
An Evaluation of the Optimality of Frequent Verification for

Vertically Integrated Systems

Dr. Aditya U. Kulkarni (aditya88@vt.edu)

Grado Department of Industrial and Systems Engineering, Virginia Tech

Dr. Alejandro Salado (asalado@vt.edu), INCOSE Regular Individual Member

Grado Department of Industrial and Systems Engineering, Virginia Tech

Peng Xu (xupeng@vt.edu), INCOSE Student Member

Grado Department of Industrial and Systems Engineering, Virginia Tech

Dr. Christian Wernz (cwernz@vcu.edu)

Department of Health Administration, Virginia Commonwealth University

Abstract

Verification activities, such as inspection, testing, analysis, and demonstration, improve one’s

confidence in the system meeting the system requirements during the development process.

Frequent verification is often advocated as a strategy that minimizes costs of rework over the entire

design process, where frequent verification involves verifying after any change in the design.

However, this strategy is yet to be validated. In this paper, we develop a belief-based model of

verification in systems design to determine the conditions under which frequent verification is an

optimal strategy for a vertically integrated organization. Our model uses belief distributions to

capture the organization’s dynamic confidence in the system design meeting a requirement of

mailto:aditya88@vt.edu
mailto:asalado@vt.edu
mailto:xupeng@vt.edu
mailto:cwernz@vcu.edu

interest during the development process. It also captures the organization’s dynamic confidence in

the correctness of its development activities (or design process) as a function of past verification

activities and current system maturity. The analysis of our model shows that frequent verification

is a cost-minimizing strategy for any level of belief in satisfying the requirement only when the

organization has high confidence in the correctness of its design activities and the expected cost to

rework a faulty design is greater than the costs to set up the verification activities throughout the

development process. Otherwise, strategies with infrequent verification are superior. Our work

contributes to the growing body of literature on the theoretical foundations of systems engineering

and engineering design and seeks to provide practitioners with a means to determine optimal

verification strategies.

Keywords: Belief-based model, verification strategy, dynamic programming

1 Introduction

Verification activities are used to determine if the system meets the system requirements that

are set at the start of the design process 1. That is, verification activities are the means by which

engineers check if the system is being built “right” 2. Furthermore, since system requirements are

derived from stakeholder needs, verification activities during the development process also

contribute to improve the organization and the customer’s confidence in the system design

satisfying stakeholder needs 3,4. Furthermore, since requirements are often used as contractually

binding agreements in the design of complex systems, such as satellites, verification activities

become the means to demonstrate fulfillment of the contract from an engineering standpoint.

Monetarily, verification activities minimize rework costs by identifying design errors early in

the development process 5. Since verification activities are cost and time intensive 6, implementing

verification strategies that balance the cost of executing verification activities with the risk of

undetected errors is an integral part of minimizing overall project costs 7. The importance of

identifying optimal verification strategies is further emphasized when one considers that

verification activities are often planned and contracted upon early in the system development 8. In

this regard, frequent verification throughout the design process has been advocated for in both

industry and the research literature 9-11. However, the advocacy for frequent verification is based

more on subjective experience than an analytical or theoretical foundation, and following this

strategy without due consideration can increase the likelihood of an organization misallocating

limited resources to verification activities 12.

In order to determine the conditions under which frequent verification is optimal, we study a

belief-based model of verification of an organization developing a vertically integrated system.

We abstract the problem space as a single system requirement, referred to as the requirement of

interest. In this paper, we use the term requirement broadly and consider it to be an expected or

desired attribute or set of attributes of the system under development, which can be formulated as

a binary state or a direction on a scale.

Our model captures two high-level uncertainties 13 in the systems design process: 1) does the

system baseline at the current development stage (e.g., system design, actual product, etc.) satisfy

the requirement of interest, and 2) will the current set of development activities ensure that the

system will continue to meet the requirement of interest? The first type of uncertainty represents

the organization’s confidence in the true state of the overall system as the development matures.

The second type of uncertainty represents the organization’s confidence in the correctness of its

development activities. Furthermore, we consider two high-level costs associated with verification

over the development process in our model: the cost to set up verification activities and the

expected cost to rework a faulty design. The optimal verification strategy is then defined as the

strategy that minimizes the organization’s expected verification costs (including the cost impact

of deploying a faulty system) over the entire design process based on its confidence, or belief, in

the correct state of the system design.

In addition to presenting an algorithm to solve our model numerically, we explore the

parameter space of our model to characterize the scenarios for which frequent verification of the

system is optimal. Our analysis shows that frequent verification is an optimal strategy for all belief

levels in the correct state of the system design only when two conditions are met throughout the

development process: (1) the organization’s confidence in the correctness of its design activities

(that is, its design process) is high, and (2) the expected cost to rework a faulty design is greater

than the cost to set up verification activities. Our model expands prior work on mathematical

models of verification that use belief distributions to model the organization’s confidence in the

true state of its design. Furthermore, our work contributes to the growing literature on studying the

scientific foundations of systems engineering and engineering design.

The remainder of this paper is organized as follows. In Section 2, we briefly discuss literature

related to our work. In Section 3, we develop the belief-based model of verification for an

organization focused on determining verification strategies for a single system requirement. The

parameter space of the belief-based model is explored in Section 4, and the conditions under which

frequent verification is optimal are explored. An application example is provided in Section 5 to

show how our model maps verification in practice. In Section 6, we present a discussion on

validation aspects, and we conclude by summarizing the results and insights in Section 7.

2 Background and motivation

Recent literature in engineering design has acknowledged that system design is rife with

epistemic uncertainty 14-16, and engineers make design decisions based on subjective beliefs about

the true state of the system design 17-19. Unlike aleatory uncertainty, where the uncertainty arises

from physical variations in the underlying process, epistemic uncertainty arises due to a lack of

knowledge about the current state of the design, or other aspects of the design process 20,21. Since

verification activities reveal the current state of the system design, it follows that verification

activities improve an organization’s knowledge in the current state of its design and design process

22. That is, verification activities minimize the epistemic uncertainty in the design process for an

organization. However, the majority of the literature on verification in systems design relies

heavily on the traditional aleatory interpretations of probability 4-8,12,23-35.

With respect to epistemic uncertainty in systems design, previous works on verification in

systems engineering can be broadly classified into conceptual approaches 8,28,29,33, empirical

approaches 5,31,36-38, and probabilistic models of verification 7,34. Conceptual approaches to

verification espouse guidelines, industry standards, and best practices derived from personal

experience and data from past projects. Empirical approaches to verification usually take the form

of case studies. Both conceptual and empirical approaches to verification focus more on deriving

best practices without addressing the scientific foundations of uncertainty in the system design

process. This drawback is significantly reduced in probabilistic models of verification that

specifically quantify the uncertainty and risk in systems design. However, probabilistic models of

verification assume that all uncertain variables in the design process can be modeled using known

stochastic models or processes. This bases all probabilistic models of verification on a strong

assumption about the nature of the design process, thereby limiting their applicability.

To address these limitations, we derive optimal verification strategies using a belief-based

approach to model the system development process. To the best of our knowledge, only the recent

works by Salado et al. 3,39-41 have adopted the approach of capturing the epistemic uncertainty in

the design process by using belief distributions to model verification strategies. In their work,

verification strategies are derived based on the organization’s changing belief in the system design

meeting the system requirements. Using a belief-based approach to derive verification strategies

is advantageous because beliefs better represent an organization’s knowledge in the current state

of its design. This results in a more accurate representation of the risk vs reward tradeoff in

determining optimal verification strategies. We build upon this concept of an organization’s

knowledge in the state of its design in this paper.

The model and results in this paper expand our previous work 42, where we used a belief-

based model to determine the optimal verification strategy for a single organization focused on a

single system requirement, or the requirement of interest. In that work 42, we showed that frequent

verification was not, in general, an optimal verification strategy. However, the belief-based model

used in that paper assumed that the organization’s confidence in its design activities not resulting

in an error in the system design was constant throughout the design process. In this paper, we relax

this assumption and derive more comprehensive and general results on when frequent verification

is an optimal verification strategy.

Our decision to model the organization’s confidence in the correctness of its design activities

is motivated by the observation that design decisions are often made under considerable

uncertainty 43,44. This uncertainty can be broadly classified as exogenous, which is caused for

example by the market and the environment, and endogenous, which is caused by the activities in

the design process itself 13,45. System verification contributes to reduce endogenous uncertainty.

Our work models the endogenous uncertainty in a design process as the organization’s

confidence level in whether the design activities will result in the system being built right 46. For

example, in the conceptual phase of an aircraft design, the organization’s confidence level in

whether the technology and capability choices made will satisfy system requirements may be low

47,48. Similarly, when computational models of the aircraft are simulated and studied, the

organization may be highly confident that the models suitably capture the proposed operating

conditions 49. Finally, when the aircraft is prototyped, the organization may be uneasy as to whether

the prototype was constructed correctly. In each of these examples, the organization’s confidence

in the correctness of its design activities in each phase of the system development affects the

organization’s belief in the correct state of the system, which in turn will influence the optimal

verification strategy. Thus, in order to determine the optimal verification strategy for an

organization, we argue that it is necessary to account for the effect of the organization’s dynamic,

i.e., time-changing, confidence in the correctness of its design activities on the organization’s

dynamic belief in the true state of its design.

