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Abstract 

Verification activities, such as inspection, testing, analysis, and demonstration, improve one’s 

confidence in the system meeting the system requirements during the development process. 

Frequent verification is often advocated as a strategy that minimizes costs of rework over the entire 

design process, where frequent verification involves verifying after any change in the design. 

However, this strategy is yet to be validated. In this paper, we develop a belief-based model of 

verification in systems design to determine the conditions under which frequent verification is an 

optimal strategy for a vertically integrated organization. Our model uses belief distributions to 

capture the organization’s dynamic confidence in the system design meeting a requirement of 
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interest during the development process. It also captures the organization’s dynamic confidence in 

the correctness of its development activities (or design process) as a function of past verification 

activities and current system maturity. The analysis of our model shows that frequent verification 

is a cost-minimizing strategy for any level of belief in satisfying the requirement only when the 

organization has high confidence in the correctness of its design activities and the expected cost to 

rework a faulty design is greater than the costs to set up the verification activities throughout the 

development process. Otherwise, strategies with infrequent verification are superior. Our work 

contributes to the growing body of literature on the theoretical foundations of systems engineering 

and engineering design and seeks to provide practitioners with a means to determine optimal 

verification strategies. 
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1 Introduction 

Verification activities are used to determine if the system meets the system requirements that 

are set at the start of the design process 1. That is, verification activities are the means by which 

engineers check if the system is being built “right” 2. Furthermore, since system requirements are 

derived from stakeholder needs, verification activities during the development process also 

contribute to improve the organization and the customer’s confidence in the system design 

satisfying stakeholder needs 3,4. Furthermore, since requirements are often used as contractually 

binding agreements in the design of complex systems, such as satellites, verification activities 

become the means to demonstrate fulfillment of the contract from an engineering standpoint.  

Monetarily, verification activities minimize rework costs by identifying design errors early in 

the development process 5. Since verification activities are cost and time intensive 6, implementing 



verification strategies that balance the cost of executing verification activities with the risk of 

undetected errors is an integral part of minimizing overall project costs 7. The importance of 

identifying optimal verification strategies is further emphasized when one considers that 

verification activities are often planned and contracted upon early in the system development 8. In 

this regard, frequent verification throughout the design process has been advocated for in both 

industry and the research literature 9-11. However, the advocacy for frequent verification is based 

more on subjective experience than an analytical or  theoretical foundation, and following this 

strategy without due consideration can increase the likelihood of an organization misallocating 

limited resources to verification activities 12.  

In order to determine the conditions under which frequent verification is optimal, we study a 

belief-based model of verification of an organization developing a vertically integrated system. 

We abstract the problem space as a single system requirement, referred to as the requirement of 

interest. In this paper, we use the term requirement broadly and consider it to be an expected or 

desired attribute or set of attributes of the system under development, which can be formulated as 

a binary state or a direction on a scale.  

Our model captures two high-level uncertainties 13 in the systems design process: 1) does the 

system baseline at the current development stage (e.g., system design, actual product, etc.) satisfy 

the requirement of interest, and 2) will the current set of development activities ensure that the 

system will continue to meet the requirement of interest? The first type of uncertainty represents 

the organization’s confidence in the true state of the overall system as the development matures. 

The second type of uncertainty represents the organization’s confidence in the correctness of its 

development activities. Furthermore, we consider two high-level costs associated with verification 

over the development process in our model: the cost to set up verification activities and the 



expected cost to rework a faulty design. The optimal verification strategy is then defined as the 

strategy that minimizes the organization’s expected verification costs (including the cost impact 

of deploying a faulty system) over the entire design process based on its confidence, or belief, in 

the correct state of the system design. 

In addition to presenting an algorithm to solve our model numerically, we explore the 

parameter space of our model to characterize the scenarios for which frequent verification of the 

system is optimal. Our analysis shows that frequent verification is an optimal strategy for all belief 

levels in the correct state of the system design only when two conditions are met throughout the 

development process: (1) the organization’s confidence in the correctness of its design activities 

(that is, its design process) is high, and (2) the expected cost to rework a faulty design is greater 

than the cost to set up verification activities. Our model expands prior work on mathematical 

models of verification that use belief distributions to model the organization’s confidence in the 

true state of its design. Furthermore, our work contributes to the growing literature on studying the 

scientific foundations of systems engineering and engineering design.  

The remainder of this paper is organized as follows. In Section 2, we briefly discuss literature 

related to our work. In Section 3, we develop the belief-based model of verification for an 

organization focused on determining verification strategies for a single system requirement. The 

parameter space of the belief-based model is explored in Section 4, and the conditions under which 

frequent verification is optimal are explored. An application example is provided in Section 5 to 

show how our model maps verification in practice. In Section 6, we present a discussion on 

validation aspects, and we conclude by summarizing the results and insights in Section 7.  

2 Background and motivation 



Recent literature in engineering design has acknowledged that system design is rife with 

epistemic uncertainty 14-16, and engineers make design decisions based on subjective beliefs about 

the true state of the system design 17-19. Unlike aleatory uncertainty, where the uncertainty arises 

from physical variations in the underlying process, epistemic uncertainty arises due to a lack of 

knowledge about the current state of the design, or other aspects of the design process 20,21. Since 

verification activities reveal the current state of the system design, it follows that verification 

activities improve an organization’s knowledge in the current state of its design and design process 

22. That is, verification activities minimize the epistemic uncertainty in the design process for an 

organization. However, the majority of the literature on verification in systems design relies 

heavily on the traditional aleatory interpretations of probability 4-8,12,23-35.  

With respect to epistemic uncertainty in systems design, previous works on verification in 

systems engineering can be broadly classified into conceptual approaches 8,28,29,33, empirical 

approaches 5,31,36-38, and probabilistic models of verification 7,34. Conceptual approaches to 

verification espouse guidelines, industry standards, and best practices derived from personal 

experience and data from past projects. Empirical approaches to verification usually take the form 

of case studies. Both conceptual and empirical approaches to verification focus more on deriving 

best practices without addressing the scientific foundations of uncertainty in the system design 

process. This drawback is significantly reduced in probabilistic models of verification that 

specifically quantify the uncertainty and risk in systems design. However, probabilistic models of 

verification assume that all uncertain variables in the design process can be modeled using known 

stochastic models or processes. This bases all probabilistic models of verification on a strong 

assumption about the nature of the design process, thereby limiting their applicability.  



To address these limitations, we derive optimal verification strategies using a belief-based 

approach to model the system development process. To the best of our knowledge, only the recent 

works by Salado et al. 3,39-41 have adopted the approach of capturing the epistemic uncertainty in 

the design process by using belief distributions to model verification strategies. In their work, 

verification strategies are derived based on the organization’s changing belief in the system design 

meeting the system requirements. Using a belief-based approach to derive verification strategies 

is advantageous because beliefs better represent an organization’s knowledge in the current state 

of its design. This results in a more accurate representation of the risk vs reward tradeoff in 

determining optimal verification strategies. We build upon this concept of an organization’s 

knowledge in the state of its design in this paper. 

