
Tensor Decomposition-based Node Embedding
Shah Muhammad Hamdi

Georgia State Univerity
Atlanta, GA, USA

shamdi1@cs.gsu.edu

Soukaïna Filali Boubrahimi
Georgia State Univerity

Atlanta, GA, USA
sfilaliboubrahimi1@cs.gsu.edu

Rafal Angryk
Georgia State Univerity

Atlanta, GA, USA
rangryk@gsu.edu

ABSTRACT
In recent years, node embedding algorithms, which learn low di-
mensional vector representations for nodes in a graph, have been
one of the key research interests of the graph mining community.
The existing algorithms either rely on computationally expensive
eigendecomposition of the large matrices, or require tuning of the
word embedding-based hyperparameters as a result of representing
the graph as a node sequence similar to the sentences in a document.
Moreover, the latent features produced by these algorithms are hard
to interpret. In this paper, we present Tensor Decomposition-based
Node Embedding (TDNE), a novel model for learning node repre-
sentations for arbitrary types of graphs: undirected, directed, and/or
weighted. Our model preserves the local and global structural prop-
erties of a graph by constructing a third-order tensor using the
k-step transition probability matrices and decomposing the tensor
through CANDECOMP/PARAFAC (CP) decomposition in order
to produce an interpretable, low dimensional vector space for the
nodes. Our experimental evaluation using two well-known social
network datasets proves TDNE to be interpretable with respect to
the understandability of the feature space, and precise with respect
to the network reconstruction.

CCS CONCEPTS
• Information systems→Datamining; •Computingmethod-
ologies → Knowledge representation and reasoning; • Net-
works → Network algorithms;

KEYWORDS
Node embedding; Tensor decomposition; Interpretability of feature
space; Network reconstruction

ACM Reference Format:
Shah Muhammad Hamdi, Soukaïna Filali Boubrahimi, and Rafal Angryk.
2019. Tensor Decomposition-based Node Embedding. In The 28th ACM
International Conference on Information and Knowledge Management (CIKM
’19), November 3–7, 2019, Beijing, China. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3357384.3358127

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3358127

1 INTRODUCTION
Graphs are one of the most ubiquitous data structures used in
computer science and related fields. By capturing the interactions
between individual entities, graphs facilitate discovering the under-
lying complex structure of a system. Mining real-life graphs plays
an important role in studying the network behavior of different
domains such as social sciences (social network), linguistics (word
co-occurrence network), biology (protein-protein interaction net-
work), neuroscience (brain network) and so on. Recently, there has
been a surge of research interest in embedding graph structures,
such as nodes, edges, subgraphs, and the whole graph in a low
dimensional vector space. Among them, representation learning
of the nodes is most widely studied [3], which facilitates down-
stream machine learning tasks, such as network reconstruction,
link prediction, node classification, and visualization.

In recent years, a good number of node embedding algorithms
have been proposed. They can be roughly divided into three cate-
gories -matrix decomposition-based approaches, multihop similarity-
based approaches, and randomwalk-based approaches. Most matrix
decomposition-based approaches decompose various matrix rep-
resentations of graphs by eigendecomposition or Singular Value
Decomposition (SVD). Multihop similarity-based approaches take
into consideration the higher-order proximities of the nodes, and
use matrix factorization for decomposing higher-order proximity
matrices (e.g., GraRep [2], AROPE [12]). Random walk-based ap-
proaches consider the input graph as a set of random walks from
each node (e.g., Node2vec [4], DeepWalk [8]). These random walks
are considered as sentences, where the nodes are considered as
words in a Natural Language Processing (NLP) model. Finally, the
Skip-gram model [6] is used to find the word (node) embeddings.

While eigendecomposition on the large real-world networks
is very expensive, random walk-based methods are comparatively
scalable. But, the randomwalk-based approaches require the tuning
of a number of hyperparameters, some of which are NLP-based.
For example, Node2vec requires tuning of several hyperparameters
such as context size, walks per node, walk length, return parameter
and in-out parameter. Moreover, almost all the node embedding
algorithms represent the nodes as d-dimensional vectors, and do
not provide any direction to the interpretability of the features.