3 Model

3.1 Model environment

We consider a vertically integrated system (hence, developed by a single organization) and abstract

the problem space as a single system requirement to: 1) determine the optimal verification strategy

when there is no external pressure from other organizations participating in the project, and 2) to

avoid confounding effects from a set of correlated requirements on the optimal verification

strategy. Thus, in our model, the optimal verification strategy is derived based on the value of the

system design meeting a single system requirement. The system development process is

considered to progress through multiple development phases until the system is deployed (e.g.,

from conceptual design to preliminary design to detailed design and so forth 50). In line with prior

verification literature 51, we model the design process as a series of development phases for

generality. We consider that the development process moves to the next development phase when

the system design either changes in design attributes or design maturity. Here, design maturity

refers to the level of implementation, or realization, of the system design, with concept of

operations and block diagrams signifying low levels of design maturity and functional prototypes

signifying high levels of design maturity.

In each development phase, the organization will execute design and verification activities to

further develop the system, and so we divide each development phase into two periods: the design

period and the verification period. In the design period, activities such as modeling, tradespace

studies, and construction of mock-ups and prototypes are carried out, whereas in the verification

period, activities such as testing, inspection, demonstration, and analysis are executed. In our

model, we assume that the design period precedes the verification period in each development

phase. Furthermore, we assume that in any given development phase, design activities are executed

for certain, whereas verification activities are only executed when the verification strategy

specifies it.

We assume that design choices and activities are fixed, and hence we normalize the cost of all

design activities to $0 (since design activities are assumed to be executed in each development

phase). For verification activities, we consider two high-level costs in each development phase:

set-up cost for verification activities and the expected cost to rework a faulty design when

verification reveals an error. The set-up cost for verification activities include the costs of

executing the verification activities as well. We assume that if the organization chooses to verify

the system design in a development phase, then it will incur the set-up cost for certain, whereas

the expected cost to rework is incurred only if verification reveals the system design does not meet

the requirement of interest. In addition to the two aforementioned verification costs, we also

consider the expected cost of project failure, which is incurred by the organization if the system

design does not meet the requirement of interest at the end of all development phases.

We assume that both the set-up cost for verification activities and the expected cost to rework

a faulty design will increase as the system development progresses. The latter is supported by

empirical research 52,53. The former is meaningful within the context of this paper, as we capture a

general situation in which analyses become more refined as the design matures, and tests become

more engaged as the system is realized.

As mentioned before, we consider two types of uncertainties for the organization in the design

process: 1) does the current system design meet the requirement of interest, and 2) will the current

set of design activities result in a system that meets the requirement of interest. The first type of

uncertainty mentioned above is epistemic in nature 21. Hence, we use belief distributions to model

the organization’s confidence in the correct state of the system design. The second type of

uncertainty mentioned above can contain both aleatory and epistemic components. For example,

the aleatory component would be the probability of a particular design activity being carried our

correctly, whereas the epistemic component would be the probability of the design activity

resulting in the system meeting the requirement of interest. Hence, we model the second type of

uncertainty by a factor, whose value is in the range [0,1] , referred to as the belief retention factor,

which affects the organization’s belief in the correct state of the system design every time design

activities are executed.

In our previous work 42, the belief retention factor was assumed to be stationary. This

stationarity assumption ignores the possible correlation between the current design maturity and

past verification activities on the belief retention factor. For example, design decisions for new

technological capabilities in aircraft design are challenging since designers do not know a priori if

their design decisions will result in a system that meets all requirements 48. In this scenario, the

organization’s confidence in the correctness of its design activities is both a function of design

maturity and past verification activities. Thus, in this paper, we relax the stationarity assumption

on the belief retention factor, and the belief retention factor is now a function of the current

development phase (a proxy for design maturity), and past verification activities.

When no verification activities are carried out, it is logical for the organization’s belief in

the system meeting the requirement of interest to reduce with each development phase, as there is

always a chance to introduce an error in the design process. Similarly, it is logical for the

organization’s belief in the system meeting the requirement of interest to increase after executing

verification activities. This increase results from either obtaining successful verification results or

from performing corrective actions when verification activities reveal errors in the system. In our

model, we assume that the organization’s belief is transformed by the belief retention factor after

the design activities are executed in each phase, whereas verification activities reveal all errors in

the system design and lead to the highest possible belief value in the system design meeting the

requirement of interest.

Our assumptions on the increase and decrease in the organization’s belief based on design

and verification activities imply that the organization can be confident about its design after

verification in a development phase, but this confidence can reduce in future development phases

due to future design activities. To motivate this assumption, consider the landing gears on an

aircraft with the requirement of interest being the gears deploy completely within a certain time

limit. Early verification can ensure the gear controller design is correct and the right torque is

produced by the gear motors to deploy the gears within the time limit. However, as the design

matures, other factors such as the amperage provided to the gear motors by the power supply or

operation of the landing gear doors may negatively affect the aircraft meeting the requirement of

interest. Furthermore, it is possible for the gear design to be correct, but the assembly to be carried

out incorrectly. To account for such scenarios, we assume that even after the design is verified in

a certain development phase, the organization’s belief can be reduced by future design activities.

3.2 Model parameters

For ease of discussion, we will henceforth refer to development phases simply as phases. The

number of phases in the design process is denoted by N , and a generic phase is denoted by

{1, , }n N  . We assume the organization broadly classifies the true state of the system design as

either meeting the requirement of interest or not meeting the requirement of interest. We say the

system design is in the ideal state when it meets the requirement of interest, and it is in the non-

ideal state when it does not meet the requirement of interest. Restricting the state space to two

states simplifies the communication of key insights without limiting the generality of the model.

The model could be extended to a larger state space, though the characteristics and general

properties of the findings for the two-state model would still apply.

We denote the organization’s belief in the ideal state of the system design at the start of phase

n by [0,1]n  , and so the organization’s belief in the non-ideal state of the system design at the

start of phase n is equal to 1 n− . As per our assumptions, the organization’s belief value n is

reduced after the design period. The degree to which this belief value is reduced will be influenced

by the culture of the organization. Thus, to model this reduction in belief, we say that design

activities in phase n reduce the organization’s belief value n by a factor , [0,1]n l  to ,n n l  .

Here, ,n l is the belief retention factor, with the subscripts n and l denoting the current phase and

the last phase in which the organization verified the design, respectively. It follows that l n for

all {1, , }n N  . Furthermore, we denote the scenario where the organization has not verified the

design in any of the previous phases by 0l = . If the organization verifies the system design in

phase n, then as per our assumptions, 1 1n + = . However, if the organization does not verify the

system design in phase n, then the organization’s belief is unchanged after the design period and

hence 1 ,n n n l  + = .

As mentioned before, we assume that design activities and choices are fixed, and hence we

normalize design costs to $0. The influence of design decisions in verification decisions 54 is

incorporated in our model by the belief retention factor .n l , which captures the influence of the

design activities on the organization’s belief, which in turn affects the optimal verification strategy.

Thus, our model accounts for the effect of design activities on the verification strategy.

In this paper, for ease of discussion, we only analyze those scenarios where the organization’s

confidence in the correctness of its design activities decreases linearly with each consecutive phase

in which no verification is carried out. Specifically, we assume , 1

2

()
1

*
()n l

n l
k

k N


−
= − . Parameter 1k

represents the organization’s baseline confidence in the correctness of its design activities with

respect to the requirement of interest immediately after the design has been verified. A low value

of 1k implies the organization has low confidence in the correctness of its design activities even

after it verifies the system design. This could either be due to the organization believing the design

activities related to the requirement of interest will result in a design error, or the design activities

unrelated to the requirement of interest will change the system design in a manner that leaves it in

the non-ideal state. Whereas, a high value of 1k implies the organization has high confidence in its

design activities not resulting in a design error.

The parameter 2k models the rate of decay in the organization’s confidence in the correctness

of its design activities with each consecutive phase for which the organization does not verify the

system design. A low value of 2k implies that a large number of changes in either design attributes

or design maturity occur with each passing phase, and without verification, the organization’s

confidence in the correctness of its design activities decays rapidly. Similarly, a high value of 2k

implies that the number of changes in either design attributes or design maturity are few, and thus

the organization’s confidence in the correctness of its design activities decays slowly.

In phase n, we denote the organization’s decision by { , }n v vd  − , where nd v= means that

the organization decides to verify the system design, and nd v= − means that the organization

decides not to verify the system design. The set-up cost of verification activities is denoted by nc ,

and the expected cost to rework a faulty design is denoted by nr . Furthermore, we denote the

expected cost of project failure by Fr . Figure 1 shows the evolution of the organization’s belief in

a given phase n.