The model and results in this paper expand our previous work 42, where we used a belief-

based model to determine the optimal verification strategy for a single organization focused on a 

single system requirement, or the requirement of interest. In that work 42, we showed that frequent 

verification was not, in general, an optimal verification strategy. However, the belief-based model 

used in that paper assumed that the organization’s confidence in its design activities not resulting 

in an error in the system design was constant throughout the design process. In this paper, we relax 

this assumption and derive more comprehensive and general results on when frequent verification 

is an optimal verification strategy.  

Our decision to model the organization’s confidence in the correctness of its design activities 

is motivated by the observation that design decisions are often made under considerable 

uncertainty 43,44. This uncertainty can be broadly classified as exogenous, which is caused for 

example by the market and the environment, and endogenous, which is caused by the activities in 

the design process itself 13,45. System verification contributes to reduce endogenous uncertainty.  



Our work models the endogenous uncertainty in a design process as the organization’s 

confidence level in whether the design activities will result in the system being built right 46. For 

example, in the conceptual phase of an aircraft design, the organization’s confidence level in 

whether the technology and capability choices made will satisfy system requirements may be low 

47,48. Similarly, when computational models of the aircraft are simulated and studied, the 

organization may be highly confident that the models suitably capture the proposed operating 

conditions 49. Finally, when the aircraft is prototyped, the organization may be uneasy as to whether 

the prototype was constructed correctly. In each of these examples, the organization’s confidence 

in the correctness of its design activities in each phase of the system development affects the 

organization’s belief in the correct state of the system, which in turn will influence the optimal 

verification strategy. Thus, in order to determine the optimal verification strategy for an 

organization, we argue that it is necessary to account for the effect of the organization’s dynamic, 

i.e., time-changing, confidence in the correctness of its design activities on the organization’s 

dynamic belief in the true state of its design.     

3 Model 

3.1 Model environment 

We consider a vertically integrated system (hence, developed by a single organization) and abstract 

the problem space as a single system requirement to: 1) determine the optimal verification strategy 

when there is no external pressure from other organizations participating in the project, and 2) to 

avoid confounding effects from a set of correlated requirements on the optimal verification 

strategy. Thus, in our model, the optimal verification strategy is derived based on the value of the 

system design meeting a single system requirement. The system development process is 

considered to progress through multiple development phases until the system is deployed (e.g., 



from conceptual design to preliminary design to detailed design and so forth 50). In line with prior 

verification literature 51, we model the design process as a series of development phases for 

generality. We consider that the development process moves to the next development phase when 

the system design either changes in design attributes or design maturity. Here, design maturity 

refers to the level of implementation, or realization, of the system design, with concept of 

operations and block diagrams signifying low levels of design maturity and functional prototypes 

signifying high levels of design maturity. 

In each development phase, the organization will execute design and verification activities to 

further develop the system, and so we divide each development phase into two periods: the design 

period and the verification period. In the design period, activities such as modeling, tradespace 

studies, and construction of mock-ups and prototypes are carried out, whereas in the verification 

period, activities such as testing, inspection, demonstration, and analysis are executed. In our 

model, we assume that the design period precedes the verification period in each development 

phase. Furthermore, we assume that in any given development phase, design activities are executed 

for certain, whereas verification activities are only executed when the verification strategy 

specifies it.  

We assume that design choices and activities are fixed, and hence we normalize the cost of all 

design activities to $0 (since design activities are assumed to be executed in each development 

phase). For verification activities, we consider two high-level costs in each development phase: 

set-up cost for verification activities and the expected cost to rework a faulty design when 

verification reveals an error. The set-up cost for verification activities include the costs of 

executing the verification activities as well. We assume that if the organization chooses to verify 

the system design in a development phase, then it will incur the set-up cost for certain, whereas 



the expected cost to rework is incurred only if verification reveals the system design does not meet 

the requirement of interest. In addition to the two aforementioned verification costs, we also 

consider the expected cost of project failure, which is incurred by the organization if the system 

design does not meet the requirement of interest at the end of all development phases.  

We assume that both the set-up cost for verification activities and the expected cost to rework 

a faulty design will increase as the system development progresses. The latter is supported by 

empirical research 52,53. The former is meaningful within the context of this paper, as we capture a 

general situation in which analyses become more refined as the design matures, and tests become 

more engaged as the system is realized. 

As mentioned before, we consider two types of uncertainties for the organization in the design 

process: 1) does the current system design meet the requirement of interest, and 2) will the current 

set of design activities result in a system that meets the requirement of interest. The first type of 

uncertainty mentioned above is epistemic in nature 21. Hence, we use belief distributions to model 

the organization’s confidence in the correct state of the system design. The second type of 

uncertainty mentioned above can contain both aleatory and epistemic components. For example, 

the aleatory component would be the probability of a particular design activity being carried our 

correctly, whereas the epistemic component would be the probability of the design activity 

resulting in the system meeting the requirement of interest. Hence, we model the second type of 

uncertainty by a factor, whose value is in the range [0,1] , referred to as the belief retention factor, 

which affects the organization’s belief in the correct state of the system design every time design 

activities are executed. 

In our previous work 42, the belief retention factor was assumed to be stationary. This 

stationarity assumption ignores the possible correlation between the current design maturity and 



past verification activities on the belief retention factor. For example, design decisions for new 

technological capabilities in aircraft design are challenging since designers do not know a priori if 

their design decisions will result in a system that meets all requirements 48. In this scenario, the 

organization’s confidence in the correctness of its design activities is both a function of design 

maturity and past verification activities. Thus, in this paper, we relax the stationarity assumption 

on the belief retention factor, and the belief retention factor is now a function of the current 

development phase (a proxy for design maturity), and past verification activities.  

When no verification activities are carried out, it is logical for the organization’s belief in 

the system meeting the requirement of interest to reduce with each development phase, as there is 

always a chance to introduce an error in the design process. Similarly, it is logical for the 

organization’s belief in the system meeting the requirement of interest to increase after executing 

verification activities. This increase results from either obtaining successful verification results or 

from performing corrective actions when verification activities reveal errors in the system. In our 

model, we assume that the organization’s belief is transformed by the belief retention factor after 

the design activities are executed in each phase, whereas verification activities reveal all errors in 

the system design and lead to the highest possible belief value in the system design meeting the 

requirement of interest.  

Our assumptions on the increase and decrease in the organization’s belief based on design 

and verification activities imply that the organization can be confident about its design after 

verification in a development phase, but this confidence can reduce in future development phases 

due to future design activities. To motivate this assumption, consider the landing gears on an 

aircraft with the requirement of interest being the gears deploy completely within a certain time 

limit. Early verification can ensure the gear controller design is correct and the right torque is 



produced by the gear motors to deploy the gears within the time limit. However, as the design 

matures, other factors such as the amperage provided to the gear motors by the power supply or 

operation of the landing gear doors may negatively affect the aircraft meeting the requirement of 

interest. Furthermore, it is possible for the gear design to be correct, but the assembly to be carried 

out incorrectly. To account for such scenarios, we assume that even after the design is verified in 

a certain development phase, the organization’s belief can be reduced by future design activities.    

