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ABSTRACT
Finding an optimal match between two different crystal structures underpins many important materials science problems, including describ-
ing solid-solid phase transitions and developing models for interface and grain boundary structures. In this work, we formulate the matching
of crystals as an optimization problem where the goal is to find the alignment and the atom-to-atom map that minimize a given cost function
such as the Euclidean distance between the atoms. We construct an algorithm that directly solves this problem for large finite portions of the
crystals and retrieves the periodicity of the match subsequently. We demonstrate its capacity to describe transformation pathways between
known polymorphs and to reproduce experimentally realized structures of semi-coherent interfaces. Additionally, from our findings, we
define a rigorous metric for measuring distances between crystal structures that can be used to properly quantify their geometric (Euclidean)
closeness.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5131527., s

I. INTRODUCTION

Establishing an optimal match between two different crystal
structures with respect to some cost function is a problem that cuts
across the entire field of materials science. Perhaps the most evident
example is the process of finding a suitable substrate to epitaxi-
ally grow a material.1–3 Similarly, when studying interfaces between
different phases (heterojunctions), one might be interested in the
alignment and the bonding pattern between the two phases. Another
important example lies in findingminimal energy pathways between
different polymorphs. The initial and final structures are known,
but the transformation from one to the other is not. To even begin
to describe it, one needs to find the best way to map every atom
of the initial structure to its counterpart in the final structure and
to optimally align the structures. Once the mapping and alignment
are established, other methods such as the solid state nudge elastic
band4–7 can be used to determine the energetics of the transition.

In regard to interfaces, many have worked on methods to find
and characterize the coincidence of lattices and orientation rela-
tionships between phases and grains. Several different approaches
were developed, e.g., the O-lattice theory part of the CSL/DSC lattice
model,8–12 the edge to edgemodel,13,14 the Coincidence of Reciprocal
Lattice Points’ (CRLP) model,15 methods based on the Zur algo-
rithm,3,16,17 and the work of Jelver et al.18 While the O-lattice theory

suffers from a lack of predictive capabilities, the other approaches
do have the ability to predict orientation relationships, but they do
not match the full structures. The edge to edge model only consid-
ers high density (nearly close packed) planes and directions whereas
the CRLP and Zur algorithm only match the underlying lattices of
the structures and not the atoms inside them. Jelver et al. presented
a crystal matching method that maps atoms inside a combination of
the unit cells of the two structures, which, as explained further in this
section, has some important limitations.

Matching is also closely related to measuring distances between
crystal structures. Indeed, any definition of a distance metric
requires establishing some correspondence between their atoms.
For finite systems such as molecules, Sadeghi and Goedecker19
defined a distance as the minimal l2-norm of the vector joining
the molecules in the configuration space of atoms with respect to
both their relative positions (alignment) and the permutation of
atomic indices.20 However, the configuration space of periodic sys-
tems is, strictly speaking, ill-defined because of the infinite number
of dimensions. Moreover, the permutation degeneracy in labeling
atoms also poses problems. Both of these make the matching of crys-
tal structures challenging and the definition of the distance metric
between periodic structures elusive.

In structure predictions, for the purpose of identifying similar
(close) structures, Oganov elegantly circumvented this problem by
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introducing the so-called fingerprint function constructed to reflect
the short-range order (coordination in various shells, etc.) and defin-
ing the distance metric between crystal structures with respect to
it.21 Various other fingerprint functions and representations have
been proposed since.22–25 Although they can efficiently measure the
similarity between structures, those methods do not establish a one-
to-one correspondence between each atom of the structures, nor do
they provide the optimal alignment between them. Therefore, the
question whether a Euclidean distance metric in the configuration
space of atoms (l2-norm) and its corresponding matching can be
defined for periodic systems remains open.

An intuitive way to go about this problem is to take advan-
tage of the periodicity by matching and measuring the distance
between atoms inside the unit cells of the two structures. This
inevitably leads to the obstacles illustrated in Fig. 1. Panel (a) shows
two 2D crystals with different unit cells each having one atom per
cell. If, for example, one wishes to minimize the distance between
the atoms, a naive way to match these two structures would be to
align their unit cells so that the atoms overlap. This would pro-
duce a distance of zero. Other atoms would simply be mapped
based on the correspondence between the unit cells. However, this
mapping would lead to the distances between the corresponding
atoms diverging as one moves away from the two perfectly aligned
unit cells at the center of Fig. 1(b). There is, however, a solution
to this particular problem shown in Fig. 1(c) that does not suf-
fer from this divergence and that produces equal and finite dis-
tances between all corresponding atoms. This solution yields a much
shorter total distance if large portions (grains) of the two crystals are
considered. While matching larger supercells and taking advantage
of their Niggli-Santora-Gruber reduced cell26–28 might seem like a

FIG. 1. Drawbacks of a method that relies on matching some choice of the unit
cells of the two crystals. (a) Visual representation of the matching inside one cell
for a simple 2D example where the cells have the same area. (b) The two overlaid
crystal structures using the same matching. (c) The same crystal structures over-
laid such that the distance (red arrows) does not increase away from the center;
the red dashed rectangle shows the scale (periodic unit) of the match.

solution to this particular example, choosing the size of the super-
cells and comparing distances between different sizes remains an
issue.

One way to robustly find solutions such as the one from
Fig. 1(c) is by disregarding the periodicity in the two structures.
If it exists, the periodicity of the mapping itself can be retrieved
subsequently. For this reason, as we will explain, our algorithm is
constructed to use large sections of the two crystals and to min-
imize the total distance traveled by all the atoms. Consequently,
the choice of a unit cell has no impact on the final result and the
periodic unit of the transformation emerges naturally. Any other
method to match two crystal structures that relies onmatching some
choice of the unit cell, including our previous work29 as well as
work of others,18,30–32 will suffer from the problem illustrated in
Fig. 1.

With the aforementioned considerations, we formulate the
problem of matching crystal structures in the following way: given
the positions of all the atoms in the two crystals, {�ai�i = 1, . . . ,N}
and {�bj�i = 1, . . . ,N}, what is the best atom-to-atom mapping
pmin (permutation of atomic indices) and the best alignment of the
two structures (linear transformation Qmin and translation�tmin) that
minimize a given distance (cost) function d? This is equivalent to
solving the following equation when N →∞:

pmin,Qmin,�tmin = argmin
p,Q,�t

N�
i
d( �ai , Q�bp(i) +�t ). (1)

Formulating the problem in this way has the advantage of mak-
ing the solution method easily adaptable to any given cost function,
being the sum of Euclidean distances (l2-norms) between the atoms
or some other function depending on the particular problem or
application. Posed as such, matching the structures is equivalent to
doing a Point Set Registration (PSR),33 a well-studied process used in
computer vision and pattern recognition. Our algorithm is inspired
by PSR methods.

