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Abstract—Spatio-temporal co-occurrence analysis captures the
spatial and temporal relations between events that occur at the
same time and location. In this paper, we utilize spatio-temporal
co-occurrence relations to integrate solar active region (AR) data
detected and reported by three feature recognition methods,
namely, human labeling by forecasters at National Oceanic
and Atmospheric Administration (NOAA), Spaceweather HMI
Active Region Patch (SHARP) detection pipeline, and Spatial
Possibilistic Clustering Algorithm (SPoCA). We determine the
associations between individual reports by identifying the spatio-
temporal co-occurrences among the reports from these modules.
We compare our findings with the data from the Joint Science
Operations Center (JSOC), analyzing the discrepancies in dif-
ferent circumstances. We found 105 SHARP series not properly
associated with the NOAA-labeled ARs. In the end, we provide
detailed movement analyses for the AR trajectories, create an
updated SHARP-to-NOAA AR associations, that is crucial for
space weather predictions utilizing magnetic field information,
and make the ternary associations between SHARP, NOAA ARs,
and SPoCA ARs available to the public.

I. INTRODUCTION

Solar active regions are areas of intense magnetic flux in
the Sun. These regions frequently generate various types of
explosive solar activity, including eruptions such as solar flares
and coronal mass ejections. They are the main source of
information for predicting these potentially catastrophic solar
events. Various reporting modules detect active regions (ARS)
using their own methods. This work is mainly concerned with
integrating and further cleaning of heterogeneous active region
data using their reported locations and occurrence times.

Our goal, in this work, is to associate the active regions’
spatio-temporal vector data reported from NOAA, SHARP,
and SPoCA and integrate these resources for further space
weather analytics applications. For each active region instance
from these reporting modules, we unify their identification and
provide a detailed view of the data.

While identifying the same phenomena, active region re-
ports are fairly heterogeneous, primarily due to the aim of each
method and the data source used for detection. For instance,
NOAA ARs are detected from relatively low-resolution contin-
uum images of the solar photosphere, used to identify sunspots
and then magnetograms to track helpful magnetic character-
istics of sunspots that are useful for forecasting. SHARPs,
on the other hand, are defined from high-resolution vector
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magnetograms and are used to understand the magnetic field
characteristics of active regions. There are also a variety of
different metadata attributes each module detects or calculates.
Attributes common in all data sources, at least from a semantic
point of view, are spatial and temporal attributes. However,
the spatial data types of each module are different and the
temporal cadence of the reports also varies significantly. We
believe that integrating these data resources and cleaning them
can provide comprehensive reference for future research and
enable more robust space weather analytics. This is because
these AR data resources are practically indispensable and are
utilized, often independently, in flare prediction and character-
ization studies [1]-[4].

To integrate, we used the spatial and temporal attributes of
active region reports and discovered the spatio-temporal co-
occurrence relationships [5] to measure the correlation among
different AR instances. In this work, we used time intersection
as a basis for temporal co-existence and topological and
distance-based spatial relationships [6] as the approach to
associate co-occurring AR instances. To identify significance
of these spatio-temporal co-occurrences, we employed two
measures of significance, which can be considered as trajectory
similarity measures of trajectories with mixed-spatial extents.

Active region data from all three resources are tracked,
namely, individual event reports are organized as spatio-
temporal trajectories using a unique identifier for each tra-
jectory specific to the reporting module. SHARPs use HARP-
NUMs (HMI Active Region Patch Number), NOAA uses the
NOAA Active Region numbers (NOAA AR#), and SPoCA
uses the SPOCA AR ID [7]-[9]. SHARP records also provide
one or more NOAA AR# for each trajectory, if available. Note
that some SHARPs do not have an associated NOAA AR#.
Furthermore, SHARPs present a detailed spatio-temporal view
for each segment (i.e., individual event) in high temporal and
spatial resolution, providing a bounding box and, for strong
magnetic fields, a region representated as bitmaps (we use
bounding boxes in this study). Here, we first clean the NOAA
AR reports via an outlier analysis, update the SHARP-to-
NOAA AR associations, and extend the co-occurrence analysis
to discover SHARP-to-SPoCA AR associations and provide a
clean ternary relation among the AR reports.

The rest of this paper is organized as follows. In Section II,
we present the background information on the solar active re-
gion reporting modules: NOAA, SHARP, and SPoCA. Section



IIT describes our spatio-temporal co-occurrence integration
methodology. In Section IV, we provide a comparison between
our SHARP-to-NOAA AR pairs and the association informa-
tion by the Joint Science Operations Center (JSOC) and also
individually analyze the discrepancies. We also detect NOAA
AR outliers and update event records to provide improved
association results. We briefly describe our conclusions and
envisioned future work in Section V.

II. BACKGROUND
A. NOAA Active Regions

The forecasters from Space Weather Prediction Center
(SWPC) of NOAA [7] analyze and detect active regions
associated with sunspot groups in the Sun’s photosphere each
day. They use ground-based observations to detect visible
sunspot groups and evaluate the size and complexity based
on the MclIntosh classification, namely a modified Zurich
classification scale and Mount Wilson magnetic classification
system [10]. The SWPC assigns an identifier, called the NOAA
AR number (NOAA AR#), for each AR when they are first
detected on the earthward solar disk.