3.2 Model parameters 

For ease of discussion, we will henceforth refer to development phases simply as phases. The 

number of phases in the design process is denoted by N , and a generic phase is denoted by 

{1, , }n N  . We assume the organization broadly classifies the true state of the system design as 

either meeting the requirement of interest or not meeting the requirement of interest. We say the 

system design is in the ideal state when it meets the requirement of interest, and it is in the non-

ideal state when it does not meet the requirement of interest. Restricting the state space to two 

states simplifies the communication of key insights without limiting the generality of the model. 

The model could be extended to a larger state space, though the characteristics and general 

properties of the findings for the two-state model would still apply. 

We denote the organization’s belief in the ideal state of the system design at the start of phase 

n by [0,1]n  , and so the organization’s belief in the non-ideal state of the system design at the 

start of phase n is equal to 1 n− . As per our assumptions, the organization’s belief value n  is 

reduced after the design period. The degree to which this belief value is reduced will be influenced 

by the culture of the organization. Thus, to model this reduction in belief, we say that design 

activities in phase n reduce the organization’s belief value n  by a factor , [0,1]n l   to ,n n l  . 



Here, ,n l  is the belief retention factor, with the subscripts n and l denoting the current phase and 

the last phase in which the organization verified the design, respectively. It follows that l n  for 

all {1, , }n N  . Furthermore, we denote the scenario where the organization has not verified the 

design in any of the previous phases by 0l = . If the organization verifies the system design in 

phase n, then as per our assumptions, 1 1n + = . However, if the organization does not verify the 

system design in phase n, then the organization’s belief is unchanged after the design period and 

hence 1 ,n n n l  + = .  

As mentioned before, we assume that design activities and choices are fixed, and hence we 

normalize design costs to $0. The influence of design decisions in verification decisions 54 is 

incorporated in our model by the belief retention factor .n l , which captures the influence of the 

design activities on the organization’s belief, which in turn affects the optimal verification strategy. 

Thus, our model accounts for the effect of design activities on the verification strategy.   

In this paper, for ease of discussion, we only analyze those scenarios where the organization’s 

confidence in the correctness of its design activities decreases linearly with each consecutive phase 

in which no verification is carried out. Specifically, we assume , 1

2

( )
1

*
( )n l

n l
k

k N


−
= − . Parameter 1k  

represents the organization’s baseline confidence in the correctness of its design activities with 

respect to the requirement of interest immediately after the design has been verified. A low value 

of 1k  implies the organization has low confidence in the correctness of its design activities even 

after it verifies the system design. This could either be due to the organization believing the design 

activities related to the requirement of interest will result in a design error, or the design activities 

unrelated to the requirement of interest will change the system design in a manner that leaves it in 



the non-ideal state. Whereas, a high value of 1k  implies the organization has high confidence in its 

design activities not resulting in a design error. 

The parameter 2k  models the rate of decay in the organization’s confidence in the correctness 

of its design activities with each consecutive phase for which the organization does not verify the 

system design. A low value of 2k  implies that a large number of changes in either design attributes 

or design maturity occur with each passing phase, and without verification, the organization’s 

confidence in the correctness of its design activities decays rapidly. Similarly, a high value of 2k  

implies that the number of changes in either design attributes or design maturity are few, and thus 

the organization’s confidence in the correctness of its design activities decays slowly.   

In phase n, we denote the organization’s decision by { , }n v vd  − , where nd v=  means that 

the organization decides to verify the system design, and nd v= −  means that the organization 

decides not to verify the system design. The set-up cost of verification activities is denoted by nc , 

and the expected cost to rework a faulty design is denoted by nr . Furthermore, we denote the 

expected cost of project failure by Fr . Figure 1 shows the evolution of the organization’s belief in 

a given phase n. 

To concisely present out analysis and results, we will use a vector notation for the remainder 

of this paper. We denote the vector of beliefs for the organization by (1 , )n t tb  = − . Furthermore, 

let ,0 1n nb = −  denote the first element of vector nb  and let ,1n nb =  denote the second element of 



vector nb . To represent the transformation of nb  into 1nb + , we define 
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We denote the organization’s vector of costs associated with its decisions to verify and not 

verify the system design by ,n vf  and ,n vf − , respectively. The organization’s cost vector for 

verifying the system design in phase n is defined by , ( , ) 'n v n n nf c r c= + , where the apostrophe 

denotes the vector transpose. As per our model assumptions, the organization incurs no cost for 

not verifying the system design in development phases n N , and so for all n N , , (0,0)n vf − = . 

At the end of the final phase and if the system design is in the non-ideal state, the organization 

incurs the cost of project failure. We capture this by defining the organization’s cost vector for not 

verifying the system design in the final phase N as , ( ,0) 'N v Ff r− = − . Table I summarizes the 

notation presented so far. 

Table I: Summary of key notation 

Notation Description 

N Number of development phases 

n Generic development phase 

n  
Organization’s belief in the ideal state of the system design at the 

start of development phase n 

(1 , )n n nb  = −  Vector of beliefs 



,n l  
Belief retention factor: organization’s confidence in the correctness 

of its design activities in phase n given the design was last verified in 

phase l 

1k  Organization’s baseline confidence in its design activities 

2k  Rate of decay of ,n l   

{ , }n v vd  −  Organization’s decision to verify (v) or not verify (-v) in phase n 

, ,v n l−  Belief transformation matrix if the organization does not verify the 

design in phase n given the organization last verified in phase l  

v  
Belief transformation matrix in any phase when the organization 

verifies its design 

nc  Set-up cost of verification activities in phase n 

nr  Expected cost to rework a design in non-ideal state in phase n 

Fr  Expected cost of project failure 

,n vf  , ,n vf −  Cost vectors associated with the organization’s decision to verify or 

not verify, respectively 

    

3.3 Belief-based optimal verification strategy 

We now present the method to determine the organization’s optimal verification strategy using the 

model presented above. To begin, note that in phase n, the organization’s decision nd  cannot affect 

the costs the organization incurred in phases 1, , 1n − . However, nd  determines the 

organization’s immediate costs in phase n and it also affects the costs the organization can expect 

to incur over phases , ,1n N+  . This is so since nd  determines the transformation of nb  into 1nb +

, which in turn affects the organization’s decision 1nd + , the organization’s immediate costs in 

phase 1n+  and the transformation of 1nb +  into 2nb +  through the decision 1nd + , and so on until the 

end of all phases. In this regard, the optimal decision for the organization in phase n is the one that 

minimizes the organization’s expected costs over phases , 1,n n N+   given the organization’s 



belief vector at the start of phase n is nb . This line of reasoning can be extended all the way back 

to phase 1, where for any given initial belief vector 1b , there is a vector of decisions 

1( , ), {0,1}n

Ndd    that minimizes the verification costs for the organization over all phases. 

Hence, we define optimal verification strategy for the organization as the function 

1

* }( , ) { ,D v vn b  −  which, for a given initial belief vector 1b , specifies a decision, v  or v− , for each 

phase n such that the organization’s expected costs over phases , 1,n n N+   is minimized.  

