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Abstract—We present a case study for time series prediction
models in extreme class-imbalance problems. We have extracted
multiple properties from the Space Weather ANalytics for So-
lar Flares (SWAN-SF) benchmark dataset which comprises of
magnetic features from over 4075 active regions over a period
of 9 years to create the forecasting dataset used in this study.
In the extracted dataset, the class-imbalance ratio is 1:60, where
the minority class is formed by instances of strong solar flares
(GOES M- and X-class). This ratio reaches to 1:800 if we only
consider the strongest class of flares (GOES X-class). This case
of extreme imbalance, along with the temporal coherence of
the sliced time series, provides us with an interesting set of
challenges in the forecasting of scarce real-life phenomena. We
have explored remedies to tackle the class-imbalance issue such
as undersampling, oversampling and misclassification weights.
In the process, we elaborate on common mistakes and pitfalls
caused by ignoring the side effects of these remedies, including
how and why they weaken the robustness of the trained models
while seemingly improving the performance.

Index Terms—class imbalance, sampling, time series, flare
forecast

I. INTRODUCTION

Any collection of data must be accompanied by a rigorous
data cleaning process. It requires a thorough investigation
by the experts of the domain and data scientists to produce
a reliable dataset. Nonetheless, there are some challenges
which are inherited from the subject under study due to
unique characteristics of the data which should be identified,
understood and dealt with appropriately. Class-imbalance issue
is one of the main problems of this kind, which is present in
many natural or other nonlinear dynamical systems. This is
often due to the nature of the events, not the data collection
process.

Class-imbalance in spite of being a well known issue is
often not treated properly. This is particularly true when the
primary objective is not machine learning per se but the testing
and scrutiny of domain-specific theories. The complexity of
the problem at hand and the absence of data experts very often
underestimate the needed level of care, resulting in unrealistic
and unreliable analyses.

In this study we present an example of an extremely
imbalanced dataset, namely the time series features of solar
magnetic data, and examine flare prediction with the goal
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Fig. 1. Frequency and imbalance ratio of all five flare classes across different
partitions of SWAN-SF benchmark dataset.

of showing the footprint of extreme class-imbalance on real-
world problems. In addition, we show the impact of disregard-
ing an interesting phenomenon called “temporal coherence”
in spatiotemporal datasets. We demonstrate the impact and
biases of different approaches and discuss how they should
be interpreted from the perspective of the subject under study
by involving domain experts. We hope that this work raises
awareness to interdisciplinary researchers and enables them to
spot and tackle similar problems in their respective areas.

II. COMMON CHALLENGES IN SOLAR FLARE PREDICTION

In spite of more than 20 years of research and meaningful
advances, solar flare prediction remains an outstanding prob-
lem. In the following sections, we present a few challenges
commonly faced while tackling it. Predicting (or forecasting)
the occurrence of solar flares is a typical 21st century rare-
event task. Flares are sudden and substantial enhancements of
high energy electromagnetic radiation (like extreme ultra violet
and X-rays) at local solar scales which pose a threat to humans
and equipment in space. They are automatically detected and
classified by the National Oceanic and Atmospheric Admin-



istration’s (NOAA) constellation of GOES satellites based on
their peak flux in soft X-ray wavelengths on a logarithmic scale
as A-, B-, C-, M- and X-class solar flares. A and B-class flares
are difficult to distinguish from the random variations in the
Sun’s background X-ray level, but C-class flares and above
are detected reliably by GOES satellites. The most intense
of these classes, namely M and X, are most often targeted
for prediction due to their potentially adverse space-weather
ramifications.

A. Extreme Class-Imbalance

The frequency distribution of the peak X-ray fluxes of
flares is nearly a perfect power law with a dynamical range
spanning several orders of magnitude. A statistical analysis of
NOAA'’s flare reports during solar cycle 23 (1995 to 2008)
shows that around 50% of active regions produce C-class
flares, while 10% produce M-class flares and less than 2%
produce X-class flares. Solar cycle 24 (2009 to present), from
which our data discussed in Section 3 are taken [1], exhibit
a much weaker major flare crop, making class-imbalance a
conspicuous problem to deal with (for a review, see [2]).