Herein, we describe our structure matching algorithm in detail
and showcase its applications to phase transformations and semi-
coherent interfaces. We demonstrate that it robustly reproduces
known results for several well-studied polymorphic transforma-
tions. It also seamlessly reproduces and explains the experimen-
tally observed semi-coherency and orientation relationships for the
interfaces between Si and SiC, and Ni and Yttria Stabilized Zirco-
nia (YSZ). Finally, drawing upon the results of our crystal match-
ing algorithm, we discuss and propose a proper Euclidean metric
between infinitely periodic crystal structures.

II. THE ALGORITHM
We start by introducing nomenclature used in this paper. Crys-

tal structures are represented by three objects: the unit cell matrix
(C), the 3 × N matrix of atomic positions (P) where N is the num-
ber of atoms in the unit cell, and the 1 × N list (L) of the symbols
of chemical elements occupying those positions. It is understood
that the order of elements in the matrix P and the list L is the
same. Finally, we combine these three into a single crystal structure
object,

A ≡ {CA,PA,LA}.
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It is important to note that there exist an infinite number of repre-
sentations of the same structure due to the arbitrariness in the choice
of the periodic unit (unit cell).

A. Distance minimization
The first step to solving Eq. (1) in practice is to make the two

structures we would like to match finite. The structures A and B are
the primary input to our algorithm along with the size of the finite
sections of the structures and the distance function (d) to optimize.
We make A and B finite by cutting out spherical sections around
the origins of the two structures ensuring that the stoichiometry is
preserved in each structure and that they both have the same number
of atoms. Making the sections approximately spherical is done by
selecting the atoms that are the closest to a central point in a process
called tiling as denoted in the flowchart of our algorithm shown in
Fig. 2.

Next, the structures are brought to the same geometric cen-
ters and an initial random rotation Q0 and a random translation �t0
are applied to one of them (step 2, see Fig. 2). The structure that
is rotated and translated is labeled the “mapping structure” (B), to
which all subsequent geometric transformations will be applied and
the other one is labeled “mapped structure” (A) and it remains fixed
in space. The initial translation �t0 is constrained to within one unit
cell of the mapped structure (A).

After this initial alignment, atoms in the two structures are
mapped to each other, i.e., the permutation p1 of atom indices in the
mapping structure is chosen such that the distance function is min-
imized (step 3). The details of the mapping procedure are provided
in Sec. II B. Next, for this particular atom-to-atommap, the distance
between the two structures is minimized with respect to rotationsQ1
and translations �t1 using a gradient descent (step 4). It is important
to note that Q does not need to be a rigid rotation. Depending on
the application, it can also contain a certain amount of deformation
such that 1 − ε < det(Q) < 1 + ε. At this point, the atom-to-atom
map p1 is not necessarily optimal, since it was established before the
translation and rotation were optimized. Step 3 is therefore repeated
using the new alignment Q1 and �t1 to obtain p2. Then, with this new
mapping, the algorithm finds Q2 and �t2 (step 4), remaps again and
so on, iteratively, until the p, Q and �t stop changing. This iterative
procedure can be mathematically formulated as

pj = argmin
p

N�
i
d��ai,Qj−1�bp(i) +�tj−1�,

�tj,Qj = argmin�t,Q
N�
i
d��ai,Q�bpj(i) +�t �,

(2)

where the index j is the iteration number of the mapping loop from
Fig. 2. At the end of the mapping loop, the algorithm has reached a
local minimum. In order to find the global minimum, one needs to
explore the dependence of the results on the random initialization.
This we do by constructing an outer random minimization loop by
repeating the whole procedure (i.e., steps 2, 3, and 4) a large number
of times until the best local minimum stops changing.

The distance minimization part of the algorithm is a form of
iterative closest point (ICP),34 a classic scheme to solve point set
registration (PSR) problems that iteratively associates two sets of
points and minimizes the distance between them. In our case, the

FIG. 2. Workflow of the algorithm. Green bubbles represent inputs, and red
bubbles represent outputs. The letters correspond to the panels of Fig. 4.

data association is done by solving the assignment problem using
the Khun–Munkres algorithm (see Sec. II B). To the best of our
knowledge, only a few ICP algorithms have used thismethod to asso-
ciate data.35,36 Moreover, our problem differs widely from most PSR
problems for the following reasons: (1) The crystals are by definition
featureless since they are infinite periodic sets of points.Macroscopic
features cannot be used to reduce the number of points or to find an
approximate result like it is done in many PSR algorithms including
Refs. 35 and 36. (2) The two structures are three-dimensional (in the
case of phase transformations), i.e., points occupy the full 3D space,
they do not represent the surface of a 3D object like in most PSR
problems.35–37 (3) The two structures are in many cases inherently
different; they are not supposed to be similar whereas typical PSR
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problems aim to match different representations of a same object,
e.g., modeled and measured data, data from different instruments,
two pieces of a broken object, etc.35–37 (4) Every point, its mapping
and the distance function to minimize are physically significant. For
that reason, no point can be ignored or considered as an outlier, each
atom needs to map to exactly one atom (in the case of phase trans-
formations), and the cost function must be relevant to the problem
at hand (phase transformation, interfaces, and similarity measure-
ment). Therefore, even though the distance minimization part of
our algorithm is a form of ICP, other existing PSR algorithms could
not be used directly to find the optimal one-to-one mapping and
alignment between crystal structures.

B. Atom-to-atom mapping
Let us explain in more details how the permutation p of atomic

indices is optimized. At a given mapping loop iteration, the position
of each atom in both sections of the A and B structures is known.
The goal is to assign each atom of the mapping structure to an atom
in the mapped structure such that the sum of the distances between
the pairs of corresponding atoms is minimized. As cleverly noted
by Sadeghi and Goedecker,19 this is exactly analogous to the assign-
ment problem, a well-studied mathematical problem for which
there exist an exact solution that can be computed in polynomial
time.38

The assignment problem consists of finding an optimal way to
assign agents to tasks, e.g., clients (tasks) to their taxis (agents) such
that the total distance traveled by all the taxis (cost) is minimized.
Once the position of each atom is known, the structure mapping
problem is exactly equivalent to the assignment problem. The algo-
rithm needs to assign each atom of the mapping structure (or task),
shown in red in Fig. 3, to an atom in themapped structure (or agent),
shown in gray, such that the total distance (cost) is minimized. The
naive route to solving this problem is to try all possible assignments
of atoms, but this operation scales as N! Instead, our algorithm uses
the existing Kuhn–Munkres method38 (also known as the Hungar-
ian algorithm) that solves the assignment problem in polynomial
time. This algorithm takes as an input a cost matrix, which consists
of distances between each possible pair of atoms between the two
structures.

