewer, whose gains are
adjusted to use the above-mentioned calibration so that there is
a consistent “zero level” in the images.
In case the above procedure does not fully resolve the

degradation impact, we still believe that the effect should be
negligible to our data set. This is mainly because of the
different nature of our data points and the applications this data

Figure 16. Time differences (in minutes) between image parameter files for AIA images, from the nine different wavelength channels, over the month of 2012
January.
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set is meant to be used for. Specifically, the data points in our
data set are extracted image parameters, and not the raw pixel
values. Furthermore, in this study we were able to show that the
extreme high end of the range of values in the recorded L1.5
FITS images is actually detrimental to results in our analysis,
and therefore we are clipping these values. The clipping was
done either in our pre-processing phase, when we used the
FITS files, or by Helioviewer’s JP2GEN project that provided
the JP2 images for our analyses. Hence, the dynamic range
compression in the images that is introduced by having to turn
up the gain as the CCD deteriorates will most likely not have a
noticeable impact, if at all, on our work.

Additionally, the extracted parameters used in this study are
minimally affected by the long-term global changes in image
intensities, especially when applied to the clipped images. As
an example, consider the standard deviation parameter from our
data set. This is computed in local regions of a processed
image, and the subtle changes of the overall dynamic range of
the brightness of source images, caused by a drifting “zero
level,” will have minimal effect on the results when applied to
images that are pre-processed using a clipping method to
reduce the dynamic range of the intensity values. Another
example would be fractal dimension, which is computed on the
detected edges. As discussed in Section 2.1.3, the edge
detection is carried out based on the local gradients within
images, and therefore mild long-term changes, such as the one
imposed by CCD degradation, will not have a significant
impact on the computed dimension, if at all. Among the 10
image parameters, only the mean parameter is susceptible to the
degradation. The magnitude of the impact can be determined
by the degree of degradation that could not be completely
resolved in the AIA level 1.5 data products.

B.2. Impact of Instrument Anomalies

Based on our empirical study of hundreds of AIA images
with nonzero QUALITY values (i.e., low-quality images),
these images fall into two main groups. One comprises the
images that are visually no different from any zero QUALITY
AIA images. In fact, in some cases the missing information
does not affect the pixel values of the images at all. The other
group, however, contains images in which the Sun’s disk is
rotated, shifted, or blocked owing to eclipse, or because of
some instrumental artifacts, large patches of black squares
appear on the images. These are certainly not proper inputs for
any analyses.

To the best of our knowledge, the frequency of the 32
different quality flags has not been studied on AIA images yet.
Our brief study on several (nonconsecutive) months worth of
AIA images, with a cadence of 36 s, shows the presence of
≈4.2% of nonzero QUALITY images (both group one and
group two). Of course, to achieve a reliable statistics as the
fraction of low-quality images on the entire AIA data
collection, a much larger sample should be processed. But
unfortunately, lack of proper documentation on the FITS
keywords and absence of a publicly available database of the
header information make it difficult to obtain a more thorough
analysis on this topic. Therefore, we will leave the computa-
tion of a more comprehensive statistic on the fraction of
images with fundamental quality issues (i.e., the second group)
to the original AIA image data providers. Since we computed
the 10 image parameters on all AIA images that fell into our
sampling cadence, regardless of their quality flag, we added

the QUALITY value of images to our database and provided
the user with the corresponding requests to retrieve the
QUALITY values from the API, as well as some other basic
spatial header information that is needed for labeling of the
solar events. It is up to the interested researchers to decide
whether they prefer to keep the low-quality images for their
study or not.
It is worth noting that, regarding the first group of images,

lack of some pieces of information may disqualify such images
for some specific scientific analyses; however, we believe that
machine learning models built on the extracted image
parameters (i.e., our data set) would not be affected by such
unnoticeable differences. Pre-processing the raw data and
achieving a cleaned data set are indeed critical steps in any
data-related analyses. This is, in fact, the premise of the current
study. That said, machine learning models are designed to have
a degree of resistance against noise. As they learn the global
patterns and structures of the data by fitting mathematical
models against a very large number of data points, and very
often in a high-dimensional vector space, having a few data
points with some additional noise in just a few dimensions
would not impact the overall performance of the models. This
is our reasoning for not excluding the low-quality images. But
users of the data set can decide on this based on their
understanding of the impact of low-quality images on their
desired models.

Appendix C
Impact of Heterogeneous Exposure Time

AIA is equipped with an automatic exposure control that
adjusts the length of time the cameras’ sensors are exposed to
light. This adjustment takes into account the overall brightness
of the Sun. During occurrence of some solar activities such as
large flares, some regions on the Sun are significantly brighter.
In such cases, a shorter exposure time could produce an image
of a higher quality. The exposure time used for each image is
recorded in their header information. We use this information
to normalize the pixel intensities of each image before we
compute the image parameters.
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