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Abstract—Machine learning-based space weather analytics has
attracted much attention due to the potential damages that
can be caused by the extreme space weather events. Using a
recently released data benchmark, named SWAN-SF, designed
for solar flare forecasting based on the pre-flare time series of
solar magnetic field parameters, we conduct a case study on
the impacts of statistical features derived from the multivariate
time series. We investigate the relationship between the number
of needed statistical features extracted from the multi-variate
time series and the performance of flare forecast models. To
that end, we employ random forest and mean decrease impurity
to determine a feature selection methodology along with an
evaluation procedure. The proposed evaluation method delivers a
balance between the two frequently used metrics in this domain,
namely True Skill Statistic and Heidke Skill Score. Our approach
allows to introduce a generic feature selection and evaluation
procedure that is independent from the minor and often obscured
decisions that must be made for having a binary forecast model,
while presenting interpretable and actionable tools that can help
non-data experts make more informed and realistic decisions.

Index Terms—time series classification, feature selection, sta-
tistical time series features, flare prediction

I. INTRODUCTION

Our society is characterized by a complex interweave of
interdependencies among its critical infrastructures. Severe
space weather events such as large solar flares and coronal
mass ejections, can have tremendous impact on our increas-
ingly technologically-dependent society [1]. The socioeco-
nomic impact of space weather events includes not only the
industry-specific events (such as spacecraft anomalies, power
outages, or aircraft re-routing) but also the collateral effects of
technology failures on dependent infrastructures and services.
Many studies from governmental and independent institutions
confirm the existence of these impacts and estimates the
accrued economic damages [2]–[4].

Extreme space weather events are low-frequency but high-
consequence events [5] and therefore, in terms of their po-
tential broader, collateral impacts, present a unique set of
problems for public and private institutions and governance,
different from the problems raised by conventional, expected,
and frequently experienced events. A workshop report from
National Research Council [1] suggests that a contemporary
repetition of the 1859 Carrington Event [6] would cause

extensive social and economic disruptions. This strongly mo-
tivates the need to understand the mechanisms behind extreme
space weather events, i.e. flares, coronal mass ejections, and
solar energetic particle events, and anticipate/forecast their
occurrences in advance to reduce the potential socioeconomic
upheaval and damage caused.

Our aim is to facilitate the multivariate time series classifi-
cation for solar flare prediction by discovering the important
precursors for these low-frequency and high-risk events. We
present a feature selection method utilizing built-in Random
Forest (RF) ranking, which is specifically tuned for time series-
based solar flare prediction algorithms. Multivariate time series
classification can be performed with recurrent neural networks
[7] or their contemporary counterparts such as long short-term
memory networks [8]; however, our focus is creating a physi-
cal understanding, which requires us to explore and carefully
analyze the evolution of time series rather than attempting
to beat other flare prediction techniques. To understand the
evolution, we will extract a large number of statistical features
from each univariate time series that constitute multivariate
time series instances. In a nutshell, our method can be seen
as an embedded, high dimensional feature selection technique
for rare event prediction.

II. RELATED WORK

Schrijver et al. quantified the association of flares with the
total unsigned flux around high gradient, strong-field polarity-
inversion lines (PILs). This parameter is called R–value, and
it was observed that no X- or M-class flares occur within 24
hours of the determination of R–value for all the cases where
R–value < 2.8 [9]. From the opposite angle, it was observed
that only 9% of the active regions with R–value > 2.8
experienced X- or M-class flares with the same observation
window. These findings result in the R–value to become a
convenient classification tool, that can be used for forecast of
strong flares.

In another attempt to forecast flares, Bobra et al. [10] used
a machine learning classifier on four years of data gathered
by the Solar Dynamics Observatory’s (SDO) Helioseismic and
Magnetic Imager (HMI) [11]. They achieved a relatively high
forecast performance in their work. What differentiates their
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results from others’, however, is not the model’s performance.
It is first, the size of the data used, i.e., four years worth
of Spaceweather HMI Active Region Patch (SHARP) vector
magnetic field data (2010 through 2014), and second, a list of
25 physical parameters employed, derived from active regions,
calculated every 12 minutes during the lifetime of each active
region. R–value, already proven to be a powerful predictor
for flares [9], is only one of these 25 parameters, which
emphasizes the robustness of the forecast and reliability of
the findings.

