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SUMMARY
To advance the measurement of distributed neuronal population representations of targeted motor actions
on single trials, we developed an optical method (COSMOS) for tracking neural activity in a largely uncharac-
terized spatiotemporal regime. COSMOS allowed simultaneous recording of neural dynamics at�30 Hz from
over a thousand near-cellular resolution neuronal sources spread across the entire dorsal neocortex of
awake, behaving mice during a three-option lick-to-target task. We identified spatially distributed neuronal
population representations spanning the dorsal cortex that precisely encoded ongoingmotor actions on sin-
gle trials. Neuronal correlations measured at video rate using unaveraged, whole-session data had localized
spatial structure, whereas trial-averaged data exhibited widespread correlations. Separable modes of neural
activity encoded history-guidedmotor plans, with similar population dynamics in individual areas throughout
cortex. These initial experiments illustrate how COSMOS enables investigation of large-scale cortical dy-
namics and that information about motor actions is widely shared between areas, potentially underlying
distributed computations.
INTRODUCTION

Cortical computations may depend on the synchronous activity

of neurons distributed across many areas. Anatomical evidence

includes the observation that many individual pyramidal cells

send axons to functionally distinct cortical areas (Economo

et al., 2018; Oh et al., 2014); for example, nearly all layer 2/3 py-

ramidal cells in primary visual cortex project to at least one other

cortical area—often hundreds of microns away (Han et al., 2018).

Physiological evidence has shown that ongoing and past sen-

sory information relevant for decision making is widely encoded

across cortex (Akrami et al., 2018; Allen et al., 2017; Gilad et al.,

2018; Harvey et al., 2012; Hattori et al., 2019; Hernández et al.,

2010; Makino et al., 2017; Mante et al., 2013; Mohajerani et al.,

2013; Pinto et al., 2019; Vickery et al., 2011). In addition, neural

activity tuned to spontaneous or undirected movements is found

inmany cortical areas (Musall et al., 2019; Stringer et al., 2019). In

the motor system, persistent activity may be mediated by inter-

hemispheric feedback in mouse motor cortex (Li et al., 2016) in

addition to other long-range loops between the motor cortex

and the thalamus (Guo et al., 2017; Sauerbrei et al., 2020), and
the cerebellum (Chabrol et al., 2019; Gao et al., 2018). Finally,

studies in primates have shown that non-motor regions of frontal

cortex contain neurons that encode information related to deci-

sions that drive specific motor actions (Campo et al., 2015;

Hernández et al., 2010; Lemus et al., 2007; Ponce-Alvarez

et al., 2012; Siegel et al., 2015).

Thus, while specialized computations formotor (Georgopoulos,

2015; Mountcastle, 1997) versus sensory (Hubel and Wiesel,

1968) or cognitive (Shadlen and Newsome, 1996) processes

may be performed in each cortical area, the results of these com-

putations may be propagated to dozens of other areas via direct,

often monosynaptic, pathways. Prior work, often limited by tech-

nological capabilities, has primarily focused on the tuning proper-

ties of individual neurons or population encoding in individual re-

gions, potentially missing an alternative systems-level viewpoint

of how distributed populations together encode behavior (Saxena

and Cunningham, 2019; Yuste, 2015). Thus, it remains unclear

how widespread population activity is involved in transforming

sensory stimuli and contextual information into specific actions.

A technical barrier to studying distributed encoding has been

the lack of a method for simultaneously measuring fast, cortex-
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wide neural dynamics at or near cellular resolution. Despite

