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Abstract
In modern runtime systems, memory layout calculations
are hand-coded in systems languages. Primitives in these
languages are not powerful enough to describe a rich set of
layouts, leading to reliance on ad-hoc macros, numerous in-
terrelated static constants, and other boilerplate code. Mem-
ory management policies must also carefully orchestrate
their application of address calculations in order to modify
memory cooperatively, a task ill-suited to low-level systems
languages at hand which lack proper safety mechanisms.
In this paper we introduce Floorplan, a declarative lan-

guage for specifying high level memory layouts. Constraints
formerly implemented by describing how to compute loca-
tions are, in Floorplan, defined declaratively using explicit
layout constructs. The challenge here was to discover con-
structs capable of sufficiently enabling the automatic gener-
ation of address calculations. Floorplan is implemented as
a compiler for generating a Rust library. In a case study of
an existing implementation of the immix garbage collection
algorithm, Floorplan eliminates 55 out of the 63 unsafe lines
of code: 100% of unsafe lines pertaining to memory safety.

CCS Concepts • Software and its engineering→ Run-
time environments; Specification languages; Domain spe-
cific languages.

Keywords Memory Management, Runtime Systems
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1 Introduction
The design of a memory manager is often hidden away in the
runtime system and rarely discussed the way more promi-
nent language features, such as syntax and semantics, are.
A number of factors contribute to this state of affairs. First,
each implementation of a managed language typically has
its own memory manager, built from scratch, resulting in an
almost total absence of shared code. Second, runtime system
code is difficult to comprehensively understand: low-level
and intricate, with a premium placed on performance. Finally,
crucial design elements are often buried in the code, such as
in simple yet pervasive pointer arithmetic and bitwise ma-
nipulations. These operations have ramifications on design
elements across the entire system. As a result, these design el-
ements are intrinsically hard to get correct the first time, and
hard to diagnose when they are incorrect. Without a spec-
ification of these design elements, properties of a memory
management algorithm are difficult or impossible to check
and reason about formally. Documentation, when present, is
in the form of informal and often inaccurate or ambiguous
comments. Traditional memory safety tools [17] fall short
because they typically assume that the memory allocator is
allocating memory correctly in the first place.
In this work we take a first step toward remedying this

situation: we present a declarative, domain-specific language
(DSL), called Floorplan, for describing the structure of a heap
as laid out by a memory manager. Floorplan is inspired by
PADS [10], a language for describing ad hoc data file formats.
A Floorplan specification looks like a grammar, augmented
with memory management specific features. Floorplan pro-
vides powerful ways to specify the sizes, alignments, and
relationships among chunks of memory, resulting in very
compact descriptions. The key idea is that any correct state of
the heap can be represented as a string (a sequence of bytes
or tokens) derivable from a Floorplan grammar. Grammars
are a natural choice because they match the configuration of
most modern memory managers, which comprise layers of
code that carve up memory into smaller and smaller pieces.
Every [1], [2], [5], [6], [8], [11], [12], [13], [15], [16], memory
manager we’ve studied exhibits this allocation scheme.

Note that Floorplan does not attempt to capture the policy
details of any particular memory management algorithm.
The closest Floorplan gets to capturing policy details is in its
ability to logically connect multiple pieces of memory, e.g.
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a bit map representing allocated cells in a block. The Floor-
plan compiler generates the low-level mechanisms — pointer
calculations, bit masking, etc. — that the developer calls in
order to implement some memory management policy. For
example, the Floorplan compiler automates the synthesis of
constants and pointer calculations for accessing an object
liveness bitmap while saying nothing about how liveness
or reachability are computed. Ongoing future work aims to
leverage Floorplan specifications to debug algorithmic errors
resulting in memory corruption. Such temporal errors are
not easily detectable with frameworks like Valgrind [17] and
PIN [14]. These frameworks can be leveraged more method-
ically with a layout specification language like Floorplan.

1.1 Contributions
To summarize, this work makes the following contributions:

• A declarative specification language based in part on a
novel formalization of union types in Section 5. Floor-
plan allows users to express a memory layout as a
specification, defining the spatial relationships among
one or more system-defined types of memory.

• The Floorplan specification of the layout of a state-of-
the-art garbage collection algorithm: immix as imple-
mented in Rust.

• Formal rules for translating surface syntax to a core
expression language, and a denotational semantics for
how toreduce a memory layout to a set of trees with
bytes at their leaves.

• A Floorplan compiler targeting Rust.
• Boilerplate reduction and memory safety results from
integrating a Floorplan specification with the Rust
implementation of immix [13].

2 Motivation
Spatial layout is fundamental to the problem of dynamic
memory management. Memory managers employ a variety
of layout schemes to carve up raw memory, and each scheme
is influenced by the particular algorithm being implemented.
Great care goes into designing a layout which permits highly
efficient operation of crucial layout operations. For exam-
ple, a generational garbage collector might be laid out such
that the nursery is in a lower part of memory than the older
space. This choice allows the write barrier to be implemented
exclusively with address comparisons. Similarly, a free-list
allocator might divide pages into cells of equal size, like an
array, with a bit map of free cells at the start of each page.
This design allows the meta-data to be found by simply mask-
ing off the low bits of any cell address; the corresponding
bit can then be computed easily by dividing the low bits of
the address by the cell size. These optimizations improve
performance, but are only valid if the layout permits them.
SoftwareMaintenance. In all the memory managers we’ve
studied, spatial layout is only formally expressed by the code

int SCALAR_HEADER_SIZE =

JAVA_HEADER_BYTES + OTHER_HEADER_BYTES;

int ARRAY_HEADER_SIZE =

SCALAR_HEADER_SIZE + ARRAY_LENGTH_BYTES;

/** offset of object reference

from the lowest memory word */

Offset TIB_OFFSET = JAVA_HEADER_OFFSET;

Offset STATUS_OFFSET = TIB_OFFSET.plus(STATUS_BYTES );

Offset AVAILABLE_BITS_OFFSET =

VM.LittleEndian ?

STATUS_OFFSET

: STATUS_OFFSET.plus(STATUS_BYTES - 1);

int HASH_CODE_SHIFT = 2;

Word HASH_CODE_MASK =

Word.one()

.lsh (10)

.minus(Word.one())

.lsh(HASH_CODE_SHIFT );

/** How many bits are allocated to a thin lock? */

int NUM_THIN_LOCK_BITS = ADDRESS_BASED_HASHING ? 22 : 20;

/** How many bits to shift to get the thin lock? */

int THIN_LOCK_SHIFT = ADDRESS_BASED_HASHING ? 10 : 12;

Figure 1. Code fragment from Jikes RVM [2] showing some
of the Java header related constants.

that implements it. Figure 1 is a typical example, taken from
MMTk [7], the memory management toolkit. Notice, in par-
ticular, the calculation of the hash code mask – clearly, great
care is required to write, modify, and maintain such code.
While MMTk is among the most meticulously engineered
of memory mangers, this memory manager consists of boil-
erplate code in excess of 2, 399 lines of address arithmetic
calulations as per the following bash command:
$ find MMTk/ rvm/ -name *.java -exec egrep \
-e "\.(one|lsh|plus|minus|rshl|and|EQ)\(" \
-e "\.(zero|isZero|diff|store|load)\(" "{}" \; \
| wc -l
2399

Static Typing. A common problem in the memory manage-
ment field occurs when a memory manager is implemented
with generic pointer types exhibiting memory-related bugs.
Often such generic pointers are distinguishable based on
their value. Suspicious pointer values are manually detected
based on intrinsic properties, such as alignment checks and
assertions pertaining to relationships with other known in-
memory structures, e.g. containing blocks and regions.
Complicating matters further, specialized pointer types

need not even be distinguishable from one another by value
dynamically. For example the Rust code in Figure 2 shows
code implementing a block of memory cells. This code oper-
ates over memory with raw address types, and consists of
numerous address calculations on generic pointer types. By
this design, the address of the start of a block is the same as
the address of the first cell in that block. Code that uses this
class could call either method – it does not matter which.
If the layout changed, though, for example by adding a bit
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#[repr(C)]

#[ derive(Copy , Clone , Eq, Hash)]

pub struct Address(usize );

pub struct Block { start : Address }

impl Block {

pub fn start(&self) -> Address {

self.start }

pub fn first_cell (&self) -> Address {

self.start }}

Figure 2. Abbreviated snippet of Rust code from an imple-
mentation of immix [13].

map, then the methodswould be different. Code that calls the
block.start() method expecting a pointer to a cell would
now fail at runtime in confusing ways. These failures moti-
vate the approach of generating specialized address types.