To determine 1

*( , )D n b , the organization must know the expected costs over phases ,n N  

resulting from its decision nd  for any possible belief vector nb . To this end, we define , ( , )n l n nV b d  

as the lowest possible cost the organization can expect to incur over phases , 1 ,, Nn n +   for 

decision nd  and a belief vector nb , given that the last phase in which the organization verified the 

system design was phase l. We refer to , )(n lV   as the organization’s optimal cost function. 

At this point, it is important to note that we have defined the optimal cost function , )(n lV   to 

address a single objective (cost). This has been a common methodological approach in verification 

literature [6, 55] and is consistent with current literature on engineering decisions that suggests 

that all decision criteria can be converted to a cost and/or financial reward equivalent 55-58. While 

doing so, our model parameters implicitly account for at least three major objectives associated 

with verification activities: 1) risk mitigation (belief vectors and belief retention factor), 2) quality 

assurance (expected cost of rework and expected cost of failure), and 3) compliance to standards 

(expected cost of failure) 6,59. Yet, our modeling approach can be extended to those scenarios where 

the organization desires to use a multi-objective vector instead.  



The optimal cost function , ( )n lV   for all phases can be determined using backward induction 

60 as follows. In the final phase N , the organization only needs to consider the immediate costs 

of its decision. Hence, given l N , the organization’s optimal cost function for its decision to 

verify the system design is defined by  

, , , , , , , ,( , )N l v N l N v v N vN N N Nv v N l NV b v b f b f b f− − −= + = , (2) 

since , 0v N vNb f − = , and the organization’s optimal cost function for its decision to not verify the 

system design is defined by  

, , , ,( , )N l N N v N l N vV fb v b − −− = .   (3) 

In phase 1N − , given 1,l N −  the optimal cost function 1, ( )N lV −   must consider the organization’s 

immediate cost in phase 1N −  from decision 1Nd −  and the minimum cost the organization can 

expect to incur in phase N for the belief vector Nb , which results from the transformation of 1Nb −  

through the decision 1Nd − . Since equations (2) and (3) define the minimum cost the organization 

can expect to incur in phase N for each of its decisions, in phase 1N − , the organization only needs 

to compute its immediate cost resulting from decision 1Nd − , determine the transformation of 1Nb −  

into Nb  through the decision 1Nd − , and then use Nb  to determine the minimum expected cost in 

phase N. Hence, given 1l N − , in phase 1N − , the organization’s optimal cost function for its 

decision to verify the system design is defined by  

1, 1 1 , 1, 1, , 1 1 , 1 1, min{ , , }( ) ( ), ( )N l N N v N l N v N N N v N N N vV bvb b f V b vVv− − − − − − − − − −= + − ,  (4) 

and its optimal cost function for the decision to not verify the system design is defined by 



1, 1 , 1 , , , 1 , ,( ) ( ), (, min{ , }),N l N N l N v n l N l N v n lV b V b Vv v b v− − − − − −=− − .  (5) 

The optimal cost functions for all remaining phases can be determined using the same 

procedure as the one presented above for phase 1N − .  

With the knowledge of , )(n lV   for all {1, , }n N  , the organization can then determine the 

optimal verification strategy 
*

1( , )D n b . We will illustrate the procedure to determine 1

*( , )D n b  for 

a single set of belief vectors {1, , }{ ˆ }nn Nb   , where ˆ
nb  denotes the organization’s belief vector in 

phase n that results from the organization following the optimal verification strategy in phases 

1, , 1n − . In phase 1, the organization’s belief vector is 
1b̂ ,  0l = , and hence 

1

*

1 1,0 1
{ , }

{ , }ˆ ˆ(1, ) arg max ( )n
d v v

D b bV d
 −

= .   (6) 

If *

1
ˆ(1, )D b v= − , then 2 1 ,1,0

ˆ ˆ
vb b −=  and l remains set at 0. Else, if *

1
ˆ(1, )D b v= , then 

2 1
ˆ ˆ

vb b=  and 

1l = , which reflects the organization verified the system design in phase 1. Similarly, in phase 2, 

for the known belief vector 
2b̂  and known value of l , we know 

2

*

2
{

2,1 2
, }

{ , }ˆ ˆ(2, ) arg max ( )
d

l
v v

D b bV d
 −

= .   (7) 

Proceeding in a manner similar to the one presented above, in phase n, the value of l and ˆ
nb  are 

known beforehand since * *

1 1
ˆ ˆ(1, ), 1), ( ,D b D n b −  are determined beforehand. It then follows that 

in phase n  

*

{
1 ,

, }
{ , }ˆ ˆ( , ) arg max ( )

n v
n nn

vd
lD n bVb d

 −
= .   (8) 



The formulation presented above to determine 
*

1( , )D n b  is similar in structure to partially 

observable Markov decision processes (POMDPs) 61. There are two notable differences between 

our formulation and POMDPs: 1) POMDPs explicitly account for observations from a decision, 

whereas our model implicitly accounts for the observations in the design process, and 2) POMDPs 

use Bayes’ rule to update beliefs based on observations, whereas in our model beliefs are 

transformed based on the organization’s decision. The optimal verification strategy 
*

1( , )D n b  in 

our model can be determined by using standard POMDP solution algorithms 62, after adjusting for 

the differences between POMDPs and our model. We present one such algorithm to numerically 

determine the optimal verification strategy 
*( )D   in the Appendix.  

4 Analysis 

4.1 When is frequent verification optimal? 

In our model, frequent verification being an optimal strategy is equivalent to the organization 

verifying the system design in all phases for all valid initial belief vectors 1b . It is mathematically 

intractable to derive an analytical closed form expression for 
*

1( , )D n b  that does not contain the 

maximum function. Instead, we explore the parameter space of our model to determine the 

conditions under which frequent verification is an optimal strategy for the organization. To this 

end, we will assume that the organization verifies the system design with respect to the requirement 

of interest in all phases and then proceed to analytically determine the necessary conditions that 

parameters Fr , nc  and nr  must satisfy for our assumption of frequent verification to remain valid.   



We begin with parameter Fr . Consider the final phase. Per our assumption, the organization 

has verified in phase 1N − . Then, the organization will verify the design in the final development 

phase only if , 1 , 1( , ) ( , )N N N NN NV b v V b v− − −   

, 1 , 1

, 1

(1 ) ( )
1

1 1( )N
N N N N N F N N N N

N N F N

c
c

r
r r

r
    


− −

−

 + −  −
−

−  .  

Since 1N  , the above condition implies that the organization will verify the system design in 

the final development phase for all belief values if  

, 1 , 1

, 1 , 1 , 1
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1 1
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  
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 
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− −
 . (9) 

Hence, it is optimal for the organization to verify the design in the final phase, for any belief value 

N , when the expected cost of failure is greater than the maximum possible cost of verification in 

the final phase, N Nc r+ , by a margin of at least , 1 , 1/ (1 )N N N N Nc  − −− .      