recent progress in neural recording techniques, persistent limita-

tions have underscored the need for new approaches. Large

field-of-view, two-photon microscopes have enabled simulta-

neous recording from a few cortical areas at single-cell resolu-

tion, revealing structured large-scale correlations in neural

activity but at low rates (Chen et al., 2015; Lecoq et al., 2014; So-

froniew et al., 2016; Stirman et al., 2016; Tsai et al., 2015). Wide-

field imaging has also revealed cortex-wide task involvement

and activity patterns, albeit with low spatial resolution (Allen

et al., 2017; Ferezou et al., 2007; Makino et al., 2017; Mayrhofer

et al., 2019; Musall et al., 2019; Pinto et al., 2019; Wekselblatt

et al., 2016). Furthermore, multi-electrode extracellular recording

has revealed inter-regional correlations in spiking, information

flow between a few cortical areas, and phase alignment of local

field potentials across a macaque cortical hemisphere (Campo

et al., 2015; Dotson et al., 2017; Feingold et al., 2012; Hernández

et al., 2008; Ponce-Alvarez et al., 2012). However, despite the

merits of these approaches, each is limited by one or more of

several key parameters, including field of view, acquisition

speed, spatial resolution, and cell-type targeting capability. We

thus developed a complementary technique that leveraged

multifocal widefield optics to enable high-speed, simultaneous,

genetically specified recording of neural activity across the en-

tirety of mouse dorsal cortex at near-cellular resolution. To

illustrate utility of this new methodology, we devised a task

requiring mice to initiate bouts of targeted licking guided by

recent trial history. Imaging fast cortex-wide neural activity

during this task revealed a scale-crossing interplay between

localized activity and distributed population encoding on single

trials.

RESULTS

A Multifocal Macroscope for Imaging the Curved
Cortical Surface with High Signal-to-Noise Ratio
We sought to record the activity of neurons dispersed across the

entirety of dorsal cortex at fast sampling rates. Since many

mouse behaviors, such as licking, can occur at 10 Hz or faster

(Boughter et al., 2007), and widely used spike-inference algo-

rithms can only estimate firing rate information up to the data
Figure 1. COSMOS Enables Recovery of High SNR Neural Sources acr

(A) Schematic of cortical window superimposed upon the Allen Brain Atlas.

(B) Example preparation.

(C) Transgenic strategy (bottom) to drive sparse GCaMP expression (green; top)

(D) COSMOS macroscope (left) and lenslet array (right).

(E) Raw macroscope data contain two juxtaposed images focused at different d

(F) Point spread function captured using a 10-mm fluorescent source.

(G) Light transmission versus a conventional macroscope at different aperture se

(H) Merged image quality versus a conventional macroscope with the same light

(I) Data processing pipeline.

(J) Procedure for brain atlas alignment using intrinsic imaging.

(K) Neural sources extracted versus a conventional macroscope (one mouse; n

Kruskal-Wallis H test and post hoc t test).

(L) Peak-signal-to-noise ratio (PSNR) for the best 100 sources recorded using ea

(M) Example spatial footprints of extracted sources with f/2 macroscope.

(N) Example spatial footprints with COSMOS. Numbering corresponds to traces

(O) Example Z-scored traces from COSMOS.
acquisition rate (Pnevmatikakis et al., 2016; Theis et al., 2016),

we decided to use one-photon widefield optics with its potential

for highly parallel sampling at rates >20 Hz over a large field of

view, as well as genetic specificity; this combination is difficult

to achieve with other approaches such as two-photon micro-

scopy or electrophysiology (Harris et al., 2016; Weisenburger

and Vaziri, 2018). Other imaging techniques either lack the

desired sampling rate (Sofroniew et al., 2016; Stirman et al.,

2016), spatial resolution (Allen et al., 2017; Kim et al., 2016;

Makino et al., 2017; Wekselblatt et al., 2016), or field of view

(Bouchard et al., 2015; Lecoq et al., 2014; Nöbauer et al.,

2017; Rumyantsev et al., 2020). The approach described here,

cortical observation by synchronous multifocal optical sampling

(COSMOS), records in-focus projections of 1-cm3 1-cm3 1.3-

mm volumes at video rate (29.4 Hz for the presented data), with

high light-collection efficiency and resolution across the entire

field of view.

In conjunction with this macroscope, we advanced a surgical

approach enabling long-term, high-quality optical access to a

large fraction of dorsal cortex (based on Kim et al., 2016; Allen

et al., 2017). We used a trapezoidal window curved along a

10-mm radius (Figures 1A and S1A), andwe performed the crani-

otomy using a robotic stereotaxic apparatus (Pak et al., 2015;

Figures 1B and S1B–S1J).