More recently on this topic, Campi et al. [12] collected a
much larger list of parameters. Utilizing nearly 200 features
extracted from a variety of physical parameters, developed
within the Horizon 2020 FLARECAST project1, this work
introduced a comprehensive analysis on this topic with the
highest dimensionality ever used. To mitigate the curse of
dimensionality, a recursive feature elimination methodology
was employed to also take into account the correlation between
the features in the elimination process. In this study, in order to
determine the features ranking, they used two models: hybrid
LASSO (HLA) and RF, and compared their performance by
thresholding on the probabilistic outcome of the classifiers. Al-
though, their final results in terms of True Skill Statistic (TSS)
and Heidke Skill Score (HSS), are systematically lower than
those achieved and reported by [10] and [13], the performance
seems to be closer to reality. This is evident in their sampling
methodology and the fact that they avoided presence of the
identical feature vectors in both training and testing sets.

The RF classifier, next to Support Vector Machine (SVM),
has become a very popular tool in flare forecast studies,
in particular in ranking of the features in terms of their
contribution to the forecast. Florios et al. [13] also used
this classifier. They worked toward forecast of solar flares
taking both probabilistic and dichotomous approaches into
account. The experiments were carried out on more than
23,000 observations of 7 parameters computed using either
the line-of-sight magnetograms of SHARP data [14] or re-
spective radial components, as in [10]. They experimented
with Multi-layer Perceptrons (MLP), SVM, and RF as their
binary classifiers, and Linear Regression, Probit Regression,
and Logistic Regression, as the probabilistic models, with
different probability thresholds. They concluded that RF per-
forms better than all the others, in terms of TSS and HSS.
Of course, with different configurations and datasets that are
computed based on different features, or collected differently,
the results may vary. However, a benefit of RF lies in its
built-in feature ranking mechanism. This allows a multivariate
feature selection tool whose results could be interpreted and
therefore be valuable for solar physicists. This is in particular
important because instead of a black-box forecast model, the
RF may provide insight to the problem.

Another flare forecast study conducted by Domijan et al.
[15], on the features extracted from line-of-sight magne-
tograms (from SOHO/MDI) by Solar Monitor Active Region

1http://flarecast.eu

Tracker (SMART) algorithm [16], also employed RF to help
rank their features. In addition, a Maximal Marginal Relevance
(MMR) filter, and Lasso [17] were utilized to handle a
multivariate feature selection, and a set of classifiers, namely
Logistic Regression, Support Vector Machines, and Deep
Neural Networks, were used to guide the feature selection
process by iterative evaluation of the classification task.

The studies reviewed above are just a few of many valuable
scientific investigations on solar flare forecasting. What dif-
ferentiates our analytic is the dataset we run our experiments
on. As we discuss in the following section, to the best of
our knowledge, this is the first data benchmark that focuses
on time series of pre-flare characteristics of magnetic field
within active regions, rather than point-in-time data points.
Using RF for investigation in the importance of the physical
parameters allows a probabilistic approach which provides
more flexibility and interpretability to the findings. We try
to establish a sound methodology for reducing the number
of features and training a flare forecast model toward the
end of determining important physical parameters whose pre-
flare behavior could help indicate a solar flare. We discuss the
challenges and the results in Sec.V.

III. DATASET

In this section, we discuss the data benchmark used to build
our dataset suitable for the specific objectives outlines before.
We briefly talk about the original data, and its collection
process, and then we elaborate on the generated dataset that
we use for our experiments.

A. SWAN-SF Data Benchmark

In this study, we use a recently created data benchmark,
named as Space Weather ANalytics for Solar Flares (SWAN-
SF), made entirely of multivariate time series, aiming to carry
out an unbiased flare forecasting. We hope that rigorous anal-
yses on this data benchmark could open new doors for flare
forecast studies, and set at rest at least some of the important
questions that solar physicists have been investigating for the
past century.

SWAN-SF comprises five partitions which are temporally
non-overlapping. The partitioning is carried out in such a way
that each of them contains approximately an equal number
of X- and M-class flares. Distribution of the classes in each
partition can be seen in 1. The data points are time series slices
of 24 physical (magnetic field) parameters extracted from the
flaring and non-flaring regions, in a sliding fashion. That is, for
a particular reported flare, corresponding to an active region
with a unique id, k equal-length multivariate time series are
collected using a temporal window sliding over the history of
the flare, extracting physical parameters from its active region.
This is called an observation window denoted by Tobs. It spans
over 24 hours of flares’ history. Given that ti indicates the
starting point of the i-th slice of the multivariate time series,
the (i+ 1)-th slice starts at ti + τ , where Tobs = 8τ .