B. Point-in-time vs Time Series Forecasting

Solar flare forecasting has been humanity’s first attempt to-
ward space weather forecasting. As such, numerous magnetic
properties and forecast methods have been proposed since
the early 1990s [3], [4]. A quick perusal of the voluminous
literature, however, will show that the vast majority of these
methods correspond to point-in-time forecasting, namely, to
using the instantaneous value of one or more parameters in
order to produce a binary or probabilistic flare forecast over
a preset forecast horizon. However, flares are an inherently
dynamical phenomenon, with clear pre-flare and post-flare
phases, characterized by certain evolutionary trends [5], [6].
Because of this, time series of aspiring flare forecasting
parameters should be used, rather than isolated points in time.
We believe that the sheer level of difficulty of this task was the
key factor for the (over-)simplifying point-in-time assumption.
However, it may be precisely this compromise that may have
hampered non-incremental progress toward flare prediction.
Therefore, our main goal in this study is to explore the
difficulties which arise when we take into account the temporal
evolution of magnetic parameters of active regions rather than
looking at a single snapshot in time.

C. Non-representative Datasets

While there is no shortage of satellites and instruments
which map the magnetic field of the Sun’s photosphere over
the past 25 years [7]-[11] we should not forget that (i) the
temporal span of high-quality solar data is still limited and
(ii) training forecast methods on certain parts of a solar
cycle is not necessarily optimal for forecasting other parts
of the same and/or different cycles, due to the continuously
modulating background of magnetic activity. Therefore, there
exists a problem of heterogeneous and/or non-representative
data. Coupled with simpler, yet unjustified, selections of

random undersampling for majority class events, the sampled
subsets of data fail to become representative of the overall
flare population.

III. SWAN-SF DATASET: A MULTIVARIATE TIME SERIES
DATA

Multiple flare prediction studies [3], [12], [13] and the
European Union FLARECAST project [14], [15] emphasize
machine learning for flare prediction, but they use point-in-
time measurements. Up until now, we are unable to determine
whether the current imperfect accuracy measurements or skill
scores are a result of dataset specifics (i.e., point-in-time use)
or of the quality of the machine learning models themselves.
Here we will use a benchmark dataset, named as Space
Weather ANalytics for Solar Flares (SWAN-SF), released
recently by [1] and made entirely of multivariate time series,
aiming to carry out an unbiased flare forecasting and hopefully
set the above question to rest.

The five partitions of SWAN-SF dataset (see Fig. 1) are tem-
porally separated so that the partitions contain approximately
an equal number of X- and M-class flares. The data points
in this dataset are time series slices of physical (magnetic
field) parameters extracted from the flaring and flare-quiet
regions, in a sliding fashion. That is, for a particular flare
with a unique id, £ equal-length multivariate time series are
collected from a fixed period of time in the history of that
flare. This period is called an observation window, denoted
by Tops, and spans over 24 hours. Given that ¢; indicates the
starting point of the i-th slice of the multivariate time series,
the (¢ + 1)-th slice starts at t; + 7, where Ty,s = 87. This
kind of sliding observation inherits the fact that very often the
k slices behave very similar due to their temporal and spatial
closeness. In other words, the physical parameters describing
the behavior of the region corresponding to a particular flare
are not significantly different from one slice to the next. These
similar slices, if described in the multi-dimensional feature
space of our data, are located too close to each other to be
considered distinct instances. And their closeness does not
reflect any characteristics of those data points, except our
slicing methodology. We refer to this phenomenon as temporal
coherence' of data. This is a key concept to understand some
of the challenges we would like to address in this study.

A. Final Forecast Dataset

To use the benchmark SWAN-SF, two main approaches
might be taken: One is to preprocess the time series and feed
them directly into supervised models. The other is to extract
a set of statistical features from the time series and then train
the models based on the derived descriptors. Our interest in
the analysis of different sampling methods guides us to use
the extracted features.