We selectively drove sparse Ca2+ sensor expression in super-

ficial cortico-cortical projection neurons using a Cre-dependent,

tetracycline-regulated transactivator (tTA2)-amplified, GCaMP6f

reporter mouse line (Ai148) crossed to a Cux2-CreER driver line

(Daigle et al., 2018; Franco et al., 2012; Figure 1C). CreER al-

lowed control over the fraction of neurons expressing GCaMP

and obviated potential abnormalities from expressing GCaMP

during development (Steinmetz et al., 2017). Even 1 year after

window implantation, we found little evidence of filled nuclei

indicative of impaired cell health (Figures 1C and S1K–S1L). By

sparsely labeling only a subset of superficial cortical cells (from

layers 2/3 and 4), we biased the widefield signal origin toward

somatic sources from cortico-cortical neurons, instead of layer

1 neuropil (Allen et al., 2017). Post-experiment histology

(Figure S1L) validated that the GCaMP6f spatial expression

pattern was consistent with previous descriptions of Cux2-

CreER mice (Franco et al., 2012).
oss the Curved Surface of Dorsal Cortex

in superficial cortical layers.

epths (offset by 620 mm).

ttings.

throughput.

= 3 separate recordings per configuration; mean ± SEM; *Corrected p < 0.05,

ch configuration. Circles represent outliers.

in (O).
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The optical design for the COSMOSmacroscope used a dual-

focus lenslet array (Figure 1D), balancing high light throughput,

long depth-of-field, ease of implementation, and resolution,

with modest data processing requirements and reasonable sys-

tem cost. Theoretical analysis demonstrated that, in terms of

light collection, defocus, and extracted neuronal source signal-

to-noise ratio (SNR) across the extent of the curved window,

the COSMOS macroscope design outperformed other potential

solutions (Abrahamsson et al., 2013; Brady and Marks, 2011;

Cossairt et al., 2013; Hasinoff et al., 2009; Levin et al., 2009;

Schechner et al., 2007; Figure S2). Empirical comparisons

demonstrated that a COSMOS macroscope, with focal planes

offset by �600 mm (Figures 1E and 1F), outperformed a compa-

rable conventional macroscope in terms of depth of field while

maintaining equivalent light throughput (Figures 1G and 1H).

We captured Ca2+-dependent fluorescence videos with the

COSMOS macroscope and extracted putative neuronal sour-

ces, taking advantage of an improved version of the constrained

non-negative matrix factorization (CNMF) algorithm (Pnevmati-

kakis et al., 2016), which was designed specifically to handle

high-background, one-photon data (CNMF-E; Zhou et al.,

2018; Figure 1I; raw data in Videos S1 and S2; for atlas registra-

tion methods, see Figure 1J, STAR Methods, Figure S3, and

Video S3). In contrast to the output of a conventional

macroscope, high-quality sources detected by the COSMOS

macroscope spanned the entire curved window, thus providing

simultaneous coverage of visual, somatosensory, motor, and as-

sociation areas. Furthermore, the COSMOS macroscope recov-

ered significantly more sources than a conventional macroscope

at any single aperture setting. Nearly twice as many neuronal

sources were detected with the COSMOS macroscope,

compared to a macroscope with equivalent light collection

(aperture open to f/2 setting) and with comparable SNR (Figures

1K–1O).

Characterization of Extracted Neuronal Sources Using a
Visual Stimulus Assay
We next assessed whether the sources extracted from

COSMOS data originated from single neurons or mixtures of

multiple cells. We leveraged the finding that, in rodents, neurons

in visual cortex tuned to differently oriented visual stimuli are
Figure 2. Characterization of COSMOS Sources Using Visual Stimuli

(A) Sinusoidal grating stimuli were presented to mice during both COSMOS and

(B) Highlighted COSMOS sources that were stimulus responsive (in a Cux2-CreE

field-of-view size for the two-photon microscope used to collect comparative da

(C and D) Single-trial (C) and peak-normalized trial-averaged (D) responses from s

cortex under the COSMOSmacroscope (top in C, right in D; black contours denote

(bottom in C, left in D). In (D), vertical lines indicate grating onset times; error bar

(E) Orientation selectivity index (OSI) distributions for all extracted sources within

corrected p values from Mann-Whitney U test are indicated).

