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Abstract

Verification activities, such as inspection, testing, analysis, and demonstration, improve one’s
confidence in the system meeting the system requirements during the development process.
Frequent verification is often advocated as a strategy that minimizes costs of rework over the entire
design process, where frequent verification involves verifying after any change in the design.
However, this strategy is yet to be validated. In this paper, we develop a belief-based model of
verification in systems design to determine the conditions under which frequent verification is an
optimal strategy for a vertically integrated organization. Our model uses belief distributions to

capture the organization’s dynamic confidence in the system design meeting a requirement of
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interest during the development process. It also captures the organization’s dynamic confidence in
the correctness of its development activities (or design process) as a function of past verification
activities and current system maturity. The analysis of our model shows that frequent verification
is a cost-minimizing strategy for any level of belief in satisfying the requirement only when the
organization has high confidence in the correctness of its design activities and the expected cost to
rework a faulty design is greater than the costs to set up the verification activities throughout the
development process. Otherwise, strategies with infrequent verification are superior. Our work
contributes to the growing body of literature on the theoretical foundations of systems engineering
and engineering design and seeks to provide practitioners with a means to determine optimal

verification strategies.
Keywords: Belief-based model, verification strategy, dynamic programming
1 Introduction

Verification activities are used to determine if the system meets the system requirements that
are set at the start of the design process !. That is, verification activities are the means by which
engineers check if the system is being built “right” 2. Furthermore, since system requirements are
derived from stakeholder needs, verification activities during the development process also
contribute to improve the organization and the customer’s confidence in the system design
satisfying stakeholder needs **. Furthermore, since requirements are often used as contractually
binding agreements in the design of complex systems, such as satellites, verification activities

become the means to demonstrate fulfillment of the contract from an engineering standpoint.

Monetarily, verification activities minimize rework costs by identifying design errors early in

the development process °. Since verification activities are cost and time intensive ®, implementing



verification strategies that balance the cost of executing verification activities with the risk of
undetected errors is an integral part of minimizing overall project costs 7. The importance of
identifying optimal verification strategies is further emphasized when one considers that
verification activities are often planned and contracted upon early in the system development ®. In
this regard, frequent verification throughout the design process has been advocated for in both
industry and the research literature °!!. However, the advocacy for frequent verification is based
more on subjective experience than an analytical or theoretical foundation, and following this
strategy without due consideration can increase the likelihood of an organization misallocating

limited resources to verification activities '%.

In order to determine the conditions under which frequent verification is optimal, we study a
belief-based model of verification of an organization developing a vertically integrated system.
We abstract the problem space as a single system requirement, referred to as the requirement of
interest. In this paper, we use the term requirement broadly and consider it to be an expected or
desired attribute or set of attributes of the system under development, which can be formulated as

a binary state or a direction on a scale.

Our model captures two high-level uncertainties ' in the systems design process: 1) does the
system baseline at the current development stage (e.g., system design, actual product, etc.) satisfy
the requirement of interest, and 2) will the current set of development activities ensure that the
system will continue to meet the requirement of interest? The first type of uncertainty represents
the organization’s confidence in the true state of the overall system as the development matures.
The second type of uncertainty represents the organization’s confidence in the correctness of its
development activities. Furthermore, we consider two high-level costs associated with verification

over the development process in our model: the cost to set up verification activities and the



expected cost to rework a faulty design. The optimal verification strategy is then defined as the
strategy that minimizes the organization’s expected verification costs (including the cost impact
of deploying a faulty system) over the entire design process based on its confidence, or belief, in

the correct state of the system design.

In addition to presenting an algorithm to solve our model numerically, we explore the
parameter space of our model to characterize the scenarios for which frequent verification of the
system is optimal. Our analysis shows that frequent verification is an optimal strategy for all belief
levels in the correct state of the system design only when two conditions are met throughout the
development process: (1) the organization’s confidence in the correctness of its design activities
(that is, its design process) is high, and (2) the expected cost to rework a faulty design is greater
than the cost to set up verification activities. Our model expands prior work on mathematical
models of verification that use belief distributions to model the organization’s confidence in the
true state of its design. Furthermore, our work contributes to the growing literature on studying the

scientific foundations of systems engineering and engineering design.

The remainder of this paper is organized as follows. In Section 2, we briefly discuss literature
related to our work. In Section 3, we develop the belief-based model of verification for an
organization focused on determining verification strategies for a single system requirement. The
parameter space of the belief-based model is explored in Section 4, and the conditions under which
frequent verification is optimal are explored. An application example is provided in Section 5 to
show how our model maps verification in practice. In Section 6, we present a discussion on

validation aspects, and we conclude by summarizing the results and insights in Section 7.

2 Background and motivation




Recent literature in engineering design has acknowledged that system design is rife with

epistemic uncertainty 416

, and engineers make design decisions based on subjective beliefs about
the true state of the system design !""!°. Unlike aleatory uncertainty, where the uncertainty arises
from physical variations in the underlying process, epistemic uncertainty arises due to a lack of
knowledge about the current state of the design, or other aspects of the design process 2**!. Since
verification activities reveal the current state of the system design, it follows that verification
activities improve an organization’s knowledge in the current state of its design and design process
22 That is, verification activities minimize the epistemic uncertainty in the design process for an
organization. However, the majority of the literature on verification in systems design relies

heavily on the traditional aleatory interpretations of probability 4-81223-35,

With respect to epistemic uncertainty in systems design, previous works on verification in

8,28,29,33

systems engineering can be broadly classified into conceptual approaches , empirical

5313638 and probabilistic models of verification 7% Conceptual approaches to

approaches
verification espouse guidelines, industry standards, and best practices derived from personal
experience and data from past projects. Empirical approaches to verification usually take the form
of case studies. Both conceptual and empirical approaches to verification focus more on deriving
best practices without addressing the scientific foundations of uncertainty in the system design
process. This drawback is significantly reduced in probabilistic models of verification that
specifically quantify the uncertainty and risk in systems design. However, probabilistic models of
verification assume that all uncertain variables in the design process can be modeled using known

stochastic models or processes. This bases all probabilistic models of verification on a strong

assumption about the nature of the design process, thereby limiting their applicability.



To address these limitations, we derive optimal verification strategies using a belief-based
approach to model the system development process. To the best of our knowledge, only the recent
works by Salado et al. 33°*#! have adopted the approach of capturing the epistemic uncertainty in
the design process by using belief distributions to model verification strategies. In their work,
verification strategies are derived based on the organization’s changing belief in the system design
meeting the system requirements. Using a belief-based approach to derive verification strategies
is advantageous because beliefs better represent an organization’s knowledge in the current state
of its design. This results in a more accurate representation of the risk vs reward tradeoff in
determining optimal verification strategies. We build upon this concept of an organization’s

knowledge in the state of its design in this paper.

