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The objective of this paper is to integrate the post-disaster network access to
critical facilities into the network robustness assessment, considering the
geographical exposure of infrastructure to natural hazards. Conventional
percolation modelling that uses generating function to measure network
robustness fails to characterize spatial networks due to the degree corre-
lation. In addition, the giant component alone is not sufficient to represent
the performance of transportation networks in the post-disaster setting,
especially in terms of the access to critical facilities (i.e. emergency services).
Furthermore, the failure probability of various links in the face of different
hazards needs to be encapsulated in simulation. To bridge this gap, this
paper proposed the metric robust component and a probabilistic link-
removal strategy to assess network robustness through a percolation-based
simulation framework. A case study has been conducted on the Portland
Metro road network during an M9.0 earthquake scenario. The results
revealed how the number of critical facilities severely impacts network
robustness. Besides, earthquake-induced failures led to a two-phase percola-
tion transition in robustness performance. The proposed robust component
metric and simulation scheme can be generalized into a wide range of
scenarios, thus enabling engineers to pinpoint the impact of disastrous
disruption on network robustness. This research can also be generalized to
identify critical facilities and sites for future development.

1. Introduction

Infrastructure failures are often inevitable following either natural or man-made
disasters including hurricanes [1], earthquakes [2] and ensuing tsunamis [3], ice
storms [4], and terrorism incidents [5]. The economic prosperity, security and
public health of our society are extremely vulnerable to these accidental,
weather-related and human-instigated events [6,7]. Events such as 11 Septem-
ber 2001, hurricane Katrina in 2005, the Haiti earthquake in 2010, etc.,
showed the cataclysmic aftermath of such hazards. Notably, US Pacific North-
west is highly prone to an M9.0 Cascadia subduction zone earthquake [8,9]. The
last mega-earthquake occurred in 1700, and there is a 40% chance of recurrence
within the next 50 years [10]. This fact calls for our understanding of network
robustness behaviour and action on critical infrastructure protection.
Roadway networks play important roles in transporting people and goods
efficiently and safely, evacuating people from the site of a disaster and import-
ing critical resources to affected sites. Patuelli et al. [11] suggested that physical
constraints are likely to restrict the topology of road networks and make them
nearly planar, which also makes them extremely sensitive to failures. Therefore,
systematic understanding and accurately measuring network robustness under
disruptions is of great significance in achieving a resilient critical infrastructure
system. Various studies [12-16] defined their own metric in analysing network
robustness. From a network science perspective, the robustness of a network is
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Figure 1. Network access to critical facilities. Blue nodes represent the ordinary nodes in the network, while the red node represents the critical facility. Critical
facilities can be defined as the facilities that contain essential resources which support the normal functionality or restoration of the system, e.g. a lifeline warehouse,
hospital, fire station and restoration centre. In (a), the network is fully connected to the critical facility. In this case, the largest connected component (or giant
component) contains the critical facility. In (b), the network is broken into different clusters. The largest connected component contains most of the nodes; however,
it does not include the critical facility, only the second largest component connects to the critical facility. In (¢) the critical facility is isolated; without access to critical

resources, the network would fail. (Online version in colour.)

often characterized by the value of the critical threshold
analysed using percolation theory and defined as the largest
connected cluster size during the entire attack process [17].
Essentially, network robustness describes the ability of a
system to maintain its performance after a disruption, and
accessibility to the critical facilities (i.e. shelters, hospitals
and police/fire stations), all of which are an essential part
of post-disaster roadway performance. Therefore, in this
paper, transportation network robustness is measured by
the integrated size of the clusters that are connected to critical
facilities, which is formulated as a robust component. With
this definition, we assume that if a node is contained in a
robust component, the cars can reach the critical facilities.
Empirically, it represents the ability of the transportation
system to withstand hazard-induced infrastructure failure
without reducing access to critical facilities.

Assessing robustness generally consists of determining
the system behaviour that results from each possible network
disruption state. Engineering models use reliability [18-20] or
travel cost [21,22] to measure network robustness under dis-
turbance. However, these models use daily operational travel
demand in the analysis, which provides limited insights on
post-disaster transportation network robustness assessment.
Besides, this paper focuses more on the existence of post-dis-
aster network access to critical facilities rather than normal
travel performance. In addition, link disruption in the
model is arbitrary, which is far from the reality of infrastruc-
tures exposed to different levels of hazard risk. Hazard
vulnerability should be included in the model in order to pro-
vide an accurate measurement of post-disaster network
robustness. Furthermore, access to critical facilities is essential
in a network’s functionality and therefore, should be
included in the network robustness assessment framework.
Existing research [23] uses centrality measures to quantify
link importance in accessing specified emergency services.
However, such a model omits the impact of collective net-
work disruption on access to critical facilities. Also, the
centrality measure focuses on the shortest path to the destina-
tion, while in reality, all paths should be considered in
evaluating network access to critical facilities.