In this work, we propose a model that uses higher-order transi-
tion probability matrices of a graph to construct a third-order tensor,
and performs CP decomposition to get the representations of the
nodes and the representations of the transition steps. The model
does not rely on eigendecomposition of large matrices, or tuning
of the NLP-based hyperparameters such as context size. To the best
of our knowledge, this is the first attempt to learn embeddings of
the transition steps (one kind of pairwise proximity [2]). Moreover,
our method provides interpretability by creating a feature space
for the nodes, where the role of each feature is understandable.

Session: Short - Embeddings CIKM ’19, November 3–7, 2019, Beijing, China

2105

https://doi.org/10.1145/3357384.3358127
https://doi.org/10.1145/3357384.3358127

2 RELATEDWORK
Early works on node embedding were basically dimensionality re-
duction techniques, which consist of the matrix factorization of the
first-order proximity matrix or adjacency matrix. Laplacian Eigen-
maps [1] and Locally Linear Embedding (LLE) [9] can be viewed
as those early approaches. After creating a knn graph from the
feature space of the data, Laplacian Eigenmaps embeds the nodes
by eigendecomposition of the graph Laplacian. LLE considers that
each node is a linear combination of its neighbors, and finds the so-
lution by singular value decomposition of a sparse matrix, which is
calculated by subtracting the normalized adjacency matrix from the
same-sized identity matrix. The later approaches such as GraRep [2]
and Higher Order Proximity preserved Embedding (HOPE) [7] con-
sidered higher-order proximities of the nodes. GraRep utilizes mul-
tihop neighborhood of the nodes by incorporating higher powers of
the adjacency matrix and generates node embedding by successive
singular value decomposition of the powers of the log-transformed,
probabilistic adjacency matrix. HOPE measures overlap between
node neighborhoods, where Jaccard similarity, Adamic-Adar score,
Katz score or Personalized PageRank score can be used as overlap
calculating functions. Asymmetric transitivity preserving nature
of HOPE enables embedding of nodes of a directed graph. The re-
lying on eigendecomposition or singular value decomposition of
large matrices makes all the matrix factorization-based approaches
computationally expensive, and results in the compromise of the
performance due to poor approximation.

Being inspired by the Skip-gram model [6], which learns word
embeddings by employing a fixed sliding window so that words in
the similar context have similar representations, DeepWalk [8] con-
sidered the network as a "document". By applying truncated random
walk, DeepWalk sampled sequence of nodes (similar to the words of
a document) and used Stochastic Gradient Descent (SGD) optimiza-
tion to learn the representation of each node so that it is similar
to the representations of its neighbor nodes. Node2vec [4] later
increased the flexibility of node sampling by incorporating a biased
random walk. Although both methods are able to achieve more scal-
ability than the matrix factorization-based methods, dependence
on local neighborhood window refrains them from achieving the
global optimal solution.

3 NOTATIONS
Definition 1. (Graph) A graph with n nodes is defined as G =
(V ,E), where V = {v1,v2,v3, . . . ,vn } is the set of nodes, and
E = {ei j }ni, j=1 is the set of edges, which are the relationships be-
tween the nodes. The adjacency matrix S of the graph has n rows
and n columns. For unweighted graphs, Si j = 1, if there exists an
edge between nodes i and j, and Si j = 0 otherwise. For weighted
graphs, Si j , 0 represents the positive/negative weight of the rela-
tionship between nodes i and j , while Si j = 0 means no relationship
between them. For undirected graphs, adjacency matrix S is sym-
metric, i.e., Si j = Sji . For directed graphs, adjacency matrix S is not
symmetric, i.e., Si j , Sji .

Definition 2. (1-step transition probability matrix) The 1-step
transition probability between nodes i and j for both directed and
undirected graphs is defined as the normalized edgeweight between

+≈ + +. . .b1 b2 bR

CP (R)

a1 aR

c1 c2 cR

𝓧

a2

Figure 1: CP decomposition of a third-order tensor.

those nodes. Therefore, the 1-step transition probability matrix is
found by normalizing each row of the adjacency matrix S .