Intuitively, one could think that the best way to apply the Hun-
garian algorithm is to map all A atoms to all B atoms. This is, in fact,
problematic because there is no guarantee that the boundaries of
the two spherical sections are perfectly compatible. In other words,
if at the boundary of B an atom needs to be mapped in the most
optimal way to an atom that is outside the boundary of A (it is not
part of the finite section created at step 1), it will have to be mapped
to some other atom of A regardless. This will lead to an unwanted,
exaggerated, influence of the boundaries on the final result. To pre-
vent this from happening, the mapping structure (B) is made smaller
than the mapped structure (A) by making the bottom portion of the
cost matrix costless (see Fig. 3). This means that the mapping of the
outer shell of the mapping structure has no effect on the total cost
and that these atoms can be considered nonexistent; they are simply
placeholders. In other words, there are more agents then there are
tasks; some agents will be assigned the task “do nothing.” Thereby,
since there are now less atoms in the mapping structure than in
the mapped structure, each atom at the boundary of the mapping

FIG. 3. Mapping of the structures. The top part shows qualitatively how the struc-
tures are mapped. The bottom part depicts the cost matrix of the assignment
problem. Regions of different colors in the structures correspond to different costs
in the matrix (see the text for details).

structure, can find its true counterpart in the mapped structure
(provided that the mapped structure is large enough).

This inevitably leads to a new problem: there is no guaran-
tee that all the atoms close to the center of the mapped structure
will actually be mapped. In other words, some atoms of A can be
“skipped” by the algorithm. When studying polymorphic transfor-
mation, this can be problematic since atoms cannot disappear when
going from the initial to the final structure, i.e., every atom needs
to be mapped. To avoid this problem, a very high cost can be given
for mapping placeholders at the outside of the mapping structure
to core atoms (important atoms) inside the mapped structure (see
Fig. 3). When an atom of the mapped structure is not mapped, it
is, in fact, mapped to a placeholder in the mapping structure (it is
assigned the task “do nothing”). Therefore, imposing a very high
cost to mapping core atoms to placeholders will prevent those atoms
from not being mapped. Or in terms of tasks and agents: impor-
tant agents cannot be assigned the task “do nothing.” Adding core
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atoms enforces the one-to-onemapping (bijection) between the core
of the mapped structure and the corresponding subset of atoms in
the mapping structure. The choice of core atoms (if any) and the rel-
ative size of the mapping structure compared to the mapped struc-
tures are also the parameters external to the algorithm (set by the
user).

This concludes the distance minimization part of the algorithm
(upper part in Fig. 2), which leads to the optimal alignment and
the atom-to-atom mapping between two structures. The result of
this stage is depicted in Fig. 4(a) for a simple 2D example used to
illustrate various aspects of our algorithm.

C. Finding periodicity
In the previous part of the algorithm, the distance has been

minimized, and the optimal mapping has been found. The result-
ing (pmin,Qmin,�tmin) is only applicable to the finite portions of the
two crystals that were chosen at the Tiling step. The goal, however, is
to describe the matching for the full infinite crystals, which requires
finding the periodicity of the map if it exists.

We start from a vector field of connections, that is, the vectors
that go from the mapping structure (B) to the mapped structure
(A) noted �ρi = �ai − (Qmin�bpmin(i) + �tmin). The idea is to classify
equivalent connections into groups, label them, and find the unit
cell of the resulting “connection crystal.” To do so, the first step

is to make the connections periodic. Indeed, even when the map-
ping pmin is periodic, the connections themselves are not necessarily
periodic, and, as already discussed, they can diverge in magnitude
[see Fig. 4(a)]. In the example from Fig. 1, the volumes per atom
(areas in 2D) of the structures are exactly the same which implies
the existence of a solution with non-diverging connections, but,
in general, if the volumes are different the divergence cannot be
avoided.

The connections can be decomposed in two components: (1)
a component that accounts for the difference in volumes (stretch-
ing/compressing or strain) and (2) a non-diverging, periodic com-
ponent. The magnitude of the former increases as one moves away
from the center of alignment. In order to reveal the periodicity,
the non-diverging component needs to be isolated from the diver-
gent one. To do so, keeping the final atom-to-atom mapping pmin
fixed, the algorithmminimizes the distance once more, but this time
with respect to a linear transformation T and a translation �t, where
det(T) is unrestricted (step 5, see Fig. 2). An illustration of the result-
ing connection field after step 5 is presented in Fig. 4(b). If the
structures were infinite, minimizing the distance with respect to T
would naturally eliminate the diverging component of the connec-
tions bymaking the volume per atom the same in both structures i.e.,
det(T) = det (CA)/det (CB). However, since, in practice, the struc-
tures are finite, the condition on det(T) is not exactly fulfilled and
the connections are not yet fully periodic.

FIG. 4. Two-dimensional example of
the post-processing steps. Each panel
shows the mapping structure in red and
the mapped structure in gray. The arrows
represent the connections. The distance
is the Euclidean distance, and the one-
to-one mapping condition is enforced.
(a) The system after a total distance
minimization with respect to translation,
rotation, and mapping. (b) The system
after a total distance minimization with
respect to translation and linear transfor-
mation, using the mapping obtained at
the previous step. (c) The system after
an initial classification. Arrows of dif-
ferent colors represent different classes
of connections. (d) The system after a
class-specific standard deviation mini-
mization with respect to translation and
linear transformation, using the mapping
obtained previously.
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To address this problem, the algorithm proceeds to an initial
coarse classification of the connections. It is done by placing the
connection vectors in different groups with respect to their norm
and orientation according to a certain tolerance factor (analogous
to bins when making a histogram). On Fig. 4, from (b) to (c), the
connections are separated into two groups: blue, pointing up, and
orange, pointing down. The algorithm then proceeds to making the
connections in each group as similar as possible to each other (in
norms and directions) by applying an additional linear transforma-
tion to themapping structure in order to correct the finite size effects
introduced at the previous step (step 5). This is done simultane-
ously for all classes of connections where instead of minimizing the
distance function, the algorithm minimizes the class-specific stan-
dard deviation (STD) of the connections. This step is represented
mathematically by the following equation:

�t,T = argmin�t′ ,T′
N�
i

����ρi −
∑
j∈Ωi

�ρj
�Ωi�
���
2

, (3)

where
�ρi = �ai − (T′�bpmin(i) +�t′),

Ωi is the class that contains i, and �Ωi� denotes the number of ele-
ments in that class. The quantity to minimize in Eq. (3) is simply
a standard deviation with respect to the mean of each class. The
classification (step 6) and the minimization of the STD (step 7) are
repeated reducing the classification tolerance iteratively until, the
STD is equal to zero. This is what we call the Classification Loop on
Fig. 2. In practice, making connections of each class exactly identical
eliminates the remaining diverging component, which is confirmed
by verifying that det(T) = det (CA)/det (CB). After this step, the con-
nections are perfectly periodic and reflect periodicity in the mapping
(which has remained the same) as shown in Fig. 4(d).