The four different flare classes considered in this benchmark
are X, M, C, and B, and with the addition of the time series
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Fig. 1. Distribution of flares of different classes in the SWAN-SF dataset.

extracted from the flare-quiet regions (labeled as N), form a
5-class dataset. In this study, we simplify the task by merging
the stronger instances (i.e., X- and M-class flares) to form the
positive class, and the weaker instances (i.e., of C, B, and N
classes) to represent the negative class. Throughout this text,
we refer to the positive and negative classes as flaring and
non-flaring, respectively.

Generally in machine learning, there are two main ap-
proaches in working with the time series data. One is to
preprocess the time series and feed them directly into the
statistical models. The other is to extract a set of statisti-
cal features from the time series and use their descriptors
instead of the actual time series for the models to learn
from. Our primary goal of finding the most effective features
in prediction of flares, guides us to use the former, i.e.,
the extracted features. Following, we elaborate more on the
statistical features employed in this study.

B. Statistical Features

To the best of our knowledge, SWAN-SF data is the first
data benchmark that focuses on time series, rather than point-
in-time data points for a period just short of a decade.
Therefore, perhaps except in a few instances, there are no
established theories as to which characteristics of the time
series may show a significant flare-predictive capability. This
encourages us to hand-pick, from a plethora of trend analysis
studies, a set of time series features as the descriptors that
could potentially add to the forecasting power of the predictive
models. Working on the extracted features of time series also
has the advantage of reducing the dimensionality of the data,
from that being the length of the time series, to the number
of features.

The chosen statistical features are listed in Table I. In
general, these 43 features can be grouped into several clusters
of descriptors. In the first and second clusters, there are the
descriptive statistics (e.g., min, max, etc) that describe the time
series in their entirety and also those that compare the first and
second halves of the time series. The third group contains the
representation of the time series in terms of their extrema (e.g.,

number of local minima, average of local minima). We also
include several derivative-based features using the difference
derivative and gradient derivatives, and form the forth and
fifth groups, respectively. Another collection, i.e., the sixth
one, is wrapped around the features that quantify the high-
level changes within the time series (e.g., linear and quadratic
weighted averages, or average absolute change). The seventh
group describes the positive and negative fractions of the time
series, which disregards the temporal aspect of the time series,
whereas the features in the eighth group, that focus on the
tail of the time series (e.g., last value). And finally, the ninth
cluster contains several features describing the long-run trends
of the time series (e.g., slope of longest monotonic increase).

The final dataset has a dimensionality of 1032, with 43
statistical features extracted from 24 physical parameters. Data
points of this dataset are labeled by 5 different classes of flares,
namely GOES X, M, C, B, and N. The latter represents flare-
quite instances and also contains GOES A-class events.

IV. METHODOLOGY

A. Data Preprocessing

After accessing the data, we calculate the statistical features
of the time series to get our transformed data set. After com-
puting the statistical features, the dataset requires a minimal
preprocessing due to the presence of some missing values.
Since this accounts for a very small fraction of the data (i.e.,
< 0.01%), we simply utilize linear interpolation to reproduce
those values.

As mentioned in Section 3, we merge the labels N, B, and
C into the negative class and M, and X into the positive class.

B. Model Selection

RF [18] is an ensemble model, made by aggregating a
number of decision trees. Figure 2 shows an example decision
tree of depth 1. In the top of the tree is the root node where
a splitting criterion is specified. The impurity of the node
is measured by the gini index [19], the number of samples
in each node is reported, as well as the number of samples
from each class. The nodes at the bottom of the tree are leaf
nodes, a label is assigned based on the class with majority
weight in a node. During construction, each tree is trained on
a bootstrap sample of the training set. We can constrain the
number of features considered at each node when looking for
the best split. During prediction, each tree is applied to a new
observation. The observation ends up in a leaf node of the
tree, which contains the proportion of each class that reach
that leaf node during training. These proportions are issued as
a pair of class probabilities. Since these probabilities sum to
1, we can consider only the probability that an observation is
in the positive class. These probabilities are averaged over all
trees to give the predicted probability of a sample being in the
positive, in our case, flaring class.