In post-disaster network robustness assessment, disrup-
tive events are described by removing one or more network
components from the system, which can be modelled with a
percolation approach [24,25]. Extensive research has been pri-
marily focusing on the percolation modelling of network
robustness [17,26-31]. However, there are several limitations

in conventional percolation modelling of infrastructure
network robustness. First, existing research mainly uses gener-
ating function methods to derive network robustness.
However, due to the degree correlation in spatial networks,
generating function methods fail to measure the robustness
of the infrastructure network accurately Dong et al. [32].
Second, network disruption is commonly described by
random failures, localized failure or targeted attack. However,
the infrastructures’ vulnerability to natural hazards varies
across the network. For example, low-lying roads in a valley
and roads on steep hills are more vulnerable to landslides
than roads on flat ground. Thus, a probabilistic link-removal
scheme should be considered to provide a realistic post-
disaster road network robustness assessment. Third, the
traditional giant component assumes the largest connected
component of the network functions after the disruption.
However, nodes in infrastructure networks such as water,
gas and electricity, are not autonomous but rather rely on
resources feeding them, without which network performance
will deteriorate. In a disastrous event such as an earthquake or
a deliberate attack, the network may be broken into different
components and having access to critical facilities in their
local neighbourhood is essential for individuals in each com-
ponent [20]. For example, if a community’s access to a
hospital is cut off by an earthquake, injured people cannot
receive timely medical treatment and their health and safety
will be at risk. Therefore, investigating network robustness
and considering the network’s access to critical facilities is
essential to avoid functional isolation in disasters, and accessi-
bility to critical facilities needs to be reflected in the robustness
measurement. Figure 1a shows that when a network is fully
connected, the giant component has access to critical facilities.
When the network is disrupted, although the left giant com-
ponent is more connected and contains the most nodes (as in
figure 1b), it does not connect to the critical facilities, and there-
fore may likely fail without access to critical resources. When
critical  facilities
components (as in figure 1c), the network will paralyse due
to lack of resources regardless of the size of the cluster.

are entirely isolated from all other

This paper is largely motivated by the fact that network
robustness assessment based on the conventional percolation
approach alone is not sufficient to represent the performance
of transportation networks in the post-disaster setting and
that hazard-induced link failure probability is lacking in the
engineering studies. To bridge the gap between engineering
simulation methods and theoretical analysis, this paper
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contributes to the state-of-art design by proposing a new
robustness metric: robust component—the component that
has access to critical facilities—in incorporating post-disaster
access to critical facilities in network robustness measure-
ment. Further, in order to overcome the limitation of
applying generating function in infrastructure network
robustness characterization due to degree correlation, and
also integrate hazard vulnerability into the post-disaster
transportation network robustness assessment, we proposed
a probabilistic network disruption percolation modelling
and simulation framework to accurately measure network-
level robustness behaviour in the face of disaster-induced
massive disruption. This paper enables a comprehensive
assessment of network robustness, one that considers net-
work access to critical facilities in the face of disastrous
events. The result allows decision-makers to devise mitiga-
tion strategies to different hazards by focusing on the
critical area to counter the disastrous effects, especially in
areas such as emergency response planning, evaluation of
the location of additional critical facilities and infrastructure
prioritization.

The remainder of the paper is organized as follows: §2
presents a literature review of the related research. In §3,
the methods adopted in this paper are discussed in detail,
and a comparison study is conducted on a simulated ER
network and road network. Section 4 presents network
robustness in considering access to hospitals by using earth-
quake-induced probabilistic failure scenarios. Following that,
§5 provides the major findings of this paper. Finally, the
paper concludes with a discussion in §6.

2. Literature review

2.1. Post-disaster transportation network robustness
modelling

Investigating the robustness of disrupted networks is often
associated with the measurement of vulnerability, reliability
and accessibility [33]. Vulnerability refers to the degree of
inability of a system to function due to disruption [33]. Essen-
tially, the concept can be considered as the reciprocal of
robustness [34]. Poorzahedy & Bushehri [19] define the net-
work reliability for the (k, s) origin—destination (OD) pair
user group as the probability that the network may hold a suit-
able condition for those users after an incident. Murray &
Grubesic [35] define reliability as the probability that a given
element in a critical infrastructure system is functional at any
given time. Mattsson & Jenelius [36] refer to reliability as the
probability that a system can maintain its satisfactory oper-
ation over the long run. Murray and Grubesic [35] suggest
that reliability analysis mainly focuses on the possibility of
maintaining the performance of critical infrastructure
elements. Reliability analysis is often classified into three cat-
egories: connectivity reliability (the probability that a node
remains connected), travel time reliability (the probability
that a trip between nodes is made within a specified time inter-
val) and capacity reliability (the probability that a network can
successfully accommodate a given level of travel demand)
[20,35]. Poorzahedy and Bushehri [19] proposed a measure
of link importance based on consumer surplus for solving
the problem of network performance in case of incidents.
This study incorporated the link survival probability after

catastrophic events and provided a heuristic solution to [ 3 |

solve large-scale network problems. Chen et al. [18] introduced
capacity reliability to measure the performance of a transpor-
tation network under traffic disturbance. The proposed
performance measure took network capacity and traffic
demand into consideration. Chen et al. [21] further extended
the research by providing a network accessibility measure
that considered the consequences of link failure expressed in
terms of travel time and calculated them based on the travel
cost increase. However, the methodology was tested on a
rather small hypothetical network (five nodes). To assess a
transportation network of tens of thousands of nodes, the per-
formance of the method is not guaranteed. Overall, these
reliability analyses require the travel demand from the OD
pair. However, such real post-disaster demand data are lim-
ited and therefore are impractical to implement in a real-life
study.