The SWPC also generates a report named the Solar Region
Summary (SRS) [7] that includes active regions detected
during the previous day. The report records the information
including the NOAA number, central location of the ARs and a
few other attributes such as number of sunspots and McIntosh
classification.

B. Spaceweather HMI Active Region Patches (SHARPs)

The SHARP detection pipeline [8] processes the data
coming from the Helioseismic and Magnetic Imager (HMI)
onboard the Solar Dynamics Observatory (SDO) and generate
HMI Active Region Patches (HARPs), which show the spatial
extent of detected active regions. HARPs are further processed
to create SHARPs, which also include various space weather-
related quantities calculated from photospheric vector magne-
tograms. SHARP series contain the bounding boxes of tracked
AR patches with a 12-minute cadence.

The module also assigns an identification number for each
HMI Active Region Patch (HARP), encoded as HARPNUM.
The detection identifies AR patch on the CCD image rep-
resented by a bounding box and create a bitmap inside the
box. The bitmap which identifies the strong-field pixels is
within this bounding box. These bounding boxes are large
enough to include the maximum heliographic extent magnetic
structures, often neighboring active regions. Each HARP data
series provides a piece of consecutive geometric information
about the AR patch every 12 minutes.

C. Spatial Possibilistic Clustering Algorithm (SPoCA)

Spatial Possibilistic Clustering Algorithm (SPoCA) [9] is
essentially a multi-channel, salient event detection framework
utilizing an unsupervised clustering method. The SPoCA ap-
plies image segmentation methods on solar extreme ultraviolet
(EUV) images at Sun’s chromosphere. These images are
obtained from the Atmospheric Imaging Assembly (AIA)
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onboard SDO. SPoCA provides a number of attributes for
each detected AR event such as the center location or area.
The SPoCA detected ARs are reported to the Heliophysics
Event Knowledge Base (HEK) generally every four hours.
Each report contains the centroid location, bounding box, and
chain code representation of identified ARs.

III. INTEGRATION METHODOLOGY

In this section, we describe the primary methodology for
integrating the heterogeneous AR data from NOAA, SHARP,
and SPoCA. To achieve this, we treat the timestamps and
time intervals of ARs as temporal attributes, whereas we
treat centroids, bounding boxes, and chain codes of ARs as
spatial attributes. We, in principle, consider that if reports from
two modules co-occur in space and time, then they repre-
sent the same phenomena. To implement the co-occurrence
relationship, we use time interval intersection as the temporal
predicate to find the coexistence relationships. Moreover, we
further refine the coexisting instances using spatial intersect
predicate as the primary co-location rule to establish the co-
occurrence relationship between AR reports.

A. Temporal Coexistence

Basic temporal relationships [11] between the two time-
points are straightforward. We could describe them as follows:
A time-point can occur (1) before, (2) after, or (3) at the same
time with another time point.

A pair of ordered time-points constitute a time-interval,
which represents the continuous time range between these two
time-points. In 1983, Allen introduced a set of relationships
that can occur between the two time-intervals [12], which was
widely adopted as the methodology for discovering temporal
patterns. There is a total of thirteen relationships between two
time-intervals formalized in Allen’s interval algebra, including
seven primary relationships [12]: before, meets, overlaps,
during, starts, finishes, equals; and six inverse relationships:
after, met by, overlapped by, contains, starts by, finished by.
Nine of these relations essentially represent the coexistence
relationship, which, for two time intervals T1 and T2, can be
formalized as follows:

True if T1l.end > T2.start AND
Coexists(T1,T2)= T1.start < T2.end (D
False otherwise

where T;.start and T;.end represents the start and end times
of the intervals.

Each reporting module provides the temporal attributes for
the AR reports; however, with great differences in terms of
cadence. SPoCA reports the AR locations approximately every
4 hours. SHARP detection module reports the locations with a
cadence of 12 minutes, while NOAA ARs are reported daily.
To account for these differences, for each daily NOAA AR
event report, we applied a temporal buffer of +12 hours.
By doing this, we extrapolated the approximate locations of
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Fig. 1: Extrapolation process of NOAA AR 11939. Shown in (a), we apply a temporal buffer of +12 hours to daily reports of NOAA AR
11939. (b) shows the extrapolation of individual event reports using the time delays and longitudinal displacement towards east and west,

matching the timestamps of SHARPs (i.e., every 12 minutes).

NOAA AR centroids 12 hours backwards and forwards, with
12-minute cadence. For the SPOCA AR, we extrapolated the
approximate locations of bounding box between the SPoCA
AR start time and end time, with 12-minute cadence.

This extrapolation process makes use of known differential
rotation of the Sun [13]. We use the angular velocity of
the sun (w), shown in Eq. 2, provided in [13] to estimate
the approximated displacement of NOAA AR and SPoCA at
HARP segment time point.

w = A+ Bsin?(p) + Csin*(p) 2)

where ¢ is the latitude, A, B, and C are approximated con-
stants (A=14.11, B=-1.7, and C=-2.35) [14]. Then, given AT
— the time difference (in days) between the observation and the
AR location to be extrapolated, the longitudinal displacement
(A is calculated as:

AN =w x AT 3)

We, first, calculate the time difference AT between the
original AR observation’s timestamp (fpps) and the template
HARP segment’s time point (¢, ). Then, using AT, we apply
the solar differential rotation formula presented in Eq. 2 and
calculate the longitudinal displacement A\ between tops and
tg,. Finally, we add A\ to our observation’s longitude and
determine the approximate AR location at tg,. Note that,
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we do not alter the observation’s latitude when extrapolating,
because, as shown in our outlier analysis (in Fig. 4.b), expected
daily latitudinal displacement for ARs is O degrees.