Dynamic Typing. In a runtime system the configuration
of the heap changes over time in highly mechanistic, and
largely superficial, ways. For example, the heap’s configu-
ration changes when a piece of addressable memory in the
heap changes type. This results in new offset and address cal-
culations being allowed on that address. These calculations
are used to implement various allocation schemes which
combine, carve up, or interchange pieces of memory.

Some allocation schemes combine multiple operating sys-
tem level pieces of memory into larger pieces of memory. For
example, multiple contiguous pages can be combined to form
a single block. This combination is typically implemented
with a simple multiplication or bit-shifting operation.

Other allocation schemes carve a single piece of memory
into multiple subcomponents. For example, a block may be
carved up into cells, with a bitmap at the beginning of the
block. Carving up of memory is typically implemented with
a simple offset added to an address, and a subsequent bounds
check address comparison to detect block overflow.

Finally some allocation schemes define two ormore pointer
types to be interchangeable. For example, a cell of memory
is either allocated or free, with differing internal layouts. A
free cell controlled by a doubly-linked list policy typically
contains two pointers. Accesses to a free cell must therefore
be implemented with an offset addition to the cell’s base ad-
dress. Such core layout operations are simple in isolation, yet
the design choices describing their composition are complex.

Efficiency. Address calculations need to behave such that
an amortized analysis of an allocation scheme yields a highly
efficient implementation. Existing handwritten calculations
exhibit this efficiency, so generating address calculations
to semantically and stylistically match handwritten code
makes sense. Precise control over the form of generated code
ensures efficiency-motivated size, alignment, and padding

Code Nonterminal Explanation
||sz|| ⟨mag⟩ “has size sz”
@(sz) ⟨align⟩ “sz address alignment”
@|sz|@ ⟨magAlign⟩ “same ⟨align⟩ and ⟨mag⟩”
# Bar ⟨demarc-val⟩ “some number of Bars”

foo : Bar ⟨field⟩ “field foo contains a Bar”
Bar, Baz ⟨seq⟩ “Bar followed by Baz”

Foo -> Bar ⟨layer⟩ “Foo consists of Bar”
Bar | Baz ⟨union⟩ “one of Bar or Baz”
FOO | BAR ⟨enum⟩ “in state FOO or BAR”

Figure 3. Informal semantics of constructs and operators
in Floorplan. Bar and Baz represent arbitrary ⟨demarc-val⟩
values, FOO and BAR represent state flags of an ⟨enum⟩, Foo
represents an identifier, and sz is some ⟨size-arith⟩.

invariants hold. Generating code also forgoes the manual
writing of numerous lines of stylistically similar code.

Existing memory managers lack precise and formal spec-
ifications of their memory layouts. Memory managers can
benefit from support for various forms of analysis, debug-
ging, and code generation which this work tackles. In this
paper we take a generative approach: we describe a spec-
ification language, its translation to a core calculus, and a
compiler for generating Rust code.

3 Language Overview with Examples
The most fundamental operation in memory management
is to take an unstructured piece of memory and to give it
structure through demarcation. Demarcation is the dividing
up of a layer of memory into a partitioning of components.
Multiple layers of memory form an allocation hierarchy.
In order to allocate a piece of memory, a memory man-

ager tracks metadata distinguishing a free piece from the
same allocated piece. The state of this piece of memory, free
or allocated, determines its layout. Existing systems writ-
ten in C model this behavior with unions. For example, the
first word of a free-list based allocator’s free piece might
contain a pointer, while that same word of memory once
allocated might contain an object header. In order to access
this allocated object’s payload, a memory manager calculates
the payload’s offset from the base of the containing piece
of memory. The ordering of fields in this piece of memory,
header and payload, define its layout. Existing systems often
model the ordering of fields with offset constants. For exam-
ple, a memory manager computes the location of a payload
in terms of the size of its header. In this section, we introduce
Floorplan with similarly motivated examples.
Grammar 1, below, through Grammar 4 specify the syn-

tactic constructs of a Floorplan specification in EBNF form.
For a quick reference guide on how to read a Floorplan spec-
ification, refer to Figure 3. The grammars below are inline
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figures, which we recommend inspecting in the order they
are presented before reading the remainder of this section.

Grammar 1: Literal lexemes. Layers & fields are types, for-
mals represent natural numbers, and flags for enums.

⟨layer-id⟩ ::= [A-Z][a-zA-Z_]*
⟨field-id⟩ ::= [a-z][a-zA-Z_]*
⟨formal-id⟩ ::= [a-z][a-zA-Z_]*
⟨flag-id⟩ ::= [A-Z][A-Z_]*

⟨literal⟩ ::= ⟨bin⟩ | ⟨int⟩
⟨bin⟩ ::= 0b[01]+
⟨int⟩ ::= [0-9]+
⟨prim⟩ ::= ‘bits’ | ‘bytes’

| ‘words’ | ‘pages’

Grammar 2: Arithmetic language for memory sizes.
⟨lit-arith⟩ ::= ⟨literal⟩ | ‘(’ ⟨lit-arith⟩ ‘)’

| ⟨lit-arith⟩ ⟨lit-arith-op⟩ ⟨lit-arith⟩
⟨lit-arith-op⟩ ::= ‘+’ | ‘−’ | ‘∗’ | ‘/’ | ‘ˆ’
⟨size-arith⟩ ::= ⟨lit-arith⟩? ⟨prim⟩ | ‘(’ ⟨size-arith⟩ ‘)’

| ⟨size-arith⟩ ⟨size-arith-op⟩ ⟨size-arith⟩
⟨size-arith-op⟩ ::= ‘+’ | ‘−’

Grammar 3: Layers of memory with annotated magnitudes,
alignments, simultaneous annotations (⟨magAlign⟩), scoped
formal parameter declarations, and containment (⟨contains⟩)
compiler annotation hints1.
⟨layer-simple⟩ ::= ⟨layer-id⟩ (‘<’ ⟨formals⟩ ‘>’)? (⟨mag⟩? ⟨align⟩?

| ⟨magAlign⟩?) ⟨contains⟩* ‘->’ ⟨demarc-val⟩
⟨layer⟩ ::= ⟨layer-simple⟩ | ‘(’ ⟨layer-simple⟩ ‘)’
⟨mag⟩ ::= ‘||’ ⟨size-arith⟩ ‘||’
⟨align⟩ ::= ‘@’ ‘(’ ⟨size-arith⟩ ‘)’
⟨magAlign⟩ ::= ‘@|’ ⟨size-arith⟩ ‘|@’
⟨formals⟩ ::= ⟨formal-id⟩ (‘,’ ⟨formal-id⟩)* ‘,’?
⟨contains⟩ ::= ‘contains’ ‘(’ ⟨layer-id⟩ ‘)’