The model and results in this paper expand our previous work **, where we used a belief-
based model to determine the optimal verification strategy for a single organization focused on a
single system requirement, or the requirement of interest. In that work >, we showed that frequent
verification was not, in general, an optimal verification strategy. However, the belief-based model
used in that paper assumed that the organization’s confidence in its design activities not resulting
in an error in the system design was constant throughout the design process. In this paper, we relax
this assumption and derive more comprehensive and general results on when frequent verification

is an optimal verification strategy.

Our decision to model the organization’s confidence in the correctness of its design activities
is motivated by the observation that design decisions are often made under considerable
uncertainty *»*. This uncertainty can be broadly classified as exogenous, which is caused for
example by the market and the environment, and endogenous, which is caused by the activities in

the design process itself 1**°. System verification contributes to reduce endogenous uncertainty.



Our work models the endogenous uncertainty in a design process as the organization’s
confidence level in whether the design activities will result in the system being built right . For
example, in the conceptual phase of an aircraft design, the organization’s confidence level in
whether the technology and capability choices made will satisfy system requirements may be low
4748 Similarly, when computational models of the aircraft are simulated and studied, the
organization may be highly confident that the models suitably capture the proposed operating
conditions *. Finally, when the aircraft is prototyped, the organization may be uneasy as to whether
the prototype was constructed correctly. In each of these examples, the organization’s confidence
in the correctness of its design activities in each phase of the system development affects the
organization’s belief in the correct state of the system, which in turn will influence the optimal
verification strategy. Thus, in order to determine the optimal verification strategy for an
organization, we argue that it is necessary to account for the effect of the organization’s dynamic,

i.e., time-changing, confidence in the correctness of its design activities on the organization’s

dynamic belief in the true state of its design.
3 Model

3.1 Model environment

We consider a vertically integrated system (hence, developed by a single organization) and abstract
the problem space as a single system requirement to: 1) determine the optimal verification strategy
when there is no external pressure from other organizations participating in the project, and 2) to
avoid confounding effects from a set of correlated requirements on the optimal verification
strategy. Thus, in our model, the optimal verification strategy is derived based on the value of the
system design meeting a single system requirement. The system development process is

considered to progress through multiple development phases until the system is deployed (e.g.,



from conceptual design to preliminary design to detailed design and so forth *°). In line with prior
verification literature !, we model the design process as a series of development phases for
generality. We consider that the development process moves to the next development phase when
the system design either changes in design attributes or design maturity. Here, design maturity
refers to the level of implementation, or realization, of the system design, with concept of
operations and block diagrams signifying low levels of design maturity and functional prototypes

signifying high levels of design maturity.

In each development phase, the organization will execute design and verification activities to
further develop the system, and so we divide each development phase into two periods: the design
period and the verification period. In the design period, activities such as modeling, tradespace
studies, and construction of mock-ups and prototypes are carried out, whereas in the verification
period, activities such as testing, inspection, demonstration, and analysis are executed. In our
model, we assume that the design period precedes the verification period in each development
phase. Furthermore, we assume that in any given development phase, design activities are executed
for certain, whereas verification activities are only executed when the verification strategy

specifies it.

We assume that design choices and activities are fixed, and hence we normalize the cost of all
design activities to $0 (since design activities are assumed to be executed in each development
phase). For verification activities, we consider two high-level costs in each development phase:
set-up cost for verification activities and the expected cost to rework a faulty design when
verification reveals an error. The set-up cost for verification activities include the costs of
executing the verification activities as well. We assume that if the organization chooses to verify

the system design in a development phase, then it will incur the set-up cost for certain, whereas



the expected cost to rework is incurred only if verification reveals the system design does not meet
the requirement of interest. In addition to the two aforementioned verification costs, we also
consider the expected cost of project failure, which is incurred by the organization if the system

design does not meet the requirement of interest at the end of all development phases.

We assume that both the set-up cost for verification activities and the expected cost to rework
a faulty design will increase as the system development progresses. The latter is supported by
empirical research °>°3. The former is meaningful within the context of this paper, as we capture a
general situation in which analyses become more refined as the design matures, and tests become

more engaged as the system is realized.

As mentioned before, we consider two types of uncertainties for the organization in the design
process: 1) does the current system design meet the requirement of interest, and 2) will the current
set of design activities result in a system that meets the requirement of interest. The first type of
uncertainty mentioned above is epistemic in nature 2. Hence, we use belief distributions to model
the organization’s confidence in the correct state of the system design. The second type of
uncertainty mentioned above can contain both aleatory and epistemic components. For example,
the aleatory component would be the probability of a particular design activity being carried our
correctly, whereas the epistemic component would be the probability of the design activity
resulting in the system meeting the requirement of interest. Hence, we model the second type of

uncertainty by a factor, whose value is in the range [0,1], referred to as the belief retention factor,

which affects the organization’s belief in the correct state of the system design every time design

activities are executed.

In our previous work “?, the belief retention factor was assumed to be stationary. This

stationarity assumption ignores the possible correlation between the current design maturity and



past verification activities on the belief retention factor. For example, design decisions for new
technological capabilities in aircraft design are challenging since designers do not know a priori if
their design decisions will result in a system that meets all requirements *®. In this scenario, the
organization’s confidence in the correctness of its design activities is both a function of design
maturity and past verification activities. Thus, in this paper, we relax the stationarity assumption
on the belief retention factor, and the belief retention factor is now a function of the current

development phase (a proxy for design maturity), and past verification activities.

When no verification activities are carried out, it is logical for the organization’s belief in
the system meeting the requirement of interest to reduce with each development phase, as there is
always a chance to introduce an error in the design process. Similarly, it is logical for the
organization’s belief in the system meeting the requirement of interest to increase after executing
verification activities. This increase results from either obtaining successful verification results or
from performing corrective actions when verification activities reveal errors in the system. In our
model, we assume that the organization’s belief is transformed by the belief retention factor after
the design activities are executed in each phase, whereas verification activities reveal all errors in
the system design and lead to the highest possible belief value in the system design meeting the

requirement of interest.