Statistical Features To the best of our knowledge, SWAN-
SF data is the first flare data benchmark that focuses on time
series, rather than point-in-time data points for a period just

'We introduce this concept in the context of data manipulation, and it should
not be confused with femporal coherence in Optics or any other topic.



short of a decade. Therefore, perhaps except in a few instances,
there are no established theories as to which characteristics
of the time series may show a significant flare-predictive
capability. We hereby build a prediction dataset relying on
the set of first four statistical moments of the time series,
namely, their mean, variance, skewness, and kurtosis. To allow
comparison with previous studies, we also consider a point-
in-time feature, namely the last value of each time series.
Moreover, we also add median to the list to compensate for
the effect of outliers on mean.

The obtained dataset of the extracted features has a di-
mensionality of 144, resulting from the computation of the
6 above-mentioned statistics on the 24 physical parameters of
the SWAN-SF dataset. Data points of this dataset are labeled
by 5 different classes of flares, namely GOES X, M, C, B, and
N. The latter represents flare-quite instances or GOES A-class
events.

Throughout this study, we only use the last value feature

to keep the number of variables low. At the end, however,
we present the contribution of other statistical features as well
to show the benefit of using time series instead of point-in-
time data instances. We also conduct our experiments on a
binary class data by merging X and M classes into a super-
class called XM, and C, B, and N classes into another super-
class denoted by CBN. This simplification allows us to only
focus on the challenges we mentioned before, which is the
primary objective of this study.
Preprocessing After computing the above-mentioned features,
the dataset requires a minimal preprocessing due to the pres-
ence of some missing values. Since this accounts for a very
small fraction of the data (i.e., < 0.01%), we simply utilize
linear interpolation to reproduce those values. In addition, we
use zero-one data transformation to normalize the data for our
experiments, since otherwise the optimal hyperplanes found
by SVM will be meaningless.

IV. CLASS-IMBALANCE AND TEMPORAL COHERENCE

In this section, we discuss different challenges for machine
learning algorithms, caused directly or indirectly by two im-
portant characteristics of our dataset, namely, class-imbalance
and temporal coherence. Without lose of generality, we use the
SVM classifier which, like many other learners, is sensitive
to these issues. Therefore, instead of analyzing the specific
characteristics of this particular classifier, we focus on the
common denominators of the well-known classifiers in view
of imbalanced datasets.

A. Class-imbalance Problem

In class-imbalanced data, the population of one or more
data classes is far less than that of the majority class(es).
In situations of significantly less dense data classes, special
treatment is required, knowing that machine learning models
generally perform best when classes are roughly equal in size.
Here we use the terms “minority”, or “positive”, class to refer
to the less frequent group and “majority”, or “negative”, class,
conversely. Stronger flares (GOES X- and M- class) form our

minority class, and weaker events (GOES C-, B- and A-class)
belong to our majority class. Fig. 1 illustrates the distribution
of all classes in each partition.

Classification models, in general, aim to reduce the cost
of their objective function by minimizing the total number of
misclassifications. In an imbalanced dataset, since the density
of the majority class is significantly higher than that of the
minority class, many instances of the majority class should
be sacrificed (i.e., misclassified) for a correct classification
of an instance from the minority class. The SVM classifier
in particular, searches for optimal hyper-planes to make such
separations. An imbalanced dataset most likely preserves the
imbalanced density of the classes even close to the decision
boundaries (where the ideal class regions overlap or meet).
In such a situation, a hyper-plane that is supposed to pass
through the boundaries will be shifted into the region of the
minority class to reduce the total number of incorrect classi-
fications/predictions by getting all the positive classes right.
This leads to higher true-negatives (i.e., correct predictions
of CBN-class flares) and lower true-positives (i.e., correct
predictions of XM-class flares). In other words, a model in
a class-imbalance space always favors the majority class. This
is of particular concern because virtually all class-imbalance
problems aim to predict minority, rather than majority, events.