In Fig. 1, we demonstrate an example extrapolation of
NOAA AR 11939 between 2013-12-30 and 2013-12-31 using
12-hour backward and forward temporal buffers. Note here, we
extrapolate for every 12-minute interval to match the cadence
of SHARP records.

Following the location extrapolation, our first step in identi-
fying the spatio-temporal co-occurrences is finding co-existing
AR reports from different reporting modules. We use SHARP
records (i.e., individual event locations at a particular time)
as the template, and search the list of 12-hour extrapolated
NOAA AR list as well as the SPoCA AR list for coexistences.
The list of candidate NOAA and SPoCA ARs for each SHARP
are temporarily recorded. Based on these two lists, we then
search for spatial co-locations, which we will describe in the
next subsection.

B. Spatial Co-locations

Spatial relationships characterize how a given spatial ob-
ject is located in space with respect to another spatial ob-
ject. There are various types of spatial relationships that
may appear among spatial objects such as topological,
directional/orientation-based, shape-based, or distance-based
relations [15]. A spatial co-location is an abstract spatial
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Fig. 2: Topological spatial relationships between AR reports with various spatial extents. (a) NOAA AR centroid (point) is within SHARP
bounding box, (b) SPoCA AR bounding box overlaps with SHARP bounding box.

(a)

(b)

Fig. 3: Spatio-temporal co-occurence relationship between the trajectories of (a) SHARP and NOAA AR using spatial within relation as
co-location predicate and (b)SHARP and SPoCA AR using spatial intersect as the co-location predicate.

relation which represents the association among two or more
spatial objects that are close-by or at the same location. While
there are a plethora of spatial co-location mining literature
[16], in our work, we mainly focus on the topological and
distance-based spatial relationships among the AR event re-
ports.

The distance-based spatial relationship between two spatial
objects is based on a well-defined metric, defined over the
space. The relationship specifies how far is the object from a
given reference object. The Manhattan or Euclidean distances
[17], for instance, between two spatial objects, are two widely
used metrics to identify the spatial relationship. Topological
spatial relationships are qualitative properties that characterize
the relative positions of spatial objects toward each other and
they are preserved under certain continuous transformations
including all affine transformations [18]. The space can be
stretched, compressed, twisted, bent, and transformed into
different forms with topological relations between two objects
remaining unchanged, which is essential for spatial objects
with highly varying characteristics in terms of size, shape, and
data types. The topological relationships are well formalized
by the standard Dimensionally Extended nine-Intersection
Model (DE-9IM) [19].

Due to different spatial data types of AR records, we employ
both topological and distance-based relationships. To discover
the colocations between coexisting NOAA ARs (reported as
points) and SHARPs (reported as bounding box), we check (1)
if NOAA AR centroid is within the bounding box of SHARP,
namely spatial intersection, and (2) the minimum distance
between NOAA AR and SHARP bounding box (which is
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0 if within). Note here that SHARPs also provide a region
representation for strong magnetic fields; however, we use the
bounding box. We use the spatial intersection as the primary
form of colocation and distances are calculated to quantify the
discrepancies in tracked spatio-temporal trajectories. Figure
2a shows an example illustration for the spatial topological
relationship we use between NOAA AR centroid and SHARP
bounding box. For the SPoCA ARs, we use bounding box
which is derived from the polygon, then check whether the
bounding box of SPOCA AR overlaps with the bounding box
of SHARP. Figure 2b shows an example of this relationship
between a SPOCA AR and a SHARP AR.

C. Spatio-temporal Co-occurrences

Our goal is to essentially discover the associations be-
tween the AR reports by discovering the spatio-temporal co-
occurrences among them. Using the temporally coexisting
SHARP-to-NOAA and SHARP-to-SPoCA associations as a
template, we further refine these pairs based on whether they
are co-located in space as well. Fig. 3 shows the spatio-
temporal co-occurences between SHARP-to-NOAA AR in (a)
and SHARP-to-SPoCA AR in (b). To determine the spatio-
temporal co-occurrences, we used the spatial intersection as
the primary spatial relationship to identify the co-occurrences.
We also identified the distances between the AR reports to
better quantify and highlight potential problems in the JSOC
provided SHARP-to-NOAA AR associations.
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Fig. 4: Distributions of daily NOAA AR longitudinal and latitudinal displacements. The NOAA ARs are binned into four groups based on
their absolute average latitude that are 0—+10 degrees, +10—+20 degrees, 20-+30 degrees, and +30+ degrees. (a) Boxplots of longitudinal
displacements, centered around 13 to 14 degrees. (b) Boxplots of latitudinal displacements, centered around O degrees. (c) Histograms of
longitudinal displacement distributions for each group. (d) Histograms of latitudinal displacement distributions for each group.