Ai j =
Si j∑
j Si

Definition 3. (k-step transition probability matrix) For preserving
the global structural similarity, we use k-step transition probability
matrixAk , which is the k-th power of the 1-step transition probabil-
ity matrix. In this matrix, Aki j represents the transition probability
from node i to node j in exactly k steps.

4 PRELIMINARIES OF TENSOR
DECOMPOSITION

Tensors are multidimensional arrays. In our proposed method of
node embedding using tensor decomposition, we consider third-
order tensors and CP decomposition. In this section, we briefly
review the CP decomposition.

CP decomposition: CP decomposition factorizes the tensor
into a sum of rank one tensors [5]. Given a third-order tensor
χ ∈ RI×J×K , where I , J andK denote the indices of tensor elements
in three of its modes, CP decomposition factorizes the tensor in the
following way.

χ ≈
R∑
r=1

ar o br o cr = [[A,B,C]] (1)

Here, o denotes the outer product of the vectors, R is the tensor
rank which is a positive integer, ar , br , and cr are vectors, where
ar ∈ RI , br ∈ RJ , and cr ∈ RK for r = 1, 2, 3, . . .R. After stacking
those vectors, we can get the factor matrices A = [a1, a2, . . . aR],
B = [b1, b2, . . . bR], and C = [c1, c2, . . . cR], where A ∈ RI×R ,
B ∈ RJ×R , and C ∈ RK×R . Fig. 1 is a visualization of the CP
decomposition of a third-order tensor. CP decomposition can be
solved by Alternating Least Squares (ALS) optimization. After a
random initialization of all factor matrices, ALS updates one factor
matrix while keeping other two as fixed until convergence [10].

5 THE PROPOSED MODEL
Fig. 2 describes our model of tensor decomposition-based node
embedding. Without loss of generality, we use an example of a
directed graph in the figure. In our model, a third-order tensor X ∈
Rn×n×K is constructed by stacking the k-step transition probability
matrices for k = 1, 2, 3, . . . ,K . The objects represented by the three
modes of this tensor are: nodes (as sources), nodes (as targets),
and transition steps. Then CP decomposition is performed with
a given rank R. CP decomposition results in vectors ar ∈ Rn ,
br ∈ Rn , and cr ∈ RK for r = 1, 2, 3, . . .R. These vectors are
stacked together to form three factor matrices, A = [a1, a2, . . . aR],

Session: Short - Embeddings CIKM ’19, November 3–7, 2019, Beijing, China

2106

A

A2

A3

AK

.
.

.

Target

So
ur
ce

Tran
s. s

tep

CP (R)

K
n

n

a1 a2 aR. . .

n

R

R

K

c1 c2 cR. . .
Transition step factor matrix, CSource factor matrix, A

.

.

.

.

.

.

b1 b2 bR. . .

n

R

Target factor matrix, B

.

.

.𝓧

(a) Making of a third order tensor from powers of the 1-step transition probability matrix

(b) CP decomposition and the extraction of three factor matrices

Target

So
ur
ce

Tran
s. s

tep

n

n 𝓧

K

Figure 2: CP decomposition-based representation learning of source nodes, target nodes, and transition steps

B = [b1, b2, . . . bR], and C = [c1, c2, . . . cR], where A ∈ Rn×R ,
B ∈ Rn×R , and C ∈ RK×R .

In factor matrix A ∈ Rn×R , each row is an R-dimensional rep-
resentaion of the source role played by the corresponding node. In
factor matrix B ∈ Rn×R , each row is an R-dimensional represen-
taion of the target role played by the corresponding node. In factor
matrix C ∈ RK×R , each row i is an R-dimensional representation
of the i-th transition step, where 1 ≤ i ≤ K .

After we find the source factor matrix A, target factor matrix B,
and transition factor matrix C, we can compute the projection of
source embedding of node i on the transition embedding j, where
1 ≤ i ≤ n and 1 ≤ j ≤ K . Therefore, we can get a source-transition
embeddingmatrix ST, by ST = A∗CT , where ST ∈ Rn×K . Similarly,
we can get a target-transition embedding matrix TT, by TT =
B ∗ CT , where TT ∈ Rn×K that reflects the projection of target
embeddings on transition step embeddings. Finally, we get the node
embedding matrix Z ∈ Rn×2K by concatenating ST and TT, i.e.,
Z = [ST,TT]. First K columns of Z represent source role of a node
with varying transition steps, and last K columns of Z represent
target role of a node with varying transition steps.