To concisely present out analysis and results, we will use a vector notation for the remainder

of this paper. We denote the vector of beliefs for the organization by (1 ,)n t tb  = − . Furthermore,

let ,0 1n nb = − denote the first element of vector nb and let ,1n nb = denote the second element of

vector nb . To represent the transformation of nb into 1nb + , we define
, ,

, ,

01

1v n l

n l n l −

 
 


=
− 

 and

0 1

0 1
v

 
 


=


. Then,

, , 1

1

,, ,n v n l

n

n v n

l l nb d v d v
b

d

b

v

d v

− +

+

= −



= = −

=


=  . (1)

We denote the organization’s vector of costs associated with its decisions to verify and not

verify the system design by ,n vf and ,n vf − , respectively. The organization’s cost vector for

verifying the system design in phase n is defined by , (,) 'n v n n nf c r c= + , where the apostrophe

denotes the vector transpose. As per our model assumptions, the organization incurs no cost for

not verifying the system design in development phases n N , and so for all n N , , (0,0)n vf − = .

At the end of the final phase and if the system design is in the non-ideal state, the organization

incurs the cost of project failure. We capture this by defining the organization’s cost vector for not

verifying the system design in the final phase N as , (,0) 'N v Ff r− = − . Table I summarizes the

notation presented so far.

Table I: Summary of key notation

Notation Description

N Number of development phases

n Generic development phase

n
Organization’s belief in the ideal state of the system design at the

start of development phase n

(1 ,)n n nb  = − Vector of beliefs

,n l
Belief retention factor: organization’s confidence in the correctness

of its design activities in phase n given the design was last verified in

phase l

1k Organization’s baseline confidence in its design activities

2k Rate of decay of ,n l

{ , }n v vd  − Organization’s decision to verify (v) or not verify (-v) in phase n

, ,v n l− Belief transformation matrix if the organization does not verify the

design in phase n given the organization last verified in phase l

v
Belief transformation matrix in any phase when the organization

verifies its design

nc Set-up cost of verification activities in phase n

nr Expected cost to rework a design in non-ideal state in phase n

Fr Expected cost of project failure

,n vf , ,n vf − Cost vectors associated with the organization’s decision to verify or

not verify, respectively

3.3 Belief-based optimal verification strategy

We now present the method to determine the organization’s optimal verification strategy using the

model presented above. To begin, note that in phase n, the organization’s decision nd cannot affect

the costs the organization incurred in phases 1, , 1n − . However, nd determines the

organization’s immediate costs in phase n and it also affects the costs the organization can expect

to incur over phases , ,1n N+  . This is so since nd determines the transformation of nb into 1nb +

, which in turn affects the organization’s decision 1nd + , the organization’s immediate costs in

phase 1n+ and the transformation of 1nb + into 2nb + through the decision 1nd + , and so on until the

end of all phases. In this regard, the optimal decision for the organization in phase n is the one that

minimizes the organization’s expected costs over phases , 1,n n N+  given the organization’s

belief vector at the start of phase n is nb . This line of reasoning can be extended all the way back

to phase 1, where for any given initial belief vector 1b , there is a vector of decisions

1(,), {0,1}n

Ndd   that minimizes the verification costs for the organization over all phases.

Hence, we define optimal verification strategy for the organization as the function

1

* }(,) { ,D v vn b  − which, for a given initial belief vector 1b , specifies a decision, v or v− , for each

phase n such that the organization’s expected costs over phases , 1,n n N+  is minimized.

To determine 1

*(,)D n b , the organization must know the expected costs over phases ,n N

resulting from its decision nd for any possible belief vector nb . To this end, we define , (,)n l n nV b d

as the lowest possible cost the organization can expect to incur over phases , 1 ,, Nn n +  for

decision nd and a belief vector nb , given that the last phase in which the organization verified the

system design was phase l. We refer to ,)(n lV  as the organization’s optimal cost function.

At this point, it is important to note that we have defined the optimal cost function ,)(n lV  to

address a single objective (cost). This has been a common methodological approach in verification

literature [6, 55] and is consistent with current literature on engineering decisions that suggests

that all decision criteria can be converted to a cost and/or financial reward equivalent 55-58. While

doing so, our model parameters implicitly account for at least three major objectives associated

with verification activities: 1) risk mitigation (belief vectors and belief retention factor), 2) quality

assurance (expected cost of rework and expected cost of failure), and 3) compliance to standards

(expected cost of failure) 6,59. Yet, our modeling approach can be extended to those scenarios where

the organization desires to use a multi-objective vector instead.

The optimal cost function , ()n lV  for all phases can be determined using backward induction

60 as follows. In the final phase N , the organization only needs to consider the immediate costs

of its decision. Hence, given l N , the organization’s optimal cost function for its decision to

verify the system design is defined by

, , , , , , , ,(,)N l v N l N v v N vN N N Nv v N l NV b v b f b f b f− − −= + = , (2)

since , 0v N vNb f − = , and the organization’s optimal cost function for its decision to not verify the

system design is defined by

, , , ,(,)N l N N v N l N vV fb v b − −− = . (3)

In phase 1N − , given 1,l N − the optimal cost function 1, ()N lV −  must consider the organization’s

immediate cost in phase 1N − from decision 1Nd − and the minimum cost the organization can

expect to incur in phase N for the belief vector Nb , which results from the transformation of 1Nb −

through the decision 1Nd − . Since equations (2) and (3) define the minimum cost the organization

can expect to incur in phase N for each of its decisions, in phase 1N − , the organization only needs

to compute its immediate cost resulting from decision 1Nd − , determine the transformation of 1Nb −

into Nb through the decision 1Nd − , and then use Nb to determine the minimum expected cost in

phase N. Hence, given 1l N − , in phase 1N − , the organization’s optimal cost function for its

decision to verify the system design is defined by

1, 1 1 , 1, 1, , 1 1 , 1 1, min{ , , }() (), ()N l N N v N l N v N N N v N N N vV bvb b f V b vVv− − − − − − − − − −= + − , (4)

and its optimal cost function for the decision to not verify the system design is defined by

1, 1 , 1 , , , 1 , ,() (), (, min{ , }),N l N N l N v n l N l N v n lV b V b Vv v b v− − − − − −=− − . (5)

The optimal cost functions for all remaining phases can be determined using the same

procedure as the one presented above for phase 1N − .

With the knowledge of ,)(n lV  for all {1, , }n N  , the organization can then determine the

optimal verification strategy
*

1(,)D n b . We will illustrate the procedure to determine 1

*(,)D n b for

a single set of belief vectors {1, , }{ ˆ }nn Nb   , where ˆ
nb denotes the organization’s belief vector in

phase n that results from the organization following the optimal verification strategy in phases

1, , 1n − . In phase 1, the organization’s belief vector is
1b̂ , 0l = , and hence

1

*

1 1,0 1
{ , }

{ , }ˆ ˆ(1,) arg max ()n
d v v

D b bV d
 −

= . (6)

If *

1
ˆ(1,)D b v= − , then 2 1 ,1,0

ˆ ˆ
vb b −= and l remains set at 0. Else, if *

1
ˆ(1,)D b v= , then

2 1
ˆ ˆ

vb b= and

1l = , which reflects the organization verified the system design in phase 1. Similarly, in phase 2,

for the known belief vector
2b̂ and known value of l , we know

2

*

2
{

2,1 2
, }

{ , }ˆ ˆ(2,) arg max ()
d

l
v v

D b bV d
 −

= . (7)

Proceeding in a manner similar to the one presented above, in phase n, the value of l and ˆ
nb are

known beforehand since * *

1 1
ˆ ˆ(1,), 1), (,D b D n b − are determined beforehand. It then follows that

in phase n

*

{
1 ,

, }
{ , }ˆ ˆ(,) arg max ()

n v
n nn

vd
lD n bVb d

 −
= . (8)

The formulation presented above to determine
*

1(,)D n b is similar in structure to partially

observable Markov decision processes (POMDPs) 61. There are two notable differences between

our formulation and POMDPs: 1) POMDPs explicitly account for observations from a decision,

whereas our model implicitly accounts for the observations in the design process, and 2) POMDPs

use Bayes’ rule to update beliefs based on observations, whereas in our model beliefs are

transformed based on the organization’s decision. The optimal verification strategy
*

1(,)D n b in

our model can be determined by using standard POMDP solution algorithms 62, after adjusting for

the differences between POMDPs and our model. We present one such algorithm to numerically

determine the optimal verification strategy
*()D  in the Appendix.

4 Analysis

4.1 When is frequent verification optimal?

In our model, frequent verification being an optimal strategy is equivalent to the organization

verifying the system design in all phases for all valid initial belief vectors 1b . It is mathematically

intractable to derive an analytical closed form expression for
*

1(,)D n b that does not contain the

maximum function. Instead, we explore the parameter space of our model to determine the

conditions under which frequent verification is an optimal strategy for the organization. To this

end, we will assume that the organization verifies the system design with respect to the requirement

of interest in all phases and then proceed to analytically determine the necessary conditions that

parameters Fr , nc and nr must satisfy for our assumption of frequent verification to remain valid.