We now consider the parameters nc  and nr  for phases , 11,n N=  − . Per our assumption, the 

organization has verified the design in phase 1n−  and it will verify the design in phase 1n+ . Then, 

verification in phase n is an optimal strategy only if  , 1 , 1( , ) ( , )n n n nn nV b v V b v− − −   

1 1 1, 1 1, , 1 11 , 1(1 ) (1 ) (1 )nn n n n n n nn n n n n n n nc r c r c r     + + −+ + +− − + + − + + −  + −   
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Since 1n  , the above condition implies that verification in phase n is optimal for all belief values 

when 



1
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The necessary condition for the organization to verify in phase n is that the expected cost to rework 

the design in phase 1n+  be greater than the lower bound defined by condition (10), with the lower 

bound being a function of the set-up and rework costs in phase n. 

Conditions (9) and (10), in effect, base the organization’s current optimal strategy in the 

comparison of future expected costs of rework, or failure, to a scaled value of the current costs of 

verification set up and rework. This is in line with verification literature that advocates for 

verification in order to avoid expensive rework in later design stages 6,23. However, conditions (9) 

and (10) also prove that frequent verification is not an optimal strategy in general. It is not enough 

that future costs of design rework, or failure, be simply greater than the current costs of verification 

set up and rework. Indeed, they must be greater by a margin, defined by conditions (9) and (10) 

for frequent verification to be optimal for the organization. 

4.2 Effect of the belief retention factor on optimal strategy 

The results presented in Section 4.1 generalize our previous work 42. In this section, we explicitly 

define the effect of ,n l  and N on frequent verification being an optimal strategy. Indeed, condition 

(10) is an implicit function involving 1,n n + , 1, 1n n + −  and , 1n n − , with ,n l  in turn being a function 

of N. To derive additional qualitative insights on the effects of ,n l  and N on the optimal 

verification strategy, we will now study our model numerically.  

For brevity, we will restrict our attention to those cases where nc  and nr  either increase linearly 

or superlinearly, while ignoring the scenarios where nc  and nr  increase sublinearly. We will refer 



to each possible combination of the type of increase in nc  and nr  as a case. The 4 possible cases 

are defined in Table II. We will begin with an initial set of values for all parameters. The parameter 

values will then be systematically changed to bring out the effect of 1k , 2k  and N  on the optimal 

verification strategy.    

Table II: Rate of increase in costs for each case 

Case Increase in 
nc  Increase in 

nr  

1 Linear Linear 

2 Linear Superlinear 

3 Superlinear Linear 

4 Superlinear Superlinear 

 

4.2.1 Case construction 

The initial set of parameter values for each case are listed in Table III. These parameter values are 

notional, with the ordinal relationship between the parameters being the purpose of our analysis. 

Specifically, for this initial set of parameter values, we have captured the following relations: 1) 

the expected cost to rework a design in its non-ideal state is always greater than the set-up cost for 

verification activities in all phases, 2) the expected cost of failure satisfies condition (9) for all 

cases, 3) 1 0.95k =  implies that the organization’s baseline confidence in the correctness of its 

design activities (that is, on its design process) is high, and 4) 2 5k =  implies that the organization’s 

confidence in the correctness of its design activities decays at a relatively low rate when it does 

not verify the design for multiple consecutive phases.   

Table III: Initial set of parameter values 

Case 𝑐𝑛 𝑟𝑛 𝑟𝐹 𝑘1 𝑘2 𝑁 



1 $5000𝑛 $100,000𝑛 $108 0.95 5 8 

2 $5000𝑛 $100,000𝑛2 $108 0.95 5 8 

3 $5000𝑛2 $100,000𝑛 $108 0.95 5 8 

4 $5000𝑛2 $100,000𝑛2 $108 0.95 5 8 

 

The different sets of changes in the initial parameter values, henceforth referred to as 

iterations, are listed in Table IV. As shown in Table IV, we begin by increasing the number of 

phases to determine the effect of N  on the optimal verification strategy in iteration 1. This is 

followed by the change in the organization’s baseline confidence in the correctness of its design 

activities in iteration 2. In iteration 3, we reset the value of the organization’s baseline confidence 

to the original value and change the decay rate of the organization’s confidence in the correctness 

of its design activities. Finally, we change both the organization’s baseline confidence and the 

decay rate of its confidence in iteration 4.   

Table IV: List of parameter perturbations to be explored 

Iteration Previous parameter(s) value New parameter(s) value 

1 8N =  16N =  

2 1 0.95k =  1 0.7k =  

3 2 5k = , 1 0.7k =  2 40k = , 1 0.95k =  

4 1 0.95k = , 2 40k =  1 0.99k = , 2 1k =  

 

4.2.2 Results of parameter changes 

Figure 2 graphs the results from numerically solving our model for the initial set of parameter 

values listed in Table III. In each graph, the initial belief vector 1 1 1(1 , )b  = −  is described by the 

value of 1  on the x-axis, and the optimal strategy is plotted for each phase on the y-axis. Since 



condition (9) is satisfied for all cases, we see that verifying the system design in the final phase for 

all beliefs is optimal for all cases. However, we observe that frequent verification is an optimal 

strategy only for case 2. This is due to condition (10) being violated in phase 3 for case 1, in phase 

2 for case 3, and phase 7 for case 4.  

Consider now the results of iteration 1, where we increase the value of N from 8 to 16, graphed 

in Figure 3. We observe that the structure of the optimal verification strategy has not changed for 

cases 2 and 3. In fact, frequent verification is still optimal for case 2, and our model still suggests 

that the design be verified in phases 1 and 3 for case 3. However, increasing the number of phases 

changes the structure of the optimal verification strategy for cases 1 and 4. Specifically, in case 1, 

verification is more irregular when the number of phases increase. In case 4, previously our model 

suggested that the organization not verify only in the penultimate phase. When N is increased to 

16, our model suggests verification be avoided in every alternate phase after the 3rd phase in case 

4.    

A potential reason for the increase in the number of phases affecting the structure of the 

optimal verification strategy in cases 1 and 4 is that the rate of change in nc  and nr  is the same, 

with both costs increasing linearly in case 1 and superlinearly in case 4. However, this does not 

sufficiently explain the number of consecutive phases with no verification in between two phases 

where verification is suggested for both case 1 and 4. Hence, we hypothesize that increasing the 

number of phases leads to a change in ,n l , which also affects the optimal verification strategy for 

cases 1 and 4.  

In iteration 2, we reduce the organization’s baseline confidence in the correctness of its design 

activities to 1 0.7k = . Figure 4 graphs the results for iteration 2. As illustrated in Figure 4, the 



optimal verification strategy for the organization, in all cases, is to verify the design only in the 

final phase. A low baseline confidence in the design activities should result in frequent verification 

being optimal for the organization. Yet, our model suggests otherwise. We reason that this is due 

to the two-state feature of our model. If the organization’s confidence in its design activities is 

low, and the design is either correct or incorrect, then it is rational for the organization to verify 

the design only in the final phase when 1k  is low. If the organization verified in any other phase, 

the benefits of verification would be reduced by the next phase’s design activities, after which the 

organization would once again not be confident in the correct state of the design.  