IV. EVALUATION AND ANALYSIS

To conduct our analysis, we use NOAA AR data retrieved
from [20]. The source code for our analysis is also publicly
available!. We included the plage regions to NOAA AR
reports to track the movement of individual regions better.
As mentioned earlier, we also manually updated the NOAA
AR outliers, which we will discuss in the next subsection.
Locations of SHARP series are obtained from JSOC, from

Ihttps://bitbucket.org/gsudmlab/st_cooccurrence_ar/src/master/
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header keywords [21]. SPoCA ARs are obtained from the He-
liophysics Event Knowledge Base (HEK) database [22]. For all
three data resources, the time range is between May 2010 and
September 2018. Within this interval, we have 1,661 NOAA
AR trajectories and 15,742 individual daily reports. In the
same period, we have 14,375 SPoCA ARs (100,030 individual
reports) and 4,075 SHARPs (2,613,321 individual reports).
For each individual report in 4,075 SHARP trajectories, we
annotate the corresponding NOAA AR# and SPoCA AR ID to
each segment. We compared our findings with the SHARP-to-



(b)

Fig. 5: Two example discrepancies: (a) SHARP 3686 and NOAA AR 11975, which is reported to be associated by JSOC provided SHARP-
to-NOAA AR association list. (b) SHARP 2511 and NOAA AR 11688, which is not reported by JSOC’s list.

NOAA AR associations provided in SHARP header keywords.
Some SHARPs do not have a corresponding NOAA AR#
while others may have one or more associated NOAA ARs.
It is not expected that NOAA ARs are mapped to multiple
SHARPs, although some of them are.

A. Updates to NOAA Active Region Reports

During our analysis, we explored the daily movement pat-
terns of NOAA ARs, primarily, to verify the correctness of
NOAA-reported locations. We have found a few outliers in
NOAA AR daily reports, which had unexpected longitudinal
and latitudinal daily displacements which could not be ex-
plained with occasional flux emergence and enlargement of
active regions.

To quantitatively identify these unexpected locations, we
essentially performed an outlier analysis, where we checked
the daily longitude and latitude changes. We binned the
active regions based on their latitudes and created for groups
of latitudes that are 0° to +10°, +10° to +20°, +20° to
+30°, and +30° to £90°. We found the median longitude
displacement for each of these and distributions can be seen
in Fig 4. On average, the latitude displacement of the events
stay within +8° even for strongly emerging flux regions. We
discovered only 19 NOAA ARs whose latitude change over 8°
daily. Similarly, the mean longitudinal displacement is +13°
to +14° depending on the latitude and most ARs (~97%)
stay within +5° to +22°. Nevertheless, these location outliers
for NOAA ARs potentially cause mismatches between the
NOAA AR#s and HARPNUMs. We give one such example
in Fig. 6, which shows the NOAA AR 11490 having an
erroneous location on 2012-05-27. We observe that NOAA
AR 11490 moves to the east (+30°) and to the south (—14°)
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and then moves back to its expected route. We considered
NOAA AR movements that are within +8° in latitude and
+5 to +22° in longitude as the expected maximum limits of
daily movements. If displacements are beyond these limits, we
considered and identified them as anomalous movements. For
each of those active regions which had anomalous daily move-
ments, we manually updated the locations by examining the
full disk ATA and HMI images. We believe that mismatches
between JSOC provided and our SHARP-to-NOAA AR asso-
ciations (presented in the next subsection) are caused by these
movement anomalies. Therefore, we use the updated NOAA
AR locations, practically to improve SHARP-to-NOAA AR
associations. We made the trajectories of anomalous NOAA
ARs publicly available together with the updated locations.
We also share the full list of updated NOAA ARs in [23].

B. Discrepancy Analysis with JSOC Data

In this part of our analysis, we compare SHARP-to-NOAA
AR associations provided by JSOC to the co-occurrence-based
associations we discovered. In JSOC-provided associations,
there are 1314 SHARP series matched to NOAA ARs, 172 of
which matched to two NOAA ARs, and 71 of which matched
to three or more NOAA ARs. 2,761 SHARP series do not have
any NOAA AR associations. In JSOC-provided associations,
most of the NOAA ARs (1,517 of total 1,591) are matched to
a single SHARP series, there are 74 NOAA ARs, which are
matched to multiple SHARP series.

3970 of 4,075 SHARP-to-NOAA AR associations provided
by JSOC are in accordance with our results. However, for 105
SHARP series,these associations do not fully match, i.e., for
these SHARP series, either we could not find the associated
NOAA AR#, we found an extra NOAA AR#, or a combination
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Fig. 6: Anomalous movement of NOAA AR 11490 on 2012-05-27 and we have updated the records for this day with (-31, -12) as shown

with the green point in the scatter.

of these two. For the case of missing NOAA AR# (i.e., the
ones we could not find the associations), some NOAA ARs and
SHARPs do not coexist, while some others do coexist; but do
not co-occur (meaning they are not colocated). For instance,
while they are shown to be associated by JSOC, NOAA
AR 11522 (lifespan between 2012-07-13 to 2012-07-18) and
SHARP 1844 (lifespan between 2012-07-06 17:36 to 2012-
07-08 20:00) do not have any temporal coexistence. On the
other hand, NOAA AR 11975 and SHARP 3686 coexist but
they do not spatially intersect. The relative locations of NOAA
AR 11975 and SHARP 3686 are illustrated in Fig.5a. For the
case of extra NOAA AR# detected, we essentially found a
spatio-temporal co-occurrence not reported by JSOC. While
some of these can be relatively weak co-occurrences, there
are a few instances where we observed strong co-occurrences.
Shown in Fig. 5b, NOAA AR 11688 and SHARP 2511 co-
occur over 98% of their coexisting lifespans; however, their
associations are not reported. To quantify the strength of the
co-occurrence while avoiding misreportings caused by the
inaccurate locations, we also calculated measures of trajectory
similarity, which are co-occurrence factor (cof) and average
minimum distance ({ymindist). Co-occurrence factor is calcu-
lated as the ratio between the lengths of co-occurrence and
co-existence time intervals, while average minimum distance
is calculated as the mean of the minimum Euclidean distance
between individual NOAA AR and SHARP geometries at time
t; for each timestamp they co-exist.