Our assumptions on the increase and decrease in the organization’s belief based on design
and verification activities imply that the organization can be confident about its design after
verification in a development phase, but this confidence can reduce in future development phases
due to future design activities. To motivate this assumption, consider the landing gears on an
aircraft with the requirement of interest being the gears deploy completely within a certain time

limit. Early verification can ensure the gear controller design is correct and the right torque is



produced by the gear motors to deploy the gears within the time limit. However, as the design
matures, other factors such as the amperage provided to the gear motors by the power supply or
operation of the landing gear doors may negatively affect the aircraft meeting the requirement of
interest. Furthermore, it is possible for the gear design to be correct, but the assembly to be carried
out incorrectly. To account for such scenarios, we assume that even after the design is verified in

a certain development phase, the organization’s belief can be reduced by future design activities.

3.2  Model parameters

For ease of discussion, we will henceforth refer to development phases simply as phases. The
number of phases in the design process is denoted by N, and a generic phase is denoted by
ne{l,...,N}. We assume the organization broadly classifies the true state of the system design as
either meeting the requirement of interest or not meeting the requirement of interest. We say the
system design is in the ideal state when it meets the requirement of interest, and it is in the non-
ideal state when it does not meet the requirement of interest. Restricting the state space to two
states simplifies the communication of key insights without limiting the generality of the model.
The model could be extended to a larger state space, though the characteristics and general

properties of the findings for the two-state model would still apply.
We denote the organization’s belief in the ideal state of the system design af the start of phase
nby B €[0,1], and so the organization’s belief in the non-ideal state of the system design at the

start of phase n is equal to 1— /3, . As per our assumptions, the organization’s belief value f, is

reduced after the design period. The degree to which this belief value is reduced will be influenced

by the culture of the organization. Thus, to model this reduction in belief, we say that design

activities in phase n reduce the organization’s belief value B, by a factor ¢,, €[0,1] to B,¢,,.



Here, &, is the belief retention factor, with the subscripts 7 and / denoting the current phase and

the last phase in which the organization verified the design, respectively. It follows that / < n for

all ne{l,..., N} . Furthermore, we denote the scenario where the organization has not verified the
design in any of the previous phases by /=0. If the organization verifies the system design in

phase n, then as per our assumptions, £, =1. However, if the organization does not verify the

n+l
system design in phase n, then the organization’s belief is unchanged after the design period and

hence ﬂn+1 = ngn,l

As mentioned before, we assume that design activities and choices are fixed, and hence we
normalize design costs to $0. The influence of design decisions in verification decisions >* is
incorporated in our model by the belief retention factor &,,, which captures the influence of the

design activities on the organization’s belief, which in turn affects the optimal verification strategy.

Thus, our model accounts for the effect of design activities on the verification strategy.

In this paper, for ease of discussion, we only analyze those scenarios where the organization’s

confidence in the correctness of its design activities decreases linearly with each consecutive phase

(n = l)) . Parameter £,
k,* N

in which no verification is carried out. Specifically, we assume ¢, , =k, (1 -
represents the organization’s baseline confidence in the correctness of its design activities with

respect to the requirement of interest immediately after the design has been verified. A low value
of k, implies the organization has low confidence in the correctness of its design activities even

after it verifies the system design. This could either be due to the organization believing the design
activities related to the requirement of interest will result in a design error, or the design activities

unrelated to the requirement of interest will change the system design in a manner that leaves it in



the non-ideal state. Whereas, a high value of k, implies the organization has high confidence in its

design activities nof resulting in a design error.

The parameter k, models the rate of decay in the organization’s confidence in the correctness
of its design activities with each consecutive phase for which the organization does not verify the
system design. A low value of k, implies that a large number of changes in either design attributes
or design maturity occur with each passing phase, and without verification, the organization’s
confidence in the correctness of its design activities decays rapidly. Similarly, a high value of &,

implies that the number of changes in either design attributes or design maturity are few, and thus
the organization’s confidence in the correctness of its design activities decays slowly.

In phase n, we denote the organization’s decision by d, € {v,—v}, where d =V means that
the organization decides to verify the system design, and d, =—v means that the organization
decides not to verify the system design. The set-up cost of verification activities is denoted by ¢, ,
and the expected cost to rework a faulty design is denoted by 7,. Furthermore, we denote the
expected cost of project failure by 7. . Figure 1 shows the evolution of the organization’s belief in
a given phase n.

To concisely present out analysis and results, we will use a vector notation for the remainder
of this paper. We denote the vector of beliefs for the organization by b, =(1- £, ) . Furthermore,

let b, , =1— f3, denote the first element of vector b, and let b, = £, denote the second element of



vector b, . To represent the transformation of b, into b, ,,,

1 0
we define T, = [1 j and
" -&, €

n,l n,l

" . (1)

We denote the organization’s vector of costs associated with its decisions to verify and not

verify the system design by f,, and f,_,, respectively. The organization’s cost vector for

verifying the system design in phase n is defined by f, =(c,+r,,c,)', where the apostrophe
denotes the vector transpose. As per our model assumptions, the organization incurs no cost for

not verifying the system design in development phases n <N, and so forall n<N, f,  =(0,0).

At the end of the final phase and if the system design is in the non-ideal state, the organization
incurs the cost of project failure. We capture this by defining the organization’s cost vector for not

verifying the system design in the final phase N as f, _, =(-7,,0)'. Table I summarizes the

notation presented so far.

Table I: Summary of key notation

Notation Description
N Number of development phases
n Generic development phase
Vi Organization’s belief in the ideal state of the system design at the
" start of development phase n
b,=(1-5,8.) Vector of beliefs




Belief retention factor: organization’s confidence in the correctness
€, of'its design activities in phase n given the design was last verified in
phase /
k, Organization’s baseline confidence in its design activities
k Rate of decay of &
2 Yy n,l
d, e{v,~v} Organization’s decision to verify (v) or not verify (-v) in phase n
T Belief transformation matrix if the organization does not verify the
ol design in phase n given the organization last verified in phase /
T Belief transformation matrix in any phase when the organization
Y verifies its design
c, Set-up cost of verification activities in phase n
r, Expected cost to rework a design in non-ideal state in phase n
Te Expected cost of project failure
fof Cost vectors associated with the organization’s decision to verify or
Iy not verify, respectively

3.3 Belief~-based optimal verification strategy

We now present the method to determine the organization’s optimal verification strategy using the

model presented above. To begin, note that in phase 7, the organization’s decision d, cannot affect

the costs the organization incurred in phases 1,...,n—1. However, d, determines the

organization’s immediate costs in phase n and it also affects the costs the organization can expect

to incur over phases n+1,..., N . This is so since d, determines the transformation of b, into b

n+l

, which in turn affects the organization’s decision d,,,, the organization’s immediate costs in

n+l»

phase n+1 and the transformation of b, ,, into b, ., through the decision d, ,, and so on until the

n+l»>
end of all phases. In this regard, the optimal decision for the organization in phase 7 is the one that

minimizes the organization’s expected costs over phases n,n+1,...N given the organization’s



belief vector at the start of phase n is b, . This line of reasoning can be extended all the way back
to phase 1, where for any given initial belief vector b,, there is a vector of decisions

d,,...,d,)e€{0,1}" that minimizes the verification costs for the organization over all phases.
Hence, we define optimal verification strategy for the organization as the function
D’(n,b,) € {v,—v} which, for a given initial belief vector b,, specifies a decision, v or —v, for each

phase n such that the organization’s expected costs over phases n,n+1,... N is minimized.