6 EXPERIMENTS
In this section, we experimentally evaluate our model with respect
to the interpretability of the feature space, and performance of the
network reconstruction. For implementing baseline algorithms and
performance evaluation metric, we used GEM (Graph Embedding
Methods) library introduced in [3].

6.1 Interpretability of the features
For this experiment, we used directed Zachary’s Karate club net-
work [11] (Fig. 3(a)), which has 34 nodes and 78 directed edges. We
performed TDNE with K = 6 and r = 2. Therefore, the third-order
tensor has size 34*34*6. After CP decomposition, we visualize the
embeddings of each transition step (Fig. 3(b)). The L2 norms of
the transition embeddings (Fig. 3(c)) show the relatively high im-
portance of lower-order proximities compared to the higher-order
proximities, which is intuitive for the social networks. In Fig. 3(d),

(a) Directed Karate network of 34 nodes and 78 edges

(b) Transition step embeddings (K=6)
after CP decomposition with rank 2

(d) Representation of the nodes in 2*K
dimensional space

(c) L2-norms of k=1,2,.., 6 step
transition step embeddings

Tr
an

si
tio

n
st

ep
s

CP decomposition rank

L2
 n

or
m

 o
f e

m
be

dd
in

gs

Transition step

N
od

e
id

Features

Figure 3: Executing TDNE on directed Karate network

the final embeddings of each node is shown in a 12 (=2*6) dimen-
sional feature space, where the first six features represent the source
property of the nodes with varying transition step from 1 to 6, and
the last six features represent the target property of the node with
varying transition step from 1 to 6. Node 1, which has all outgoing
edges and no incoming edges, is embedded in a way so that it has
high values in only source property representing features (more
specifically, the features which represent source property in lower
transition steps). Almost opposite embedding nature is observed
in node 34, which has all incoming edges and no outgoing edges.
For some nodes which have almost equal number of incoming and
outgoing edges, such as node 9 and 10, we see a distribution of high
values among source property representing features and target
property representing features. Features representing higher-order

Session: Short - Embeddings CIKM ’19, November 3–7, 2019, Beijing, China

2107

transition steps (such as 4th , 5th and 6th -order) of both source and
target properties almost always have no impact in this network,
which support the facts found in Fig. 3(c).

6.2 Network reconstruction
Reconstruction of the network from the learned embeddings of the
nodes is a common task for evaluating node embedding algorithms.
The node pairs (possible edges) are ranked according to the node
similarities, i.e., the inner product of two node embeddings. The per-
formance of network reconstruction can be evaluated by the metric
Precision@Np [12], which is the fraction of correct predictions in
top-Np predicted node pairs. It is defined as,

Precision@Np =
|Epred (1 : Np) ∩ E |

Np
,

where Epred (1 : Np) are top-Np predicted node pairs.
For this experiment, we have used BlogCatalog network 1, which

is an undirected social network with 10,312 nodes and 333,983
edges. We have compared our model with three baseline algorithms
of different categories. Following the suggestions made by these
papers, we have used the number of dimensions, d = 128, and used
the same hyperparameters.

• Laplacian Eigenmaps (LAP) [1] is a matrix decomposition-
basedmethod that performs eigendecomposition of the Lapla-
cian of the graph.

• GraRep [2] is a multihop similarity-based method that gen-
erates node embedding by successive singular value decom-
position of the powers of the log-transformed, probabilistic
adjacency matrix. We set maximum transition step K = 6,
and log shifted factor β = 1/n.

• Node2vec [4] is a random walk-based method, which is a
generalization of DeepWalk [8]. Node2vec uses biased ran-
dom walk to create node sequences, and uses Skip-gram
model [6] to learn embedding of each node. We set walks
per node r = 80, walk length l = 10, context size k = 10,
return parameter p = 1, and in-out parameter q = 1.