Using the classification of the connections, we can simply pro-
ceed as if we were to find the unit cell of a crystal made of connection
vectors (instead of atoms). This structure can be described like any
other crystal structure byD = {CD, PD, LD}, but in this case LD is a list
of labels that indicates the atomic specie and the class of connection
[e.g., blue or yellow on Fig. 4(d)]. The primitive cell of that struc-
ture is the scale of the matching and also an alternative unit cell C′A

of structure A and, consequently, also determines an alternative unit
cell C′B of B.D and T are the final results of the algorithm. They have
the following properties:

CD = C′A = TC′B, (4a)

PD = TP′B, (4b)

PD = P′A −VD, (4c)

LD = L′A = L′B, (4d)

where A′ and B′ are alternate representations of A and B; in general,
they are not the ones that were input initially. VD is a matrix whose
columns are the connection vectors associated with each atomic
position. It can easily be constructed from LD.

A full implementation of our algorithm is available online (see
Sec. VI).

III. APPLICATIONS

A. Solid-solid phase transformations
To find transformation pathways using our algorithm, we set

the distance function to be the Euclidean distance between the
atoms, we set ε = 0 such that no amount of deformation is allowed
during the distance minimization step (upper part of Fig. 2) and we
enforce the one-to-one mapping condition. The algorithm therefore
finds the transformation for which the total distance traveled by all
the atoms to go from the initial to the final structure is minimal.
The “connection vectors” (arrows) represent the displacements of
the atoms during the transition. The output from the algorithm, D
and T, can be used to fully describe the system at any state along the
transition path.

We have tested our algorithm on several well-studied transfor-
mations. Table I summarizes the results. For hexagonal close-packed
(HCP) to body centered cubic (BCC), graphite to diamond, and
rocksalt to zincblende, we find pathways that have been previously
reported in the literature.29,31,39–42,46 The symmetries of the interme-
diate structures are exactly the same. For the other three transforma-
tions [face centered cubic (FCC) to BCC, rocksalt to CsCl-type, rock-
salt to wurtzite], we find new pathways that have not been reported
yet.

TABLE I. Result summary of solid–solid transformations. The names of the initial and final structures are given together with their chemical composition from which the lattice
parameters are taken. We also provide the space group assignment for the initial, lowest symmetry intermediate, and the final structures. The last column indicates whether the
pathway found by our algorithm agrees with those discussed in the literature. For mechanisms that involve slipping processes, the information about the underlying mechanism
(without slipping) is specified in parentheses.

Space groups lowest Previously reported
Transformation Chemical comp. Initial Symmetry Intermediate Final (without slipping)

HCP to BCC Ti P63/mmc → Cmcm → Im-3m Yes29,39,40

Graphite to diamond C P63/mmc → C2/m → Fd-3m Yes29,41,42

FCC to BCC Fe Fm-3m → P21m (I4/mmm) → Im-3m No (Yes29,43,44)
Rocksalt to CsCl-type CsCl Fm-3m → Pc (Pmmn) → Pm-3m No (Yes29,31,45)
Rocksalt to wurtzite ZnO Fm-3m → P31 → P63mc No
Rocksalt to zincblende SiC Fm-3m → R3m → F-43m Yes31,46
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In the case of FCC to BCC and rocksalt to CsCl-type, the newly
found pathways involve a slipping process. It has the effect of reduc-
ing the total distance between the atoms. By preventing slipping
from happening, we find exactly the same transformation mecha-
nisms (indicated in parentheses in Table I) that have been reported
before. All of the mechanisms that are discussed in the literature for
these transformations have been derived using periodic boundary
conditions; hence, they all suffer from the problem from Fig. 1. For a
large number of atoms, they inevitably lead to the greater total travel
distances than the same mechanisms with the added slipping pro-
cess (see Fig. 7 for FCC to BCC). As we have mentioned before,
the component of the displacement of the atoms (or connections)
that has the most impact on the total distance is the one associated
with strain. Therefore, by minimizing distance our algorithm also
minimizes strain. The slipping process appears naturally because it
reduces the strain associated with the transformation. In regard to
rocksalt to wurtzite, our new pathway does not involve a simple slip-
ping mechanism, but a more complex process which, in turn, also
leads to a shorter travel distance and consequently smaller princi-
pal strains than the path with symmetry Cmc21 reported in Refs. 29,
31, and 47 (see Fig. 7). These effects are not present in the HCP to
BCC, graphite to diamond, and rocksalt to zincblende, for which
our algorithm agrees with the mechanisms commonly discussed
in the literature because these mechanisms already minimize the
strain.

These considerations show that (1) we have reached our goal
of creating an algorithm that finds the true path of minimal distance
since we either find known pathways or new pathways of shorter
total distance and that (2) the result from our algorithm can not only
be used as a starting point for ssNEB, but it can also be interpreted
directly to explain certain features of the transformation.

For example, let us analyze in more detail the FCC to BCC
transformation in iron also known as the martensitic transforma-
tion. The martensitic transformation is the diffusion-less transfor-
mation of steel from the cubic face centered (FCC) austenite (γ)
phase to the body-centered cubic (BCC) or body-centered tetragonal
(BCT) martensite (α). For simplicity, we considered the transition
of pure iron from FCC to BCC. For austenite, we used a lattice
parameter of aγ = 0.3585 Å and we defined the lattice parameter
in martensite as aα = � 2

3aγ = 2.2927 Å such that the closed pack
directions have the same atomic density for both structures.

Figure 5 shows the martensitic transformation found by our
algorithm. The transformation consists of a main shear of the (112)α
planes in the [111]α direction with slip planes every six layers.
Between the slip planes, the intermediate structure has the I4/mmm
space group which correspond to a Bain distortion accompanied
by a rotation. Transformation mechanisms that involve a rotated
Bain deformation have been widely theorized.43,44,48 As we men-
tioned, the occurrence of slip planes can be explained by the fact
that they greatly reduce the strain necessary to carry out the trans-
formation. The principal strains for our new mechanism are −5.7%,
0% and 15.5%, whereas they would be −18.4%, 15.5%, and 15.5%
without the occurrence of slip planes (Bain distortion). This slip-
ping process is often used in the context of the phenomenological
theory of martensitic transformation49–53 to explain the occurrence
of striations along the (112)α; our algorithm finds it naturally by
minimizing the distance.