Grammar 4: Demarcatable atomic units of memory.
⟨demarc-val⟩ ::= (‘#’ | ⟨formal-id⟩)? (⟨enum⟩ | ⟨bits⟩ | ⟨union⟩

| ⟨seq⟩ | ⟨ptr⟩ | ⟨size-arith⟩ | ⟨macro⟩)
⟨seq⟩ ::= ‘seq’ ‘{’ ⟨demarc⟩ (‘,’ ⟨demarc⟩)* ‘,’? ‘}’
⟨union⟩ ::= ‘union’ ‘{’ ⟨demarc⟩ (‘|’ ⟨demarc⟩)* ‘|’? ‘}’
⟨demarc⟩ ::= ⟨field⟩ | ⟨layer⟩ | ⟨demarc-val⟩
⟨field⟩ ::= ⟨field-id⟩ ‘:’ ⟨demarc-val⟩
⟨ptr⟩ ::= (⟨layer-id⟩ | ⟨field-id⟩) ‘ptr’
⟨enum⟩ ::= ‘enum’ ‘{’ ⟨flag-id⟩ (‘|’ ⟨flag-id⟩)* ‘|’? ‘}’
⟨bits⟩ ::= ‘bits’ ‘{’ ⟨bits-exp⟩ (‘,’ ⟨bits-exp⟩)* ‘,’? ‘}’

1These instruct the compiler to generate functions for converting to the
containing ⟨layer-id ⟩ and vice-versa when memory alignments permit.

⟨bits-exp⟩ ::= ⟨field-id⟩ ‘:’ ⟨size-arith⟩
⟨macro⟩ ::= ⟨layer-id⟩ (‘<’ ⟨args⟩ ‘>’)?
⟨arg⟩ ::= ⟨formal-id⟩ | ⟨literal⟩
⟨args⟩ ::= ⟨arg⟩ (‘,’ ⟨arg⟩)* ‘,’?

3.1 What is a Floorplan Demarcation
In Grammar 4 we introduced the syntactic form for the no-
tion of a demarcation. A demarcation is a partitioning2 of a
layer of a heap. A boundary position in memory defining
the partition of two or more ⟨layer⟩ and ⟨field⟩ types may
(and often does) coincide with another layer’s boundary.

For instance in our block-containing-cells motivating ex-
ample (Figure 2) the beginning boundary of a block coincides
with the boundary of that block’s first cell. We can encode
this memory layout as follows:

Cell -> seq { Header -> 1 words,
Payload -> 7 words }

Block ||2^16 bytes|| -> # Cell
(F1)

This code declares a block of cells with total size 216 bytes.
The “#” operator indicates that the Cell declaration should
be repeated as many times as necessary in order to exactly fill
the total size. The Cell reference on the last line of F1 parses
as a ⟨macro⟩ expression3 which must reference a top-level
⟨layer-id⟩ declaration of the specification file (.flp filename
extension). A ⟨macro⟩ expression is syntactically replaced
with its corresponding declaration.

From the layout in F1 the compiler generates specialized
address types for pointers to a Cell, Header, Payload, and
Block respectively. For safety reasons, a memory manager
must only be able to cast from a Block address to a Cell
address and not to, say, a Payload address. Therefore the
compiler generates (simplified here) Rust code identical in
purpose to that of Figure 2:

Types & Casts Generated for Code F1

pub struct CellAddr(usize );

pub struct HeaderAddr(usize );

pub struct PayloadAddr(usize );

pub struct BlockAddr(usize );

impl BlockAddr {

pub fn get_first_cell (&self) -> CellAddr {

CellAddr :: from_usize(self.as_usize ()) } }

(R1)

While this code is implementable by hand, the complier
systematically enforces which conversions are memory-safe.
Memory-safety in Floorplan is heavily influenced by where

2Including finitely many partitions of size zero.
3Macros are not formally specified: they are a pre-processing pass to the
compiler. Recursive macros are forbidden.
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coinciding boundaries occur. These occur wherever two
⟨layer⟩ or ⟨field⟩ declarations are nested inside of one an-
other under one condition: the nested path traverses neither
the tail of a ⟨seq⟩ nor ⟨demarc-val⟩ annotated with a repeti-
tion4. Under this condition, Floorplan semantics (Section 5)
guides the compiler in generating safe address conversions.
Statically unsafe conversions are disallowed by construction.

3.2 Implementing Bit Fields and Repetitions
A header word on an object in a memory manager typically
relies on intricately implemented offset constants to func-
tion, like back in Figure 1. For example, we might want to
modify the Header portion of Code F1 to support bit-level
manipulation in a traditional mark-sweep garbage collector:

Header @|1 words|@ -> bits {
MARK : 1 bits, REF : 7 bits,
UNUSED : (1 words - 1 bytes) }

(F2)

First, Code F2 constrains the alignment of header words to
start on a @|1 words|@ boundary. In addition, the memory
manager needs to be able to access (read and write) the con-
tents of the MARK and REF bits in order to mark and record the
location of pointers in the payload, respectively. To facilitate
this requirement, the compiler generates, e.g., the following
constants and accessors:

Offset Constants Generated from Code F2

struct HeaderAddr(usize );

impl HeaderAddr {

pub const MARK_LOW_BIT : usize = 0;

pub const MARK_NUM_BITS : usize = 1;

pub const MARK_MASK : u8 = 0b00000001;

pub const REF_LOW_BIT : usize = 1;

pub const REF_NUM_BITS : usize = 7;

pub const REF_MASK : u8 = 0b11111110;

pub fn set_MARK_bit (&self , val: bool) {

self.store::<u8 >(val as u8) }

pub fn get_MARK_bit (&self) -> bool) {

(self.load::<u8 >() as bool) } }

(R2)

Furthermore, a memory manager must be able to allocate
pointers in the payload and mark their location in the REF
field.5 For example, the layout can dictate that pointer fields
in an application object comprise the first n words of the
payload by replacing the Payload in F1 with:

Payload ||7 words|| -> seq {
refs: # (Cell ptr), rem: # (1 words) }

(F3)

Notice here that the two “#” operators act together to fill
the necessary space (7 words) available to them. Code F3
denotes 8 distinct layouts: the number of permutations by

4More on ⟨#⟩ and ⟨formal-id ⟩ repetitions four paragraphs from here.
5How the runtime determines which REF bit marks which payload word is
outside the scope of this work.

which two natural numbers can sum to 7. These permuta-
tions include (0 pointers, 7 words), (1 pointer, 6 words), and
so on until (7 pointers, 0 words). In order to allocate some
number of pointers, the compiler needs to give us a way to
(1) access the refs field of a Payload, (2) initialize a pointer
to the rem field, and (3) allocate an additional cell pointer.
Code R3 below exhibits these functions:

Allocation Pattern Generated from Code F3

impl PayloadAddr {

pub fn cast_payload_to_refs (&self)

-> RefsAddr { // #1

RefsAddr(self.as_usize ()) }

pub fn init_rem_after_refs(p1: RefsAddr

, bytes: usize) -> RemAddr { // #2

debug_assert!(bytes%BYTES_IN_POINTER ==0);

p1.plus::<RemAddr >(bytes) }

pub fn bump_new_Cell_ptr(rhs: RemAddr)

-> (CellAddr , RemAddr) { // #3

(rhs.plus(0),rhs.plus(BYTES_IN_POINTER )}}

(R3)

Take for granted that we have access to the PayloadAddr
of some cell. Function #1 above accesses the refs field of
our payload. From this address we can initialize, with #2,
the remainder (rem) to start zero bytes after the start of the
payload. With #3 we can then allocate a new pointer with
our RemAddr returned by #2. To allocate more pointers we
iterate as necessary over #3, because #3 returns an updated
RemAddr. The compiler knows to generate this allocation
pattern because two adjacent fields each contain a repetition.