Network robustness measures a system’s capability to
withstand an unexpected internal or external event or
change without degradation in performance [37,38]. Chopra
et al. [39] presented a resilience analysis on the London
metro system that considered network topology, spatial organ-
ization and passenger flow. The results identified the
particular sources of structural and functional vulnerabilities
that needed to be mitigated for improving the resilience of
the London metro network. Nagurney & Qiang [22] proposed
two relative total cost indices to assess road network robust-
ness when the links are disrupted or travel behaviour is
altered. Measures such as link travel cost [22], traffic delay
[40] and the ratio of pre- and post-disaster condition [41] are
also commonly used to investigate the transportation network
robustness behaviour. It is worth noting that, depending on
the performance that we focus on, e.g, network connectivity,
efficiency, travel time, etc., the metric that is used to character-
ize the network robustness would change. For example, Albert
et al. [42] introduced connectivity loss in a study of the struc-
tural vulnerability of the North American power grid.
Similarly, Duefias-Osorio & Vemuru [43] adopted connectivity
loss in investigating cascading failure in power systems. Hines
et al. [44] used connectivity loss to measure vulnerability in an
electric power blackout risk analysis. In addition, Crucitti ef al.
[13] used the network efficiency measure to analyse the struc-
tural vulnerability of the Italian GRTN power grid. Kinney
et al. [14] also adopted the efficiency concept to measure the
impact of cascading failure on the North American power
grid. Although network connectivity and people’s commute
behaviour are studied extensively [45-48], disrupted
network connectivity, especially network access to critical
facilities, is rarely studied.

However, post-disaster access to critical facilities including
hospitals, police stations, fire stations and rescue is essential to
the health, safety, post-disaster response and recovery of our
society. As the roadway infrastructure provides essential
access to these facilities, it should be included in the measure-
ment of network performance. Investigating access to critical
facilities in a disrupted network is often associated with acces-
sibility analysis. Accessibility is generally defined as ‘the
relative ease of reaching various services, destinations and/or
activities from a particular origin [49,50]. Redondi et al. [51]
studied the accessibility of the airport by using the shortest
path length, the minimum number of non-stop flights in their
case, to measure airport network connectivity. Bigotte et al.
[52] formulated a mixed-integer model for integrated urban
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hierarchy and transportation network planning. The model
enables identification of the links that should be improved or
new links that should be built to increase network accessibility.
Grubesic & Murray [53] explored network interconnection by
removing the vital nodes, and Church & Scaparra [54] studied
operation efficiency loss as the identified facilities are
destroyed, which are all similar to a targeted attack scenario.
Network disruption in natural hazards, however, is deter-
mined by the network’s geographical exposure instead of its
geographical or functional importance. Novak & Sullivan
[23] introduced the critical closeness accessibility measure for
evaluating the accessibility of emergency services on a road
network. It can also identify the critical links that are important
in terms of facilitating system-wide access to emergency ser-
vices. It measures accessibility on a link-by-link basis, which
essentially assigns an accessibility value to the individual
links in the network that accounts for the empirical information
such as the spatial distribution of critical link/node, road net-
work topology and road characteristics such as road type,
capacity, volume and travel speed. Nevertheless, it fails to
capture network-level accessibility behaviour, which is the
key factor of state, regional and municipal transportation
agencies’ funding and policy decision-making. Dong [55]
used a total accessibility matrix to measure the topological
structural robustness of the supply chain network. However,
the calculation of the accessibility matrix does not include
the impact of the collective network disruptions such as
earthquake-induced failure. Although it provides an index
for each node, it does not show where this node can access,
which is of great importance in emergency rescue. Therefore,
these methods provide limited insight into the post-disaster
network access to critical facilities.

On the other hand, there is rich literature on transportation
network robustness assessment. Sullivan et al. [56] introduced a
scalable system-wide performance measure called network trip
robustness to compare networks of different sizes, topology
and connectivity levels. Erath et al. [57] presented a framework
that investigates the robustness of the transportation system to
natural hazards. This approach can accommodate transpor-
tation-related failure consequences, including congestion
effects. In addition, Chen et al. [21] used network-based
measures to assess disrupted transportation networks,
which consider the consequences of one or more link fail-
ures in terms of network travel time or generalized travel
cost increases as well as the behavioural responses of users
due to the failure in the network. However, existing research
on transportation network robustness analysis faces several
challenges. First, the travel demand under normal operation
is used in the model to characterize the degraded network
performance. As the travel behaviour in a post-disaster set-
ting is expected, the existing analysis offers limited insights
into post-disaster network accessibility to critical facilities.
Second, the road disruptions considered in these studies
are selected arbitrarily. However, in real disaster scenarios,
the geographical exposure of infrastructures to hazards are
different and the condition of infrastructures due to ageing
varies across the network. In a post-disaster network
access analysis, these ought to be incorporated into the
analysis. Third, the centrality measures in nature, such as
closeness and betweenness, measures the shortest distance
between an OD pair [58]. However, in a post-disaster
scenario, we focus on investigating whether or not an
individual site has access to any of the critical facilities.