We chose RF for a number of reasons. The building blocks
of RF–decision trees–are highly interpretable, and we want
our results to provide insights to domain experts. We are able
to use original feature values rather than normalizing the data
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TABLE I
LIST OF ALL STATISTICAL FEATURES EXTRACTED FROM THE TIME SERIES

Group Features Description

1 min(ts), max(ts),
median(ts), µ(ts),
σ(ts), skewness(ts),
kurtosis(ts)

descriptive statistics on the
time series ts

2 min(tsa) − min(ts`),
max(tsa) − max(ts`),
med(tsa) − med(ts`),
σ(tsa) − σ(ts`),
sk(tsa) − sk(ts`),
ku(tsa)− ku(ts`)

differences between the de-
scriptive statistics on the first
and the second half of the time
series ts

3 |{local minima}|,
|{local maxima}|,
|{local extrema}|,
|{zero crossings}|,
µ({local mimima}),
µ({local maxima}),
µ({local maxima upsurges}),
µ({local minima downslides})

representation of time series in
form of their extrema

4 µ(ts′), σ(ts′),
skewness(ts′),
kurtosis(ts′)

descriptive statistics on deriva-
tive (i.e., windowing differ-
ences) of the time series

5 µ(∂ts), σ(∂ts), σ2(∂ts),
skewnesss(∂ts),
kurtosis(∂ts)

descriptive statistics on deriva-
tive (i.e., approximation of an-
alytic gradient) of the time se-
ries

6 lwa(ts), qwa(ts),
µ(abs(ts′)),
µ(abs(∂ts))

linear and quadratic weighted
average of times series, and
changes of the derivatives

7 |{p∈ts;p>0}|
n

,
|{p∈ts;p<0}|

n

positive and negative fractions
of records in a times series of
length n

8 lvk=1(ts),∑
(lvk=10(ts)),

µ(lvk=10(ts))

description of time series in
terms of their k last values
(lvk(ts))

9 longest positive run,
longest negative run,
longest monotonic increase,
longest monotonic decrease,
slope(longest monotonic increase),
slope(longest monotonic decrease),
µ({slope(monotonic increases)}),
µ({slope(monotonic decreases)})

long-run trends of the time se-
ries ts

Notations. µ: mean, σ: standard deviation, sk: skewness, ku: kurtosis,
ts: time series, tsa: first half of ts, ts`: second half of ts, ||: set
cardinality, ts′: difference derivative of ts, ∂ts: gradient derivative of
ts, lwa: linear weighted average, qwa: quadratic weighted average,
abs(ts): absolute value of each tsi, lvk(ts): last k values of ts.

which would present a new set of challenges as discussed in
[20]. As well, RF gives us access to a built-in feature ranking
method, which we can compare to univariate feature ranking.

C. Hyper-parameter Tuning

We perform hyper-parameter tuning to determine suitable
settings for the model before running experiments. During
hyper-parameter tuning, we tune the maximum depth of the
trees, class-imbalance solutions, and the number of features
randomly selected at each node. We perform cross validation
by forming a training set of four partitions and leave one
partition out as the test set. We measure performance with
a metric called average precision which is detailed in Section
IV-E. We consider the set of parameters which yielded the

SAVNCPP_min <= 1470534057984.0
gini = 0.065

samples = 42986
value = [41532, 1454]

class = CBN

gini = 0.018
samples = 39577

value = [39221, 356]
class = CBN

True

gini = 0.437
samples = 3409

value = [2311, 1098]
class = CBN

False

Fig. 2. An example of a Decision Tree of depth 1, with the gini scores and
population sizes both before and after a split. The parameter used in the root
node is SAVNCPP that stands for Sum of the Absolute Value of the Net Current
Per Polarity.

highest mean performance when tested across all partitions to
perform best.

D. Feature Selection

We perform feature selection to increase the interpretability
of our model and improve predictive performance.

For feature selection, we consider one method given by RF
and a univariate selection method. Univariate feature selection
is done a priori on the entire dataset and yields a single ranking
of all features. When using RF based method, a model must
first be trained. As in hyper-parameter tuning, we form a
training set of four partitions and leave one partition out. After
training, we compute a feature ranking. Features are ranked by
the standard deviation of the mean decrease impurity (MDI)
which is detailed in IV-E; a feature with a smaller standard
deviation of the MDI will be ranked higher than a feature with
a larger standard deviation of MDI. We then repeat the process,
this time leaving out a different partition. We compute five
feature rankings with this way. We then aggregate the results
by averaging over standard deviation of MDI.