We begin with parameter Fr . Consider the final phase. Per our assumption, the organization

has verified in phase 1N − . Then, the organization will verify the design in the final development

phase only if , 1 , 1(,) (,)N N N NN NV b v V b v− − −

, 1 , 1

, 1

(1) ()
1

1 1()N
N N N N N F N N N N

N N F N

c
c

r
r r

r
    


− −

−

 + −  −
−

−  .

Since 1N  , the above condition implies that the organization will verify the system design in

the final development phase for all belief values if

, 1 , 1

, 1 , 1 , 1

(1)
1 1

(1) (1)

1 () N N N N N N NN
F F N N

N N F N N N N N

c cc
r r c

r

r
r

r

 

  

− −

− − −

−
 

+

−
 −   + +

− −
 . (9)

Hence, it is optimal for the organization to verify the design in the final phase, for any belief value

N , when the expected cost of failure is greater than the maximum possible cost of verification in

the final phase, N Nc r+ , by a margin of at least , 1 , 1/ (1)N N N N Nc  − −− .

We now consider the parameters nc and nr for phases , 11,n N=  − . Per our assumption, the

organization has verified the design in phase 1n− and it will verify the design in phase 1n+ . Then,

verification in phase n is an optimal strategy only if , 1 , 1(,) (,)n n n nn nV b v V b v− − −

1 1 1, 1 1, , 1 11 , 1(1) (1) (1)nn n n n n n nn n n n n n n nc r c r c r     + + −+ + +− − + + − + + −  + −

1,

1 1, 1 ,

1

1()

n n

n

n

n

n n n

n

n

n

n

r r c

r r




 

+

+ + −

+

−

−

−


−
 .

Since 1n  , the above condition implies that verification in phase n is optimal for all belief values

when

1

1, , 1

1

1

1

1, 1 , 1 1, 1, 1 ,

(1)
1

()

nn n n nn n n

n n n n

n

n

n n n n nn n n

r r c c r
r

r r

 

    −

+

+

+ −

+ − − + + −+

 
−

− −


− + −
. (10)

The necessary condition for the organization to verify in phase n is that the expected cost to rework

the design in phase 1n+ be greater than the lower bound defined by condition (10), with the lower

bound being a function of the set-up and rework costs in phase n.

Conditions (9) and (10), in effect, base the organization’s current optimal strategy in the

comparison of future expected costs of rework, or failure, to a scaled value of the current costs of

verification set up and rework. This is in line with verification literature that advocates for

verification in order to avoid expensive rework in later design stages 6,23. However, conditions (9)

and (10) also prove that frequent verification is not an optimal strategy in general. It is not enough

that future costs of design rework, or failure, be simply greater than the current costs of verification

set up and rework. Indeed, they must be greater by a margin, defined by conditions (9) and (10)

for frequent verification to be optimal for the organization.

4.2 Effect of the belief retention factor on optimal strategy

The results presented in Section 4.1 generalize our previous work 42. In this section, we explicitly

define the effect of ,n l and N on frequent verification being an optimal strategy. Indeed, condition

(10) is an implicit function involving 1,n n + , 1, 1n n + − and , 1n n − , with ,n l in turn being a function

of N. To derive additional qualitative insights on the effects of ,n l and N on the optimal

verification strategy, we will now study our model numerically.

For brevity, we will restrict our attention to those cases where nc and nr either increase linearly

or superlinearly, while ignoring the scenarios where nc and nr increase sublinearly. We will refer

to each possible combination of the type of increase in nc and nr as a case. The 4 possible cases

are defined in Table II. We will begin with an initial set of values for all parameters. The parameter

values will then be systematically changed to bring out the effect of 1k , 2k and N on the optimal

verification strategy.

Table II: Rate of increase in costs for each case

Case Increase in
nc Increase in

nr

1 Linear Linear

2 Linear Superlinear

3 Superlinear Linear

4 Superlinear Superlinear

4.2.1 Case construction

The initial set of parameter values for each case are listed in Table III. These parameter values are

notional, with the ordinal relationship between the parameters being the purpose of our analysis.

Specifically, for this initial set of parameter values, we have captured the following relations: 1)

the expected cost to rework a design in its non-ideal state is always greater than the set-up cost for

verification activities in all phases, 2) the expected cost of failure satisfies condition (9) for all

cases, 3) 1 0.95k = implies that the organization’s baseline confidence in the correctness of its

design activities (that is, on its design process) is high, and 4) 2 5k = implies that the organization’s

confidence in the correctness of its design activities decays at a relatively low rate when it does

not verify the design for multiple consecutive phases.

Table III: Initial set of parameter values

Case 𝑐𝑛 𝑟𝑛 𝑟𝐹 𝑘1 𝑘2 𝑁

1 $5000𝑛 $100,000𝑛 $108 0.95 5 8

2 $5000𝑛 $100,000𝑛2 $108 0.95 5 8

3 $5000𝑛2 $100,000𝑛 $108 0.95 5 8

4 $5000𝑛2 $100,000𝑛2 $108 0.95 5 8

The different sets of changes in the initial parameter values, henceforth referred to as

iterations, are listed in Table IV. As shown in Table IV, we begin by increasing the number of

phases to determine the effect of N on the optimal verification strategy in iteration 1. This is

followed by the change in the organization’s baseline confidence in the correctness of its design

activities in iteration 2. In iteration 3, we reset the value of the organization’s baseline confidence

to the original value and change the decay rate of the organization’s confidence in the correctness

of its design activities. Finally, we change both the organization’s baseline confidence and the

decay rate of its confidence in iteration 4.

Table IV: List of parameter perturbations to be explored

Iteration Previous parameter(s) value New parameter(s) value

1 8N = 16N =

2 1 0.95k = 1 0.7k =

3 2 5k = , 1 0.7k = 2 40k = , 1 0.95k =

4 1 0.95k = , 2 40k = 1 0.99k = , 2 1k =

4.2.2 Results of parameter changes

Figure 2 graphs the results from numerically solving our model for the initial set of parameter

values listed in Table III. In each graph, the initial belief vector 1 1 1(1 ,)b  = − is described by the

value of 1 on the x-axis, and the optimal strategy is plotted for each phase on the y-axis. Since

condition (9) is satisfied for all cases, we see that verifying the system design in the final phase for

all beliefs is optimal for all cases. However, we observe that frequent verification is an optimal

strategy only for case 2. This is due to condition (10) being violated in phase 3 for case 1, in phase

2 for case 3, and phase 7 for case 4.

Consider now the results of iteration 1, where we increase the value of N from 8 to 16, graphed

in Figure 3. We observe that the structure of the optimal verification strategy has not changed for

cases 2 and 3. In fact, frequent verification is still optimal for case 2, and our model still suggests

that the design be verified in phases 1 and 3 for case 3. However, increasing the number of phases

changes the structure of the optimal verification strategy for cases 1 and 4. Specifically, in case 1,

verification is more irregular when the number of phases increase. In case 4, previously our model

suggested that the organization not verify only in the penultimate phase. When N is increased to

16, our model suggests verification be avoided in every alternate phase after the 3rd phase in case

4.

A potential reason for the increase in the number of phases affecting the structure of the

optimal verification strategy in cases 1 and 4 is that the rate of change in nc and nr is the same,

with both costs increasing linearly in case 1 and superlinearly in case 4. However, this does not

sufficiently explain the number of consecutive phases with no verification in between two phases

where verification is suggested for both case 1 and 4. Hence, we hypothesize that increasing the

number of phases leads to a change in ,n l , which also affects the optimal verification strategy for

cases 1 and 4.

In iteration 2, we reduce the organization’s baseline confidence in the correctness of its design

activities to 1 0.7k = . Figure 4 graphs the results for iteration 2. As illustrated in Figure 4, the

optimal verification strategy for the organization, in all cases, is to verify the design only in the

final phase. A low baseline confidence in the design activities should result in frequent verification

being optimal for the organization. Yet, our model suggests otherwise. We reason that this is due

to the two-state feature of our model. If the organization’s confidence in its design activities is

low, and the design is either correct or incorrect, then it is rational for the organization to verify

the design only in the final phase when 1k is low. If the organization verified in any other phase,

the benefits of verification would be reduced by the next phase’s design activities, after which the

organization would once again not be confident in the correct state of the design.

We conjecture that frequent verification could be optimal, when the organization’s baseline

confidence in the correctness of its design activities is low, if the possible states of the system

design are more than 2. In this multi-state representation of the system design, one state would be

the ideal state of system design, one state would be the non-ideal state of the system design, and

there would be one or more degraded states where the system design meets the requirement of

interest in a degraded manner. Furthermore, in this scenario, verification activities must ensure

that if the system design is in the non-ideal state, then it is in at least a degraded state after

verification. We conjecture that in the scenario described above, frequent verification would be

optimal when the organization’s baseline confidence in design activities is low. Such scenario is

not included in the scope of this paper, but is left for future work.