Length of co-occurrence time interval between NOAA-AR and SHARP
cof(NOAA-AR, SHARP) =

“4)

Length of co-existence time interval between NOAA-AR and SHARP
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N
Hmindist = NZmindiSI(NOAA—AR.gi,SHARP.gi) 5)
t;

An example of weaker spatio-temporal co-occurrence is
observed for SHARP 4390 and NOAA AR 12127, where they
only co-occur ~1.1% of their coexistence time intervals and
on average they are they are over 9° far apart.

Discrepancy analysis with JSOC Data is conducted in two
steps. Firstly, based on the co-occurrence associations, we have
156 individual NOAA AR#-to-HARPNUM pair differences
with JSOC. In the second step, we refine the difference pairs
from 156 to 116 by manually examining each individual
NOAA AR#-to-HARPNUM difference pairs on the full disk
AIA and HMI image. We provide detailed explanation for
each difference pairs in [24]. Finally, there are 116 individual
NOAA AR#-to-HARPNUM pair differences (subdivided from
105 SHARP-to-NOAA AR discrepancies with JSOC), which
are listed in Table I. Table I shows the lengths of NOAA
AR and SHARP trajectories, co-existence and co-occurrence
time intervals, as well as the co-occurrence factor and average
minimum distance for each of these discrepancies. The full list
of co-occurrence based SHARP-to-NOAA AR associations is
also shared in [25].

V. CONCLUSION

Active regions are responsible for most of the major,
potentially threatening, explosive space weather events such
as flares and CMEs. We believe that enhancing data quality
enhances our ability to understand and predict these events,
at the same time enabling the unobstructed use of machine



and deep learning techniques to this purpose. Magnetic field-
based parameters, derived from SHARPs, are frequently used
in flare prediction studies. Similarly, NOAA ARs are used for
associating solar flares with active regions properties, more
often than not with SHARPs. In case of spurious associations
between NOAA ARs and SHARPs, we unintentionally feed
incorrect data to learning models. Here, we have attempted
to integrate the AR data from multiple feature recognition
modules with using spatio-temporal co-occurrence analysis.
We simply matched SHARPs, which have high temporal
resolution, with both NOAA and SPoCA ARs. By doing
that, (1) we provide a detailed spatio-temporal integration
of solar active regions, (2) we discovered and updated a
number of erroneous locations of NOAA ARs, and (3) using
updated NOAA ARs, we further updated SHARP-to-NOAA
AR associations.

In the future, we plan to extend our work to integrate
not only active regions, but also other solar event types to
our analysis, such as sunspot class information and sigmoids,
which have flare-predictive attributes.

VI. ACKNOWLEDGMENTS

This project has been supported by funding from the Divi-
sion of Advanced Cyberinfrastructure within the Directorate
for Computer and Information Science and Engineering, the
Division of Astronomical Sciences within the Directorate for
Mathematical and Physical Sciences, and the Division of
Atmospheric and Geospace Sciences within the Directorate
for Geosciences, under NSF award #1443061.

REFERENCES

[1] M. J. Aschwanden and T. Shimizu, “MULTI-WAVELENGTH
OBSERVATIONS OF THE SPATIO-TEMPORAL EVOLUTION
OF SOLAR FLARES WITH AIA/SDO. II. HYDRODYNAMIC
SCALING LAWS AND THERMAL ENERGIES,” The Astrophysical
Journal, vol. 776, no. 2, p. 132, oct 2013. [Online]. Available:
https://doi.org/10.1088%2F0004-637x%2F776%2F2%2F132

M. G. Bobra and S. Couvidat, “SOLAR FLARE PREDICTION
USINGSDO/HMI VECTOR MAGNETIC FIELD DATA WITH a
MACHINE-LEARNING ALGORITHM,” The Astrophysical Journal,
vol. 798, no. 2, p. 135, jan 2015. [Online]. Available: https:
//doi.org/10.1088%2F0004-637x%2F798%2F2%2F135

E. Jonas, M. Bobra, V. Shankar, J. Todd Hoeksema, and B. Recht,
“Flare prediction using photospheric and coronal image data,” Solar
Physics, vol. 293, no. 3, p. 48, Feb 2018. [Online]. Available:
https://doi.org/10.1007/s11207-018-1258-9

McCloskey, Aoife E., Gallagher, Peter T., and Bloomfield, D.
Shaun, “Flare forecasting using the evolution of mcintosh sunspot
classifications,” J. Space Weather Space Clim., vol. 8, p. A34, 2018.
[Online]. Available: https://doi.org/10.1051/swsc/2018022