3.3 Implementing Union Types
In contrast to Code F3, we might want a more permissive
object field layout where pointer fields can appear in any
order in the payload. For example:

Payload ||7 words|| ->
# union { Cell ptr | (1 words) }

(F4)

In F4, the “#” operator acts to fill precisely 7 words of mem-
ory. In doing so, this particular “#” operates equivalently to
the POSIX Extended Regular Expression (ERE) limited repe-
tition expression (a|b){7}. As with this regex, F4 denotes
27 = 128 distinct layouts: the number of permutations (with
repeats) of the elements of the union fitting into 7 words. If
instead we made a typo and wrote (10 words) in place of
(1 words), the compiler reports to us a consistency warn-
ing: the (10 words) branch of the union in F4 is dead code
which does not contribute to a valid payload.

3.4 Implementing Lookup Tables
Amemory manager often relies on metadata in lookup tables
and byte maps. To indicate the relationship between meta-
data and memory it describes, the same ⟨formal-id⟩, cnt, can
logically link two or more pieces of memory:
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Cell<sz> -> sz (1 words)
SizeKls<sz, cnt> @|2^16 bytes|@ -> seq {
cells: cnt Cell<sz>, map: cnt (1 bytes) }

Kls16 -> SizeKls<16>

(F5)

Code F5 implements a 16-word size-class block of mem-
ory, with a byte map at the end of each block. Note that
macro expressions are curried, so only the first argument
need be expanded on the last line above. The compiler gen-
erates functions capable of translating between a cell and its
corresponding byte entry in the map. For example in order
to update the byte entry of some cell, we can call the set
function in Code R5 on that cell’s address, along with the
value we want the map to remember:

Mapping Code Generated from Code F5

pub struct Cell_16 ([usize; 16]);

pub struct Cell2Byte {

pub fBase: CellAddr , // from

pub tBase: ByteAddr , // to

pub e: Kls16EndAddr }

impl Cell2Byte {

pub fn set(&self , fA: CellAddr , val: u8) {

debug_assert!(fA >= self.fStart );

let idxV = (fA - self.fBase) >> 7;

let loc = self.tBase.offset::<Cell_16 >(idxV);

debug_assert!(self.e > loc); loc.store(val); } }

(R5)

Dozens more functions are generated alongside set() in
Code R5.We struggled to define meaningful naming schemes
for generated address-types. For example Cell_16 above
comes from the ⟨macro⟩ expressions on the third and fourth
lines of Code F5. Code R5 also exemplifies generated de-
bugging assertions. Again, while these assertions can be
manually written, formally deriving the largely trivial ones
such as these bounds checks is feasible.

4 Study: Immix in Rust
In this section, Figure 4 introduces the notion of a demarca-

tion diagram and Figure 5 shows the Floorplan specification
of immix in Rust. For a precise handling of Floorplan seman-
tics, see Section 5. Throughout this section subscripts on
words1 indicate line numbers in Figure 5.

4.1 Immix Specification
Figure 5 shows the Floorplan specification for the Rust im-
plementation [13] of the immix garbage collection algorithm.
The heap is represented as a Region1 parametrized by three
formal arguments: the number of blocks, lines, and number
of words wrds in the region. Note that once num_blocks is
fixed, the other two take on fixed values.6 This constraint
we have made is self-imposed, and not a part of Floorplan

6The default immix heap is half a gigabyte of memory: 8000 blocks, more
than 2 million lines, and over 65 million words on a 64-bit machine.
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Figure 4. A four-layered demarcation diagram depicting the
immix-rust layout. Each layer corresponds to a ⟨layer⟩ defini-
tion from Figure 5. Each layer is then further demarcated into
⟨field⟩ fields, ⟨demarc-val⟩ values, and other ⟨layer⟩ layers.

semantics. We debated including a version of the ⟨union⟩
operator which enforces size-equivalence of constituents,
but decided against it for simplicity reasons: two flavors of
the union operator arguably degrades comprehensibility.
A Region1 layer consists of a single Space2 followed by

some metadata fields for marking lines16, looking up refer-
ence bytes17, and settingmark bits18. RefBits24 andMarkBits30
both represent bit-fields which consume one byte of mem-
ory. Note that bit order for a RefBits24 is defined such that
the OBJ_START26 bit occurs at a less significant bit than the
REF27 bits. SHORT_ENCODE25 is the least significant (ones) bit.
Notice here7 that a block of memory is annotated with

the fact that it contains lines. The annotation indicates to
the Floorplan compiler that it should generate code for con-
verting between a Line14 and its containing Block6, and vice-
versa. The conditions under which this code gets generated
relies on the presence of known sizes and alignments for
lines and blocks respectively.

In this [13] version of immix, objects do not have a header
word. Instead each cell’s corresponding RefBits24 in the refs17
array tracks which words13 of memory in the Space2 corre-
spond to the start of an object, OBJ_START26. The implemen-
tation of the immix algorithm determines how many heap
references are in some cell by looking up the first 4 bits of
the corresponding REF27 field of that cell’s RefBits17.
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1 Region<num_blocks, lines, wrds> -> seq {
2 Space @(2^19 bytes)@ -> union {
3 num_blocks union {
4 FreeBlock @(2^16 bytes)@ -> seq {
5 2^16 bytes }
6 | Block ||2^16 bytes|| @(2^16 bytes)@
7 contains(Line) -> seq {
8 cells : # union {
9 FreeCell @(1 words)@ -> # words
10 | Cell },
11 remainder : # words,
12 limit : 0 words } }
13 | wrds (1 words)
14 | lines Line @|2^8 bytes|@
15 contains(Cell) -> # bytes },
16 lms : lines LineMark,
17 refs : wrds RefBits,
18 mks : wrds MarkBits }
19 Cell @(1 words)@ contains(Word) -> union {
20 seq { cell_0 : Cell ptr,
21 cell_1 : Cell ptr, cell_2 : Cell ptr,
22 cell_3 : Cell ptr, payload : # words }
23 | # words }
24 RefBits ||1 bytes|| -> bits {
25 SHORT_ENCODE : 1 bits,
26 OBJ_START : 1 bits,
27 REF : 6 bits }
28 LineMark -> enum { Free | Live | FreshAlloc
29 | ConservLive | PrevLive }
30 MarkBits ||1 bytes|| -> bits { MARK : 8 bits }
31 Stk -> seq { stack : # seq { Cell ptr },
32 lowWater : 0 words }
33 Registers -> seq { regs : # seq { Cell ptr },
34 regsEnd : 0 words }

Figure 5. The Floorplan specification of immix as imple-
mented in Rust [13].

Core value syntax

Address α ∈ N
Identifier ℓ, f ∈ Strings
Values ν ::= 1 bytes | 0 bytes | T ν1 ν2 | N ℓ ν
Type τ ::= { ν }

Figure 6. Syntactic forms of core Floorplan values. ℓ is for
⟨layer-id⟩ and ⟨field-id⟩, while f is for a ⟨formal-id⟩.

This implementation of immix extracts the application’s
root set directly from the stack and registers. The Stk31 and
Registers33 are both assumed to be some number of Cell
pointers31,33 followed by a lowWater32 mark and regsEnd34
ending address respectively. The implementation performs
conservative stack and register scanning.

5 Semantics
In this section we present the semantics of a Floorplan speci-
fication to be the set of heaps which satisfy the specification,
with satisfaction as defined in Figure 9. Note that Floorplan
semantics do not suffice to ingest raw pages.