In iteration 3, we increase the organization’s baseline confidence in the correctness of its

design activities back to 1 0.95k = , while increasing 2 40k = . By increasing 2 40k = , we reduce

the rate at which the organization’s confidence in the correctness of its design activities decays

with each consecutive phase the organization does not verify the design. Figure 5 graphs the

optimal verification strategy for each case for the new set of parameter values. Comparing Figure

4 with Figure 5, we see that the optimal verification strategy for cases 2 and 3 is unaffected by the

rate of decay in the organization’s confidence in the correctness of its design activities. Whereas,

for cases 1 and 4, verification becomes more infrequent when the organization’s confidence in the

correctness of its design activities decays slowly.

The results of iteration 3 lead us to conclude that a low decay rate, or a high value of 2k ,

impedes frequent verification being an optimal strategy. Consider, for example, the requirement

of installing appropriate control software on a utility tractor. Due to the repeated nature of the task

over multiple design versions, the organization can be confident of the steps involved in the

installation of the software. Here, 2k will be high, implying a low decay rate, and our model would

suggest that the organization verify whether the control software has been installed intermittently,

instead of continuously. In contrast, consider the design of the fuel ignition system on a hypersonic

missile 63. Igniting the fuel at hypersonic speeds is difficult and the design of the fuel ignition

system on a hypersonic missile is a challenging problem 64. In this scenario, the organization’s

confidence in its design activities decays rapidly due to the epistemic nature of the problem itself,

and whether the design activities actually result in an ignition system that works correctly at

hypersonic speeds. In this scenario, 2k will be low, and our model suggests that the organization

verify frequently to confirm the correctness of its design.

Based on the results of iterations 1-3, we conjecture that a high baseline confidence in the

correctness of the design activities and a high decay rate in this confidence is required for frequent

verification to be an optimal strategy This is illustrated by iteration 4, where we set 1 0.99k = and

2 1k = . Figure 6 graphs the results of iteration 4. As shown in the figure, frequent verification is

an optimal strategy for cases 1, 2 and 4. It is not so for case 3 since case 3 violates condition (10)

in the first phase.

5 Application example

We now discuss how our model can be applied in practice. For this example, we borrow the case

of verifying an optical instrument in a satellite presented in the work of Salado and Kannan 39. The

system is an optical instrument that consists of a telescope, a spectrometer, and a camera. The

optical instrument must satisfy 3 system level requirements when verified. For this discussion, we

will restrict our attention to the Modular Transfer Function (MTF) requirement. The MTF of an

instrument is a measure of contrast and resolution capabilities 65. In Salado and Kannan’s example,

the MTF requirement states that the optical instrument’s MTF be greater than 0.65 39.

Salado and Kannan 39 present a verification plan for all system requirements on both the

system level and the component (telescope, spectrometer and camera) level for three key decision

points: i) preliminary design review (PDR), ii) critical design review (CDR), and iii) qualification

review (QR). In this example, we restrict our attention to the system level design and verification

activities. We expand on Salado and Kannan’s example this to bring out a more detailed view of

the design process on the system level. This detailed view is shown in Figure 7, which presents the

design steps in the optical instrument’s design process between the key decision points and the

associated verification activity for each step that we will use for this discussion.

As shown in Figure 7, there are three major design steps we consider. In the 1st design step,

all components in the optical instrument (telescope, spectrometer, and camera) are designed and

their mathematical models integrated at instrument level. Here, the MTF of the optical instrument

is verified with an analysis (activity 𝑣7). In the 2nd design step, component prototypes are

manufactured and integrated into a prototype of the optical instrument. To verify the MTF of the

optical instrument prototype, the MTF is measured on the center point of the prototype (activity

𝑣2). Finally, in the 3rd design step, all actual components are fabricated and integrated into the final

optical instrument design. The verification activity on the final design involves measuring the MTF

on the center point of the final design (activity 𝑣5).

We map the optical instrument example described above to our model as follows. The state

of the optical instrument is broadly classified as either the instrument has an MTF value greater

than 0.65, or not. If the optical instrument has an MTF value greater than 0.65, then we denote it

as
1S , the ideal state, and

0S , the non-ideal state, otherwise. The design steps correspond to the

phases in our model, and hence 3N = . In turn, this implies that in each design step, or phase, the

organization’s possible decisions are to execute the verification activity in that design step, or not.

For example, in design step 2, or phase 2, the organization’s possible decisions are to either

measure the MTF on the center point of the prototype, or not. Furthermore, we will assume that

the optical instrument is a critical component of the satellite. Thus, the expected cost of project

failure,
Fr , will be equal to the penalty the organization will have to pay the customer if the optical

instrument’s MTF falls below 0.65 before the end of its operational life.

To determine the value of ,n l , we require the values of
1k and

2k in addition to N . The

parameter
1k can either be set using historical data or with the help of subject matter experts. For

example, if the organization has high confidence on the maturity/predictability of its design

process, then
1k can be set to a high value (> 0.85). Else,

1k may be set to a low value. In

comparison, we argue that only a low value of
2k is suitable in this scenario. We say so since the

MTF of the optical instrument heavily depends on integration factors such as misalignment of the

components, or mirrors in the spectrometer and telescope, or dust accumulated during integration.

Hence, if the organization skips verification for even one phase, its confidence in the system design

being in the ideal state will reduce significantly. This is captured by setting
2 1k = in our model.

The value of the parameter
nc is the total cost of executing the verification activities in phase

n. This includes the cost of using the testing equipment and the cost of executing all verification

activities in phase n. In comparison to the set-up cost
nc , the expected rework cost

nr will

necessarily be an estimate since the cost of rework cannot be known before the system is verified.

The expected rework cost
nr in phase n will be the organization’s estimate of the labor and material

costs associated with potential repairs in phase n. This will include estimates of the costs of

disassembling the system design for rework when verification reveals an error.

The organization only needs to quantify its belief in the ideal state of the system design at the

end of the PDR, or
1 , to utilize our model. One possible value of

1 would be the organization’s

subjective assessment of the probability of the system design having an error at the end of the

PDR.

We have graphically depicted our model for the optical instrument example discussed above

in Figure 8. The intention of this figure is to facilitate the understanding of how our model maps

to a verification planning problem in practice.

6 Model validity

We have developed a normative decision-theoretic model of verification in this paper. Our model

was not developed using a dataset obtained from the industry and is theoretical in nature. Hence,

a data-driven validation process is not applicable for our work. Instead, we validate our model with

the intention of providing a potential user with more confidence in its applicability. In this regard,

hypotheses validity and logical validity are two qualitative validation methods frequently used on

decision-theoretic models 66,67. We discuss both below.

6.1 Hypothesis validity

Hypothesis validity checks if the model has adequately reproduced the connections between the

elements of the subject being modeled 67,68. In the context of our model, the subject is the

development process for a system, particularly in terms of verification decisions throughout the

development process. The evolution of the development process is dependent on the decisions

made during the process. These decisions are the inputs to our model. We measure the manner in

which this development process evolves with quantifiable metrics, such as time, cost, and meeting

requirements. These metrics are the observable outputs from our model. Thus, the connections

between the elements of the subject, in the context of our model, are the relationships between the

input decisions to the model and the output metrics observed from the model.

In our normative model, the decision to execute the verification activity, or not, in each design

phase is the input, while the observable attributes of the development process with respect to

verification are the outputs. There are multiple output attributes from the development process

with respect to verification: risk mitigation, costs, quality assurance, etc. In this paper, we have

chosen three high-level costs associated with the verification activities: set up costs for verification

activities, the expected cost of reworking a faulty design, and the expected cost of deploying a

design with errors. The hypotheses validation step then requires us to check if we have adequately

captured the relationship between the input and the outputs in our model.

We say that the organization’s confidence in the correctness of its design is what connects the

input of our model to its outputs. Our argument is as follows. The development process generates

rich data in the form of design discussions, logs of activities, observations, and demonstrations,

for example. This rich data influences the organization’s understanding of the state of its design.

Since the true state of the design is unknown prior to verification, the organization’s understanding

of the state of its design is subjective. That is, the organization does not know the true state of its

design but can be thought of as being confident in the correctness of the design. The organization

will make verification decisions based on this confidence. Since the costs of verification are set by

the organization’s decision, it then follows that adequately modeling the organization’s confidence

in the correctness of its design activities is sufficient to connect our model input to its outputs.

There are two aspects to modeling the organization’s confidence: 1) quantifying the

confidence, and 2) modeling the change in this confidence. To quantify the organization’s

confidence in the correctness of its design activities, we use belief distributions. The organization’s

confidence is changed by the actions the design activities. However, these activities have been

abstracted away in our model. Thus, we need a parameter that adequately represents the manner

in which design activities vary the organization’s belief in the correctness of its design. This

function is accomplished by the belief retention factor ,n l . To provide an additional granularity

that models the organization’s varying confidence in the maturity/capability of its design activities

in different phases, we define the belief retention factor in terms of the baseline confidence

parameter
1k and the day of decay parameter

2k .