The number of layers between the slip planes depends on the
ratio between the parameters of the initial and final structure. The
connection structure is composed of 6 atoms which means that
the transformation occurs at a scale that corresponds to 6 primi-
tive cells of the two end structures (they have the same number of
atoms). Once again, our algorithm behaves as expected by finding a
transformation that reduces the total travel distance—and thus the
strain—and by being able to find transitions that occur on a larger
scale. A more detailed analysis of our results for the martensitic
transformation will be published elsewhere.54

In this study of the martensitic transformation, we used 1000
random initialization steps (random initialization loop), a mapping
structure of 180 atoms and a mapped structure of 600 atoms with
the one-to-one mapping enforced. Those parameters ensure that
the finite portion of the crystal is much larger than the connection
cell and that the global minimum is reached. The calculation took
6 min 41 s on a 36-core Intel Xeon Gold 6154 (3.00 GHz) node and
2 h 12 min 44 s on a 4-core Intel Core i7-8550U (1.80 GHz) lap-
top. Using the same parameters, the minimization for HCP to BCC,
rocksalt to CsCl-type, and rocksalt to zincblende were done in 7 min
31 s, 2 min 47 s, and 1 min 14 s, respectively, on the computing
node. For the transition from graphite to diamond, which involves
a large change in specific volumes, we used a mapping structure of
160 atoms and a much larger mapped structure of 1600 atoms. This
was done to ensure that there was a sufficient number of graphite

FIG. 5. Modeled martensitic transforma-
tion. The panel on the left represents
the initial FCC structure viewed in the
[001] direction. The middle panel shows
the structure along the transformation.
The right panel shows the structure in
the final BCC structure from the [110]
direction. In each panel, the BCC con-
ventional cell is represented in blue and
the FCC conventional cell in black. The
red and blue rows of atoms are guides to
help visualize the slipping process.
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layers in themapped structure.We also increased the number of ran-
dom initial steps to 3000 in order to find the global minimum. This
calculation was completed in 29 h 54min on the compute node. Sim-
ilarly, for the transition from rocksalt to wurtzite, we used amapping
structure of 600 atoms and a mapped structure of 2000 atoms with
2000 initial steps; the calculation was completed in 5 h 14 min. The
limiting factor in the distance minimization is the resolution of the
assignment problem, therefore the complexity of the mapping dic-
tates the total execution time. Future development may involve the
use of an implementation of the Hungarian algorithm parallelized
for graphics processing units (GPUs).

B. Semi-coherent interfaces
Next, we illustrate how our algorithm can also be used to find

the structures of semi-coherent interfaces between different mate-
rials. In the examples that follow, we consider only the terminating
planes in each structure. Therefore, in our algorithm the two struc-
tures are modeled as large disk-like 2D sections of the terminating
planes (instead of spheres in 3D). For demonstration purposes, here,
the plane directions and terminating layers are taken from the exper-
iment. Each connection between an atom from the mapped struc-
ture and an atom from the mapping structure represents a chemical
bond. Atoms no longer have to be mapped to atoms of the same
specie, they are mapped according to chemistry rules that determine
which types of atoms from one structure will bond to which type of
atoms from the other structure, e.g., Zr atoms bond with Ni atoms.
These rules need to be known in advance. Since connections now
represent chemical bonds, for the distance metric in Eq. (1), we use
the Lennard–Jones potential

d(�a,�b) = σ� r12

��a − �b�12 − 2
r6

��a − �b�6 �, (5)

where σ denotes the potential strength and r the equilibrium radius.
We use this potential because it is a mathematically simple represen-
tation of the general shape of the potential between 2 atoms. In our
model, atoms are bonded with at most 1 atom of the other phase.
In other words, we assume that the bond with the closest neighbor-
ing atom of the other phase is the strongest and most consequential
in terms of energy and alignment. Since we are only interested in
the optimal alignment—we are not trying to predict the interfacial
energy—the strength of the potential σ is not important and it is set
to 1. Thus, the potential has only one parameter: the equilibrium
radius r. It can be set based on physical or experimental arguments.
Moreover, there is no need to enforce that each and every atom of
both structures form a bond. In the case of semi-coherent interfaces,
for example, the lattice constant of the two materials can be very dif-
ferent such that only a fraction of the atoms at the interfaces will
form bonds. Because, in our model, an atom can form at most 1
bond (1 or 0 bond), there cannot be more bonds per unit area than
there are atoms per unit area in the structure that is the least dense.
Since, in general we wish to maximize the number of bonds per unit
area, all the atoms of the least dense phase need to form a bond.
This is done by setting the denser structure as the mapped struc-
ture and by setting the fraction of core atoms in the cost matrix to
0 such that the one-to-one mapping is not enforced. In fact, in this
case, we take advantage of the fact that certain atom will naturally

be “skipped” when making the mapping structure smaller than the
mapped structure. Finally, during the distance minimization step [in
this case the distance is defined by Eq. (5)], the structures may be
slightly strained in-plane near the interface in order to maximize the
bonding energy. Therefore, we usually set ε to a value between 3%
and 8%.

We used our algorithm to find the orientation between two
experimentally realized interfaces. The first system is a solid-solid
interface between Ni and yttrium-stabilized zirconia (YSZ). This
interface was experimentally realized and studied by Nahor and
Kaplan.56 We used the parameters from their experiment to run our
simulation. For face-centered cubic Ni, we used a lattice parame-
ter of 3.52 Å and for cubic ZrO2, we used a lattice parameter of
5.125 Å (apart from its effect on the lattice parameter, the presence
of yttrium was not considered in our simulation). We specified the
interfacial plane (111) for both structures and used the termination
(Zr for ZrO2) specified in Ref. 56. We set the equilibrium point of
the Lennard–Jones potential r to be 2.5 Å, because it is close to the
Ni–Ni interatomic distance of 2.49 Å. The value of the equilibrium
point is an estimate of the length of the bonds and therefore it deter-
mines the distance between the layers of the two phases.We find that
its value does not have a strong incidence on the final result. We set
ε to 0.08 such that there can be some strain in the layers close to the
surface.

We find Ni�110�(111)//ZrO2 �110�(111)58 to be the opti-
mal alignment between the two structures in accordance with the
experimental observation. Figure 6(a) shows the interface viewed in
the [111] projection (from above). The algorithm finds a repeat-
ing pattern of only a few unit cells in sharp contrast with the
33 × 33 unit cells O-lattice found using the measured orienta-
tion relationship.56 This smaller cell has the advantage of directly
providing the matching modes of the interfaces: 2:3 Zr–Ni which
is in accordance with the “one dislocation every three Ni planes”
observed by Nahor et al. This smaller cell is possible because the
optimal result was found by allowing some strain in the interface lay-
ers. In fact, in the result shown in Fig. 6, the ratio between the area of
the Zr unit cells in-plane and the Ni unit cells in-plane is increased
by 6.12%. In other words, there is tension in the YSZ side and com-
pression on the Ni side also in agreement with the observation of
Nahor et al. Not only does our algorithm correctly reproduce the
measured orientation relationship solely using the in-plane lattice
parameters, but it also provides the matching mode and the general
direction of the strain (tension or compression) in the layers near
the interface. A projection of our model along the Ni[110] direc-
tion with the aforementioned in-plane strain is presented in Fig. 6(b)
in comparison with an HRTEM micrograph of the same projec-
tion. The model is in very good agreement with the experimental
result.