5.1 Concrete Value Semantics
We represent an instance of a memory layout as a tree, as
in Figure 6. Addresses are natural numbers representing
locations in a flat addressable sequence of bytes. A value
is a rooted binary tree with leaves each representing either
zero or one byte. Trees may be interspersed with named
“N” components, mapping directly back to named types in
a Floorplan specification, as will become apparent by the
semantics in the following Section 5.2. A finite set of trees
represents a concrete type of memory.

An in-order traversal over a tree defines the order in which
bytes at the leaves of the tree occur contiguously in memory.
Finally, leaves(ν ) computes the number of 1-byte leaves in
the tree as defined below, equivalent to the number of bytes
the tree consumes in memory.

leaves(1 bytes) = 1
leaves(0 bytes) = 0
leaves(T ν1 ν2) = leaves(ν1) + leaves(ν2)

leaves(N ℓ ν ) = leaves(ν )

5.1.1 Example: The Trees of a Specification
Before introducing the core calculus, take the following
Floorplan declaration:

K<n> |5 bytes| -> seq { hd : n (1 bytes),
tl : n seq { lft : 1 bytes, rgt : # bytes } }

(F6)

This code represents the three distinct memory layouts
as depicted in Figure 7, one for each feasible assignment
of natural numbers to n and the “#”. The n = 0 case is not
feasible because that case consumes 0 , 5 bytes. Similarly
the n = 3 case is not feasible because the hd consumes 3
bytes and the tl consumes at least 3 bytes, one for each copy
of lft, which sums to at least 6 , 5 bytes. Formally, for
constants n, #i ∈ N, memory layout instances must satisfy
the following constraint satisfaction [3] equation:

n +
n−1∑
i=0

n ∗ (1 + #i ) = 5
(5.1)

Equation 5.1 above was written by hand, and is not for-
mally synthesized by the compiler.Wewill see in Section 5.2.1
how to reduce Code F6 to tree K0 from Figure 7.

5.2 Abstract Expression Semantics7

Now we define the core expression language as in Figure 8.
Each expression e denotes a memory layout. A memory
layout has a corresponding (possibly empty) set of values
ν representing a type τ computable by the memory layout
modeling functionγ in Figure 9. A primitive expression (Prim
n) denotes a contiguous (possibly empty7) sequence9 of n
bytes. Similarly, a constrained expression (Con n e) denotes
7Subscripts1 on2 words3correspond to lines in Figure 9
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hd tl

K0

1 lft rgt

1 1 1 1

K0: n = 1, #0 = 3 bytes

hd tl

K1

1 lft rgt

1 1

lft rgt1

1

K1: n = 2, #0 = 0 bytes, #1 = 1 byte

hd tl

K2

1 lft rgt

1 1

lft rgt1

1

K2: n = 2, #0 = 1 byte, #1 = 0 bytes

Figure 7. The three layouts for Code F6, with satisfying assignments to Equation 5.1.

Core Calculus
Nats n,m, c ∈ N
Alignment â ∈ N+

Exp e ::= Prim n | Con n e | e @ â
| e1 + e2 | e1 ∥ e2 | y :: e | ∃ f . e
| f # e

Size δ ::= m
Environment θ ::= { f 7→ n}
Config χ ::= (α, δ , e)

Figure 8. Core expression language representing a Floor-
plan specification. A function γ̄ with type χ → τ models the
semantics of a memory layout.

a contiguous sequence of n bytes, but only for the (possi-
bly non-existent13) memory layout instances for which the
substructure denoted by e fits precisely12 into n bytes. An
aligned expression (e @ â) denotes a memory layout for
which the address of the first byte of memory of the layout
must be a natural number multiple15 of â bytes.
The remaining operators are the concatenation “+” and

union “∥” binary operators, as well as name binding with
y :: e . A concatenation of two expressions denotes the con-
tiguously laid out sequence2−4 of those two expressions. A
union of two expressions denotes a left-most aligned instance
of either the first5 or the second6 expression. A named ex-
pression y :: e binds17,18 the name y to the expression e . An
existentially quantified expression ∃ f . e brings the variable
f into scope20 in the subexpression e .
A variable on a repetition, the f in (f # e), may be ref-

erenced multiple times. Each reference must also take on
the same fixed value. This feature causes a Floorplan speci-
fication (i.e. grammar) to be non-regular: there exist Floor-
plan grammars which fail the Pumping Lemma.

Memory Layout Model γ̄

1 γ ( (α,m, θ , e1 + e2) )

2 = { T r1 r2 | r1 ∈
m⋃
i=0

γ ( (α, i, θ, e1) )

3 , r2 ∈ γ ( (α + leaves(r1)

4 ,m − leaves(r1), θ , e2) ) }

5 γ ( (α,m, θ , e1 ∥ e2) ) = γ ( (α,m, θ, e1) )

6
⋃
γ ( (α,m, θ , e2) )

7 γ ( (α, 0, θ, Prim 0) ) = { 0 bytes }
8 γ ( (α,m, θ , Prim n) )
9 |m ≡ n = { T (1 bytes)1 ( · · · T (1 bytes)n (0 bytes)) }
10 |m , n = ∅

11 γ ( (α,m, θ ,Con n e) )
12 |m ≡ n = γ ( (α,m, θ, e) )
13 |m , n = ∅

14 γ ( (α,m, θ , e @ â) )
15 | α mod â ≡ 0 = γ ( (α,m, θ, e) )
16 | α mod â , 0 = ∅

17 γ ( (α,m, θ , ℓ :: e) ) = { N ℓ r
18 | r ∈ γ ( (α,m, θ , e) ) }
19 γ ( (α,m, θ , ∃ f . e) ) =

20
m⋃
i=0

γ ( (α,m, θ { f 7→ i}, e) )

21 γ ( (α,m, θ , f # e) )
22 | f < dom(θ ) = ∅

23 |m ≡ θ (f ) ≡ 0 = { T (0 bytes) (0 bytes) }
24 | θ (f ) ≡ 0 = ∅

25 | θ (f ) > 0
26 = { T r1 r2

27 | r1 ∈
m⋃
i=0

γ ( (α, i, θ , e) )

28 , r2 ∈ γ ( (α + leaves(r1),m − leaves(r1)

29 , θ { f 7→ (θ (f ) − 1)}, f # e) )
30 ,m ≡ leaves(r1) + leaves(r2) }
31 γ̄ ( (α,m, e) ) = γ ( (α,m, ∅, e) )

Figure 9. Denotational semantics of Floorplan.
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5.2.1 Denotations: Reducing Code F6 to Core Values
Figure 9 shows our core denotational semantics, the first
three parameters of which are γ : α ,m, and θ . α represents
the base address of a memory layout,m represents the pre-
cise number of bytes in which the layout must fit, and θ
represents a name environment. As the compilation rules
(upcoming in Section 5.3) are not particularly important to
understand core Floorplan semantics, we give Code F6 trans-
lated to the core calculus here:

K :: (∃ n . Con 5 (

(hd :: n # (Prim 1)) +
(tl :: n # ((lft :: (Prim 1))
+ (rgt :: (∃ f0 . f0 # (Prim 1))))))

(C6)

Of note on the fourth line of C6, the existentially bound
f0 variable materializes by way of Rule (2) of Figure 10. Fur-
thermore, listed below are the steps through the semantics
in that figure for reducing Code C6 to the hd sub-branch of
the left-most tree K0 of Figure 7:
Line Exp Trees Step
17,18 K :: e1 γ ( 0, 5, ∅, e1 ) Pickm = 5
19,20 e1 = ∃ n . e2 Let θ1 = {n 7→ 1} in