6.2 Logical validity

Logical validity checks if a model has been correctly converted into a numerical computer model

that produces solutions 66. There is no standard methodology for determining logical validity, but

qualitative inspections have been used in the past 66. To the best of our knowledge, the results of

our model are numerically correct. However, we do contend that numerical accuracy does not

necessarily imply applicability in reality. In this regard, our model makes two assumptions that

leads to numerically correct but inapplicable results in those scenarios where the organization’s

baseline confidence in the correctness of its design maturity/capability is low throughout the design

process: 1) the system design either meets the requirement of interest or not, and 2) when the

system is verified, the belief in the correct state of the system design becomes absolute.

The two assumptions mentioned above, together, overlook the possibility of the system design

being in more granular states during the design and verification process. Still, our model does

derive a numerically correct strategy for those scenarios where the organization’s baseline

confidence in the correctness of its design activities is low – no verification in any phase but the

last. This is so since our model suggests that even if the system is verified, the confidence of it

being in the correct state will be low throughout the process, and hence it is best not to waste

monetary resources on the same. However, in reality, the organization would prefer to verify its

design if its baseline confidence in the correctness of its design activities is low. We conjecture

that this issue can be resolved by expanding the size of the state space and by allowing a more

granular increase in belief after verification activities.

7 Conclusion

Verification activities often consume a significant portion of the project budget. When verification

activities are planned correctly, they help minimize rework costs by identifying errors in the system

design early in the design process. However, overuse of verification activities can lead to

misallocation of limited resources, resulting in cost overrun which verification itself aimed to

prevent. In this regard, frequent verification of the system design has been advocated in industry

and the research literature. In this paper, we used a belief-based model to characterize the

conditions under which frequent verification is optimal for a single organization that is considering

the verification of a single system requirement.

The analysis of our model showed that frequent verification is often not an optimal verification

strategy. Necessary conditions must be met for frequent verification of a single system requirement

to be optimal. The necessary conditions are:

• The expected cost of failure must be strictly greater than the maximum possible verification

cost in the final phase.

• The expected cost of rework in the next phase must be greater than the maximum possible

verification cost in the current phase.

• The organization’s baseline confidence in the correctness of its design activities must be

high throughout the design process.

• The organization’s baseline confidence must decay rapidly when the organization does not

verify the design over consecutive phases.

The scenarios alluded to by the conditions above have been observed in the design of complex

systems, such as aircrafts and satellites, which take the form of large scale systems engineering

projects 69. For such projects, the expected cost of failure is high, and complex correlations between

various system requirements cause the expected cost of design rework to increase rapidly as the

design matures. Furthermore, the organization’s confidence in the correctness of its design

activities for the requirement of interest is often influenced by other design activities or related

requirements.

A significant advantage of our model is that it is built on fundamental building blocks of a

design process, that is, phases that consist of design and verification activities. This enables our

model to be applicable for all system development process models (such as V model, waterfall

model, spiral model, etc.). Though we used our model to determine the conditions under which

frequent verification is optimal, our model can be used to determine optimal verification strategies

for any feasible belief values during the design process.

There are several limitations to our model. First, we assumed a vertically integrated system.

Vertically integrated systems are rare in practice. However, we have adopted it to use it as an

approximation for systems that are mainly developed and integrated by a single organization (even

if the organization purchases some parts, raw material, or components externally). Furthermore,

by exploring a model with the vertical integration assumption, our work now provides a baseline

with which the results of future works that relax the vertical integration assumption, can be

compared to.

Another limitation of our model, as revealed in the analysis, is that two states are not sufficient

to accurately model those scenarios where the organization’s confidence in the correctness of its

design activities is low throughout the design process. We conjecture that a multi-state model could

conclude – in contrast to our results – that frequent verification is optimal when the organization’s

confidence in the correctness of its design activities is low. Another limitation of our model is that

it is normative in nature and considers high-level parameters. This restricts the applicability of our

model to analysis before the system developments begins, where verification activities have to be

planned and resources allocated. In such conditions, our model can still aid engineers in

determining which system requirement requires frequent verification and which does not.

However, once the project begins, it would be necessary to use a model of verification that

dynamically accounts for the information generated by design and verification activities in the

project. Our work is not unique in possessing these limitations, with the majority of mathematical

models on verification sharing this limitation.

Taken together and despite the aforementioned limitation, our work makes important

contributions to the growing body of literature on scientific foundations of systems engineering

and engineering design. It introduced a normative model of belief-based decision-making in

verification of system design, a conceptual and mathematical foundation which can be built upon

in future research.

Acknowledgment

This material is based upon work supported by the National Science Foundation under Grant No.

CMMI-1762883 and CMMI-1762336.

Appendix

We now present an algorithm to numerically determine
*()D  given that the parameter values nc ,

nr , Fr and ,n l are known beforehand. In equation (2), let , , , , ,v N l v N l N vf −= and let

, , , , ,v N l v N l N vf− − −= . Then, in phase N, given l N , the organization’s optimal cost functions can

be defined as

, , ,)mi(,) (nN l N vN N lV b v b = , and (11)

, , ,)min(,) (N l N v NN lV b v b −− = . (12)

Here, the minimum function returns the lowest value of its vector argument. The minimum

function is redundant in the phase N since the dot product between Nb and , ,N l results in a vector

with a single element, but the above formulation will prove useful for remaining phases.

In phase 1N − , given 1l N − , the organization’s optimal cost function for its decision to

verify can be defined as

1, 1 , 1, 1, , 1 1 , 1 1min{ , , }(,) (), ()N l N N v N l N v N N N v N N N vV b v b f V b v V b v− − − − − − − − −= + −

1, 1 , 1, 1, 1 , , 1 , 1, 1, 1 , ,min{ }(,) ,N l N N v N l N v N v v N l N v N l N v N v v N lV b v b f b b f b − − − − − − − − − − − − = + +

1, 1 , 1, 1, , , 1 , 1, 1, , ,(,) { () , ()}minN l N N v N l N v v v N l N v N l N v v v N lV b v b f b f − − − − − − − − − − = + + .

Define the matrix , 1, , 1, 1, , , , 1, 1, , ,[() , ()]v N l v N l N v v v N l v N l N v v v N lf f  − − − − − − − −= + + . Then, the

organization’s optimal cost function for its decision to verify can be defined as

11, 1 , 1,mi)(,) (nN l lN N v NV b v b − − −− = . (13)

Similarly, define the matrix , 1, , 1, , , , 1, , ,[,]v N l v N l v N l v N l v N l  − − − − − − −= . It then follows

11, 1 , 1,mi)n(,) (N l N v N lNV b v b − − − −− − = . (14)

Proceeding in the same manner as the one presented above for phase 1N − , assume that the

matrices , 1,v n l + and , 1,v n l− + have been previously computed for all 1l n + . Then, given l n ,

define the matrices , , , , , , 1, , , , , 1,[() , ()]v n l v n l n v v v n l v n l n v v v n lf f  − + − − += + + and

 , , , , , 1, , , , 1,[,]v n l v n l v n l v n l v n l  − − + − − += . It then follows that the organization’s optimal cost functions

in phase n can be defined as

, , 1,)min(,) (n l nn n v lV b v b  += , and (15)

, , 1,)min(,) (n nl n ln vV b v b − +− = . (16)

Once the matrices , ,v n l and , ,v n l− have been computed for all valid pair of values of n and l,

determining the optimal verification strategy
*()D  is straightforward. Consider again the single

set of belief vectors {1, , }{ ˆ }nn Nb   , where ˆ
nb denotes the organization’s belief vector in phase n that

results from the organization following the optimal verification strategy in phases 1, , 1n − . Since

l and ˆ
nb can be determined beforehand by using * *

1 1
ˆ ˆ(1,), , (1,)D nDb b − , it follows that

*

1 , ,
{ , }

{)}ˆ ˆ(,) arg min min(
n

n
n n l

vd
d

v
D n b b 

 −
= . (17)

The set of all possible initial belief vectors 1b is uncountable. Hence,
*

1(,)D n b must be computed

for a finite set of belief vectors
1

1 1 }{ , , Mb b =  that reasonably discretizes the space of all possible

belief vectors 1b . Table V outlines the solution algorithm to numerically determine
*()D  assuming

the set of initial belief vectors  is already known.

Table V: Algorithm to determine optimal verification strategy

Initialize

nc , nr , Fr , ,n l , ,n vf , ,n vf − and 

Set l = 0 and iterate until l < N

1 Set , , , , ,v N l v N l N vf −= and , , , , ,v N l v N l N vf− − −=

2 Set l = l + 1

Set n = N – 1 and iterate until n > 0

3 For each update on value of n, set l = 0 and iterate until l < n

3a
Set , , , , , , 1, , , , , 1,[() , ()]v n l v n l n v v v n l v n l n v v v n lf f  − + − − += + + and

, , , , , 1, , , , 1,[,]v n l v n l v n l v n l v n l  − − + − − +=

3b Set l = l + 1. If l < n, then return to 3a, else proceed

3c Update n = n – 1 and return to check condition on n

Do for each 𝑏1
𝑥 ∊ 𝜓

4 Set 1 1

xb b= , l = 0

5 Set n = 1 and iterate until n = N

5a Set 1nb b=

5b Set
*

1 , ,
{ , }

{)}ˆ ˆ(,) arg min min(
n

n
n n l

vd
d

v
D n b b 

 −
=

5c Set
*

, , 1

1 *

1

if (,)

if (,)

n v n l

n

n v

b D
b

n b v

n b vb D

−

+

 = −


=
=

5d If
*

1(,)n b vD = , then set l = n.