To determine D" (n,b,), the organization must know the expected costs over phases n,... N
resulting from its decision d, for any possible belief vector b, . To this end, we define V, ,(b,,d, )
as the lowest possible cost the organization can expect to incur over phases n,n+1,...,N for
decision d, and a belief vector b, , given that the last phase in which the organization verified the

system design was phase /. We refer to ¥, ,(-) as the organization’s optimal cost function.

At this point, it is important to note that we have defined the optimal cost function V, ,(-) to

address a single objective (cost). This has been a common methodological approach in verification
literature [6, 55] and is consistent with current literature on engineering decisions that suggests
that all decision criteria can be converted to a cost and/or financial reward equivalent >>-°%, While
doing so, our model parameters implicitly account for at least three major objectives associated
with verification activities: 1) risk mitigation (belief vectors and belief retention factor), 2) quality
assurance (expected cost of rework and expected cost of failure), and 3) compliance to standards
(expected cost of failure) . Yet, our modeling approach can be extended to those scenarios where

the organization desires to use a multi-objective vector instead.



The optimal cost function ¥, ,(-) for all phases can be determined using backward induction

60 as follows. In the final phase N , the organization only needs to consider the immediate costs
of its decision. Hence, given [/ < N, the organization’s optimal cost function for its decision to

verify the system design is defined by
Viibyv)=byT ) Sy, +OT o, =0T, v Fass (2)

since b, T, f, _, =0, and the organization’s optimal cost function for its decision to not verify the

system design is defined by
VN,I (bzva_v) = bNva,N,lfN;v' (3)

In phase N—1, given / < N —1, the optimal cost function ¥, _, ,(-) must consider the organization’s
immediate cost in phase N -1 from decision d, , and the minimum cost the organization can
expect to incur in phase N for the belief vector b, , which results from the transformation of b,,

through the decision d, . Since equations (2) and (3) define the minimum cost the organization

can expect to incur in phase N for each of its decisions, in phase N —1, the organization only needs

to compute its immediate cost resulting from decision d_,, determine the transformation of b,,_,
into b, through the decision d, ,, and then use b, to determine the minimum expected cost in

phase N. Hence, given /< N—1, in phase N -1, the organization’s optimal cost function for its

decision to verify the system design is defined by
Vi (by_>v) = bN—lT—v,N—l,lf oy T min{ Vo (by,T,,v), Vyva (byT,,—v)}, 4)

and its optimal cost function for the decision to not verify the system design is defined by



VN—I,] (by_,—v)=min {VN,I (bN—lT—v,n,HV)’ VN,I (bN—lT—v,n,l =)} (5

The optimal cost functions for all remaining phases can be determined using the same

procedure as the one presented above for phase N —1.

With the knowledge of V, ,(-) for all ne{l,..., N}, the organization can then determine the
optimal verification strategy D (n,b,) . We will illustrate the procedure to determine D (n,b,) for

a single set of belief vectors {b,},., ., , where b denotes the organization’s belief vector in

ne{l,..
phase n that results from the organization following the optimal verification strategy in phases

1,...,n—1. In phase 1, the organization’s belief vector is 51 , =0, and hence

D*(l,l;l) =arg drer{lflzcv}{VLO (51,dn)}. (6)

If D'(1,b,)=—v, then [;2 = [;1va,1,0 and [ remains set at 0. Else, if D*(1,5)=v, then b, =hT, and
[ =1, which reflects the organization verified the system design in phase 1. Similarly, in phase 2,

for the known belief vector 5, and known value of /, we know
D'(2,b) =arg dlgg)}v}{VZJ (b,,d,)} . (7)

Proceeding in a manner similar to the one presented above, in phase n, the value of / and l;n are

known beforehand since D*(1,5,),...,D"(n—1,b,) are determined beforehand. It then follows that

in phase n

D'(n.by)=arg max {V,,(b,.d,)}. ®)



The formulation presented above to determine D" (n,b,) is similar in structure to partially

observable Markov decision processes (POMDPs) 6!, There are two notable differences between
our formulation and POMDPs: 1) POMDPs explicitly account for observations from a decision,
whereas our model implicitly accounts for the observations in the design process, and 2) POMDPs

use Bayes’ rule to update beliefs based on observations, whereas in our model beliefs are

transformed based on the organization’s decision. The optimal verification strategy D’ (n,b,) in

our model can be determined by using standard POMDP solution algorithms %2, after adjusting for

the differences between POMDPs and our model. We present one such algorithm to numerically

determine the optimal verification strategy D'(") in the Appendix.

4 Analysis

4.1 When is frequent verification optimal?

In our model, frequent verification being an optimal strategy is equivalent to the organization

verifying the system design in all phases for all valid initial belief vectors b,. It is mathematically

intractable to derive an analytical closed form expression for D*(n,bl) that does not contain the

maximum function. Instead, we explore the parameter space of our model to determine the
conditions under which frequent verification is an optimal strategy for the organization. To this
end, we will assume that the organization verifies the system design with respect to the requirement

of interest in all phases and then proceed to analytically determine the necessary conditions that

parameters 7., ¢, and 7, must satisfy for our assumption of frequent verification to remain valid.



We begin with parameter 7. Consider the final phase. Per our assumption, the organization

has verified in phase N —1. Then, the organization will verify the design in the final development

phase only if V, ,_,(by,v) >V, y_(by,—V)

1 c
:>cN+rN(1_IBN‘9N,N—1)<rF(1_IBN‘9N,N—1):>ﬂN< (l_ ~ )

Since f, <1, the above condition implies that the organization will verify the system design in

the final development phase for all belief values if

1 c cy+ry(l—¢&y ) CyvEn v
1< (1— N ):>rF> NN W = >cy 4y +—
8N,N—1 Fp—"Fy (1 - gN,N—l) (1 - gN,N—l)

)

Hence, it is optimal for the organization to verify the design in the final phase, for any belief value

By, when the expected cost of failure is greater than the maximum possible cost of verification in

the final phase, ¢\ +7,, by a margin of at least c, &, ,_, /(1—&, ).