γ ( 0, 5, θ1, e2 )
Pick i = 1

11,12 e2 = Con 5 e3 γ ( 0, 5, θ1, e3 ) Reduce Con
1,2 e3 = ehd + etl γ ( 0, 1, θ1, ehd ) Pick i = 1
17,18 ehd = hd :: e4 γ ( 0, 1, θ1, e4 ) Reduce name
21,27 e4 = n # e5 γ ( 0, 1, θ1, e5 ) Pick i = 1
8,9 e5 = Prim 1 T (1 bytes) (0 bytes) Eval tree
3,4 e4 = n # e5 γ ( 0+ 1, 1− 1, θ1, e4 ) Resume (#)
23 e4 = n # e5 T (0 bytes) (0 bytes) Eval tree
3,4 ehd + etl γ ( 0+1, 5−1, θ1, etl ) Resume (+)
17,18 etl = tl :: e6 γ ( 1, 4, θ1, e6 ) Skip etl

We manually picked values form and i in order to derive
tree K0. These derivation steps compute the first line of the
following tree in data type form, with B0 and B1 representing
0 bytes and 1 bytes respectively:

N "K" (T (N "hd" (T (T B1 B0) (T B0 B0)))
(N "tl" (T (T (N "lft" (T B1 B0))

(N "rgt" (T (T B1 B0)
(T (T B1 B0) (T (T B1 B0) (T B0 B0)))))

) (T B0 B0))))

Certain properties of the denotational semantics from
Figure 9 have been proved8 correct in Coq. Such properties
include that γ always returns trees withm one-byte leaves
and that γ is a total computable function.

5.3 Compilation Rules
Figure 10 shows the rules for compiling a Floorplan surface
syntax declaration into a core Floorplan expression. Figure 11

8Available in extended version.

C ( ⟨layer-simple⟩ ) =
C ( ⟨layer-id⟩ (‘<’ ⟨formals⟩ ‘>’)? ⟨mag⟩? ⟨align⟩? ‘->’

⟨demarc-val⟩ ) , fi ∈ ⟨formals⟩
(1) ⊨ ⟨layer-id⟩ :: (∃ f0 . · · · ∃ fn .

(M ( ⟨mag⟩ )
(C ( ⟨demarc-val⟩ ) @ (∆byte ( ⟨align⟩ ) ))))

C ( ⟨demarc-val⟩ ) = C ( ‘#’ ⟨demarc-val⟩ )

(2) ⊨ let f = fresh(⟨demarc-val⟩)
in ∃ f . f #C ( ⟨demarc-val⟩ )

C ( ⟨demarc-val⟩ ) = C ( ⟨formal-id⟩ ⟨demarc-val⟩ )

(3) ⊨ ⟨formal-id⟩ #C ( ⟨demarc-val⟩ )

C ( ⟨seq⟩ ) = C ( ‘seq’ ‘{’ ⟨demarc⟩0 · · · ⟨demarc⟩n ‘}’ )

(4) ⊨ C ( ⟨demarc⟩0 ) + · · · + C ( ⟨demarc⟩n )

C ( ⟨union⟩ ) =
C ( ‘union’ ‘{’ ⟨demarc⟩0‘|’ · · · ‘|’⟨demarc⟩n‘}’ )

(5) ⊨ C ( ⟨demarc⟩0 ) ∥ · · · ∥ C ( ⟨demarc⟩n )

C ( ⟨field⟩ ) = C ( ⟨field-id⟩ ‘:’ ⟨demarc-val⟩ )

(6) ⊨ ⟨field-id⟩ :: C ( ⟨demarc-val⟩ )

(7) C ( ⟨ptr⟩ ) = C ( (⟨layer-id⟩ | ⟨field-id⟩) ‘ptr’ )

⊨ C ( 1 word )

C ( ⟨enum⟩ ) = C ( ‘enum’ ‘{’ ⟨flag-id⟩0 · · · ⟨flag-id⟩n ‘}’ )

(8) ⊨ Prim
⌈
log2(n + 1) ∗ 1 byte

8 bits

⌉
C ( ⟨bits⟩ ) = C ( ‘bits’ ‘{’ ⟨bits-exp⟩0 · · · ⟨bits-exp⟩n ‘}’ )

(9) ⊨ Prim
⌈(

n∑
i=0

(∆bit⟨bits-exp⟩i )
)
∗

1 byte
8 bits

⌉
(10) C ( ⟨size-arith⟩ ) ⊨ Prim

(
∆byte⟨size-arith⟩

)
Figure 10. Compilation rules for translating surface syntax
to a core expression. Syntax inside oxford-like brackets9 is
surface syntax, and syntax after a double-turnstile10 ⊨ is a
core expression. Formals support list membership, ∈.

contains the definitions for translating an arithmetic expres-
sion into natural numbers.
For the translation C ( ⟨layer⟩ ) to be defined, a ⟨layer⟩

must satisfy a few properties. First, all ⟨macro⟩ constructs
must have been eliminated and syntactically replaced with
their top-level declarations. Second, the surface declaration
must be validly scoped, meaning every use of a ⟨formal-id⟩
must be scoped inside a ⟨layer⟩ defining it. Floorplan is lexi-
cally scoped with shadowing.

In Rule (1) of Figure 10 there are three optional constructs.
Each construct compiles to an expression wrapping the
compilation of the containing value: C ( ⟨demarc-val⟩ ) . For

9 ( . . . ) separates raised syntax (inside brackets) from lowered expressions.
10A double-turnstile, Foo ( . . . ) ⊨ Bar, reads as “Bar models Foo ( . . . ) ”.
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M ( ‘|’⟨size-arith⟩‘|’ ) (e) ⊨ Con
(
∆bytes ( ⟨size-arith⟩ )

)
e

∆bit ≡ ∆

∆byte ≡
⌈
∆bit ∗

1 byte
8 bits

⌉
∆ ( ‘bits’ ) ⊨ 1 bits

1 bit , ∆ ( ‘bytes’ ) ⊨ 8 bits
1 byte

∆ ( ‘words’ ) ⊨ cw bits
1 word , ∆ ( ‘pages’ ) ⊨

cp bits
1 page

∆ ( ⟨int ⟩ ) ⊨ ⟨int ⟩
∆ ( ⟨bin⟩ ) ⊨ int(⟨bin⟩)
∆ ( ⟨lit-arith⟩l ‘+’⟨lit-arith⟩r ) ⊨ ∆ ( ⟨lit-arith⟩l ) + ∆ ( ⟨lit-arith⟩r )
∆ ( ⟨lit-arith⟩l ‘-’⟨lit-arith⟩r ) ⊨ ∆ ( ⟨lit-arith⟩l ) − ∆ ( ⟨lit-arith⟩r )
∆ ( ⟨lit-arith⟩l ‘*’⟨lit-arith⟩r ) ⊨ ∆ ( ⟨lit-arith⟩l ) ∗ ∆ ( ⟨lit-arith⟩r )
∆ ( ⟨lit-arith⟩l ‘/’⟨lit-arith⟩r ) ⊨ ⌊∆ ( ⟨lit-arith⟩l ) /∆ ( ⟨lit-arith⟩r ) ⌋
∆ ( ⟨lit-arith⟩l ‘ˆ’⟨lit-arith⟩r ) ⊨ (∆ ( ⟨lit-arith⟩l ) )

∆ ( ⟨lit-arith⟩r )

∆ ( ⟨lit-arith⟩ ⟨size-prim⟩ ) ⊨ ∆ ( ⟨lit-arith⟩ ) ∗ ∆ ( ⟨size-prim⟩ )