In order to accurately measure the performance of a trans- n

portation network post-earthquake considering the network’s
access to critical facilities, we propose to use a network
topology-based metric robustness component to assess post-
disaster network robustness. We define network robustness
in this paper as a transportation system’s capability to
withstand hazard-induced infrastructure failure without
degradation in providing access to critical facilities. The robust-
ness investigated in this paper attempts to tackle the question
of how earthquake-induced failure will impact a network’s
access to critical facilities such as hospitals. Despite missing
traffic information, the comprehensive topological and geo-
metrical data can provide engineers with a comprehensive
first-step assessment of network robustness in the face of a
catastrophic event such as an earthquake, hurricane, ice
storm, flooding or other natural disasters. In addition, we inte-
grated infrastructure probabilistic geographical exposure to
network failure in order to generate a realistic post-disaster
network robustness assessment. More importantly, instead
of only considering a predefined OD pair, we examine the
individual site’s access to all of the designated critical facilities
on the network. This enables a comprehensive evaluation of
network-level robustness behaviour. From a network science
perspective, we are investigating whether there is a path
between a site to any selected critical nodes. Intuitively speak-
ing, the robust component can be interpreted as ‘given that ¢
proportion of the network is disrupted, the RCS part of the
network still maintains its performance in terms of having
access to critical facilities’.

2.2. Percolation modelling of network robustness
Existing research in assessing the robustness of real-world
networks shares some common features [59]: (1) simulating
or obtaining empirical data for a network (e.g., generating a
network from random graph, mapping the real network to
obtain the data); (2) measuring the investigated network’s
structural features; (3) conducting random failure or a tar-
geted attack on the network and (4) assessing the aftermath
performance (static, dynamic) of the network. In particular,
road network robustness analysis normally models road
infrastructure as a network with links (roads) and nodes
(intersections) in order to investigate the network disruption
and its impacts on society [60]. A wide variety of network
robustness measures have emerged from recent research.
Figure 2 presented the major types.

The largest connected component (ie. the giant
component) in percolation theory is commonly used in physics
and computer science [70]. Cohen et al. [71] studied the
robustness of scale-free networks with power-law degree
distribution, i.e. the Internet, by measuring the giant com-
ponent (spanning cluster) after network breakdown. Solé
et al. [16] assessed network robustness by measuring the
giant component on the European power grid under targeted
attacks and determined the transition threshold. Motter &
Lai [15] used the largest connected component method to
measure network robustness after cascading failure occurs. Li
et al. [72] measured the largest connected component in
spatially constrained Erdés—Rényi networks to determine the
impact of spatial constraints on network robustness. The
above studies assume the largest component will be function-
ing after the disruption. However, we argue that accessibility
to critical facilities is essential for post-disaster survival. For
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performance measure type

— connectivity loss

— network efficiency

modelling network robustness

— others

— largest connected component

studies

—— Cohen et al. [62]

—— Callaway et al. [27]

—— Motter & Lai [15]

—— Holme et al. [85]

—— Estrada [63]

—1+—— Holmgren [64]

—— Rosas-Casals et al. [66]

—— Simonsen et al. [68]

—— Solé et al. [16]

—— Lietal. [72]

— lyer et al. [24]

—— Albert et al. [42]

—+— Dueinas-Osorio and Vemuru [43]

L— Hines et al. [44]

_|: Crucitti et al. [13]
Kinney et al. [14]

—— Pepyne [65]

—— Arianos et al. [61]

—— Shoji & Toyota [67]

—— Winkler ez al. [69]

L— Schneider et al. [70]

Figure 2. Selected performance measure types for modelling network robustness [61-69]. (Online version in colour.)

example, a giant component without access to medical services
cannot be considered as functioning from an emergency
response perspective. The proposed robust component measure
overcomes this challenge by including important nodes into the
critical component measuring.

Inspired by the similarities between human and insect
infrastructures, Middleton & Latty [73] reviewed the litera-
ture on resilience in three key social insect infrastructure
systems: transportation networks, supply chains and com-
munication networks, and then described how systems
invest in three pathways to resilience: resistance, redirection
or reconstruction. This finding demonstrates that we can
learn from social insect research and then develop analyti-
cal and simulation tools to study human infrastructure
resilience based on their findings. Percolation theory is a
powerful tool that allows the analysis of network robust-
ness. There is a rich body of literature focusing on
percolation modelling of network robustness through
generating function methods. Most of the studies focus
on theoretical networks such as the ER network and
scale-free network [29,74-77]. However, due to the
degree correlation in the infrastructure network, the gener-
ating function method is incapable of capturing network
robustness behaviour [32]. Since this degree correlation is
inevitable, because our infrastructure network is spatially
embedded, a simulation-based method is more desirable
in characterizing the percolation process in infrastructure
network robustness analysis. Furthermore, most theoreti-
cal methods assume an infinite size of the investigated
network, which is not the case in infrastructure network
robustness research [74]. Although Radicchi [29] studied
percolation in the real interdependent network, his
model still focuses on the theoretical networks. This
paper proposes a percolation modelling and simulation
framework that captures the spatial complexity of the
road network in order to generate an accurate assessment
of network robustness behaviour.

Regarding another modelling spectrum, extensive research
has focussed on the random failures [32,78], localized attacks
[79-81] and targeted attacks [16,82,83]. However, in reality,
the probability of multiple road failures is largely dependent
on the built environment it is exposed to. For example,
landslides are widespread in regions that have steep slopes,
weak soil and significant precipitation or storm events.
Probabilistic failure based on the link’s exposure to hazards is
desired for a case study on the real-life disaster. Therefore,
this paper integrates infrastructure failure probability into the
percolation modelling framework and presents a study on net-
work robustness under the influence of earthquake-induced
probabilistic failure.