We now consider the parameters ¢, and 7, for phases n=1,..., N —1. Per our assumption, the

organization has verified the design in phase n—1 and it will verify the design in phase n+1. Then,

verification in phase 7 is an optimal strategy only if V, ,_,(b,,v)>V,  (b,,—V)

= Cn + rn (1 - ﬁngn,n—l) + Cn+l + rn+l (1 - gn+1,n) < Cn+l + rn+l (1 - ﬂng)z,n—lgn+l,n—l)

r —c¢

n+l,n n n

rn+lg

= fp < )
! (rn+lgn+l,n—l - 7’;1 )gn,nfl

Since B, <1, the above condition implies that verification in phase n is optimal for all belief values

when



Vo€ . —T,—C c +r(l—-¢g )
n+1%n+l,n n n n n n,n—1
< =>7,2 . (10)
(rn+1gn+l,n—l - rn )gn,n—l gnH,n - gnH,n—] gn,nfl

The necessary condition for the organization to verify in phase # is that the expected cost to rework
the design in phase n+1 be greater than the lower bound defined by condition (10), with the lower

bound being a function of the set-up and rework costs in phase #.

Conditions (9) and (10), in effect, base the organization’s current optimal strategy in the
comparison of future expected costs of rework, or failure, to a scaled value of the current costs of
verification set up and rework. This is in line with verification literature that advocates for
verification in order to avoid expensive rework in later design stages ?*. However, conditions (9)
and (10) also prove that frequent verification is not an optimal strategy in general. It is not enough
that future costs of design rework, or failure, be simply greater than the current costs of verification
set up and rework. Indeed, they must be greater by a margin, defined by conditions (9) and (10)

for frequent verification to be optimal for the organization.

4.2  Effect of the belief retention factor on optimal strategy

The results presented in Section 4.1 generalize our previous work *2. In this section, we explicitly

define the effect of &, , and N on frequent verification being an optimal strategy. Indeed, condition

(10) 1s an implicit function involving & £ , and & with &, , in turn being a function

n+l,n? n+l,n— n,n—12

of N. To derive additional qualitative insights on the effects of ¢,, and N on the optimal

verification strategy, we will now study our model numerically.

For brevity, we will restrict our attention to those cases where ¢, and 7, either increase linearly

or superlinearly, while ignoring the scenarios where ¢, and 7, increase sublinearly. We will refer



to each possible combination of the type of increase in ¢, and 7, as a case. The 4 possible cases
are defined in Table II. We will begin with an initial set of values for all parameters. The parameter
values will then be systematically changed to bring out the effect of &, k, and N on the optimal

verification strategy.

Table II: Rate of increase in costs for each case

Case Increase in c, Increase in r,
1 Linear Linear
2 Linear Superlinear
3 Superlinear Linear
4 Superlinear Superlinear

4.2.1 Case construction

The initial set of parameter values for each case are listed in Table III. These parameter values are
notional, with the ordinal relationship between the parameters being the purpose of our analysis.
Specifically, for this initial set of parameter values, we have captured the following relations: 1)
the expected cost to rework a design in its non-ideal state is always greater than the set-up cost for

verification activities in all phases, 2) the expected cost of failure satisfies condition (9) for all

cases, 3) k, =0.95 implies that the organization’s baseline confidence in the correctness of its
design activities (that is, on its design process) is high, and 4) k, =5 implies that the organization’s

confidence in the correctness of its design activities decays at a relatively low rate when it does

not verify the design for multiple consecutive phases.

Table III: Initial set of parameter values

Case Cn T T kq k, N




1 $5000n $100,000n $108 0.95 5 8
2 $5000n | $100,000n2 $108 0.95 5 8
3 $5000n2 | $100,000n $108 0.95 5 8
4 $5000n* | $100,000n? $108 0.95 5 8

The different sets of changes in the initial parameter values, henceforth referred to as
iterations, are listed in Table IV. As shown in Table IV, we begin by increasing the number of
phases to determine the effect of N on the optimal verification strategy in iteration 1. This is
followed by the change in the organization’s baseline confidence in the correctness of its design
activities in iteration 2. In iteration 3, we reset the value of the organization’s baseline confidence
to the original value and change the decay rate of the organization’s confidence in the correctness

of its design activities. Finally, we change both the organization’s baseline confidence and the

decay rate of its confidence in iteration 4.

Table IV: List of parameter perturbations to be explored

Iteration Previous parameter(s) value New parameter(s) value
1 N=38 N =16
2 k, =0.95 k, =0.7
3 k,=5, k =0.7 k,=40, k, =0.95
4 k=095, k, =40 k=099, k, =1

4.2.2  Results of parameter changes

Figure 2 graphs the results from numerically solving our model for the initial set of parameter

values listed in Table III. In each graph, the initial belief vector b, =(1—/,, B,) is described by the

value of S on the x-axis, and the optimal strategy is plotted for each phase on the y-axis. Since




condition (9) is satisfied for all cases, we see that verifying the system design in the final phase for
all beliefs is optimal for all cases. However, we observe that frequent verification is an optimal
strategy only for case 2. This is due to condition (10) being violated in phase 3 for case 1, in phase

2 for case 3, and phase 7 for case 4.

Consider now the results of iteration 1, where we increase the value of N from 8 to 16, graphed
in Figure 3. We observe that the structure of the optimal verification strategy has not changed for
cases 2 and 3. In fact, frequent verification is still optimal for case 2, and our model still suggests
that the design be verified in phases 1 and 3 for case 3. However, increasing the number of phases
changes the structure of the optimal verification strategy for cases 1 and 4. Specifically, in case 1,
verification is more irregular when the number of phases increase. In case 4, previously our model
suggested that the organization not verify only in the penultimate phase. When N is increased to
16, our model suggests verification be avoided in every alternate phase after the 3™ phase in case

4.

A potential reason for the increase in the number of phases affecting the structure of the
optimal verification strategy in cases 1 and 4 is that the rate of change in ¢, and 7, is the same,
with both costs increasing linearly in case 1 and superlinearly in case 4. However, this does not
sufficiently explain the number of consecutive phases with no verification in between two phases
where verification is suggested for both case 1 and 4. Hence, we hypothesize that increasing the

number of phases leads to a change in ¢, ,, which also affects the optimal verification strategy for

cases 1 and 4.