B. Aydin, A. Kucuk, R. A. Angryk, and P. C. Martens, “Measuring
the significance of spatiotemporal co-occurrences,” ACM Trans. Spatial
Algorithms Syst., vol. 3, no. 3, pp. 9:1-9:35, Nov. 2017. [Online].
Available: http://doi.acm.org/10.1145/3139351

B. Aydin and R. A. Angryk, Modeling Spatiotemporal Relationships
Among Trajectories. Cham: Springer International Publishing, 2018, pp.
17-27. [Online]. Available: https://doi.org/10.1007/978-3-319-99873-2_
3

[4]

[5]

[6]

4957

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

NOAA / NWS Space Weather Prediction Center, “Solar region sum-
mary,” https://www.swpc.noaa.gov/products/solar-region-summary, (Ac-

cessed on 09/23/2019).
M. G. Bobra, X. Sun, J. T. Hoeksema, M. Turmon, Y. Liu, K. Hayashi,

G. Barnes, and K. D. Leka, “The helioseismic and magnetic imager
(hmi) vector magnetic field pipeline: Sharps — space-weather hmi active
region patches,” Solar Physics, vol. 289, no. 9, pp. 3549-3578, Sep
2014. [Online]. Available: https://doi.org/10.1007/s11207-014-0529-3
Barra, V., Delouille, V., Kretzschmar, M., and Hochedez, J.-F., “Fast
and robust segmentation of solar euv images: algorithm and results for
solar cycle 23" A&A, vol. 505, no. 1, pp. 361-371, 2009. [Online].
Available: https://doi.org/10.1051/0004-6361/200811416

P. S. MclIntosh, “The classification of sunspot groups,” Solar Physics,
vol. 125, no. 2, pp. 251-267, Sep 1990. [Online]. Available:
https://doi.org/10.1007/BF00158405

F. Moerchen, “Tutorial cidm-t temporal pattern mining in symbolic
time point and time interval data,” in 2009 IEEE Symposium on
Computational Intelligence and Data Mining, March 2009, pp. xiv—xiv.
J. F. ALLEN, “Maintaining knowledge about temporal intervals,” in
Readings in Qualitative Reasoning About Physical Systems, D. S.
Weld and J. de Kleer, Eds. Morgan Kaufmann, 1990, pp. 361 —
372. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/B978148321447450033X

R. F. Howard, J. W. Harvey, and S. Forgach, “Solar surface velocity
fields determined from small magnetic features,” Solar Physics,
vol. 130, no. 1, pp. 295-311, Dec 1990. [Online]. Available:
https://doi.org/10.1007/BF00156795

B. J. LaBonte, M. K. Georgoulis, and D. M. Rust, “Survey of magnetic
helicity injection in regions producing x-class flares,” The Astrophysical
Journal, vol. 671, no. 1, pp. 955-963, dec 2007. [Online]. Available:
https://doi.org/10.1086%2F522682

S. Shekhar and H. Xiong, Qualitative Spatial Reasoning. Boston,
MA: Springer US, 2008, pp. 934-934. [Online]. Available: https:
//doi.org/10.1007/978-0-387-35973-1_1058

Z. Jiang and S. Shekhar, Spatial and Spatiotemporal Big Data Science.
Cham: Springer International Publishing, 2017, pp. 15-44. [Online].
Available: https://doi.org/10.1007/978-3-319-60195-3_2

S. Shekhar and H. Xiong, Encyclopedia of GIS. Springer Science &
Business Media, 2007.

M. Schneider and T. Behr, “Topological relationships between complex
spatial objects,” ACM Trans. Database Syst., vol. 31, no. 1, pp. 39-81,
Mar. 2006. [Online]. Available: http://doi.acm.org/10.1145/1132863.
1132865

C. Strobl, Dimensionally Extended Nine-Intersection Model (DE-9IM).
Cham: Springer International Publishing, 2017, pp. 470—476. [Online].
Available: https://doi.org/10.1007/978-3-319-17885-1_298
ftp://ftp.swpc.noaa.gov/pub/warehouse/, (Accessed on 09/26/2019).

J. T. Hoeksema, Y. Liu, K. Hayashi, X. Sun, J. Schou, S. Couvidat,
A. Norton, M. Bobra, R. Centeno, K. D. Leka, G. Barnes, and
M. Turmon, “The helioseismic and magnetic imager (hmi) vector
magnetic field pipeline: Overview and performance,” Solar Physics,
vol. 289, no. 9, pp. 3483-3530, Sep 2014. [Online]. Available:
https://doi.org/10.1007/s11207-014-0516-8

N. Hurlburt, M. Cheung, C. Schrijver, L. Chang, S. Freeland,
S. Green, C. Heck, A. Jaffey, A. Kobashi, D. Schiff, J. Serafin,
R. Seguin, G. Slater, A. Somani, and R. Timmons, Heliophysics
Event Knowledgebase for the Solar Dynamics Observatory (SDO) and
Beyond. New York, NY: Springer US, 2012, pp. 67-78. [Online].
Available: https://doi.org/10.1007/978-1-4614-3673-7_5

X. Cai, “Updated noaa ar trajectory,” http://dmlab.cs.gsu.edu/
wp-content/uploads/appendix_noaa_ars_plages_n_updatedl.csv, Nov
2019.