(F) OSI distributions plotted for all visually responsive sources in right visual areas,

Red lines denote OSI = 0.8. Fraction of sources with OSI > 0.8 indicated as perc

(G) OSI distributions for two additional mice (with cleared skulls but no windows

(H) Generation of neural trajectories using PCA.

(I) Trial-averaged, visually responsive sources pooled across both visual cortice

trajectories for trial-averaged (middle) and single-trial data (right). Scale bars are

(J and K) Trajectories for control mice 1 (J) and 2 (K) lacking cranial windows.

*Corrected p < 0.05; **corrected p < 0.01; ***corrected p < 0.001; ****corrected p
spatially intermixed in a salt-and-pepper manner (Chen et al.,

2013; Niell and Stryker, 2008; Ohki et al., 2005). In our data,

merging of adjacent neurons into a single extracted source

would, thus, diminish orientation tuning relative to sub-cellular

resolution, two-photon measurements.

Using COSMOS, we measured orientation tuning in response

to a drifting grating stimulus centered on the left eye (Figure 2A;

the monitor provided weaker visual input to the right eye). Nearly

all orientation-tuned sources were confined to the visual cortex

(Figure 2B; visually responsive sources highlighted; one-way

ANOVA, p < 0.01; on the superimposed atlas, the border around

the visual cortex is indicated with thicker white lines). We then

repeated this procedure with each mouse, using a two-photon

microscope with a high-magnification objective (Nikon, 163/

0.8 NA) positioned over the right visual cortex (notemuch smaller

size of two-photon imaging field indicated by box in Figure 2B).

Both COSMOS and two-photon datasets contained sources ex-

hibiting highly selective orientation tuning consistent with re-

ported single-neuron responses measured with GCaMP6f in pri-

mary visual cortex (V1) (Chen et al., 2013) (Figure 2C and 2D). As

expected, the average orientation selectivity index (OSI) of

COSMOS sources in the right visual cortex was higher than in

any other cortical region (Figure 2E; Mann-Whitney U test

analyzing all visually responsive sources from 3 different mice;

corrected p < 0.0001 for all comparisons versus right visual

areas). Furthermore, across 3 mice, 14% of all visually respon-

sive sources had OSIs >0.8 (Figure 2F, top row). In two-photon

data from the same mice, 68% of visually responsive sources

had orientation tunings >0.8 (Figure 2F, bottom row).

To further assess the COSMOS sources, we simulated mix-

tures of single-neuron signals obtained with two-photon data

to reproduce the COSMOS OSI distributions. Across mice, the

COSMOS OSI distributions could be explained by the presence

of sources representing mixtures of signals from 1–15 neurons

(Figure S4A). The presence of sources with OSIs >0.8 is not triv-

ial; if we had observed zero high OSI sources, the COSMOS OSI

distributions would be, instead, more consistent with mixtures of

11–19 neurons—well outside the single-neuron regime (Fig-

ure S4B; STAR Methods; importantly, though, no particular

source is required to be a single neuron, and our analyses are

structured accordingly).
two-photon imaging, using an identical monitor.

R; Ai148 mouse; one-way ANOVA, p < 0.01). Box indicates 550 mm x 550 mm

ta.

elected visually responsive sources (from the mouse in B) from the right visual

selected sources in B) and sources imaged under the two-photonmicroscope

s represent SEM.

visual areas compared to sources in all other areas (pooled over three mice;

across threemice, under COSMOS (top) and two-photonmicroscopy (bottom).

entages.

).

s (from a single mouse), imaged under the COSMOS microscope (left). PCA

arbitrary units but indicate an equivalent length in each dimension.

< 0.0001.
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To test the importance of the overall COSMOS preparation in

achieving this key result, we performed the same procedure on

conventional cleared-skull widefield preparations with two

different genetically specified expression profiles: Thy1-

GCaMP6s and Cux2-CreER;Ai148 (Allen et al., 2017; Makino

et al., 2017; Wekselblatt et al., 2016; Figures S4C–S4H).