The second system is the solid-solid interface between Si and
SiC. This interface was experimentally realized and studied by Li
et al.,57 once again, we used the parameters from their experiment
to run our simulation. For diamond Si we used a lattice parameter
of 5.43 Å and for hexagonal close-packed (HCP) 6H–SiC we used a
lattice parameter of 3.08 Å. We set ε to 0.08. As specified in Ref. 57,
we matched the (110) plane of Si with the Si terminated (001) plane
of SiC. We set the equilibrium point of the Lennard–Jones potential
(r) to be 2.5 (Å), because it is close to the Si–Si interatomic distance
of 2.35 (Å).
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FIG. 6. Examples of interface models from our algorithm and comparison with experimental results. (a) In-plane (111) view of the Ni on ZrO2 interface model. The repeating
matching pattern is highlighted by a blue dashed parallelogram. (b) Ni[110] projection of the model (left) partially overlaid on an HRTEM micrograph of the same projection
taken from Ref. 56. The atomic columns are placed on the micrograph according to the simulations in Ref. 56. (c) In-plane Si(110) view of the Si on SiC interface model.
The repeating matching pattern is highlighted by a red dashed parallelogram. (d) Si[001] projection of the model partially overlaid on an HRTEM micrograph of the same
projection taken from Ref. 57. We processed the original image using the Fourier masks filtering technique and contrast enhancement. The atomic columns are placed on
the micrograph such that the periodicity of our model can be easily compared to that of the micrograph.

We find the Si�110�(110)//6H–SiC �110� (001) orientation to
be the optimal alignment between the two structures in accordance
with the experimental observation. Figure 6(c) shows the interface
viewed in the Si [110] projection (from above). Once again, our
periodic pattern is in accordance with the observed 4:5 Si to SiC
matching mode in the Si[111]/SiC [110] direction. In addition, the
algorithm finds a 1.68% increase in the ratio between the in-plane
Si(SiC) cell and the in-plane Si(Si) cell. In other words, the 6H–
SiC structure is stretched and/or the Si structure is compressed at
the interface to obtain that ratio. This could explain the 1.84% mis-
match in the Si [001] direction and the 0.26% residual mismatch in
the Si[110] direction noted by Li et al. A projection of our model

along the Si[001] direction with the aforementioned in-plane strain
is presented on Fig. 6(d) in comparison with anHRTEMmicrograph
of the same projection; the model is in very good agreement with the
experimental result.

We obtained the result presented above using the same type
of 36-core Intel Xeon computing nodes. For Ni//YSZ the mini-
mum was obtained in 1 min 35 s using a mapping structure of
325 atoms and a mapped structure of 1300 atoms with 1000 ini-
tializations. For Si//SiC we used a mapping structure of 150 atoms
and a mapped structure of 600 atoms with the same num-
ber of random initializations. The calculation was completed in
13 min 39 s.
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IV. MEASURING DISTANCE BETWEEN CRYSTAL
STRUCTURES

As discussed previously, defining a rigorous Euclidean distance
between crystal structures or more broadly between infinitely peri-
odic arrays of points is a challenging task. First, the infinite dimen-
sionality of the configuration space poses problem. This difficulty
can, in principle, be avoided by scaling the metric with some func-
tion of the number of atoms N. As we will show in this section, it
is actually not possible as the dependence on the number of atoms
involves different powers of N. Second, and as importantly, even a
finite portion of a crystal structure is not represented by a unique
point in the N-dimensional configuration space of atomic coor-
dinates, but by several points that reflect (a) the permutations of
atomic indices that describe the same crystal structure and (b) the
variability in the choice of the N-atom section of an infinitely peri-
odic crystal. The definition of a distance metric between two crystal
structures for any fixedN implies finding the two closest representa-
tive points of the two structures in the N-dimensional configuration
space, a task that is tackled by our algorithm. In fact, once the opti-
mal parameters (pmin,Qmin,�tmin) defined in Eq. (1) are found, for a
fixed N, the minimized distance may serve as a mathematical metric
between periodic structures.

Let us consider the distance between two structures in the
situation where the correspondence between them has already
been established. Since the mapping is periodic, the two structures
(A and B) in their optimal matching can be described with cells CA
and CB which both contain m atoms and are optimally aligned, and
with atomic positions {�ai � i = 1, 2, . . . ,m} and {�bi � i = 1, 2, . . . ,m}
inside the cells indexed according to the optimal mapping. The
shortest travel distance between the two structures with this
match is

d1 = m�
l=1

n
2�

i,j,k=− n
2

��aijkl − �bijkl�, (6)

where �aijkl stands for the position of an atom that belongs to the
structure A. �aijkl is a periodic image of an atom with an index l
located in the unit cell indexed with ijk. More precisely,

�aijkl = CA

����
i
j
k

���� + �al, (7)

and analogously for the structure B. The total number of atoms in
each structure is N = m (n + 1)3. This distance (d1) is, by con-
struction, the l1,2-norm59,60 of the 3 × N matrix formed by the con-
nection vectors. We used the same norm when posing the match-
ing problem for phase transitions. So far, we used the l1,2-norm
because it represents the sum of the distances traveled by all the
atoms during the transition, but one could also be interested in
computing the Frobenius norm of that matrix, i.e., the l2-norm of
the vector joining the two structures in configuration space. It is
given by

d2 =
����� m�

l=1

n
2�

i,j,k=− n
2

��aijkl − �bijkl�2. (8)

Adding a 1/N factor inside the square root in front of the summation
gives the root mean square distance (RMSD). It is important to note
that, for finite N, the set of optimal parameters (pmin,Qmin,�tmin) is
not necessarily the same for d1 and d2 When they are optimized,
both d1 and d2 fulfill the 4 requirements of a metric:

1. d (A, B) ≥ 0,
2. d (A, B) = 0⇔ A = B,
3. d (A, B) = d (B, A), and
4. d (A, C) ≤ d(A, B) + d(B, C).

The first 3 criteria follow trivially from the properties of the l2-norm
applied to the connection vectors. The fourth criterion follows from
the fact that both d1(A,C) and d2(A,C) are defined respective to their(pmin,Qmin,�tmin) and represent the shortest distance between A and
C. The problem is that both d1 and d2 depend on N and in order
to compare actual structures, we either need: (1) to derive quantities
from d1 and d2 that are independent of N, or (2) find a way to com-
pare distances in the limit where N →∞. In both cases, the first step
is to derive the dependence of d1 and d2 on N.