X. Cai, “SHARP to NOAA Discrepancies,” http://dmlab.cs.gsu.edu/
wp-content/uploads/appendix_sharp_to_noaa_discrepancy_remarks.csv,
Nov 2019.

X. Cai, “Full list of HARPNUM-to-NOAA AR Number Associa-
tions,” http://dmlab.cs.gsu.edu/wp-content/uploads/MU_all_harps_with_
noaa_ars.txt, Nov 2019.



TABLE I: 116 individual NOAA AR number to HARPNUM discrepancies compared to JSOC-provided list

No HARPNUM NOAA AR# Co_existance Co_Occurence Cof_rate HARP_records NOAA_records avg_min_distance min_distance Is Extra Is NOAA Location
(hours) (hours) (%) (hours) (hours) (deg) (deg) Updated
1 45 11073 134.2 0 0 1342 240 5.779099964 1.660613549
2 700 11253 66.4 0 0 226.4 144 5.50657413 5.112789491
3 714 11256 199 0 0 309 216 4.056030007 2.906088
4 734 11253 74 0 0 7.4 144 11.0565582 9.877950294
5 877 11293 11.8 74 62.71 24.6 144 0.169046148 0 extra
6 1124 11373 91.2 0 0 322 96 3.746813623 1.8571
7 1133 11365 1554 0 0 182.8 192 9.184393267 6.611815826 update
8 1165 11367 159.8 0 0 159.8 240 7.287003759 5.506166 update
9 1295 11394 132.2 24 18.15 142 240 2.620807277 0 extra
10 1493 11437 532 0 0 532 192 3.297733319 2.926298
11 1535 11442 8.4 7.2 85.71 8.4 264 0.065225881 0 extra
12 1578 11464 166 0 0 258 168 3.136260794 2.245369
13 1633 11468 1.8 11.4 96.61 11.8 192 0.008860237 0 extra
14 1662 11487 145.4 0 0 318.4 168 2918219503 1.660772064
15 1697 11489 2174 0 0 2924 240 12.72621982 6.968548208 update
16 1724 11502 1952 0 0 303.8 240 5.779507335 3.82651544
17 1844 11522 — — — 50 144 — —
18 1845 11522 1312 128.4 97.87 259.6 144 0.010065763 0 extra
19 1907 11545 60 0 0 337.6 120 5.684938152 0.586471842
20 1998 11557 68.2 0 0 68.2 240 20.91493134 20.2544632
21 2155 11594 23.8 7 29.41 238 288 0.525051408 0 extra
22 2360 11655 156.2 121.2 77.59 275.6 168 1927847647 0 extra
23 2375 11642 152 0 0 152 312 7.232228477 6.650084336
24 2403 11652 34 0 0 3.4 312 6.011314655 5464216783
25 2432 11666 130.6 10.4 7.96 168.6 288 1.697249223 0 extra
26 2439 11667 286.4 286.4 100 307.4 288 0 0 extra
27 2442 11665 9.2 0 0 9.2 312 4.192045503 3.341770472
28 2469 11674 168 18.6 11.07 328.8 168 6.109594474 0 extra
29 2492 11679 203.4 72 354 2822 264 2.040053432 0 extra
30 2511 11688 197 194.6 98.78 297.4 264 0.013973413 0 extra
31 2546 11694 261 203.4 77.93 299.8 288 0.236215101 0 extra
32 2546 11701 538 538 100 299.8 72 0 0 extra
33 2597 11708 280 216.2 77.21 3322 288 2.214304008 0 extra
34 2666 11717 76 0 0 7.6 288 3.914317406 3.746405927
35 2790 11761 237.8 0 0 319.8 264 4.822431514 2.445867973
36 2878 11780 151.6 0 0 315.2 192 7.831242186 4.939963571
37 2948 11789 74.8 0 0 74.8 216 8.255289803 6.248741788 update
38 3115 11826 103.6 0 0 103.6 192 2.83170128 1.047685673
39 3190 11844 1 1 100 16 72 0 0 extra
40 3212 11845 146 0 0 146 288 4.588168768 2.363810335
41 3252 11866 414 0 0 2174 48 7.8100391 2.93310817
42 3263 11861 301.8 0 0 305.8 312 6.335951837 1.281207
43 3520 11935 226.6 0 0 356.6 240 5.283393071 1936610134
44 3520 11939 48 0 0 356.6 48 4.800767896 3911222
45 3557 11938 158.2 0 0 158.2 288 4.638900558 1.880400641
46 3602 11938 0.6 0 0 0.6 288 0.878634167 0.643649091
47 3686 11975 454 0 0 340.8 120 17.99319668 10.15517622
48 3744 11979 36 36 100 21.8 96 0 0 extra
49 4252 12094 261.4 0 0 293 288 3.129049832 0.595583 update
50 4296 12108 259.8 0 0 338.8 312 5.142132787 2.061919536
51 4346 12103 38 20.8 5474 38 264 1770064002 0 extra
52 4424 12140 70.4 70.4 100 335.6 72 0 0 extra
53 4432 12136 56 18.8 33.57 175.6 96 1.336574963 0 extra
54 4438 12137 126.6 126.6 100 232.8 144 0 0 extra
55 4440 12135 278.4 278.4 100 281.2 288 0 0 extra
56 4447 12144 1354 1332 98.38 238.6 144 0.010318564 0 extra
57 4448 12139 283.4 2734 96.47 308.8 312 0.028469395 0 extra
58 4450 12138 452 452 100 53.6 48 0 0 extra
59 4454 12143 266.4 266.4 100 300.4 288 0 0 extra
60 4455 12141 274.8 274.8 100 287.4 288 0 0 extra
61 4455 12142 263 40.6 15.44 287.4 264 2.983788402 0 extra
62 4460 12145 714 36.8 51.54 81.6 192 0.923697125 0 extra
63 4466 12146 310 310 100 340.6 312 0 0 extra
64 4466 12148 233.6 209.6 89.73 340.6 240 0.103752561 0 extra
65 4469 12147 263.8 234.2 88.78 271 288 0.22025427 0 extra
66 4477 12149 290.6 290.6 100 298.6 312 0 0 extra
67 4478 12150 294.6 289.4 98.23 312 312 0.091014047 0 extra
68 4478 12151 280 280 100 312 312 0 0 extra
69 4502 12152 235.6 232.8 98.81 274.8 288 0.011602093 0 extra
70 4505 12153 176.6 175.6 99.43 226 216 0.00149461 0 extra
71 4523 12154 176.6 167.4 94.79 218.6 240 0.210376027 0 extra
72 4523 12161 93 93 100 218.6 168 0 0 extra
73 4530 12155 269 217 80.67 284.4 312 1.076426807 0 extra
74 4530 12157 2574 2574 100 284.4 312 0 0 extra
75 4532 12156 149.4 119.2 79.79 170.2 264 0.180614175 0 extra
76 4536 12158 279.6 279.6 100 282.6 336 0 0 extra
71 4539 12159 237.6 168.2 70.79 240.2 288 1.157205748 0 extra
78 4540 12162 108 98.6 91.3 124.4 168 0.041813918 0 extra
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No HARPNUM NOAA AR# Co_existance Co_Occurence Cof_rate HARP_records NOAA_records avg_min_distance min_distance Is Extra Is NOAA Location
(hours) (hours) (%) (hours) (hours) deg) (deg) Updated