E. Metrics

To rank features or to compare performance of different
models, we need to first define a few metrics.

For one method of feature ranking, we use the Fischer score
(F-score). The F-score is a univariate feature score that does
not consider interdependencies among features, but does give
a score for each feature based on how well they can separate
the two classes. The formula for F-score is as follows:

F (i) =
(x̄+i − x̄i)2 + (x̄−i − x̄i)2

1
n+−1

n+∑
k=1

(x̄+k,i − x̄i)2 + 1
n−−1

n−∑
k=1

(x̄−k,i − x̄i)2

where n+, n− indicate members of the positive and negative
class respectively, x̄i is the mean value of feature i, and x̄+i
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and x̄−i are the mean over the positive and negative samples
of i-th feature respectively.

From RF, we get access to a measure of variable importance
based impurity: a group of samples at a node in a decision tree
with an even number of members from each class would be
considered impure, samples with members from only one class
be considered pure. We measure impurity with the gini index,

Gini = 1−
∑

c∈Classes

p2c

where pc is the probability of randomly selecting a sample
from class c.

Each time a split is formed in a decision tree, the impurity
from one node to the next should decrease. We can rank
features based on how well they can be used to form splits. We
use Mean Decrease Impurity (MDI) for this. MDI is detailed
in [21],

Imp(Xj) =
1

M

M∑
m=1

∑
t∈ϕm

1(jt = j)[p(t)∆i(st, t)]

where M is the number of estimators, jt is the feature used for
splitting at node t, p(t) is the proportion of samples reaching
node t, ∆i(st, t) is the change in impurity caused by the split
st at node t, and 1(jt = j) is the indicator function.

When we perform binary classification, each predicted result
will fall into one of four categories: A flare that is classified
as a flare is considered a True Positive (TP ), a flare mis-
classified as non-flaring is a False Negative (FN), a non-flare
classified as non-flare is a True Negative (TN), and a non-
flare classified as a flare is a False Positive (FP ).

Two common performance metrics used in flare prediction
for binary classification are the previously mentioned TSS
and HSS. Use of these metrics is recommended in [22].

TSS =
TP

TP + FN
− FP

FP + TN

HSS =
2× [(TP × TN)− (FN × FP )]

(TP + FN)(FN + TN) + (TP + FP )(FP + TN)

TSS has the benefit of being unbiased with respect to class
imbalance and is useful for comparison between experiments.
It has a range of -1 to 1. A forecast with no mistakes receives
a 1 and forecasts that are random or constant score a 0. HSS
measures the improvement of the model over random chance,
but is affected by changes in the class imbalance ratio. It has a
range of [−∞, 1], where negative values indicate the forecast
is worse than chance, 0 is random or no skill, and 1 is a perfect
forecast.

As mentioned in Section IV-B, the output of our RF will
be a probability. To convert this to a binary classification, we
must set a probability threshold, over which a sample will be
considered as flaring.

Because our dataset has a severe class-imbalance issue,
precision and recall are good candidates for measures of
binary classification performance. Neither measure includes
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Fig. 3. Model performance in terms of Average Precision with varying number
of features selected based on MDI.

TN which could potentially be much larger than than the sum
of TP, FP, and FN and cause a metric to give a misleading
result.

precision =
TP

TP + FP

recall =
TP

TP + FN

By varying the probability threshold in the range [0, 1), we
generate a series of precision and recall pairs. These pairs are
used to plot the precision-recall curve. The precision-recall
curve then, is a way to examine model performance across
all probability thresholds. We use average precision (AP) to
summarize this curve,

AP =
∑
i

(Ri −Ri−1)Pi

where Ri, Pi are the recall and precision resulting from the
i-th threshold.

We use average precision as the criterion for ranking model
performance. We do this because RF outputs probabilities and
we cannot evaluate a binary classification without first setting
a threshold. Though we report multiple metrics, we find it
valuable to use only one metric for our decision criterion.

V. EVALUATION

We attempt to find a method of ranking features together
with a model that yields predictive performance across all
partitions, which currently represent different phases of the
solar cycle in our benchmark dataset. We do this by computing
two feature rankings and evaluating the performance of a
model trained on these features against all partitions. The final
result should demonstrate performance with a good TSS and
HSS measure.