A. Size dependence
The case of d2 can be derived analytically so we will use it for

demonstration purposes. Let us first define �ρl = �al − �bl and C′ = (CA− CB) whose columns are {�cν � ν = 1, 2, 3}. From Eq. (8), we can now
write

d22 = m�
l=1

n
2�

i,j,k=− n
2

�C′����
i
j
k

���� + �ρl�
2. (9)

If the cells are exactly identical, then C′ = 0, and it follows that

d22 = (n + 1)3 m�
l=1
��ρl�2 = K2N, (10)

where

K2 = 1
m

m�
l=1
��ρl�2. (11)

If the cells are not identical, C′ is an invertible matrix, and we can
write

d22 = m�
l=1

n
2�

i,j,k=− n
2

�C′
�����
i + ρ′(1)l

j + ρ′(2)l

k + ρ′(3)l

�����
�2, (12)

where {ρ′(ν)l } are the elements of C−1�ρl. Then, using the fact that the
vector norm squared is equivalent to the inner product of the vector
with itself,

d22 = m�
l=1

n
2�

i,j,k=− n
2

(I�c1 + J�c2 + K�c3) ⋅ (I�c1 + J�c2 + K�c3)
= T11 + T22 + T33 + 2T12 + 2T13 + 2T23, (13)

where

I = i + ρ′(1)l , J = j + ρ′(2)l , K = k + ρ′(3)l .
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This gives 6 terms, that can be broken down into two cases. First,

T11 = m�
l=1

n
2�

i,j,k=− n
2

(i + ρ′(1)l )2��c1�2

= (n + 1)3n(n + 2)m
12

�c1�2 + (n + 1)3 m�
l=1
(ρ′(1)l )2�c1�2 (14)

(the T22 and T33 cases are similar) and second,

T12 = m�
l=1

n
2�

i,j,k=− n
2

(i + ρ′(1)l )( j + ρ′(2)l )�c1 ⋅ �c2

= (n + 1)3 m�
l=1

ρ′(1)l ρ′(2)l �c1 ⋅ �c2 (15)

(the T13 and T23 cases are similar). Finally, Eq. (13) becomes

d22 = (n + 1)3n(n + 2)m
12

(��c1�2 + ��c2�2 + ��c3�2)
+ (n + 1)3 m�

l=1
3�
ν

3�
�
ρ′(ν)l ρ′(�)l �cν ⋅ �c�. (16)

Substituting n = �Nm� 1
3 − 1, and regrouping the constants, we get the

following relation:

d22 = G2N
5
3 + K2N, (17)

where

G2 = (��c1�2 + ��c2�2 + ��c3�2)
12m

2
3

, (18)

K2 = 1
m

m�
l=1

3�
ν

3�
�
ρ′(ν)l ρ′(�)l �cν ⋅ �c� − 1

12
(��c1�2 + ��c2�2 + ��c3�2). (19)

Note that neither G2 nor K2 are dependent on the number of atoms
N. It is immediately evident that dividing byN to any power will not
result in a size independent (scaled) metric. Therefore, the RMSD
(i.e., d22

N ) depends on the size of the system. It cannot be applied to
atoms inside a unit cell (or any finite portion of the crystal) to mea-
sure distances between periodic structures.G2 is solely dependent on
the difference between CA and CB; if the cells remain invariant dur-
ing the transformation,G2 = 0 and Eq. (17) simplifies to Eq. (10).We
can say that G2 is associated with the change in unit cells, whereas
K2, the linear term, is associated with the displacements inside the
cell.

Finding the relation for the l1,2-norm is slightly more involved
(see Appendix B) but we find a similar relationship

d1 = G1N
4
3 + K1N +O(N), (20)

whereG1 ≥ 0. Once again there is no trivial way to make the distance
an intensive quantity because of the presence of a non-linear term
associated with the distortion in the unit cell.

Since we are only interested in d1 and d2 in the limit of
N → ∞, one might think that the leading terms in N, G2 and G1
respectively, could directly serve as metrics. However, G (G1 or G2)

does not fulfill the second criteria of a metric since there could, in
principle, exist a transformation that consists of a pure reorganiza-
tion of the atoms where G = 0 even though the end structures are
different. The only way to define a proper metric is to use all the
parameters in Eq. (17) or (20) depending on the particular choice.
Providing that those parameters are known, the most straightfor-
ward approach, is to compare distances in the limit. However, since
comparing functions in the limit can be tedious and not convenient
for computation, we also defined a metric function that uses both
parameters (G and K), it is presented in Appendix A.

B. Practical use
We chose to study solid-solid phases transitions using d1

because it represents the sum of the Euclidean distances traveled by
all the atoms in the structure. In that context, d1 can also be seen
as the true Euclidean distance between two structures and it can be
used to measure distances between them. We were not able to find
a general closed form for G1, therefore it is not possible to obtain it
directly from the optimal sets {CA, PA, LA} and {CB, PB, LB} that are
found by our algorithm. However, we were able to find the general
dependence of d1 on N. Using the optimal mapping to compute the
distance d1 at different sizes, we can show that the distance indeed
grows according to Eq. (20).

Figure 7 shows in blue the dependence of the total traveled
distance d1 on the number of atoms N, for 2 of the 6 transitions
presented in Table I. This distance is compared with the one that
corresponds to the pathways previously discussed in the literature
that do not involve slipping and are hence suboptimal with respect
to minimizing the d1. (a) compares d1 norms for these two path-
ways for the transition of ZnO from rocksalt to wurtzite. The red
points correspond to the distance for the path with symmetry Cmc21
reported by Refs. 29, 31, and 47. As already noted, our new path-
way (in blue) produces a shorter travel distance that grows slower
with N.

Fitting Eq. (20) confirms the derived dependence of d1 on N
and shows that G1 = 0.05 Å for the new pathway is much smaller
than G1 = 0.26 Å for the one found in the literature. The fitting
curves are shown as black lines; they overlap the simulated data
almost perfectly. Similarly, the red points in (b) correspond to the
Bain deformation of Iron from FCC to BCC. Again, the new path-
way has a shorter travel distance. In this case, G1 = 0.07 Å for the
new path and 0.17 Å for the Bain path. Equation (20) fits both data
sets very well. Thus, in practice, one can use our algorithm to fit G1
and K1 and use them to compare distances in the limit or using our
metric presented in Appendix A.

On the other hand, if one wishes to use d2 to compare periodic
crystal structures, our algorithm, can be used to find the optimal sets
{CA, PA, LA} and {CB, PB, LB} by setting the distance function as the
square of the euclidean norm. Then, one can use the closed form for
G2 and K2 provided in Eqs. (18), (19), and (11) to compare distances
in the limit or using our metric presented in Appendix A.

In sum, in this section, we showed that distances such as
the RMSD cannot be used directly to compare periodic structure
because they depend on the size of the system. Instead, we estab-
lished the dependence on N for two metrics d1 and d2, and we
showed how they can be used, in the limit, to quantify the similarity
between structures.
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FIG. 7. Total distance traveled by all the atoms in the system as a function of the
number of mapped atoms for (a) the transition of ZnO from wurtzite to rocksalt,
and (b) the transition of iron from body centered cubic to face centered cubic.
Simulated data are shown as dots, and fits are represented as black lines.