Fig. 4 shows that TDNE (K = 3, r = 4) outperforms other baseline
algorithms in terms of Precision@Np , when the number of recon-
structed node pairs varied from one hundred to one million. We
executed each algorithm five times, and recorded Precision@Np
for each given number of reconstructed node pairs. Finally, we
plotted the means as points and the standard deviations as shaded
regions. We observe that single matrix factorization-based method
Laplacian Eigenmaps performs very poor because of its relying on
the approximation of eigenvectors of large graph Laplacian matrix.
Methods such as GraRep, Node2vec, and TDNE that use higher-
order proximities of nodes perform comparatively better. GraRep’s
poor performance can be attributed to the dependence of SVD ap-
proximation of several large proximity matrices. Due to the random
initialization of some parameters, Node2vec and TDNE show some
variance over different executions.

1http://socialcomputing.asu.edu/datasets/BlogCatalog3

102 103 104 105 106

Number of reconstructed node pairs, Np

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n@
N
p

LAP
GraRep
Node2Vec
TDNE

Figure 4: Comparison of network reconstruction performance of
TDNEwith three other baseline algorithms onBlogCatalog network

7 CONCLUSION
In this work, we present TDNE, a novel node embedding model,
which utilizes higher-order transition probability matrices of a
graph (directed or undirected, weighted or unweighted) to con-
struct a third-order tensor, and uses CP decomposition to extract
factor matrices containing the representations of the source and/or
target properties of the nodes, and the transition steps. We have
theoretically and experimentally shown that the node features pro-
duced by TDNE are highly interpretable. Moreover, learned embed-
dings of the transition steps make TDNE perform well in network
reconstruction. In the future, we want to extend the experimental
validation of TDNE in other tasks such as node classification and
link prediction. Additionally, we are interested to reduce the perfor-
mance variance of TDNE, which is due to the random initialization
of the factor matrices by ALS algorithm.

REFERENCES
[1] M. Belkin and P. Niyogi. 2001. Laplacian Eigenmaps and Spectral Techniques for

Embedding and Clustering. In NIPS, 2001.
[2] S. Cao, W. Lu, and Q. Xu. 2015. GraRep: Learning Graph Representations with

Global Structural Information. In CIKM, 2015.
[3] P. Goyal and E. Ferrara. 2018. Graph embedding techniques, applications, and

performance: A survey. Knowledge Based Systems 151 (2018), 78–94.
[4] A. Grover and J. Leskovec. 2016. node2vec: Scalable Feature Learning for Net-

works. In KDD, 2016.
[5] T. Kolda and B. Bader. 2009. Tensor decompositions and applications. SIAM

review 51, 3 (2009), 455–500.
[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean. 2013. Efficient Estimation of Word

Representations in Vector Space. In ICLR, 2013.
[7] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. 2016. Asymmetric Transitivity

Preserving Graph Embedding. In KDD, 2016.
[8] B. Perozzi, R. Al-Rfou, and S. Skiena. 2014. DeepWalk: online learning of social

representations. In KDD, 2014.
[9] S. Roweis and L. Saul. 2000. Nonlinear dimensionality reduction by locally linear

embedding. Science 290, 5500 (2000), 2323–2326.
[10] N. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. Papalexakis, and C. Falout-

sos. 2017. Tensor decomposition for signal processing and machine learning.
IEEE Trans. on Signal Processing 65, 13 (2017), 3551–3582.

[11] W. Zachary. 1977. An information flow model for conflict and fission in small
groups. Journal of anthropological research 33, 4 (1977), 452–473.

[12] Z. Zhang, P. Cui, X. Wang, J. Pei, X. Yao, and W. Zhu. 2018. Arbitrary-Order
Proximity Preserved Network Embedding. In KDD, 2018.

Session: Short - Embeddings CIKM ’19, November 3–7, 2019, Beijing, China

2108

	Abstract
	1 Introduction
	2 Related Work
	3 Notations
	4 Preliminaries of Tensor Decomposition
	5 The Proposed Model
	6 Experiments
	6.1 Interpretability of the features
	6.2 Network reconstruction

	7 Conclusion
	References