We conjecture that frequent verification could be optimal, when the organization’s baseline 

confidence in the correctness of its design activities is low, if the possible states of the system 

design are more than 2. In this multi-state representation of the system design, one state would be 

the ideal state of system design, one state would be the non-ideal state of the system design, and 

there would be one or more degraded states where the system design meets the requirement of 

interest in a degraded manner. Furthermore, in this scenario, verification activities must ensure 

that if the system design is in the non-ideal state, then it is in at least a degraded state after 

verification. We conjecture that in the scenario described above, frequent verification would be 

optimal when the organization’s baseline confidence in design activities is low. Such scenario is 

not included in the scope of this paper, but is left for future work. 

In iteration 3, we increase the organization’s baseline confidence in the correctness of its 

design activities back to 1 0.95k = , while increasing 2 40k = . By increasing 2 40k = , we reduce 

the rate at which the organization’s confidence in the correctness of its design activities decays 

with each consecutive phase the organization does not verify the design. Figure 5 graphs the 

optimal verification strategy for each case for the new set of parameter values. Comparing Figure 



4 with Figure 5, we see that the optimal verification strategy for cases 2 and 3 is unaffected by the 

rate of decay in the organization’s confidence in the correctness of its design activities. Whereas, 

for cases 1 and 4, verification becomes more infrequent when the organization’s confidence in the 

correctness of its design activities decays slowly.  

The results of iteration 3 lead us to conclude that a low decay rate, or a high value of 2k , 

impedes frequent verification being an optimal strategy. Consider, for example, the requirement 

of installing appropriate control software on a utility tractor. Due to the repeated nature of the task 

over multiple design versions, the organization can be confident of the steps involved in the 

installation of the software. Here, 2k  will be high, implying a low decay rate, and our model would 

suggest that the organization verify whether the control software has been installed intermittently, 

instead of continuously. In contrast, consider the design of the fuel ignition system on a hypersonic 

missile 63. Igniting the fuel at hypersonic speeds is difficult and the design of the fuel ignition 

system on a hypersonic missile is a challenging problem 64. In this scenario, the organization’s 

confidence in its design activities decays rapidly due to the epistemic nature of the problem itself, 

and whether the design activities actually result in an ignition system that works correctly at 

hypersonic speeds. In this scenario, 2k  will be low, and our model suggests that the organization 

verify frequently to confirm the correctness of its design.    

Based on the results of iterations 1-3, we conjecture that a high baseline confidence in the 

correctness of the design activities and a high decay rate in this confidence is required for frequent 

verification to be an optimal strategy This is illustrated by iteration 4, where we set 1 0.99k =  and 

2 1k = . Figure 6 graphs the results of iteration 4. As shown in the figure, frequent verification is 



an optimal strategy for cases 1, 2 and 4. It is not so for case 3 since case 3 violates condition (10) 

in the first phase.  

5 Application example 

We now discuss how our model can be applied in practice. For this example, we borrow the case 

of verifying an optical instrument in a satellite presented in the work of Salado and Kannan 39. The 

system is an optical instrument that consists of a telescope, a spectrometer, and a camera. The 

optical instrument must satisfy 3 system level requirements when verified. For this discussion, we 

will restrict our attention to the Modular Transfer Function (MTF) requirement. The MTF of an 

instrument is a measure of contrast and resolution capabilities 65. In Salado and Kannan’s example, 

the MTF requirement states that the optical instrument’s MTF be greater than 0.65 39. 

Salado and Kannan 39 present a verification plan for all system requirements on both the 

system level and the component (telescope, spectrometer and camera) level for three key decision 

points: i) preliminary design review (PDR), ii) critical design review (CDR), and iii) qualification 

review (QR). In this example, we restrict our attention to the system level design and verification 

activities. We expand on Salado and Kannan’s example this to bring out a more detailed view of 

the design process on the system level. This detailed view is shown in Figure 7, which presents the 

design steps in the optical instrument’s design process between the key decision points and the 

associated verification activity for each step that we will use for this discussion.  

As shown in Figure 7, there are three major design steps we consider. In the 1st design step, 

all components in the optical instrument (telescope, spectrometer, and camera) are designed and 

their mathematical models integrated at instrument level. Here, the MTF of the optical instrument 

is verified with an analysis (activity 𝑣7). In the 2nd design step, component prototypes are 



manufactured and integrated into a prototype of the optical instrument. To verify the MTF of the 

optical instrument prototype, the MTF is measured on the center point of the prototype (activity 

𝑣2). Finally, in the 3rd design step, all actual components are fabricated and integrated into the final 

optical instrument design. The verification activity on the final design involves measuring the MTF 

on the center point of the final design (activity 𝑣5).  

We map the optical instrument example described above to our model as follows. The state 

of the optical instrument is broadly classified as either the instrument has an MTF value greater 

than 0.65, or not. If the optical instrument has an MTF value greater than 0.65, then we denote it 

as 
1S , the ideal state, and 

0S  , the non-ideal state, otherwise. The design steps correspond to the 

phases in our model, and hence 3N = . In turn, this implies that in each design step, or phase, the 

organization’s possible decisions are to execute the verification activity in that design step, or not. 

For example, in design step 2, or phase 2, the organization’s possible decisions are to either 

measure the MTF on the center point of the prototype, or not. Furthermore, we will assume that 

the optical instrument is a critical component of the satellite. Thus, the expected cost of project 

failure, 
Fr , will be equal to the penalty the organization will have to pay the customer if the optical 

instrument’s MTF falls below 0.65 before the end of its operational life.  

To determine the value of ,n l , we require the values of 
1k  and 

2k  in addition to N . The 

parameter 
1k  can either be set using historical data or with the help of subject matter experts. For 

example, if the organization has high confidence on the maturity/predictability of its design 

process, then 
1k  can be set to a high value (> 0.85). Else, 

1k  may be set to a low value. In 

comparison, we argue that only a low value of 
2k  is suitable in this scenario. We say so since the 

MTF of the optical instrument heavily depends on integration factors such as misalignment of the 



components, or mirrors in the spectrometer and telescope, or dust accumulated during integration. 

Hence, if the organization skips verification for even one phase, its confidence in the system design 

being in the ideal state will reduce significantly. This is captured by setting 
2 1k =  in our model. 

The value of the parameter 
nc  is the total cost of executing the verification activities in phase 

n. This includes the cost of using the testing equipment and the cost of executing all verification 

activities in phase n. In comparison to the set-up cost 
nc , the expected rework cost 

nr  will 

necessarily be an estimate since the cost of rework cannot be known before the system is verified. 

The expected rework cost 
nr  in phase n will be the organization’s estimate of the labor and material 

costs associated with potential repairs in phase n. This will include estimates of the costs of 

disassembling the system design for rework when verification reveals an error.  

The organization only needs to quantify its belief in the ideal state of the system design at the 

end of the PDR, or 
1 ,  to utilize our model. One possible value of 

1  would be the organization’s 

subjective assessment of the probability of the system design having an error at the end of the 

PDR.  