In iteration 2, we reduce the organization’s baseline confidence in the correctness of its design

activities to k, =0.7. Figure 4 graphs the results for iteration 2. As illustrated in Figure 4, the



optimal verification strategy for the organization, in all cases, is to verify the design only in the
final phase. A low baseline confidence in the design activities should result in frequent verification
being optimal for the organization. Yet, our model suggests otherwise. We reason that this is due
to the two-state feature of our model. If the organization’s confidence in its design activities is

low, and the design is either correct or incorrect, then it is rational for the organization to verify
the design only in the final phase when £, is low. If the organization verified in any other phase,

the benefits of verification would be reduced by the next phase’s design activities, after which the

organization would once again not be confident in the correct state of the design.

We conjecture that frequent verification could be optimal, when the organization’s baseline
confidence in the correctness of its design activities is low, if the possible states of the system
design are more than 2. In this multi-state representation of the system design, one state would be
the ideal state of system design, one state would be the non-ideal state of the system design, and
there would be one or more degraded states where the system design meets the requirement of
interest in a degraded manner. Furthermore, in this scenario, verification activities must ensure
that if the system design is in the non-ideal state, then it is in at least a degraded state after
verification. We conjecture that in the scenario described above, frequent verification would be
optimal when the organization’s baseline confidence in design activities is low. Such scenario is

not included in the scope of this paper, but is left for future work.

In iteration 3, we increase the organization’s baseline confidence in the correctness of its
design activities back to k, =0.95, while increasing k, =40. By increasing k, =40, we reduce
the rate at which the organization’s confidence in the correctness of its design activities decays

with each consecutive phase the organization does not verify the design. Figure 5 graphs the

optimal verification strategy for each case for the new set of parameter values. Comparing Figure



4 with Figure 5, we see that the optimal verification strategy for cases 2 and 3 is unaffected by the
rate of decay in the organization’s confidence in the correctness of its design activities. Whereas,
for cases 1 and 4, verification becomes more infrequent when the organization’s confidence in the

correctness of its design activities decays slowly.

The results of iteration 3 lead us to conclude that a low decay rate, or a high value of k,,

impedes frequent verification being an optimal strategy. Consider, for example, the requirement
of installing appropriate control software on a utility tractor. Due to the repeated nature of the task
over multiple design versions, the organization can be confident of the steps involved in the
installation of the software. Here, k, will be high, implying a low decay rate, and our model would
suggest that the organization verify whether the control software has been installed intermittently,
instead of continuously. In contrast, consider the design of the fuel ignition system on a hypersonic
missile . Igniting the fuel at hypersonic speeds is difficult and the design of the fuel ignition
system on a hypersonic missile is a challenging problem ®*. In this scenario, the organization’s
confidence in its design activities decays rapidly due to the epistemic nature of the problem itself,
and whether the design activities actually result in an ignition system that works correctly at

hypersonic speeds. In this scenario, k, will be low, and our model suggests that the organization

verify frequently to confirm the correctness of its design.

Based on the results of iterations 1-3, we conjecture that a high baseline confidence in the

correctness of the design activities and a high decay rate in this confidence is required for frequent

verification to be an optimal strategy This is illustrated by iteration 4, where we set k, =0.99 and

k, =1. Figure 6 graphs the results of iteration 4. As shown in the figure, frequent verification is



an optimal strategy for cases 1, 2 and 4. It is not so for case 3 since case 3 violates condition (10)

in the first phase.

5 Application example

We now discuss how our model can be applied in practice. For this example, we borrow the case
of verifying an optical instrument in a satellite presented in the work of Salado and Kannan *°. The
system is an optical instrument that consists of a telescope, a spectrometer, and a camera. The
optical instrument must satisfy 3 system level requirements when verified. For this discussion, we
will restrict our attention to the Modular Transfer Function (MTF) requirement. The MTF of an
instrument is a measure of contrast and resolution capabilities °. In Salado and Kannan’s example,

the MTF requirement states that the optical instrument’s MTF be greater than 0.65 *°.

Salado and Kannan ° present a verification plan for all system requirements on both the
system level and the component (telescope, spectrometer and camera) level for three key decision
points: 1) preliminary design review (PDR), ii) critical design review (CDR), and iii1) qualification
review (QR). In this example, we restrict our attention to the system level design and verification
activities. We expand on Salado and Kannan’s example this to bring out a more detailed view of
the design process on the system level. This detailed view is shown in Figure 7, which presents the
design steps in the optical instrument’s design process between the key decision points and the

associated verification activity for each step that we will use for this discussion.

As shown in Figure 7, there are three major design steps we consider. In the 1% design step,
all components in the optical instrument (telescope, spectrometer, and camera) are designed and
their mathematical models integrated at instrument level. Here, the MTF of the optical instrument

is verified with an analysis (activity v;). In the 2™ design step, component prototypes are



manufactured and integrated into a prototype of the optical instrument. To verify the MTF of the
optical instrument prototype, the MTF is measured on the center point of the prototype (activity
v,). Finally, in the 3™ design step, all actual components are fabricated and integrated into the final
optical instrument design. The verification activity on the final design involves measuring the MTF

on the center point of the final design (activity vs).

We map the optical instrument example described above to our model as follows. The state
of the optical instrument is broadly classified as either the instrument has an MTF value greater
than 0.65, or not. If the optical instrument has an MTF value greater than 0.65, then we denote it
as S, the ideal state, and S, , the non-ideal state, otherwise. The design steps correspond to the
phases in our model, and hence N =3. In turn, this implies that in each design step, or phase, the
organization’s possible decisions are to execute the verification activity in that design step, or not.
For example, in design step 2, or phase 2, the organization’s possible decisions are to either
measure the MTF on the center point of the prototype, or not. Furthermore, we will assume that
the optical instrument is a critical component of the satellite. Thus, the expected cost of project

failure, 7., will be equal to the penalty the organization will have to pay the customer if the optical

instrument’s MTF falls below 0.65 before the end of its operational life.

To determine the value of ¢, ,, we require the values of k and %, in addition to N . The

parameter k, can either be set using historical data or with the help of subject matter experts. For

example, if the organization has high confidence on the maturity/predictability of its design

process, then &, can be set to a high value (> 0.85). Else, k&, may be set to a low value. In
comparison, we argue that only a low value of £, is suitable in this scenario. We say so since the

MTF of the optical instrument heavily depends on integration factors such as misalignment of the



components, or mirrors in the spectrometer and telescope, or dust accumulated during integration.
Hence, if the organization skips verification for even one phase, its confidence in the system design

being in the ideal state will reduce significantly. This is captured by setting k, =1 in our model.