Another angle to this problem is to decide on the right
choice of a performance measure. Many well-known perfor-
mance metrics are significantly impacted by class-imbalance,
including accuracy, precision (but not recall), and the f1-score.
This is mainly because these measures ignore the number
of misclassifications. For instance, a model that classifies all
instances as the negative (majority) class may result in a very
high (often asymptotic to 1.0) accuracy, while learning little
or nothing about the minority class. For the particular case
of class-imbalance there are defined less susceptible measures
such as TSS (True Skill Statistic?> [16]) or the HSS (Heidke
Skill Score [17], [18]), with TSS being reportedly more robust
for solar flare prediction [13]. In this study, we use only TSS
since our main objective is to show the changes in the models’
performance and not to find an operational-ready model.
Undersampling and Oversampling A simple approach tack-
ling the class-imbalance issue is to enforce a balance between
classes by undersampling (that is, taking out instances from
the majority class) or oversampling (that is, providing more
instances to the minority class by replication). This results in
using roughly only as many negative instances (majority) as
there are positive instances (minority) in the training phase,
thus achieving a perfect 1 : 1 balance ratio. This solution,
however, comes at some cost. When undersampling, for in-
stance, we leave out a great portion of the data during training,
therefore not learning from the entire collection. To avoid the
enormous data waste, a very large dataset should be available
overall. When oversampling, we add replicates of existing
instances. This may cause a model to memorize data structures

2This is also known as Hanssen-Kuipers Discriminant.



TABLE I
DIFFERENT UNDERSAMPLING AND OVERSAMPLING APPROACHES APPLIED TO Partition 3 OF THE SWAN-SF DATASET, SHOWCASING THE VARYING
EXPANSION/SHRINKAGE FACTORS FOR DIFFERENT CLASSES.

Method . Exp]iznsmn/Sl(l:nnkageBFactor N Description
Undersampling 1 1.00 1.00 0.05 | 0.05 0.05 | preserves climatology in sub-class level
Undersampling 2 1.00 0.14 0.03 0.98 0.00 | X-base undersampling; enforces a sub-class balance
Undersampling 3 | 7.20 1.00 0.23 7.11 0.03 | M-base undersampling; enforces a sub-class balance
Oversampling 1 19.58 19.58 1.00 1.00 1.00 | preserves climatology in sub-class level
Oversampling 2 7.66 7.66 1.00 1.00 0.30 | same as oversampling 1 but it suppresses N
Oversampling 3 31.41 4.36 1.00 | 31.02 0.15 | C-base oversampling; enforces a sub-class balance
Oversampling 4 208.46 | 28.95 | 6.64 | 205.89 1.00 | N-base oversampling; enforces a sub-class balance

instead of generalizing and learning about them which is, as

expected, very prone to overfitting.

While both of these techniques seem fairly straightforward
and easy to implement, one should be extra careful when
applying them to a multi-class data, such as the flare dataset.
This is true despite the fact that we converted it to a binary
class problem. Alternative avenues exist depending on whether
the balance in the sub-class level (i.e., |X| = [M| and |C| =
|B| = |NJ) is also required or not. Notice that this is an addition
to the primary goal of our sampling which aims to achieve a
balance between the super-classes. When undersampling, for
instance, if this additional balance is decided, we first need
to decide which class in the minority group is considered the
“base” class. Letting GOES X be the base class, we must
undersample from M-class flares first to balance X and M
classes and then undersample from the majority (CBN) class.
This yields a balanced dataset in both super-class and sub-class
levels. For convenience, we call this undersampling method
an X-based undersampling. To show a few different sampling
methodologies, we list some results on Partition 3 of the
SWANS-SF dataset, in Table. 1.

A quick look at Table. I shows that the choice of the
sampling method plays a critical role. Knowing that GOES
C class represents the strongest flares in the weak-flare class
(majority), it is expected that a higher fraction of C-class
instances in this group results in a harder prediction problem
for the model. In other words, a sampling methodology has
to contort the climatology of flares to achieve the desired
balance. This change affects the distribution of samples in the
feature space by making the decision boundary (where GOES
C and M classes overlap) denser or sparser. As an example,
Oversampling 3 and 4 may result in a slightly easier data for
a predictive model since it replicates more X-class flares than
M-class flares relative to what the flare climatology suggests.