We have graphically depicted our model for the optical instrument example discussed above 

in Figure 8. The intention of this figure is to facilitate the understanding of how our model maps 

to a verification planning problem in practice. 

6 Model validity 

We have developed a normative decision-theoretic model of verification in this paper. Our model 

was not developed using a dataset obtained from the industry and is theoretical in nature. Hence, 

a data-driven validation process is not applicable for our work. Instead, we validate our model with 



the intention of providing a potential user with more confidence in its applicability. In this regard, 

hypotheses validity and logical validity are two qualitative validation methods frequently used on 

decision-theoretic models  66,67. We discuss both below.  

6.1 Hypothesis validity  

Hypothesis validity checks if the model has adequately reproduced the connections between the 

elements of the subject being modeled 67,68. In the context of our model, the subject is the 

development process for a system, particularly in terms of verification decisions throughout the 

development process. The evolution of the development process is dependent on the decisions 

made during the process. These decisions are the inputs to our model. We measure the manner in 

which this development process evolves with quantifiable metrics, such as time, cost, and meeting 

requirements. These metrics are the observable outputs from our model. Thus, the connections 

between the elements of the subject, in the context of our model, are the relationships between the 

input decisions to the model and the output metrics observed from the model.  

In our normative model, the decision to execute the verification activity, or not, in each design 

phase is the input, while the observable attributes of the development process with respect to 

verification are the outputs. There are multiple output attributes from the development process 

with respect to verification: risk mitigation, costs, quality assurance, etc. In this paper, we have 

chosen three high-level costs associated with the verification activities: set up costs for verification 

activities, the expected cost of reworking a faulty design, and the expected cost of deploying a 

design with errors. The hypotheses validation step then requires us to check if we have adequately 

captured the relationship between the input and the outputs in our model.  



We say that the organization’s confidence in the correctness of its design is what connects the 

input of our model to its outputs. Our argument is as follows. The development process generates 

rich data in the form of design discussions, logs of activities, observations, and demonstrations, 

for example. This rich data influences the organization’s understanding of the state of its design. 

Since the true state of the design is unknown prior to verification, the organization’s understanding 

of the state of its design is subjective. That is, the organization does not know the true state of its 

design but can be thought of as being confident in the correctness of the design. The organization 

will make verification decisions based on this confidence. Since the costs of verification are set by 

the organization’s decision, it then follows that adequately modeling the organization’s confidence 

in the correctness of its design activities is sufficient to connect our model input to its outputs.  

There are two aspects to modeling the organization’s confidence: 1) quantifying the 

confidence, and 2) modeling the change in this confidence. To quantify the organization’s 

confidence in the correctness of its design activities, we use belief distributions. The organization’s 

confidence is changed by the actions the design activities. However, these activities have been 

abstracted away in our model. Thus, we need a parameter that adequately represents the manner 

in which design activities vary the organization’s belief in the correctness of its design. This 

function is accomplished by the belief retention factor ,n l . To provide an additional granularity 

that models the organization’s varying confidence in the maturity/capability of its design activities 

in different phases, we define the belief retention factor in terms of the baseline confidence 

parameter 
1k  and the day of decay parameter 

2k .   

6.2 Logical validity 



Logical validity checks if a model has been correctly converted into a numerical computer model 

that produces solutions 66. There is no standard methodology for determining logical validity, but 

qualitative inspections have been used in the past 66. To the best of our knowledge, the results of 

our model are numerically correct. However, we do contend that numerical accuracy does not 

necessarily imply applicability in reality. In this regard, our model makes two assumptions that 

leads to numerically correct but inapplicable results in those scenarios where the organization’s 

baseline confidence in the correctness of its design maturity/capability is low throughout the design 

process: 1) the system design either meets the requirement of interest or not, and 2) when the 

system is verified, the belief in the correct state of the system design becomes absolute.  

The two assumptions mentioned above, together, overlook the possibility of the system design 

being in more granular states during the design and verification process. Still, our model does 

derive a numerically correct strategy for those scenarios where the organization’s baseline 

confidence in the correctness of its design activities is low – no verification in any phase but the 

last. This is so since our model suggests that even if the system is verified, the confidence of it 

being in the correct state will be low throughout the process, and hence it is best not to waste 

monetary resources on the same. However, in reality, the organization would prefer to verify its 

design if its baseline confidence in the correctness of its design activities is low. We conjecture 

that this issue can be resolved by expanding the size of the state space and by allowing a more 

granular increase in belief after verification activities. 

7 Conclusion 

Verification activities often consume a significant portion of the project budget. When verification 

activities are planned correctly, they help minimize rework costs by identifying errors in the system 

design early in the design process. However, overuse of verification activities can lead to 



misallocation of limited resources, resulting in cost overrun which verification itself aimed to 

prevent. In this regard, frequent verification of the system design has been advocated in industry 

and the research literature. In this paper, we used a belief-based model to characterize the 

conditions under which frequent verification is optimal for a single organization that is considering 

the verification of a single system requirement.  

The analysis of our model showed that frequent verification is often not an optimal verification 

strategy. Necessary conditions must be met for frequent verification of a single system requirement 

to be optimal. The necessary conditions are: 

• The expected cost of failure must be strictly greater than the maximum possible verification 

cost in the final phase. 

• The expected cost of rework in the next phase must be greater than the maximum possible 

verification cost in the current phase. 

• The organization’s baseline confidence in the correctness of its design activities must be 

high throughout the design process. 

• The organization’s baseline confidence must decay rapidly when the organization does not 

verify the design over consecutive phases.  

The scenarios alluded to by the conditions above have been observed in the design of complex 

systems, such as aircrafts and satellites, which take the form of large scale systems engineering 

projects 69. For such projects, the expected cost of failure is high, and complex correlations between 

various system requirements cause the expected cost of design rework to increase rapidly as the 

design matures. Furthermore, the organization’s confidence in the correctness of its design 



activities for the requirement of interest is often influenced by other design activities or related 

requirements.  

A significant advantage of our model is that it is built on fundamental building blocks of a 

design process, that is, phases that consist of design and verification activities. This enables our 

model to be applicable for all system development process models (such as V model, waterfall 

model, spiral model, etc.). Though we used our model to determine the conditions under which 

frequent verification is optimal, our model can be used to determine optimal verification strategies 

for any feasible belief values during the design process.  

There are several limitations to our model. First, we assumed a vertically integrated system. 

Vertically integrated systems are rare in practice. However, we have adopted it to use it as an 

approximation for systems that are mainly developed and integrated by a single organization (even 

if the organization purchases some parts, raw material, or components externally). Furthermore, 

by exploring a model with the vertical integration assumption, our work now provides a baseline 

with which the results of future works that relax the vertical integration assumption, can be 

compared to.  

Another limitation of our model, as revealed in the analysis, is that two states are not sufficient 

to accurately model those scenarios where the organization’s confidence in the correctness of its 

design activities is low throughout the design process. We conjecture that a multi-state model could 

conclude – in contrast to our results – that frequent verification is optimal when the organization’s 

confidence in the correctness of its design activities is low. Another limitation of our model is that 

it is normative in nature and considers high-level parameters. This restricts the applicability of our 

model to analysis before the system developments begins, where verification activities have to be 

planned and resources allocated. In such conditions, our model can still aid engineers in 



determining which system requirement requires frequent verification and which does not. 