5e Set n = n + 1 and return to 5.

The algorithm presented above was implemented using MATLAB©. However, it can also be

implemented in general purpose programming languages, such as Python™. We suggest the

algorithm be implemented in languages that have libraries to support matrix operations. This could

significantly reduce the effort required to code the algorithm.

References

1. Lake JG. 4 V & V in Plain English. Paper presented at: INCOSE International

Symposium1999.

2. INCOSE. Systems Engineering Handbook: A Guide for System Life Cycle Processes and

Activities. version 4.0 ed. Hoboken, NJ, USA: John Wiley and Sons, Inc.; 2015.

3. Salado A, Kannan H. A mathematical model of verification strategies. Systems

Engineering. 2018;21:583-608.

4. Shabi J, Reich Y. Developing an analytical model for planning systems verification,

validation and testing processes. Advanced Engineering Informatics. 2012;26(2):429-438.

5. Shabi J, Reich Y, Diamant R. Planning the verification, validation, and testing process: a

case study demonstrating a decision support model. Journal of Engineering Design.

2017;28(3):171-204.

6. Engel A. Verification, validation, and testing of engineered systems. Vol 73: John Wiley

& Sons; 2010.

7. Barad M, Engel A. Optimizing VVT strategies: a decomposition approach. Journal of the

Operational Research Society. 2006;57(8):965-974.

8. Nagano S. Space systems verification program and management process: Importance of

Implementing a Distributed‐Verification Program with Standardized Modular‐

Management Process. Systems Engineering. 2008;11(1):27-38.

9. Chang T-f, Danylyzsn A, Norimatsu S, et al. " Continuous verification" in mission critical

software development. Paper presented at: Proceedings of the Thirtieth Hawaii

International Conference on System Sciences1997.

10. Klingstam P, Olsson B-G. Using simulation techniques for continuous process verification

in industrial system development. Paper presented at: 2000 Winter Simulation Conference

Proceedings (Cat. No. 00CH37165)2000.

11. Maropoulos PG, Ceglarek D. Design verification and validation in product lifecycle. CIRP

annals. 2010;59(2):740-759.

12. Loch CH, Terwiesch C, Thomke S. Parallel and sequential testing of design alternatives.

Management Science. 2001;47(5):663-678.

13. Chalupnik MJ, Wynn DC, Clarkson PJ. Approaches to mitigate the impact of uncertainty

in development processes. Paper presented at: DS 58-1: Proceedings of ICED 09, the 17th

International Conference on Engineering Design, Vol. 1, Design Processes, Palo Alto, CA,

USA, 24.-27.08. 20092009.

14. Agarwal H, Renaud JE, Preston EL, Padmanabhan D. Uncertainty quantification using

evidence theory in multidisciplinary design optimization. Reliability Engineering & System

Safety. 2004;85(1-3):281-294.

15. Samson S, Thoomu S, Fadel G, Reneke J. Reliable design optimization under aleatory and

epistemic uncertainties. Paper presented at: ASME 2009 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference2009.

16. Zhuang X, Pan R. Epistemic uncertainty in reliability-based design optimization. Paper

presented at: 2012 Proceedings Annual Reliability and Maintainability Symposium2012.

17. Eifler T, Engelhardt R, Mathias J, Kloberdanz H, Birkhofer H. An assignment of methods

to analyze uncertainty in different stages of the development process. Paper presented at:

ASME 2010 International Mechanical Engineering Congress and Exposition2010.

18. Morse E, Dantan J-Y, Anwer N, et al. Tolerancing: Managing uncertainty from conceptual

design to final product. CIRP Annals. 2018;67(2):695-717.

19. Wynn DC, Grebici K, Clarkson PJ. Modelling the evolution of uncertainty levels during

design. International Journal on Interactive Design and Manufacturing (IJIDeM).

2011;5(3):187.

20. Schlosser J, Paredis CJ. Managing multiple sources of epistemic uncertainty in engineering

decision making. SAE Transactions. 2007:1340-1352.

21. Sentz K, Ferson S. Combination of evidence in Dempster-Shafer theory. Vol 4015:

Citeseer; 2002.

22. Tosney WF, Pavlica S. Satellite verification planning: Best practices and pitfalls related to

testing. Paper presented at: Environmental Testing for Space Programmes2004.

23. Engel A, Barad M. A methodology for modeling VVT risks and costs. Systems

Engineering. 2003;6(3):135-151.

24. Engel A, Last M. Modeling software testing costs and risks using fuzzy logic paradigm.

Journal of Systems and Software. 2007;80(6):817-835.

25. Goel AL, Okumoto K. Time-dependent error-detection rate model for software reliability

and other performance measures. IEEE Transactions on Reliability. 1979;28(3):206-211.

26. Ha AY, Porteus EL. Optimal timing of reviews in concurrent design for manufacturability.

Management Science. 1995;41(9):1431-1447.

27. Hossain SA, Dahiya RC. Estimating the parameters of a non-homogeneous Poisson-

process model for software reliability. IEEE Transactions on Reliability. 1993;42(4):604-

612.

28. McGarry F, Page G. Performance evaluation of an independent software verification and

integration process. NASA Goddard, Greenbelt, MD, SEL Sill 0. 1982.

29. Powell PB. Software validation, verification, and testing technique and tool reference

guide. 1982.

30. Tahera K. The role of testing in engineering product development processes, The Open

University; 2014.

31. Tahera K, Earl CF, Eckert CM. Integrating virtual and physical testing to accelerate the

engineering product development process. IJITM. 2014;13(2/3):154-175.

32. Thomke S, Bell DE. Sequential testing in product development. Management Science.

2001;47(2):308-323.

33. Wallace DR, Fujii RU. Software verification and validation: an overview. Ieee Software.

1989;6(3):10-17.

34. Yamada S, Ichimori T, Nishiwaki M. Optimal allocation policies for testing-resource based

on a software reliability growth model. Mathematical and Computer Modelling.

1995;22(10-12):295-301.

35. Yamada S, Ohba M, Osaki S. S-shaped reliability growth modeling for software error

detection. IEEE Transactions on Reliability. 1983;32(5):475-484.

36. Cook TD, Reichardt CS. Qualitative and quantitative methods in evaluation. 1979.

37. Lee AS. A scientific methodology for MIS case studies. MIS quarterly. 1989:33-50.

38. McCutcheon DM, Meredith JR. Conducting case study research in operations

management. Journal of Operations Management. 1993;11(3):239-256.

39. Salado A, Kannan H. Elemental patterns of verification strategies. Systems Engineering.

2019;22(5):370-388.

40. Salado A, Kannan H, Farkhondehmaal F. Capturing the Information Dependencies of

Verification Activities with Bayesian Networks. Conference on Systems Engineering

Research (CSER); 2018; Charlottesville, VA, USA.

41. Xu P, Salado A. A Concept for Set-based Design of Verification Strategies. Paper

presented at: INCOSE International Symposium2019; Orlando, FL, USA.

42. Kulkarni AU, Salado A, Wernz C, Xu P. Is Verifying Frequently an Optimal Strategy? A

Belief-Based Model of Verification. Paper presented at: ASME 2020 International Design

Engineering Technical Conference & Computers and Information in Engineering

Conference (IDETC/CIE 2020)2020; St. Louis, MO, (USA).

43. Beheshti R. Design decisions and uncertainty. Design Studies. 1993;14(1):85-95.

44. Xenakis I, Arnellos A. Reducing uncertainty in the design process: the role of aesthetics.

Paper presented at: 8th International Conference on Design and Emotion2012.

45. De Weck O, Eckert CM, Clarkson PJ. A classification of uncertainty for early product and

system design. Paper presented at: DS 42: Proceedings of ICED 2007, the 16th

International Conference on Engineering Design, Paris, France, 28.-31.07. 20072007.

46. Kreye ME, Goh YM, Newnes LB. Manifestation of uncertainty-A classification. Paper

presented at: DS 68-6: Proceedings of the 18th International Conference on Engineering

Design (ICED 11), Impacting Society through Engineering Design, Vol. 6: Design

Information and Knowledge, Lyngby/Copenhagen, Denmark, 15.-19.08. 20112011.

47. Daskilewicz MJ, German BJ, Takahashi TT, Donovan S, Shajanian A. Effects of

disciplinary uncertainty on multi-objective optimization in aircraft conceptual design.

Structural and Multidisciplinary Optimization. 2011;44(6):831-846.

48. Kirby MR, Mavris DN. Forecasting technology uncertainty in preliminary aircraft design.

SAE transactions. 1999:1388-1399.

49. Padulo M. Computational engineering design under uncertainty: an aircraft conceptual

design perspective. 2009.

50. Blanchard BS, Fabrycky WJ. Systems engineering and analysis. Vol 4: Prentice Hall New

Jersey;; 1990.