The above suggests that performance of different models
on the same dataset is only comparable if they all employ
identical sampling methodologies.

Misclassification Weights Another classical remedy for the
class-imbalance problem is penalizing misclassification of
different classes differently. SVM, like some other machine
learning algorithms, can incorporate different weights in its
objective function. For details on how this is mathematically
implemented, we refer the interested readers to [19]. For the
experiments in this study, inspired by the class-imbalance

ratio, we adjust the weights using w; = +-—, where n is
. . . . J .

the total population, n; is the population in class j, and &

represents the number of classes.

B. Cross Validation

Cross validation is a family of statistical techniques, typi-
cally used to determine the generalization power of a model.
Regardless of the employed cross validation technique (k-
fold, leave-p-out, stratified or purely random), it is very often
assumed that a random selection is allowed. However, in
many real-world data collections, random sampling must take
into account the spatiotemporal characteristics of the data,
which is rooted in the temporal (or spatial) coherence of
data. The temporal coherence in SWAN-SF dataset, as we
discussed in Sec. III, prohibits this practice, since it yields an
overly optimistic performance of the model’s generalization,
a phenomenon known as ‘overfitting’.

To avoid this mistake, we select training and testing in-
stances from different partitions of dataset. To showcase the
impact of randomly splitting the data from one partition, we
conduct an experiment that is presented in Sec. V-C.
Validation Set Disregarding the temporal coherence of the
data and random sub-sampling for obtaining the training and
testing sets has an additional and perhaps a more important
impact: when the test set is obtained by randomly splitting
the data, the tested model obscures the overfitting sign,
i.e., a significant difference between the training and testing
performance. Therefore, the use of any sorts of sampling
methodology on the test set (either for reducing the imbalance
ratio, as we discussed before, or in cross validation) must
be avoided at all costs if it distorts the actual distribution
of the events. Cross validation is also used for optimization
of models’ hyper-parameters or the data-driven parameters.
We wish to reiterate that for all such tasks, another subset of
data should be used which is known as the validation set, and
the test set must never be exposed to the model except for
reporting the final performance of the model. For instance, to
tune SVM’s hyper-parameters, namely ¢ and ~ for achieving
an optimal hyper-plane by the model, a validation set must be
defined in order to reflect the changes that the model takes in.
Based on our expectation of the acceptable performance, we
may let the model improve upon the validation set’s feedback.
Only when we believe that the model has reached its highest
performance we can use the test set to measure its robustness.



Similar to the capital impact of different sampling method-
ologies on performance, as we discussed previously, sampling
modification of the test set is another way of creating non-
robust models with seemingly high performance.
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C. Hyper-parameter Tuning

Temporal coherence of the dataset also affects the way
we tune the hyper-parameters of our models. Any supervised
learning model requires optimization of its hyper-parameters in
a data-driven manner. Since the discovered hyper-parameters
should remain optimal over the entire dataset (including the
upcoming data points for a predictive model) the training
and validation sets, as well as the test set, must each be
representative of the entire dataset. In our dataset, because
of the temporal coherence random sampling does not produce
such subsets. Hence, tuning process remains confined to the
partitions. Although the solution we proposed for cross vali-
dation using NOAA AR Number, may also be used to tackle
this problem, it is very likely that a model highly optimized on
one partition simply does not perform well globally. Therefore,
we believe that this is a problem yet to be investigated more
thoroughly since at this point it is very clear to us that flare
forecast problem has a dynamic and periodic behavior, for
which ensemble models may be more appropriate.

V. EXPERIMENTS, RESULTS, AND INTERPRETATIONS

In this section, we present all experiments conducted to
showcase the challenges discussed previously. We also elab-
orate on the interpretation of these experiments in regards to
our overarching flare forecasting task.