The value of the parameter ¢, is the total cost of executing the verification activities in phase

n. This includes the cost of using the testing equipment and the cost of executing all verification
activities in phase n. In comparison to the set-up cost c,, the expected rework cost 7, will
necessarily be an estimate since the cost of rework cannot be known before the system is verified.

The expected rework cost 7, in phase n will be the organization’s estimate of the labor and material

costs associated with potential repairs in phase n. This will include estimates of the costs of

disassembling the system design for rework when verification reveals an error.

The organization only needs to quantify its belief in the ideal state of the system design at the
end of the PDR, or 3, to utilize our model. One possible value of /3, would be the organization’s
subjective assessment of the probability of the system design having an error at the end of the

PDR.

We have graphically depicted our model for the optical instrument example discussed above
in Figure 8. The intention of this figure is to facilitate the understanding of how our model maps

to a verification planning problem in practice.

6 Model validity

We have developed a normative decision-theoretic model of verification in this paper. Our model
was not developed using a dataset obtained from the industry and is theoretical in nature. Hence,

a data-driven validation process is not applicable for our work. Instead, we validate our model with



the intention of providing a potential user with more confidence in its applicability. In this regard,
hypotheses validity and logical validity are two qualitative validation methods frequently used on

decision-theoretic models %*%7. We discuss both below.

6.1 Hypothesis validity

Hypothesis validity checks if the model has adequately reproduced the connections between the
elements of the subject being modeled ¢7%%. In the context of our model, the subject is the
development process for a system, particularly in terms of verification decisions throughout the
development process. The evolution of the development process is dependent on the decisions
made during the process. These decisions are the inputs to our model. We measure the manner in
which this development process evolves with quantifiable metrics, such as time, cost, and meeting
requirements. These metrics are the observable outputs from our model. Thus, the connections
between the elements of the subject, in the context of our model, are the relationships between the

input decisions to the model and the output metrics observed from the model.

In our normative model, the decision to execute the verification activity, or not, in each design
phase is the input, while the observable attributes of the development process with respect to
verification are the outputs. There are multiple output attributes from the development process
with respect to verification: risk mitigation, costs, quality assurance, etc. In this paper, we have
chosen three high-level costs associated with the verification activities: set up costs for verification
activities, the expected cost of reworking a faulty design, and the expected cost of deploying a
design with errors. The hypotheses validation step then requires us to check if we have adequately

captured the relationship between the input and the outputs in our model.



We say that the organization’s confidence in the correctness of its design is what connects the
input of our model to its outputs. Our argument is as follows. The development process generates
rich data in the form of design discussions, logs of activities, observations, and demonstrations,
for example. This rich data influences the organization’s understanding of the state of its design.
Since the true state of the design is unknown prior to verification, the organization’s understanding
of the state of its design is subjective. That is, the organization does not know the true state of its
design but can be thought of as being confident in the correctness of the design. The organization
will make verification decisions based on this confidence. Since the costs of verification are set by
the organization’s decision, it then follows that adequately modeling the organization’s confidence

in the correctness of its design activities is sufficient to connect our model input to its outputs.

There are two aspects to modeling the organization’s confidence: 1) quantifying the
confidence, and 2) modeling the change in this confidence. To quantify the organization’s
confidence in the correctness of its design activities, we use belief distributions. The organization’s
confidence is changed by the actions the design activities. However, these activities have been
abstracted away in our model. Thus, we need a parameter that adequately represents the manner
in which design activities vary the organization’s belief in the correctness of its design. This

function is accomplished by the belief retention factor ¢, ,. To provide an additional granularity

that models the organization’s varying confidence in the maturity/capability of its design activities
in different phases, we define the belief retention factor in terms of the baseline confidence

parameter k&, and the day of decay parameter %, .

6.2 Logical validity




Logical validity checks if a model has been correctly converted into a numerical computer model
that produces solutions ®. There is no standard methodology for determining logical validity, but
qualitative inspections have been used in the past . To the best of our knowledge, the results of
our model are numerically correct. However, we do contend that numerical accuracy does not
necessarily imply applicability in reality. In this regard, our model makes two assumptions that
leads to numerically correct but inapplicable results in those scenarios where the organization’s
baseline confidence in the correctness of its design maturity/capability is low throughout the design
process: 1) the system design either meets the requirement of interest or not, and 2) when the

system is verified, the belief in the correct state of the system design becomes absolute.

The two assumptions mentioned above, together, overlook the possibility of the system design
being in more granular states during the design and verification process. Still, our model does
derive a numerically correct strategy for those scenarios where the organization’s baseline
confidence in the correctness of its design activities is low — no verification in any phase but the
last. This is so since our model suggests that even if the system is verified, the confidence of it
being in the correct state will be low throughout the process, and hence it is best not to waste
monetary resources on the same. However, in reality, the organization would prefer to verify its
design if its baseline confidence in the correctness of its design activities is low. We conjecture
that this issue can be resolved by expanding the size of the state space and by allowing a more

granular increase in belief after verification activities.
7 Conclusion

Verification activities often consume a significant portion of the project budget. When verification
activities are planned correctly, they help minimize rework costs by identifying errors in the system

design early in the design process. However, overuse of verification activities can lead to



misallocation of limited resources, resulting in cost overrun which verification itself aimed to
prevent. In this regard, frequent verification of the system design has been advocated in industry
and the research literature. In this paper, we used a belief-based model to characterize the
conditions under which frequent verification is optimal for a single organization that is considering

the verification of a single system requirement.

The analysis of our model showed that frequent verification is often not an optimal verification
strategy. Necessary conditions must be met for frequent verification of a single system requirement

to be optimal. The necessary conditions are:

e The expected cost of failure must be strictly greater than the maximum possible verification
cost in the final phase.

e The expected cost of rework in the next phase must be greater than the maximum possible
verification cost in the current phase.

e The organization’s baseline confidence in the correctness of its design activities must be
high throughout the design process.

e The organization’s baseline confidence must decay rapidly when the organization does not

verify the design over consecutive phases.

The scenarios alluded to by the conditions above have been observed in the design of complex
systems, such as aircrafts and satellites, which take the form of large scale systems engineering
projects ®. For such projects, the expected cost of failure is high, and complex correlations between
various system requirements cause the expected cost of design rework to increase rapidly as the

design matures. Furthermore, the organization’s confidence in the correctness of its design



activities for the requirement of interest is often influenced by other design activities or related

requirements.