V. CONCLUSIONS
In this work, we formulated the matching of two different crys-

tal structures as an optimization problem and described our algo-
rithmic solution to it. The methodology that we developed, inspired
by the iterative closest point, is constructed to work on large and
finite portions of the two crystal structures rather than on some
choice of a periodic unit. It consists of a sequential minimization of
a given distance function with respect to the permutations of atomic
indices and linear transformations (rotations and translations) of the
atomic positions. The sequence is repeated iteratively until the con-
vergence is achieved. After the optimal alignment of the structures

and the optimal atom-to-atom map are found, our algorithm ana-
lyzes the result and retrieves the periodicity in the match. This last
step ensures that the boundaries have no influence on the final result.

We presented two different implementations of our algorithm
tailored for their respective class of applications. First, we demon-
strated our algorithm’s relevance when studying phase transforma-
tions by examining six well-studied transformations. In each case,
we either confirmed an existing mechanism or uncovered a new
lower-strained pathway. In particular, for the martensitic transfor-
mation, we found a new modified version of the Bain path that does
not require large expansion along certain crystallographic direc-
tions. Then, we showed that, starting solely from the in-plane lattice
parameters, our algorithmwas capable of reproducing the features of
experimental interface structures such as their orientation relation-
ships, matching modes and strain directions for two case examples:
Ni on YSZ and Si on SiC.

Finally, we analyzed and discussed a practical formulation of a
rigorous distance metric between crystal structures that can be used
to assess their Euclidean “closeness.”

VI. DATA AVAILABILITY
A full implementation of our algorithm is available via Github

at https://github.com/ftherrien/p2ptrans. All the parameters neces-
sary to reproduce the examples presented in this study are included
in this article. All other relevant data are available from the corre-
sponding author on request.
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APPENDIX A: AN ADDITIONAL METRIC
Since using the limit might be inconvenient computationally,

let us define a metricD as such,

D(A,B) = �������
e − e−K if G = 0
eG otherwise

. (A1)

This fulfills the following four criteria:

1. G ≥ 0 and K ≥ 0 if G = 0; therefore,D(A,B) ≥ 0.
2. D(A,B) = 0 ⇐⇒ G = K = 0 ⇐⇒ A = B.
3. d1,2(A,B) = d1,2(B,A) �⇒ D(A,B) = D(B,A).
4. ● If G(A, C), G(A, B), G(B, C) > 0: follows from the fact

that d1 is a metric and eG is monotone.● If G(A, C), G(A, B) > 0, G(B, C) = 0 (or G(A, C),
G(B, C) > 0, G(A, B) = 0): then, CB = CC ⇒ G(A, C)
= G(A, B) = G⇒ eG ≤ eG + e − e−K (B ,C).
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● If G(A, B), G(B, C) > 0, G(A, C) = 0: e − e−K (A ,C)

≤ eG(A ,B) + eG(B ,C) since e − e−K (A ,C) ≤ 1 and
eG(A ,B) ≥ 1.● If G(A, B), G(B, C), G(A, C) = 0: follows from the fact
that d1 is a metric and e − e−K is monotone.● If two of the three Gs are equal to 0, then CA = CB = CC
which is equivalent to the previous case.

APPENDIX B: N-DEPENDENCE OF d 1

Once again let us define C′ = (CA − CB) whose columns are{�cν � ν = 1, 2, 3} and �ρl = �al − �bl: we can rewrite Eq. (6),

d1 = m�
l=1

n
2�

i,j,k=− n
2

�C′����
i
j
k

���� + �ρl�. (B1)

If the cells are exactly identical, C′ = 0, and it follows that

d1 = (c + 1)3 m�
l=1
��ρl� = G1N, (B2)

where

G1 = 1
m

m�
l=1
��ρl�. (B3)

Let us consider the simpler case where the vectors of C1 and C2 are
orthogonal and where �ρl = 0. One can show that aligning the 3 vec-
tors is the optimal alignment C1 and C2 and therefore, the vectors of
C′ are also orthogonal. Equation (B1) becomes

d1 =
n
2�

i,j,k=− n
2

�
i2��c1�2 + j2��c2�2 + k2��c3�2. (B4)

Let us approximate the summation using the right Riemann sum,

n�
i=1 f�a + i(b − a)

n
�(b − a)

n
=

b

�
a

f (x)dx +O�M(b − a)2
n

�, (B5)

whereM = maxf ′(x). In our case, a = −n/2, b = n/2, and

f (x) = �x2��c1�2 + j2��c2�2 + k2��c3�2, (B6)

f ′(x) = 2x��c1�2
2
�
x2��c1�2 + j2��c2�2 + k2��c3�2 ≤ ��c1�. (B7)

Replacing in Eq. (B4), we get

d1 =
n
2�

j,k=− n
2

n�2
�
−n�2
�
x2��c1�2 + j2��c2�2 + k2��c3�2 dx +O(��c1�n). (B8)

Using the same argument for j and k,

d1 = �
Ω

�
x2��c1�2 + y2��c2�2 + z2��c3�2 dx dy dz

+O((��c1� + ��c2� + ��c3�)n(n + 1)2). (B9)

Where Ω is a cube of parameter n centered at the origin. Let us define
x′ = x��c1�, y′ = y��c2� and z′ = z��c3�. The integral becomes

d1 = 1
V�

Ω′

�
x′2 + y′2 + z′2dx′dy′dz′ +O(n3), (B10)

where Ω′ is a prism of parameter n��c1�, n��c2� and n��c3� centered at
the origin and V = ��c1� ⋅ ��c2� ⋅ ��c3�. This integral can be carried out
in spherical coordinates by carefully adjusting the integration limits

d1 = 1
V

3�
i<j<k

Lϕ

�
0

Lθ

�
0

Lr

�
0

r3 sin θ dr dθ dϕ +O(n3), (B11)

where

Lϕ = tan���cj���ci��, (B12)

Lθ = arccos
�����

1�
1 + ��ci�2��ck�2 sec2 ϕ

�����
, (B13)

Lr = n��ck�
2 cos θ

. (B14)

Integrating,

d1 = n4

192 V

3�
i<j<k

tan� ��cj���ci� �
�
0

��ck�4

×((1 + ��ci�2��ck�2 sec2 ϕ)
3
2 − 1)dϕ +O(n3). (B15)

Replacing n = N 1
3 − 1 and regrouping the constants,

d1 = G1(N 1
3 − 1)4 +O((N 1

3 − 1)3)
= G1(N 4

3 − 4 N + 6 N
2
3 − 4 N 1

3 + 1) +O(N)
= G1N

4
3 +O(N), (B16)

where

G1 = 1
192 V

3�
i<j<k

tan� ��cj���ci� �
�
0

��ck�4((1 + ��ci�2��ck�2 sec2 ϕ)
3
2 − 1)dϕ. (B17)

In sum, a pure reorganization of the atoms that does not change
the unit cell [Eq. (B2)] makes the distance depend linearly on the
size whereas a pure distortion of the cell makes the distance non-
linearly dependent on the size. Considering the more general case
where the cell vectors are not orthonormal would only lead to
lower order terms. To highlights the two leading contributions, we
write

d1 = G1N
4
3 + K1N +O(N). (B18)
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