3. Percolation modelling of the robust
component

The percolation process is parametrized by the probability,
p, that a node or an edge is present or functioning in the net-
work. The functional nodes/vertices are considered occupied
and p is called the occupation probability. When p is large,
the network tends to be more connected. As p decreases,
there comes a point where the giant component breaks apart.
This point is called the percolation threshold. The formation
or dissolution of a giant component is called a percolation tran-
sition [28]. Here, we use the notation ¢ =1 — p to represent the
proportion of links that are removed from the network.

Giant component size (GCS) is commonly used as a
measure of network robustness because percolation assumes
that the largest connected cluster will maintain its functional-
ity after network disruption [28]. However, this is not a valid
assumption since the largest connected component is not
guaranteed to be functioning if there is no access to the
necessary resources. For example, if an injured person has
no access to a hospital, a cluster containing said hospital
cannot be considered functional from a healthcare point of
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view, even if it maintains the largest possible size. In terms of
hazards, robustness represents the degree to which a system
is able to withstand an unexpected internal or external event
or change without degradation in performance [37,38]. There-
fore, we propose a new network robustness measurement:
robust component.

Robust Component. In a graph G, two vertices u and v are
considered connected if there is a path from u to v, which is
denoted as p(u, v) = 1. Given a network of size N, containing
K critical facilities, the connected component of k can be
represented as Cy = {v; | ptk, v;) =1, Vi=0,1, ..., N}. Fol-
lowing this, the robust component of a network with
occupation probability ¢ can be defined as

Re= |J G (B.1)
k=0,1,...K

Intuitively, the robust component is the union of the
nodes that connect to at least one critical facility. In other
words, since the original network is fully connected, every
node has connections to all of the critical facilities. After the
imposed link failure on the network, a node is considered
failed when it loses connection to all of the critical facilities.
A robust component will significantly help to maintain
network performance in an unexpected disruptive event. A
percolation illustration of the robust component is presented
in figure 3. Algorithm 1 shows the designed algorithm for
calculating the robust component size (RCS).

Algorithm 1. Calculate rcs.

K < Critical Facility List
network <= Roads(v;, v;)(i, j = 1,...N)
link_failure [¢py, ..., b, )(m = 1,...M) <= Network Failure Scenario

m<1
While m < M do
disrupted_network = network.remove_edges(¢p,,)
for k in K do
1S, = > v, Wi | plk,vi) =1,i=1,..N
end for
m+ =1

end while

To demonstrate the performance of the robust component
in measuring the network robustness considering the net-
work access to critical facilities, two types of network are
used to experiment: The ER network and the Portland road
network as shown in figure 4. The ER network is generated
through Networkx module, and the Portland road network
is provided by Portland Metro, the road network GIS shape-
file can also be obtained from Metro [84]. Two networks are
of the same size (5147 nodes) and same mean degree (2.97).
There are two ways to present a graph: the prime approach
(vertices are intersection/joints, edges are links/interactions)
and the dual approach (vertices represent links/interactions,
edges represents intersections/joints). Both approaches are
investigated through the ER and Portland road networks,
and their degree distributions are presented in figure 4. As
we can observe, the road network shows a strong spatially
embedded feature. A peak shows at the degree of 3 and
4. The road network here only contains major arterial roads

and minor roads are not included in the Portland Metro’s traf-
fic analysis, which results in some four-way intersections
turning into a T-intersection. Also, the massive amount of
ramps that connect arterial roads to highways contribute to
the high frequency of degree-3 intersections. On the other
hand, the random network shows a smooth degree distri-
bution which fits into a Poisson distribution with a mean
degree of 2.97.

According to the two aforementioned methods of con-
structing the network, the percolation process can be
classified into two categories: node percolation, which
removes the node, and edge percolation, which conducts
edge removal. In a road network failure percolation case,
roads are the objects that tend to be destroyed. Therefore, in
this paper, network percolation is conducted through derived
link removal based on the failure strategies. In particular, a
node is considered failed only when it loses all alternative con-
nections to all the critical facilities, in other words, all the
possible routes from the node to critical facilities are
impassible.

Since the size of the robust component is dependent on
the network’s connection to designated critical facilities, the
number of critical facilities will impact the robust com-
ponent’s  performance during link percolation. To
investigate network robustness, we increased the number of
critical facilities (k) and recorded the size of the robust com-
ponent in each case. At each k, 100 simulations are
conducted and each simulation represents a random failure
scenario. The average RCS is calculated and presented in
figure 5. To compare with the conventional robustness
measures, the giant component, the size of the largest con-
nected cluster, is recorded as well.

Comparing network robustness under both GCS and
RCS in figure 5, we can see that in the case when access
to critical facilities is of significance to disaster recovery,
GCS gives an incorrect assessment of network robustness,
which can lead to further false disaster mitigation strategy
planning. The value of the critical percolation transition
threshold, where the RCS diminishes to zero, is normally
used to define the robustness of the network [24,72,77,85].
As shown in figure 5, the critical threshold ¢. varies between
the ER network and the Portland Metro road network. Low
¢ means that very few link removals are required to destroy
a network’s functionality. In other words, the network is
more vulnerable to failure. Looking at k=1, we can conclude
that under the random removal scenario, the Portland road
network is more vulnerable to the loss of critical facilities
than the ER network. As k increases, the value of ¢. becomes
nearly identical for the ER and Portland road networks.
However, there still exists a difference in the percolation pro-
cess. Purely using the critical percolation transition threshold
¢. neglects the case when the network is severely damaged
but not completely destroyed [77]. To complement this,
Schneider et al. [70] proposed a systematic measure, called
the robustness measure R, to estimate the robustness of the
network.