∆ ( ⟨size-arith⟩l ‘+’⟨size-arith⟩r ) ⊨ ∆ ( ⟨size-arith⟩l ) + ∆ ( ⟨size-arith⟩r )
∆ ( ⟨size-arith⟩l ‘-’⟨size-arith⟩r ) ⊨ ∆ ( ⟨size-arith⟩l ) − ∆ ( ⟨size-arith⟩r )
∆ ( ⟨field-id ⟩‘:’⟨size-arith⟩ ) ⊨ ∆ ( ⟨size-arith⟩ )

Figure 11. The rules for computing the in-memory size of
Floorplan arithmetic. M defines core expressions, while ∆
models computations over rational numbers. The constants
cw and cp are architecture-specific. The int() function casts
a binary term to an unsigned natural number n.

brevitywe do not show all 9 permutations of the ⟨layer-simple⟩
rule, i.e. Rule (1), which represents cases where:

• If ⟨formals⟩ is missing, “∃ f0 . · · · ∃ fn . ” disappears.
• If ⟨mag⟩ is missing, “M ( ⟨mag⟩ ) ” disappears.
• If ⟨align⟩ is missing, “@(∆byte ( ⟨align⟩ ) )” disappears.
• A ⟨magAlign⟩ becomes a ⟨mag⟩ and an ⟨align⟩.

6 Rust Libraries Generated and Results
The Floorplan language is implemented as a compiler target-
ing Rust code. This section discusses the mechanics of the
Floorplan library interface, i.e. how a Floorplan specification
integrates with a memory manager. Curious readers should
look at the Floorplan compiler source repository11 to see
all the library interfaces generated. Throughout this section
numbers1 on2 words3 refer to line numbers in Figure 12.

6.1 Code Generation & Library Interface
Figure 12 shows a sampling of the Rust library interface
generated for the immix memory layout of Figure 5. The
compiler generates a struct type for each ⟨layer-id⟩ and
⟨field-id⟩. Address types8,18 are wrappers around a word
(usize) with no runtime overhead. Each address type im-
plements a Rust trait called Address, providing a number
of generic pointer and arithmetic operations such as load13,
store15, plus23, and sub25, among others12. This trait requires
the four deriving7,17 clauses on each address type.

Offset constants1−5 are generated with a particular archi-
tecture in mind (i.e. 64-bit herein). Offset constants, along
with alignment constants9,19, are in various places10,20,23,25

11https://github.com/RedlineResearch/floorplan
12Generic access operations are not programmer-accessible, by default.

1 pub const CELL_0_OFFSET : usize = 0;

2 pub const CELL_1_OFFSET : usize = 8;

3 pub const CELL_2_OFFSET : usize = 16;

4 pub const CELL_3_OFFSET : usize = 24;

5 pub const PAYLOAD_OFFSET : usize = 32;

6 #[repr(C)]

7 #[ derive(Copy , Clone , Eq, Hash)]

8 pub struct Cell_1Addr(usize );

9 pub const CELL_1_BYTES_ALIGN : usize = 1;

10 deriveAddr!(Cell_1Addr , CELL_1_BYTES_ALIGN );

11 impl Cell_1Addr {

12 pub fn get_cell(self) -> CellAddr {

13 self.load::<CellAddr >() }

14 pub fn set_cell(self , ptr: CellAddr) {

15 self.store(ptr); } }

16 #[repr(C)]

17 #[ derive(Copy , Clone , Eq, Hash)]

18 pub struct CellAddr(usize );

19 pub const CELL_ALIGN : usize = 3;

20 deriveAddr!(CellAddr , 1 << CELL_ALIGN );

21 impl CellAddr {

22 pub fn cell_1(self) -> Cell_1Addr {

23 self.plus::<Cell_1Addr >( CELL_1_OFFSET) }

24 pub fn from_cell_1(x: Cell_1Addr) -> Self {

25 x.sub::<Self >( CELL_1_OFFSET) } }

Figure 12. Snippets taken from the Rust library generated
for the immix memory layout of Figure 5.

throughout generated Rust code. The Floorplan compiler gen-
erates code which mimics the modularity of existing memory
management systems [12, 15, 16] and frameworks [6, 7]. This
form enables pain-free manual inspection of generated code.
Finally we have the four functions12,24,22,24 generated in

our example of Figure 12. The first function, get_cell12,
requires a valid Cell_1Addr in order to call it and returns the
contents of the cell_1 field of a cell wrapped in a CellAddr.
The Floorplan compiler and interface provide behind-the-
scenes unwrapping, accessing, and rewrapping of values
(with no dynamic runtime overhead) into Rust types. In this
paradigm the Rust type system enforces address-level type
safety. The abundance of generated Rust address types also
provided us with continual syntactic cues, telling us which
address types were involved in some computation.
The main cost we see in our approach to integrating a

Floorplan specification with an existing garbage collector
pertains to how a generated library gets called. Upon modify-
ing the immix specification dozens of lines of GC code would
become stale, requiring manual modifications to various li-
brary call-sites. Such Rust compiler errors naturally provided
us with a task list of places in the GC code to update.

While integrating generated code into the immix code base
we had to make a few modest changes. The most extensive
change involved modifying type signatures of nearly every
functions in the garbage collector to refer to the generated
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Lo Lf Uo Uf File
24 - 3 - common/address_map.rs
48 - 3 - common/address_bitmap.rs
97 - 15 - common/bitmap.rs
132 - 9 - common/mod.rs
16 17 0 0 heap/mod.rs
27 21 3 0 objectmodel/mod.rs
28 12 0 0 heap/immix/mod.rs
42 42 0 0 obj_init.rs
51 53 2 1 mark.rs
52 53 2 0 trace.rs
72 68 3 0 lib.rs
94 94 1 1 heap/freelist/mod.rs
173 171 4 0 heap/immix/immix_mutator.rs
222 224 8 2 heap/immix/immix_space.rs
285 304 10 4 heap/gc/mod.rs
- 47 - 0 heap/flp/layout.flp
1363 1107 63 8 Total: (19% L, 87% U)
- 530 - 32 heap/flp/mod.rs
- 188 - 7 heap/flp/address.rs

Figure 13. Lines of immix source code, comparing the orig-
inal code of [13] with our Floorplan-integrated version. Lo
andLf are the total number of non-empty lines in the original
and Floorplan version respectively. TheUo andUf columns
indicate unsafe lines of code. The subsequent two columns
shows the reduction in the number of unsafe statements in
the code. Entries with a ‘−’ indicate the file is not present in
that version. The Floorplan compiler generates “heap/flp/-
mod.rs” from the file “heap/flp/layout.flp”. We calculate line
counts ignoring blank lines, comments, and sole curly braces.

Benchmark Original (s) Floorplan (s) GCs Live (MB)
gcbench 30.10 ± 1.28 28.94 ± 1.84 96 134
initobj 12.54 ± 0.96 12.87 ± 1.21 28 114
exhaust 15.91 ± 0.63 15.86 ± 1.80 86 359
trace 12.61 ± 0.88 12.52 ± 0.58 28 114

Figure 14. Runtimes and GCs triggered per benchmark.

address types. The next most extensive change involved
finding each pointer calculation in the code and replacing
it with a generated version. This part was less extensive
because there were fewer pointer calculations than type
signatures in the code. Nearly every change made involved
a one-to-one replacement of individual lines.