Notice that the objective of this study is not to achieve a
robust model with high performance, but to compare models
trained differently. Therefore, although any changes on the
data (e.g., using different normalization, data split, or sampling
techniques) require re-tuning of the hyper-parameters, without
loss of generality we rely on our pre-tuned hyper-parameters
for SVM: ¢ = 1000, v = 0.01, with a Radial Based Function
(RBF) kernel.

We would like to stress that we choose to use TSS as our
performance measure only to show the changes that different
treatments cause. A higher TSS is not necessarily evidence of
a better forecast model, as it may well be coupled with a very
low HSS.

A. Baseline

To establish a baseline for the experiments, the model first
needs to learn from the available data without any special treat-
ment at the data input process or on the model configuration.
Experiment Z: Baseline This experiment is as simple as
training SVM on all instances of one partition and testing
the model on another partition. We try this on all possible
partition pairs, resulting in 20 different trials, to illustrate how
the difficulty of the prediction task varies as the partitions are
chosen from different parts of the solar cycle. The results are
visualized in Fig. 2, along with the impact of discussed class-
imbalance remedies that we further discuss in the following
sections.

B. Tackling Class-imbalance Issue

In Sec. IV-A, we discussed three different approaches
towards tackling the class-imbalance problem. To show the
impact of each solution, we carry out some experiments and
discuss the results below.

The following experiments share a common structure: SVM
is trained and tested on all 20 permutations of partitions pairs
independently. In each round, the model learns from instances
in the training partition and is then tested against the (different)
testing partition. To measure the confidence of a model’s
performance when a certain sampling method is employed,
we repeat the experiment 10 times and report the variance
and mean value of TSS.

Experiment A: Undersampling In the fitting phase, the
model takes in a subset of the training partition generated by
a X-based undersampling method (Table. I; Undersampling
2). This enforces a 1 : 1 balance not only in the super-
class level (ie., [ XM| = |CBNJ) but also in the sub-class
level (i.e., |X| = |[M| and |C| = |B| = |N|). The trained
model is then tested against all other partitions one by one
to examine the robustness of the model. The undersampling
step is only taken in the training partition, as undersampling
of the test partition distorts reality and would not reflect the
true model performance. The consistent and significant impact
of this remedy is evident in Fig. 2.

Experiment B: Oversampling Similar to Experiment A, but
using Oversampling 3 of Table. I instead. Again, no over- or
undersampling takes place in the testing set. Comparing the
results of oversampling with undersampling in Fig. 2, shows a
close correspondence between the two models in terms of their
mean TSS values; typically, differences are within applicable
uncertainties.

Experiment C: Mis-classification Weights We use the im-
balance ratio of the super-classes as the weights. For instance
when working with Partition 3, since the minority-to-majority
ratio is 1 : 20, we set wxy = 20 and wegny = 1. As shown
in Fig. 2, this solution outperforms both undersampling and
oversampling approaches in terms of their TSS. It is worth
pointing out that employing misclassification weights has the
advantage of a data-driven tunability that may be better suited
than over- and undersampling to achieve more robust forecast
models.



C. Impact of Cross Validation

In Sec. IV-B, we discussed the theoretical impact of random
sampling, embedded in many cross validation methods, on
a temporally coherent dataset. The following experiment is
designed to put the validity of this discussion to test.
Experiment D: Data Splits This time, SVM is both trained
and tested on randomly chosen instances of the same partition.
Technically, this is a k-fold cross validation using a random
sub-sampling method with k¥ = 10. The results are then
juxtaposed with those obtained by training SVM on one
partition and testing it on another. We equipped SVM in
both scenarios with misclassification weights, to eliminate the
need for an additional sampling layer. Therefore, the only
determining factor is whether the instances are sampled from
the same partition or not. Let it be clear that sampling from
a single partition does not mean any overlapping between the
training and testing sets.
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the SVM has been equipped with misclassification weights.