1 N
R= N; s(Q), (3.2)

where N is the total number of the nodes in the network, and
s(Q) is the fraction of nodes in the largest connected com-
ponent after removing Q =Ng nodes. The 1/N normalizes
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(d)

Figure 3. Percolation simulation of the robust component under varying attack sizes. Green dots represent the selected critical facilities (randomly generated for
demonstration), and red links represent the links that are connected to the critical facilities. In (a), as 10% of the edges are destroyed (¢ = 0.1), 85% of the network
still has access to the critical facilities. In (b), an increase of 5% more edge failure (¢ = 0.15) would lead to 80% of the network being within reach of critical
facilities. In (c,d), as nodes continue to be removed from the network, the destruction effect escalates. As 40% of the edges are removed, the majority of the
network loses access to the critical fadilities. (a) ¢ = 0.1, (b) ¢ =0.15, (c) ¢ =0.25, (d) ¢ = 0.4. (Online version in colour.)
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Figure 4. Network configuration and degree distribution of random network and spatially embedded road network. (a) ER network, (b) Portland Metro road
network. (Online version in colour.)

the result so that the robustness of networks of different sizes Figure 6 shows the comparison between the ER network
can be compared [24,77]. From a geometry perspective, R and the Portland road network. The simulation results show
describes the area under the percolation curve. that when the number of critical facilities is very low, the ER

69106107 9L 20y 20 'y 7 ysy/feunol/SioSusiqndiaeposieior |y



(@)

robust component size

0.4 0.6 0.8 1.0

¢

(b)

0.4 0.6 0.8 1.0

¢

Figure 5. Degree distribution of the (a) ER network and (b) Portland Metro road network in prime and dual approach. (Online version in colour.)
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Figure 6. Robustness comparison between the ER network and Portland Metro road network with varying numbers of critical facilities. (Online version in colour.)

network exhibits more robust behaviour than Portland road
network, despite the fact that they have the same mean node
degree. The difference in robustness behaviour is largely due
to the spatially embedded feature of the road network as the
random network possesses a better-balanced degree node/
link distribution and the nodes have more redundancy in
coping with the link removal. The comparison shows that at
k =1000, the robustness behaviour of ER network and Portland
Metro road network are very similar. This comparison shows
the extent to which the infrastructure network is different
from the theoretical network and suggests that when the net-
work evolves to a certain level, the spatial network can also
obtain similar properties to the theoretical networks.

4. Impact of earthquake-induced failure on
network access to hospitals

A Cascadia subduction zone earthquake posts a great threat
to the Pacific Northwest region as an estimated M9.0

earthquake will severely damage the infrastructure and
affect community’ access to the necessary resources for
post-disaster recovery. In this paper, we use Portland, OR,
as the study site to investigate the impact of earthquake-
induced infrastructure failure on the network’s access to
hospitals. It is worth mentioning that the proposed method-
ology can be applied to road networks in other cities in
different disaster scenarios.

We have previously investigated the network robustness
in a random critical facility and random failure scenario.
However, in real life, the location of critical facilities is nor-
mally decided based on the geographical features or the
needs of the surrounding areas. Emergency medical services
(EMS) personnel and hospitals are the community-based
resources that are responsible for injuries during the initial dis-
aster response. Robustness towards disasters varies from
community to community and is dependent on the avail-
ability of EMS and hospital resources. Therefore, we
evaluate network robustness considering the access of com-
munities to hospitals post-disaster. Figure 7 shows the
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Figure 7. Portland Metro area transportation network. (Online version in colour.)

Portland Metro network and area with hospitals. There are
5147 nodes and 7646 links included in the network. Initially,
there were 22 hospitals in our scope of study [84]. To reduce
overlapping, 20 hospitals were used for the simulation. It is
worth mentioning that in reality, hospitals are not built at
the intersection of the roads, but close to a major intersection.
Therefore, the location of the closest intersection to the hospital
is used to represent the hospital’s location.

4.1. Probabilistic network failure: an M9.0 earthquake
scenario

Because road networks are spatially embedded, their vulner-
ability relies heavily on their structural nature and
surrounding geographical features. For example, bridges are
more vulnerable during an earthquake and roads on top of
faults are prone to landslides. Figure 8 shows the geographi-
cal exposure of the Portland Metro network to natural
hazards, i.e. earthquake-induced landslides and liquefaction.
This information can be obtained from O-HELP [86]. Since
the probability that the links that are most prone to failure
varies across the network, uniform link removal in a tra-
ditional percolation process is inadequate in characterizing
the stochastic nature of network disruption. In this paper,
we propose a probabilistic approach in removing links in
order to approximate the destructive effect of natural hazards
on the network.