6.2 Results
In Figure 13, we see that the programmer must write 19%
fewer lines of code, including the Floorplan specification.
The first four lines of the figure indicate the address map
and bitmap files are completely eliminated by switching
to Floorplan. These files were replaced by “layout.flp’, just

above the Total line. Most other changes were line-for-line
replacements such as changing untyped address variables
into their correspondingly typed Floorplan address types.
In Figure 13, we account for the number of unsafe state-

ments of code in the implementation before and after inte-
grating with Floorplan. A plurality of unsafe statements
in the original code occur in special-purpose data struc-
tures (bitmaps) which were obviated by Floorplan. In total,
the number of unsafe statements in the runtime system de-
creased by 87%: only 8 statements remain. Of the remaining
statements, four main categories emerge: system-level allo-
cation (2), error-handling (1), a stack-scanning FFI for C (4),
and Rust vector access optimization (1).

Floorplan could reasonably handle system-level allocation,
but we leave this up to the programmer for increased flexibil-
ity. The stack-scanning and error-handling lines are unsafe
as a result of program control-flow, making Floorplan wholly
unsuited to the task. Lastly, the unsafety of an optimized
vector access would seem to be suitable for Floorplan to han-
dle but required converting the representation of Rust data
structures into Floorplan-constructed ones.
Benchmarks:We ran four benchmarks provided with the
immix implementation, respectively named exhaust, initobj,
gcbench, and trace. All benchmarks had internal parameters
modified in order to trigger substantially more GCs than
originally written for, and we recorded average runtimes
and standard deviations for 100 runs of each benchmark as
detailed below. A set of 5 warm-up runs of each benchmark
were run prior to the 100 runs, with a 10 second cool-down
in-between benchmarks. Benchmarks ran on a 12−core, 2.80
GHz Intel Xeon (X5660) processor running Arch Linux with
12 GB of RAM installed and an immix heap of 400 MB.

The benchmarks are called gcbench, initobj, trace, and ex-
haust; they respectively (1) construct application-level trees
of certain depths, (2) stress test initialization, (3) trace freshly
allocated objects, and (4) induce high memory pressure. In
all cases Figure 14 shows no discernible difference between
Floorplan’s performance and the original benchmarks, with
runtimes ranging from 10 − 30 seconds per run. This result
agrees with our initial hypothesis: Floorplan generated code
abstracts away common memory layout patterns without
changing the performance of address computations.

We also manually inspected the assembly code generated
for accessing of bitmaps for immix line liveness, reference
bytes, and mark bits. Figure 15 shows the segment of code
for line marking, extracted from the GC’s object tracing pro-
cedure. Importantly, lines 8, 10, 11, and 15 of the original
code (highlighted in red ) correspond directly to four lines
in the Floorplan-generated version. Those four lines respec-
tively compute a byte offset of a cell into the heap8, compute
the index of the corresponding line10, mark the line as live
11 (1 is Live from Figure 5), and mark the next12 line as
conservatively live (3 is ConservLive).
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Original code
1 cmp r13, rdx

2 jb .LBB250_6

3 cmp r13, qword ptr [rsi + 24]

4 jae .LBB250_6

5 mov r8, qword ptr [rsi + 56]

6 mov rbx, qword ptr [rsi + 64]

7 mov rax, r13

8 sub rax, qword ptr [rsi + 48]

9 mov byte ptr [rcx + rbp], dil

10 shr rax, 8

11 mov byte ptr [r8 + rax], 1

12 add rbx, -1

13 cmp rax, rbx

14 jae .LBB250_6

15 mov byte ptr [r8 + rax + 1], 3

16 .LBB250_6:

Floorplan code
cmp r14, rbp

jb .LBB141_6

cmp r14, qword ptr [rax + 24]

jae .LBB141_6

mov byte ptr [r10 + rbx], r9b

mov rcx, qword ptr [rax + 56]

mov rsi, r14

sub rsi, qword ptr [rax + 48]

shr rsi, 8

mov byte ptr [rsi + rcx], 1

mov rax, qword ptr [rax + 64]

add rax, -1

cmp rsi, rax

jae .LBB141_6

mov byte ptr [rcx + rsi + 1], 3

.LBB141_6:

Figure 15. x86 Intel assembly code for marking immix lines.

Additionally this code detects cells outside the heap1−4,
and detects12−14 the last line index in the heap.13 Control-
flow instructions2,4,14,16 are highlighted in gray , and the
remaining instructions (in blue ) load metadata3,5,6 about
the heap from a Rust struct. Modulo register allocation and
precise instruction ordering, the purpose of each line of
assembly is computed with an identical instruction opcode.

6.3 Discussion
We observe a reduction in code-base size by nearly 20% in
immix-rust. This alleviates some of the technical debt of
maintaining a memory manager: eliminating numerous in-
terrelated offset constants and pointer arithmetic operations.
These operations corrupt memory when applied improperly.
These errors could eventually be obviated with theorem-
proving techniques over Floorplan specifications.

In lieu of obviating errors, we intend to develop debugging
infrastructure capable of detecting memory corruption at
the first sign of layout integrity failure. A layout integrity
failure occurs when a load or store operation conflicts with
the addressee’s intended type. The intended type of a piece of
memory derives from policy decisions made earlier in a mem-
ory manager’s execution. For example, after the mark phase
of a mark-sweep garbage collector, certain memory cells im-
plicitly have type “free cell”. A buggy deallocation scheme
can only corrupt memory in generated (unsafe) address cal-
culations. These calculations can, and we’ve discovered do,
encompass most all unsafe lines of code. Generated code can
readily be instrumented by the Floorplan compiler.

13Allocating an extra entry in the line mark table would obviate these lines.

7 Related Work
7.1 Declarative Layout Specifications
Our work is inspired by PADS [9, 10], a declarative embed-
ded DSL for describing and parsing ad hoc data structures
(PADS). PADS excels at describing log files containing textual
data. For example, a PADS description encodes arrays of par-
titioned data. PADS captures the structure of such an array
as a type. Floorplan too declaratively describes arrays of data.
In contrast to PADS, Floorplan excels at describing heap lay-
outs containing binary data. A Floorplan specification alone
is not sufficient in order to parse raw pages.

The authors of FlashRelate [4] presented work on “a novel
domain specific language called Flare that extends tradi-
tional regular expressions with [two-dimensional] spatial
constraints.” The underlying spatial principle of the Flare
language inspired that of Floorplan: a novel domain spe-
cific language augmenting a context-free grammar with one-
dimensional layout constraints. The work on FlashRelate is
motivated by data-cleaning tasks and thus aims to heuristi-
cally solve the parsing of semi-structured two-dimensional
data. In contrast, this work is motivated by the runtime sys-
tem development task of implementing a memory manager
and thus aims to deductively specify the memory layout of
an unstructured one-dimensional virtual address space.

7.2 Memory Management Frameworks
An imperative heap layout abstraction framework known as
Heap Layers [6] tackles the problem of implementing “clean,
easy-to-use allocator interfaces” which are “based on C++
templates and inheritance.” Heap Layers’ use of template pa-
rameters is very similar to this work’s notion of declaratively
specifying the properties of a memory layout. Similarly, the
Memory Management Toolkit (MMTk) [7] tackles the prob-
lem of implementing garbage collectors where the “resulting
system is more robust, easier to maintain, and has fewer
defects than monolithic collectors.” As for defects related
to memory layout, work on implementing an immix GC in
Rust [13] aims to eliminate safety defects with static safety.

8 Conclusion
In this paper we presented a declarative language, Floorplan,
for implementing the memory layout of memory managed
systems in Rust. We presented a 47 line Floorplan specifica-
tion for the memory layout of the state-of-the-art garbage
collection algorithm immix. The compiler generated 877 lines
of Rust code replacing 67 lines of pointer arithmetic, 25 lines
of offset constants, and 169 lines of bitmap code.
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