However, once the project begins, it would be necessary to use a model of verification that 

dynamically accounts for the information generated by design and verification activities in the 

project. Our work is not unique in possessing these limitations, with the majority of mathematical 

models on verification sharing this limitation. 

Taken together and despite the aforementioned limitation, our work makes important 

contributions to the growing body of literature on scientific foundations of systems engineering 

and engineering design. It introduced a normative model of belief-based decision-making in 

verification of system design, a conceptual and mathematical foundation which can be built upon 

in future research.  

Acknowledgment 

This material is based upon work supported by the National Science Foundation under Grant No. 

CMMI-1762883 and CMMI-1762336. 

Appendix 

We now present an algorithm to numerically determine 
*( )D   given that the parameter values nc , 

nr , Fr  and ,n l  are known beforehand. In equation (2), let , , , , ,v N l v N l N vf −=  and let 

, , , , ,v N l v N l N vf− − −= . Then, in phase N, given l N ,  the organization’s optimal cost functions can 

be defined as 

, , , )mi( , ) (nN l N vN N lV b v b =  , and   (11) 

, , , )min( , ) (N l N v NN lV b v b −− = .   (12) 



Here, the minimum function returns the lowest value of its vector argument. The minimum 

function is redundant in the phase N since the dot product between Nb  and , ,N l  results in a vector 

with a single element, but the above formulation will prove useful for remaining phases.  

In phase 1N − , given 1l N − , the organization’s optimal cost function for its decision to 

verify can be defined as  

1, 1 , 1, 1, , 1 1 , 1 1min{ , , }( , ) ( ), ( )N l N N v N l N v N N N v N N N vV b v b f V b v V b v− − − − − − − − −= + −    

1, 1 , 1, 1, 1 , , 1 , 1, 1, 1 , ,min{ }( , ) ,N l N N v N l N v N v v N l N v N l N v N v v N lV b v b f b b f b − − − − − − − − − − − − = + +  

1, 1 , 1, 1, , , 1 , 1, 1, , ,( , ) { ( ) , ( )}minN l N N v N l N v v v N l N v N l N v v v N lV b v b f b f − − − − − − − − − − = + + . 

Define the matrix , 1, , 1, 1, , , , 1, 1, , ,[( ) , ( )]v N l v N l N v v v N l v N l N v v v N lf f  − − − − − − − −= + + . Then, the 

organization’s optimal cost function for its decision to verify can be defined as 

11, 1 , 1,mi )( , ) (nN l lN N v NV b v b − − −− = .   (13) 

Similarly, define the matrix , 1, , 1, , , , 1, , ,[ , ]v N l v N l v N l v N l v N l  − − − − − − −= . It then follows 

11, 1 , 1,mi )n( , ) (N l N v N lNV b v b − − − −− − = .   (14) 

Proceeding in the same manner as the one presented above for phase 1N − , assume that the 

matrices , 1,v n l +  and , 1,v n l− +  have been previously computed for all 1l n + . Then, given l n , 

define the matrices , , , , , , 1, , , , , 1,[( ) , ( )]v n l v n l n v v v n l v n l n v v v n lf f  − + − − += + +  and 

 , , , , , 1, , , , 1,[ , ]v n l v n l v n l v n l v n l  − − + − − += . It then follows that the organization’s optimal cost functions 

in phase n can be defined as  



, , 1, )min( , ) (n l nn n v lV b v b  += , and   (15) 

, , 1, )min( , ) (n nl n ln vV b v b − +− =  .  (16) 

Once the matrices , ,v n l  and , ,v n l−  have been computed for all valid pair of values of n and l, 

determining the optimal verification strategy 
*( )D   is straightforward. Consider again the single 

set of belief vectors {1, , }{ ˆ }nn Nb   , where ˆ
nb  denotes the organization’s belief vector in phase n that 

results from the organization following the optimal verification strategy in phases 1, , 1n − . Since 

l  and ˆ
nb  can be determined beforehand by using * *

1 1
ˆ ˆ(1, ), , ( 1, )D nDb b − , it follows that  

*

1 , ,
{ , }

{ )}ˆ ˆ( , ) arg min min(
n

n
n n l

vd
d

v
D n b b 

 −
= .   (17) 

The set of all possible initial belief vectors 1b  is uncountable. Hence, 
*

1( , )D n b  must be computed 

for a finite set of belief vectors 
1

1 1 }{ , , Mb b =   that reasonably discretizes the space of all possible 

belief vectors 1b . Table V outlines the solution algorithm to numerically determine 
*( )D   assuming 

the set of initial belief vectors   is already known. 

Table V: Algorithm to determine optimal verification strategy 

Initialize  

nc , nr , Fr , ,n l , ,n vf , ,n vf −  and            

Set l = 0 and iterate until l < N 

1 Set , , , , ,v N l v N l N vf −=  and , , , , ,v N l v N l N vf− − −=  

2 Set l = l + 1 

Set n = N – 1 and iterate until n > 0 

3 For each update on value of n, set l = 0 and iterate until l < n 

3a 
Set , , , , , , 1, , , , , 1,[( ) , ( )]v n l v n l n v v v n l v n l n v v v n lf f  − + − − += + +  and  

, , , , , 1, , , , 1,[ , ]v n l v n l v n l v n l v n l  − − + − − +=  



3b Set l = l + 1. If l < n, then return to 3a, else proceed 

3c Update n = n – 1 and return to check condition on n 

Do for each 𝑏1
𝑥 ∊ 𝜓  

4 Set 1 1

xb b= , l = 0  

5 Set n = 1 and iterate until n = N 

5a Set 1nb b=   

5b Set 
*

1 , ,
{ , }

{ )}ˆ ˆ( , ) arg min min(
n

n
n n l

vd
d

v
D n b b 

 −
=   

5c Set 
*

, , 1

1 *

1

if  ( , )

if  ( , )

n v n l

n

n v

b D
b

n b v

n b vb D

−

+

 = −


=
=   

5d If 
*

1( , )n b vD = , then set l = n.  

5e Set n = n + 1 and return to 5.  

     

The algorithm presented above was implemented using MATLAB©. However, it can also be 

implemented in general purpose programming languages, such as Python™. We suggest the 

algorithm be implemented in languages that have libraries to support matrix operations. This could 

significantly reduce the effort required to code the algorithm.  
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Figure 1: Change in organization's belief in phase n    

 

 

Figure 2: Optimal verification strategy for the initial set of parameter values 

 

 

Figure 3: Optimal verification strategy for iteration 1 
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Figure 4: Optimal verification strategy for iteration 2 

 

 

Figure 5: Optimal verification strategy for iteration 3 

 

Figure 6: Optimal verification strategy for iteration 4 
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Figure 7: MTF related design and verification activities for the optical instrument 



 

 
Figure 8: Graphical representation of the optical instrument example 
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