Link failure probability (P¢) in this model is comprised of
three elements: probability of failure by landslide P
(figure 8a), probability of failure by liquefaction Py (figure 8b),
and the probability of failure if the link is a bridge Py, (figures
8c and 9). It is worth mentioning that all of the earthquake-
induced hazards considered in this paper can severely damage
the road. When roads are disrupted, they are likely to be impas-
sible. Restoration time is variable and depends on many
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different factors. In this paper, we specifically focus on the
immediate impact of network failure. First, we determine the
probability that a bridge will be damaged. As each bridge has
four possible damage states with different probabilities, we con-
sider a bridge as failed only when it experiences moderate or
complete damage. Then, the overall link failure probability
Py = P1+Pq+Pb—P1 * Pq—Pq * Pp—Py % Pp + Py Pq *Pp.  Once
we obtained the link failure probability, we used that probability
to conduct a weighted selection to determine the probabilistic
failure sequence at each iteration. First, we constructed a cumu-
lative probability range based on the probability we obtained.
Then we randomly generated a number in the range of
[0, Z(Pf)], and it will fall into one of the intervals in the
constructed cumulative probability range. The corresponding
link of the range will be considered as failed. In this case, the
larger the P, the wider the range, and the more likely it will be
selected. Once all the links are iterated through, we will have
the probabilistic failure sequence. Based on ¢, we can select the
links to be removed at each step and simulate the percolation
process on the Portland Metro network. Using the proposed
robust componentequation (3.1) and algorithm 1, the size of
the robust component is recorded throughout the simulation
and presented in figure 10.

Since link removal is probabilistic, a Monte-Carlo simu-
lation was conducted to capture the overall performance.
The Monte—-Carlo simulation allows the generation of differ-
ent link failure scenarios and produces more comprehensive
and accurate results. Here, ¢ is increased in intervals of 1%,
and at each ¢, 100 simulations were conducted. Figure 10
shows a two-phase transition in the RCS. First, we need to
note that robustness variation amplifies in the range of
[0, 0.49], which results from the uncertainty in links” exposure
to natural hazards. This is because 48% of the nodes on the
network are exposed to earthquake-induced hazards, i.e.
landslide, liquefaction, and bridge failure. Based on the
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Figure 8. Geographic exposure of Portland Metro transportation routes to natural hazards. (a) Landslide probability. (b) Liquefaction probability. (c) Bridge location.

(d) Link disruption probability integration illustration. (Online version in colour.)
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Figure 9. Bridge fragility curve illustration. (Online version in colour.)

generating scheme of probabilistic failure, the links exposed
to these hazards are more likely to be removed from the net-
work. Therefore, the simulation first converges at ¢ =0.49.
The high variance at the range of ¢ €[0.18, 0.38] suggests
that the impact of earthquakes at this scale is hard to predict.
The corresponding hazard mitigation plan and post-disaster
recovery effort should prepare for the worst scenario so that
post-earthquake access to hospitals can be maintained at its
highest level. Similarly, when all the hazard-prone links are
removed, the percolation at a range of ¢ € [0.49, 1.0] is analo-
gous to the random failure on the road network as the rest of
the links have equal probability of being removed. The net-
work achieved an overall robustness R=0.392. Although
network failure is less likely to reach 80%, monitoring of
RCS percolation helps to evaluate network access to hospitals

robust component size

0 02 0.4 0.6 038 1.0
(0

Figure 10. Network robustness of Portland Metro network under earthquake-
induced probabilistic failure. Black dots represent the 100 simulation con-
ducted, and red squares represent the average performance. (Online
version in colour.)

in the face of an M9.0 earthquake and in devising mitigation
strategies accordingly.

4.2. Robustness-driven identification of critical hospitals
and future sites for new hospitals

The robustness component characterizes the contribution of
the ability of critical facilities to provide resources and main-
tain the functionality of the network. Removing one critical
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facility will lead to the degradation of robustness perform-
ance. This decrease in robustness, in another way,
highlights the importance of maintaining network access to
the critical facilities and enhancing network robustness, and
it can be used to identify a component’s criticality. The
lower the robustness (the higher the vulnerability) when the
identified critical facility is missing, the more critical it is to
the network’s robustness. Using this logic, we iterated
through the list of hospitals in the Portland Metro region
and identified the most critical hospital in terms of ensuring
network access to EMS after an earthquake.

Figure 11 shows the hospital’s criticality when the
selected hospital is removed. The nodes represent the cross-
ing of the roads, and the colour indicates the criticality of
the node to the overall network robustness. We can observe
that the hospital located in northern downtown (Legacy
Good Samaritan) is the most critical. This makes sense
because figure 82 shows that Legacy Good Samaritan is

located at a region (Portland hill fault) that is highly
prone to landslides, and that its failure will lead to a
severe shortage of medical care in the surrounding neigh-
bourhoods. In designing a critical infrastructure protection
plan, the route to Legacy Good Samaritan should be retro-
fitted to make sure that part of the community can have
access to the hospital.

Network robustness if a new node is included (i.e. a
new hospital is built) can be used to determine the signifi-
cance of the node. Iterating through the network, figure 12
presents the identified optimal placement of a future
hospital. The nodes are the intersections of roads, and
colour identifies the hot spots for the future site of the
hospital. As we can observe, southwest of Portland is
one potential location for a future hospital. This is because
figure 7 shows that no hospital is built in this region.
Despite the fact that the southwest is an earthquake-
prone area, the construction of a new hospital that
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can withstand high magnitude earthquakes will enhance
network robustness.

5. Conclusion

Post-disaster network access to a critical facility can signifi-
cantly impact the robustness of a network. In this paper, we
proposed a robust component measurement using a percola-
tion simulation framework to assess network robustness by
encapsulating the impact of network access to critical facilities.
Two types of network are used: the random network and the
Portland Metro road network. The results demonstrate that
without considering network access to critical facilities, the
conventional giant component will falsely estimate network
robustness and lead to inefficient hazard mitigate strategies.
In addition, increasing the number of critical facilities will
enhance network robustness, but the marginal benefit
decreases after a certain threshold is reached. Also, when the
number of critical facilities reaches 1000, Portland Metro net-
work shows a very similar robustness performance to a
random network of the same size and mean degree.