79 4541 12160 62.2 62.2 100 72.8 72 0 0 extra

80 4543 12163 2124 210.2 98.96 235.2 288 0.002252748 0 extra

81 4549 12164 190 188 98.95 218.6 216 0.000752433 0 extra

82 4552 12165 214.2 210.2 98.13 236 288 0.047969633 0 extra

83 4556 12166 262.8 2344 89.19 285 288 1.463206985 0 extra update

84 4556 12167 2272 202 88.91 285 264 0.968023839 0 extra

85 4574 12169 252.8 231.6 91.61 272.6 288 0.312876686 0 extra

86 4574 12170 252.8 246.8 97.63 272.6 288 0.013181776 0 extra

87 4576 12168 176 153.8 87.39 189.4 240 0.155703105 0 extra

88 4579 12174 322 322 100 81.2 72 0 0 extra

89 4580 12171 281.6 274.8 97.59 353.2 288 0.156997532 0 extra

90 4580 12172 3104 298.6 96.2 3532 336 0.031699436 0 extra

91 4580 12173 307.6 299.8 97.46 3532 312 0.044374366 0 extra

922 4591 12175 161.6 161.6 100 2714 168 0 0 extra

93 4603 12176 2354 219.2 93.12 281.6 264 0.028341344 0 extra

94 4616 12181 208.2 0 0 2952 216 4.038821339 0.310715

95 4619 12180 80.4 17.6 21.89 142 144 3.927349468 0 extra

96 4661 12184 224.4 0 0 274.4 288 1462560661 8.554640144 update

97 4862 12224 204.2 0 0 337 216 3.389071133 0.512933542

98 5342 12309 166.2 0 0 318 168 5.815746584 0.646579455

99 5387 12312 2174 0 0 261.2 288 17.62617339 15.58457491 update

100 5434 12317 33.6 0 0 33.6 144 8.019439155 0.274898

101 5596 12352 129.6 0 0 201.6 168 6.506478185 4.793330721

102 5708 12372 9.4 9.4 100 152 48 0 0 extra

103 5738 12383 149 0 0 282 168 3.782208893 0.826734

104 5750 12378 189 0 189 288 6.372000005 0.343558

105 6063 12447 1722 0 0 314 216 4.363646865 2.482430238

106 6148 12461 78 78 100 14.4 96 0 0 extra

107 6155 12467 141 0 0 2922 192 2.041529343 0.658325

108 6178 12474 71.6 0 0 333 72 1.249175067 0.688929

109 6361 12503 154.2 0 0 2212 168 4707918139 1479921576

110 6523 12540 199.2 0 0 265.2 264 4.654517664 3.056984589

111 6688 12572 9.2 0 0 153.2 96 3.990382908 3.615620253

112 6777 12593 12 0 0 12 192 0.997705522 0.485976309

113 6893 12622 76 7.6 100 203.8 72 0 0 extra

114 6901 12623 74 74 100 322 144 0 0 extra

115 7078 12667 9 9 100 109 48 0 0 extra

116 7123 12675 84.6 0 0 84.6 144 6.634176599 0.562046

extra represent extra NOAA AR# in our co-occurrence based SHARP-to-NOAA AR association, b update represent NOAA AR event records have been updated by outlier detection
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