Skill scores, such as TSS and HSS, are prominent in rare
event forecasting, and ideally they should be evaluated both
independently and together to understand the model behavior.
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Fig. 4. Model performance in terms of Average Precision with varying number
of features selected based on F-score.

However, we need one score for the model training and use
average precision as our performance evaluation metric. This
is because, average precision provides a balanced performance
evaluation between TSS, which focuses on improving the
number of true predictions, and HSS, which also considers
the improved skill over standard random prediction of rare
and more common events. Additionally, using average pre-
cision we can evaluate our model’s performance across all
classification thresholds.

We use RF with the maximum depth set to twelve, we allow
all features to be considered at each node, and we use 1000
estimators.

To determine whether our feature ranking aids model per-
formance, we evaluate using only the top 100 features from
each ranking. Because each of our 1032 features is a statistical
feature of a time series of a physical parameter, we expect most
features to be redundant. A successful feature ranking should
filter out those which yield lower performance.

To evaluate performance, we use the same cross-validation
described in Section IV-C. We train a model using only the top
100 features and test the performance measured by average
precision. We then remove the lowest ranked feature, and
repeat the process. The result is depicted in Figure 4 for
features ranked by F-score and Figure 3 for features ranked
by MDI.

On two partitions, we lose a bit of performance, but on three
partitions we gain performance. We summarize the original
performance of the model when all 1032 features in Table
III and the performance when only features selected based on
MDI are used in Table IV.

To demonstrate the relationship between model performance
determined by average precision, and the more familiar TSS
and HSS for binary classification, we include Figure 5. We
select a classification threshold based on the maximum value
of HSS and report the TSS for the same threshold. These
values for all partitions are listed in Table II

We believe this method is suitable for evaluating the rela-
tionship between the number of features used and model per-

0.0 0.2 0.4 0.6 0.8 1.0
Classification threshold

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e TSS=0.54, HSS=0.51

TSS and HSS values with Average Precision score 0.55 Test Partition 3
TSS
HSS

Fig. 5. TSS and HSS values for each threshold, given AP

TABLE II
HIGHEST AVERAGE PRECISION ACHIEVED AGAINST EACH PARTITION AND

THE TSS AND HSS RESULTING FROM A SELECTED BINARY
CLASSIFICATION

Partition Average Precision TSS HSS

Partition 1 0.47 0.5 0.44

Partition 2 0.43 0.54 0.43

Partition 3 0.53 0.54 0.51

Partition 4 0.52 0.42 0.5

Partition 5 0.45 0.51 0.44

formance, because it allows us to examine changes in behavior
across different periods of the solar cycle while still confirming
that we are achieving a good predictive performance.

VI. CONCLUSION

We attempted to find a feature ranking which allows us
to determine the minimum number of features necessary to
demonstrate high predictive performance on a new time series
benchmark dataset designed for solar flare forecasting. We find
that we are able to reduce the dimensionality of our dataset
significantly, and still maintain good predictive performance
against all partitions, representing different phases of the solar
cycle. Using average precision as our metric for ranking model

TABLE III
PREDICTIVE PERFORMANCE AGAINST EACH PARTITION WHEN ALL 1032

FEATURES USED FOR TRAINING

Partition Average Precision
Partition 1 0.47
Partition 2 0.43
Partition 3 0.53
Partition 4 0.52
Partition 5 0.45
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TABLE IV
PREDICTIVE PERFORMANCE AGAINST EACH PARTITION WHEN ONLY

SELECTED FEATURES USED FOR TRAINING

Partition Average Precision Number of Features Used
Partition 1 0.47 96
Partition 2 0.43 92
Partition 3 0.53 89
Partition 4 0.52 5
Partition 5 0.45 59

performance, we achieve a balance of TSS and HSS that
indicate a robust forecasting method. We discuss some of
the difficulties and pitfalls of a classification problem with
severe class imbalance, and demonstrate some methods used
to handle the problem.

In the future, we plan to continue working toward finding
specific features that may have significant importance in solar
flare activity. We also plan to reduce the granularity of the data
by testing different methods for discretizing the continuous
features. So far we have investigated the entire dataset, which
represents almost eight years of solar activity, with the aim of
finding a generic forecast for predicting flares during any phase
of the solar cycle. We will consider working toward achieving
good predictive performance and interpretable results across
all partitions, but we also plan to investigate individual parti-
tions more thoroughly.
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