Rather than random failures, network disruptions in real
life are often influenced by the geometric features of the net-
work. Therefore, we conducted a probabilistic earthquake-
induced failure of the Portland Metro road network and
used hospitals as a case study. The percolation of RCS
shows a two-phase transition decided by the proportion of
the links exposed to earthquake-induced hazards. The
robustness shows great variation between ¢ €[0.18, 0.38]
and ¢ €[0.5, 0.8]. The depicted transition in robustness can
help us to create effective mitigation plans and informed pol-
icies to minimize the loss of network access to hospitals, in
different scenarios under an M9.0 earthquake.

To transform the research findings to network design and
inform the stakeholders about critical infrastructure protec-
tion, we used the current framework in devising a strategy
to protect existing infrastructures and to allocate resources
on newly built infrastructure. To maximize network robust-
ness, we iterated through the hospitals and derived the
robustness that reveals the criticality of each hospital. We
found that Legacy Good Samaritan is the most critical hospital
for maintaining network robustness and should be particu-
larly protected. Furthermore, we also identified the optimal
placement for a future hospital. We identified the region that
will enhance network robustness by providing community
access to a hospital. Through the simulation, we identified
that southwest of Portland city centre is the potential location
for future hospital facilities.

6. Discussion

Limited access to critical facilities will make a poorly con-
nected network vulnerable to network disruption. This
suggests that the number and location of critical facilities
can significantly influence network robustness. Therefore,
network robustness should be characterized based on inter-
dependencies with critical facilities and not as an inherent
property of the transportation network alone. In this paper,
we incorporated post-disaster access to critical facilities into
network robustness to accurately assess the network con-
dition, and to provide future critical infrastructure
protection strategies and new development schemes.

It is worth mentioning that the simultaneous link-removal m

on the network is to approximate network disruption resulting
from catastrophes such as an M9.0 earthquake or flooding
like Hurricane Harvey. The network will suffer from extensive
loss of connectivity due to the link failure. To counter such
damage on the network, different strategies can be applied,
for example, emergency response planning, evaluation of the
location of additional critical facilities, and infrastructure prior-
itization. The proposed simulation framework can not only
assess network robustness in consideration of post-disaster
access to critical facilities but also can identify critical infra-
structure and future infrastructure sites. The results show us
the infrastructure criticality hot spot on a network. With this
information, we can emphasize hazard mitigation planning
in the critical areas, prioritize protection of critical facilities,
set up a temporary emergency response centre for effective
post-disaster recovery and build a new facility or relocate
existing facilities to mitigate the disastrous effect.

Network robustness can be analysed via a number of differ-
ent approaches. However, comprehensive empirical data are
hard to obtain, which limits the implementation of a majority
of the methods. This paper enables an assessment of network
robustness in considering post-disaster network access to criti-
cal facilities through the use of topological and geometrical
data. The parameter in calculating robustness involves network
structure, critical facilities, and natural hazards mapping, which
can all be obtained from agencies and state departments of
transportation. For example, spatial networks from GIS files
can be extracted into node/link graphs. Hazards such as the
hurricanes, ice-storms and flooding can also be explored by
calculating the link exposure to disruption through the use of
the proposed simulation framework. Despite the use of hospi-
tals as the representative critical facilities, other types of
critical infrastructure can also be investigated in the future,
such as material warehouses, resource repositories and equip-
ment centres. Therefore, the proposed robust component can
be generalized in a wide range of scenarios and help cities to
evaluate the robustness of their road networks. Dong et al.
[32] discovered that most cities share very similar road struc-
tures using a giant component as the robustness metric.
Therefore, although the exact percolation transition threshold
would vary, the robustness patterns are very similar. Beyond
the road network, the proposed assessment framework can be
also applied to other critical infrastructure networks such
as electricity networks or water distribution networks. For
example, power lines have to connect to the generator and dis-
tributor in order to maintain functionality. Failure of the water
pumps would lead to water shortage in the communities. These
phenomena can all be investigated through the proposed robust
component-based percolation modelling approach.

Transportation planning can not only identify the
existing or future critical facilities and inform resource
allocation but can also be beneficial by applying a robust-
ness component lens to assess post-disaster accessibility to
resources and services. For example, in the event of urban
flooding, flooded neighbourhoods will certainly lose trans-
portation to essential services such as food and pharmacy.
On the other hand, neighbourhoods that survived flooding
may also be isolated from the critical services as roads
become inundated. The proposed metric and framework
allow us not only to measure the direct impact of network
disruption but also to identify the network components
that are indirectly affected by disasters. We can thus
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identify the critical roads for future infrastructure
development and hazards mitigation planning to alleviate
the societal impact of disastrous network disruption. In
addition, different subpopulations of a community use,
access, and rely on the infrastructure and respond to disas-
ter impacts in different ways. The proposed infrastructure
network robustness assessment framework can also be com-
bined with social vulnerability to identify the focal area for

urban planning and critical infrastructure protection.

Data accessibility. The network data used in this paper can be obtained
from OpenStreetMap, and the natural hazards data can be obtained
from OHELP (https://ohelp.oregonstate.edu/).
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