51. Ahmadi R, Wang RH. Managing development risk in product design processes. Operations

Research. 1999;47(2):235-246.

52. Arundachawat P, Roy R, Al-Ashaab A, Shehab E. Design rework prediction in concurrent

design environment: current trends and future research directions. Paper presented at:

Proceedings of the 19th CIRP Design Conference–Competitive Design2009.

53. Browning TR, Eppinger SD. Modeling impacts of process architecture on cost and

schedule risk in product development. IEEE transactions on engineering management.

2002;49(4):428-442.

54. Salado A. Applying tradespace exploration to verification engineering: From practice to

theory and back again. Paper presented at: Conference on Systems Engineering Research

(CSER)2016; Huntsville, AL (USA).

55. Abbas AE, Cadenbach AH. On the Use of Utility Theory in Engineering Design. IEEE

Systems Journal. 2018;12(2):1129-1138.

56. Hazelrigg GA. A Framework for Decision-Based Engineering Design. Journal of

Mechanical Design. 1998;120(4):653-658.

57. Collopy P. Aerospace system value models: Survey and observations. Paper presented at:

AIAA Space 2009 Conference2009; Pasadena, CA.

58. Collopy PD, Hollingsworth PM. Value-Driven Design. Journal of Aircraft.

2011;48(3):749-759.

59. Salado A, Kannan H. Properties of the Utility of Verification. IEEE International

Symposium in Systems Engineering; 2018; Rome, Italy.

60. Bradley SP, Hax AC, Magnanti TL. Applied mathematical programming. 1977.

61. Littman ML. A tutorial on partially observable Markov decision processes. Journal of

Mathematical Psychology. 2009;53(3):119-125.

62. Cassandra AR, Littman ML, Zhang NL. Incremental pruning: A simple, fast, exact method

for partially observable Markov decision processes. arXiv preprint arXiv:13021525. 2013.

63. Baurle R, Mathur T, Gruber M, Jackson K. A numerical and experimental investigation of

a scramjet combustor for hypersonic missile applications. Paper presented at: 34th

AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit1998.

64. Van Wie DM, D'Alessio SM, White ME. Hypersonic airbreathing propulsion. Johns

Hopkins APL technical digest. 2005;26(4):430-437.

65. Hua F, Johnson P, Sazonova N, Lopez-Meyer P, Schuckers S. Impact of out-of-focus blur

on face recognition performance based on modular transfer function. Paper presented at:

2012 5th IAPR International Conference on Biometrics (ICB)2012.

66. Gass SI. Decision-aiding models: validation, assessment, and related issues for policy

analysis. Operations Research. 1983;31(4):603-631.

67. Mihram GA. Some practical aspects of the verification and validation of simulation

models. Journal of the Operational Research Society. 1972;23(1):17-29.

68. McCarl BA. Model validation: an overview with some emphasis on risk models. Review

of Marketing and Agricultural Economics. 1984;52(430-2016-31544):153-173.

69. Kozlak SJ, White ED, Ritschel JD, Lucas B, Seibel MJ. Analyzing Cost Growth at

PROGRAM STAGES FOR DOD AIRCRAFT. Defense Acquisition Research Journal: A

Publication of the Defense Acquisition University. 2017;24(3).

Figure 1: Change in organization's belief in phase n

Figure 2: Optimal verification strategy for the initial set of parameter values

Figure 3: Optimal verification strategy for iteration 1

1

0

n

1

0 1

0

1
,n n l 

1 1n + =

1 ,n n ln  + =

Design

Period

Verification

Period

v−

v

,n l

Belief

retention

Start of

phase n

Start of

phase n + 1

1 n− ,1 n ln −

11 n +−

10 1

*)(D 

Case 1

1
2
3
4
5
6

8
7

10 1

*)(D 

Case 2

1
2
3
4
5
6

8
7

10 1

*)(D 

Case 3

1
2
3
4
5
6

8
7

10 1

*)(D 

Case 4

1
2
3
4
5
6

8
7

1
0 1

*)(D 

Case 1

2

4

6

8

10

12

16

14

1
0 1

*)(D 

Case 2

2

4

6

8

10

12

16

14

1
0 1

*)(D 

Case 3

2

4

6

8

10

12

16

14

1
0 1

*)(D 

Case 4

2

4

6

8

10

12

16

14

New N = 16

Figure 4: Optimal verification strategy for iteration 2

Figure 5: Optimal verification strategy for iteration 3

Figure 6: Optimal verification strategy for iteration 4

1
0 1

*)(D 

Case 1

2

4

6

8

10

12

16

14

1
0 1

*)(D 

Case 2

2

4

6

8

10

12

16

14

1
0 1

*)(D 

Case 3

2

4

6

8

10

12

16

14

1
0 1

*)(D 

Case 4

2

4

6

8

10

12

16

14

New

1
0 1

*)(D 

Case 1

2

4

6

8

10

12

16

14

1
0 1

*)(D 

Case 2

2

4

6

8

10

12

16

14

1
0 1

*)(D 

Case 3

2

4

6

8

10

12

16

14

1
0 1

*)(D 

Case 4

2

4

6

8

10

12

16

14

New and

1
0 1

*)(D 

Case 1

2

4

6

8

10

12

16

14

1
0 1

1

Case 2

2

4

6

8

10

12

16

14

1
0 1

1

Case 3

2

4

6

8

10

12

16

14

1
0 1

1

Case 4

2

4

6

8

10

12

16

14

New and

Figure 7: MTF related design and verification activities for the optical instrument

Figure 8: Graphical representation of the optical instrument example

Figure 1: Change in organization's belief in phase n

Figure 2: Optimal verification strategy for the initial set of parameter values

Figure 3: Optimal verification strategy for iteration 1

Figure 4: Optimal verification strategy for iteration 2

Figure 5: Optimal verification strategy for iteration 3

Figure 6: Optimal verification strategy for iteration 4

Figure 7: MTF related design and verification activities for the optical instrument

Figure 8: Graphical representation of the optical instrument example

Biographies

Dr. Aditya U. Kulkarni is a Postdoctoral Associate in the Grado Department of Industrial

and Systems Engineering at Virginia Tech. He obtained his Ph.D. in Industrial Engineering from

Virginia Tech in 2018. He holds an M.S. in Industrial Engineering from Virginia Tech (2012) and

a B.Tech in Mechanical Engineering from National Institute of Technology, Karnataka (2010). Dr.

Kulkarni’s research focuses on leveraging stochastic modeling and game theory to solve research

problems in in Systems Engineering. He’s currently working on determining optimal verification

strategies in systems engineering projects.

Dr. Alejandro Salado is an assistant professor in the Grado Department of Industrial and

Systems Engineering and the Director of its Systems Engineering program at Virginia Tech. He

conducts research in problem formulation, design of verification and validation strategies, model-

based systems engineering, and engineering education. Before joining academia, Dr. Salado spent

over 10 years in the space industry, where he held positions as systems engineer, chief architect,

and chief systems engineer in manned and unmanned space systems of up to $1B in development

cost. He has published over 75 technical papers, and his research has received federal funding from

the National Science Foundation (NSF), the Naval Surface Warfare Command (NSWC), the Naval

Air System Command (NAVAIR), and the Office of Naval Research (ONR), among others. He is

a recipient of the NSF CAREER Award, the International Fulbright Science and Technology

Award, the Omega Alpha Association’s Exemplary Dissertation Award, and several best paper

awards. Dr. Salado holds a BS/MS in electrical and computer engineering from the Polytechnic

University of Valencia, a MS in project management and a MS in electronics engineering from the

Polytechnic University of Catalonia, the SpaceTech MEng in space systems engineering from the

Technical University of Delft, and a PhD in systems engineering from the Stevens Institute of

Technology. Alejandro is a member of INCOSE and a senior member of IEEE and AIAA.

Peng Xu is a Ph.D. candidate in the Grado Department of Industrial and Systems Engineering

at Virginia Tech. He received his MS degree in Mechanical Engineering from National Cheng

Kung University in 2015 and his Bachelor degree in Mechanical Engineering from Shandong

University in 2013. His research interests include complex system diagnosis, sequential decision

making, and engineering statistics.

Dr. Christian Wernz is an Associate Professor in the Department of Health Administration

at Virginia Commonwealth University (VCU). Dr. Wernz earned his PhD in Industrial

Engineering and Operations Research from the University of Massachusetts Amherst, and received

his bachelor’s and master’s degrees in Business Engineering from the Karlsruhe Institute of

Technology (KIT) in Germany. His research focuses on data and decision analytics in complex

systems, such as healthcare and systems engineering. In healthcare, he studies systems across

different levels, ranging from hospital operations to health policy, with a particular interest in

health IT and medical technologies. In systems engineering, he focuses on verification and multi-

firm interactions. He has developed and continues to work on the forefront of multiscale decision

theory. His work has been funded by the National Science Foundation (NSF), the Agency for

Healthcare Research & Quality (AHRQ), the Harvey L. Neiman Health Policy Institute, VCU

Health, Carilion Clinic, Rolls Royce, and Dell, among others.