A significant advantage of our model is that it is built on fundamental building blocks of a
design process, that is, phases that consist of design and verification activities. This enables our
model to be applicable for all system development process models (such as V model, waterfall
model, spiral model, etc.). Though we used our model to determine the conditions under which
frequent verification is optimal, our model can be used to determine optimal verification strategies

for any feasible belief values during the design process.

There are several limitations to our model. First, we assumed a vertically integrated system.
Vertically integrated systems are rare in practice. However, we have adopted it to use it as an
approximation for systems that are mainly developed and integrated by a single organization (even
if the organization purchases some parts, raw material, or components externally). Furthermore,
by exploring a model with the vertical integration assumption, our work now provides a baseline
with which the results of future works that relax the vertical integration assumption, can be

compared to.

Another limitation of our model, as revealed in the analysis, is that two states are not sufficient
to accurately model those scenarios where the organization’s confidence in the correctness of its
design activities is low throughout the design process. We conjecture that a multi-state model could
conclude — in contrast to our results — that frequent verification is optimal when the organization’s
confidence in the correctness of its design activities is low. Another limitation of our model is that
it is normative in nature and considers high-level parameters. This restricts the applicability of our
model to analysis before the system developments begins, where verification activities have to be

planned and resources allocated. In such conditions, our model can still aid engineers in



determining which system requirement requires frequent verification and which does not.
However, once the project begins, it would be necessary to use a model of verification that
dynamically accounts for the information generated by design and verification activities in the
project. Our work is not unique in possessing these limitations, with the majority of mathematical

models on verification sharing this limitation.

Taken together and despite the aforementioned limitation, our work makes important
contributions to the growing body of literature on scientific foundations of systems engineering
and engineering design. It introduced a normative model of belief-based decision-making in
verification of system design, a conceptual and mathematical foundation which can be built upon

in future research.
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Appendix

We now present an algorithm to numerically determine D*() given that the parameter values ¢,
r,, . and ¢&,, are known beforehand. In equation (2), let ¢, ,, =T . f,, 6 and let
¢, v, =T, y,fyv_, - Then,in phase N, given / < N, the organization’s optimal cost functions can

be defined as

Vi (by,v) =min (bN¢V,N,,) , and (11)

VN,I (by,—v) =min (bN¢—v,N,l) . (12)



Here, the minimum function returns the lowest value of its vector argument. The minimum

function is redundant in the phase N since the dot product between b, and ¢ , , results in a vector

with a single element, but the above formulation will prove useful for remaining phases.

In phase N -1, given /<N -1, the organization’s optimal cost function for its decision to

verify can be defined as

Vi (by,v) = bN—lT—v,N—l,lfN—l,v +min {VN,N—I by T,,v), VN,N—I by, T,,—v)}

= Vy (Dy,v) = min{bN—lT—v,N—l,lfN—l,v +by T, ¢V,N,l > bN—IT—v,N—l,lfN—I,v +b, T, ¢—V,N,[}

= VN—I,I (bN’v) =min {bN—l '(T—V,N—l,sz—l,v + Tv ¢V,N,l) > bN—l '(T—V,N—l,lfzv—l,v + Tv ¢—V,N,l)} .

Define the matrix ¢, ,, =[(T, . /o, +T, 4.5, » (T, yofya, +T 6,4, Then, the

-,

organization’s optimal cost function for its decision to verify can be defined as
Ve by, v) =min (by_, @, ). (13)

Similarly, define the matrix ¢, ,_,, =[T_ ., &, v, > L, v, ¢, 5, ]. It then follows

VN—I,I (by_,—v)=min (b,_, ¢—V,Nf1,1) . (14)

Proceeding in the same manner as the one presented above for phase N -1, assume that the

matrices ¢

ey and @ have been previously computed for all / <n+1. Then, given /<n,

v,n+l,/

deﬁne the matrices ¢v,n,l = [(T—v,n,lf;uv + Tv ¢v,n+1,l) s (’]T—v,n,lf;l,v + Tv ¢—v,n+1,l )] and

Pt =T, Bonirs» Ly @y ars] - It then follows that the organization’s optimal cost functions

in phase n can be defined as



an,l (bn ’ V) = min (bn ¢v,n+l,l) H and (15)
Vn,l (bn H —V) = min (bn ¢—v,n+l,l) . (1 6)

Once the matrices ¢,,, and ¢, ,, have been computed for all valid pair of values of n and /,

v,n,l

determining the optimal verification strategy D (*) is straightforward. Consider again the single

set of belief vectors {B, },.. v, where b, denotes the organization’s belief vector in phase n that

ne{l,..

results from the organization following the optimal verification strategy in phases 1,...,n—1. Since

[ and l;n can be determined beforehand by using D’(1, 51), ....,D'(n—1, 231) , it follows that
D'(n.b)=arg min {min(bg, ,,)}. (17)

The set of all possible initial belief vectors &, is uncountable. Hence, D (n,b,) must be computed
for a finite set of belief vectors y = {b/,...,b"" } that reasonably discretizes the space of all possible
belief vectors b,. Table V outlines the solution algorithm to numerically determine D’(-) assuming

the set of initial belief vectors y is already known.

Table V: Algorithm to determine optimal verification strategy

Initialize

Cos Tys Tes €45 Jons Jooy and y

Set | = 0 and iterate until [ < N

1 Set @, v, =T,y Sy, and d v, =T\ fv_,
2 Set/=1+1

Set n = N— 1 and iterate untiln > 0

3 For each update on value of n, set | = 0 and iterate until | < n
Set ¢v,n,l = [(T—v,n,l-fn,v + Tv ¢v,n+1,l) > (T—v,n,lf}'l,v + Tv ¢—v,n+1,l )] and
¢—v,n,l :[T—v,n,l v,n+l,l 2 T—v,n,l ¢—v,n+1,l]

3a




3b Set/ =1+ 1.If/ < n, then return to 3a, else proceed
3¢ Update n = n — I and return to check condition on n
Do for each by € Y

4 Set by=b",1=0

5 Set n = I and iterate untiln = N

5a Set b, =b,

5b Set D'(n,b) =arg min {min(5,¢, ,)}

e [Seth{pr

5d If D(n,b,)=v, thenset/ = n.

Se Setn =n + 1 and return to 5.

The algorithm presented above was implemented using MATLAB©. However, it can also be
implemented in general purpose programming languages, such as Python™. We suggest the
algorithm be implemented in languages that have libraries to support matrix operations. This could

significantly reduce the effort required to code the algorithm.
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