Fig. 3 presents this comparison. When SVM is trained
and tested on a single partition, performance is boosted very
significantly with TSS € (0.84,0.94) with an average TSS~
0.88. Training and testing on different partitions yields TSS
€ (0.50,0.84) with an average TSS~ 0.71. This remarkable
difference should not be viewed as evidence of the robustness
of the model but rather points to memorization and hence
overfitting, caused when a forecast model is trained and tested
on a temporally coherent dataset. It is the lower performance
when the model is trained and tested on different partitions
that better encapsulates its true robustness.

D. Oversampling Impact

In Sec. IV-A, we showed that there are multiple variants
of oversampling and undersampling approaches. We also pre-
sented how this affects flare distributions in Partition 3 as an
example. Below we test how different oversampling impacts
TSS values across different partitions.

Experiment F: Oversampling With or Without Sub-Class
Balance We use Oversampling 1 and 3 (from Table. I) in
the training phase to remedy the class-imbalance problem and
then we test the trained model against all other partitions. Our
results are shown in Fig.4. For them, one sees a relatively
similar, consistent performance, although the C-based Over-
sampling 3 seems to give a statistically higher performance.
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Fig. 4. Experiment F. TSS-values of SVM performance impacted by two
different oversampling methods; Oversampling 1 (orange columns), where
the climatology of sub-classes are preserved, and Oversampling 3 (burgundy
columns), where the sub-classes are forced to reach a 1 : 1 balance ratio
by considering C-class to be the base. Labels and font colors have the same
meaning as in Figure 2.

This said, it becomes clear that different oversampling methods
give non-identical performances. Therefore, comparison of any
two forecasting models on similar datasets will be fair only if
the employed sampling methodologies are identical.

E. Using Other Time Series Features

We reserve the last experiment for presenting the benefit of
using time series of SWAN-SF dataset, as opposed to other
point-in-time datasets that we were trying to mimic by using
last value as the statistical feature extracted from the time
series in SWAN-SF dataset. Below we compare some other
basic statistics.
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Fig. 5. Experiment G. TSS-values of SVM performance on 3 different feature
spaces. Undersampling 2 (from Table. I is used to remedy the class-imbalance
issue.

Experiment G: SVM With Other Statistical Features SVM
is trained and tested on partitions pairs, using Undersampling 2
from Table. I as a class-imbalance remedy, using (i) last value,
(ii) standard deviation, and (iii) median, standard deviation,
skewness, kurtosis. As illustrated in Fig. 5, standard deviation
results in statistically better performance than last value,
and using the four-number summary seems to outperform
standard deviation. This is a very good indication that different
characteristics of time series carry some important pieces of
information that may significantly improve reliability of a
forecast model.

It is beyond the scope of this work to find an optimal
solution using more statistical features. We therefore leave
further investigation in this direction for future studies.



VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK

We used SWAN-SF benchmark dataset as a case study to
highlight some of the challenges in working with imbalanced
datasets, which are very often overlooked by scientists of the
domain. We also addressed an interesting characteristic of
some datasets, that we called temporal coherence, inherited
from the spatial and temporal dimensions of the data. Using
several different experiments, we showcased some pitfalls and
overlooked consequences of disregarding those peculiarities,
and we discussed the impact of different remedies in the
context of flare forecast problem.

There are still many interesting cases left to be discussed
that we plan to include in our future studies. In several experi-
ments, for instance, we noticed that despite the improvement in
models’ performances in terms of TSS, other measures such
as HSS showed a moderate deterioration in the models. A
new measure that reflects both these skill scores appears to be
necessary to avoid many misleading interpretations. In spite of
many studies, it is still an unsolved problem. Another avenue
for further investigation is to incorporate NOAA AR Numbers
in the sampling phase so that the temporal coherence of data
that confines normalization and hyper-parameter tuning tasks
to only subsets of data, can be bridged over.

We hope that this work raises awareness not only to the
scientists interested in flare forecast problem, but all interdis-
ciplinary researchers who might be dealing with imbalanced
and temporally coherent datasets, and enables them to spot
and tackle similar problems in their respective areas.
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