Following identical imaging and data processing as with the

earlier mice, even in the best of three Thy1-GCaMP6s mice,

we found zero neuronswith anOSI >0.8 (Figure 2G). Additionally,

with both genotypes, fewer total sources were extracted, the

spatial footprint of each source was larger, and there were fewer

visually responsive sources (Figures S4C–S4F).

To further explore the improved capability of COSMOS relative

to existing widefield techniques, we computed a population en-

coding of the visual stimuli. By applying principal-component

analysis (PCA) to trial-averaged traces, we computed a

low-dimensional basis for representing high-dimensional trial-

averaged or single-trial neural population activity (Figure 2H).

Trajectories corresponding to each visual stimulus orientation

were well separated with COSMOS (Figure 2I) and trial-averaged

two-photon data (compare Figures S4G and S4H) but not with

conventional widefield preparations (Figures 2J and 2K). Only

with COSMOS could robust trajectories of neural population dy-

namics be measured that encompassed synchronously re-

corded activity from across the full extent of the dorsal cortex.

Cortex-wide Recording during a Head-Fixed Lick-to-
Target Task
Using COSMOS, we set out to perform a proof-of-principle

investigation of cortex-wide representations of targeted actions

in the context of a head-fixed lick-to-target task. Mice were

trained to lick one of three waterspouts in response to a single

‘‘go’’ odor and to take no action in response to a second ‘‘no-

go’’ odor (Figure 3A). In this more complex variant of a previously

studied task (Allen et al., 2017; Komiyama et al., 2010), sessions

consisted of blocks with 15–20 trials, where a water droplet

rewardwas available fromone active spout per block (Figure 3B).

The ‘‘go’’ odor remained constant, even as the rewarded active

spout changed. Thus, no cue ever indicated which spout was

active; the next reward was simply more likely to come from

the spout that had delivered the previous reward 5–10 s prior
Figure 3. Behavioral and Neural Correlates of Specific Targeted Moto

(A) Head-fixed behavioral task.

(B) Trial structure.

(C) Video frames illustrating mouse licking each spout.

(D) Lick rate during each trial type averaged across n = 4 mice. Error bars repres

(E) Lick selectivity averaged across n = 4mice. Error bars represent SEM across an

delivery. Colored lines represent normalized lick count toward each spout on tria

(F) Raster showing all licks during a single experimental session. ‘‘No-go’’ trials a

(G) Lick selectivity after active spout switch (error bars represent SEM; corrected

(H) Analysis for establishing tuning of sources to different trial types.

(I) Spatial distribution of task-related classes.

(J) Trial-averaged traces, ordered by task-related class and cross-validated pea

(K) Cumulative fraction of source separations at each distance. For this mouse,

(L) Example single-trial traces that exhibit different responses to each trial type.

(M) All ‘‘lick off’’ sources from one mouse.

(N) Averaged, baseline-subtracted, ‘‘lick off’’ sources for each mouse.

*Corrected p < 0.05; ****corrected p < 0.0001.
to the current trial. Successful actions were, thus, history guided:

they depended upon integrating experience from recent trials, as

opposed to just responding to an immediate cue. Mice were re-

warded if the first lick following a 0.5-s delay after odor offset was

toward the active spout. Licking an inactive spout at this time

yielded a penalty (a reduced-size water droplet from the active

spout). Although other licks did not affect the outcome, mice

tended to lick the active spout shortly after odor onset. To

facilitate exploration during the first three trials of each block, a

full-sized reward was dispensed from the new active spout if

any spout was licked following the ‘‘go’’ odor.

Head-fixed mice reliably learned to lick each spout (Figure 3C;

Video S4), with a bias to the active spout (Figures 3D and 3E).

Furthermore, consistent with a strategy that integrates informa-

tion across multiple previous trials (spanning tens of seconds),

specificity of pre-reward anticipatory licking to the new active

spout progressed over the first three trials of a block (Figures

3F and 3G; lick selectivity increased from trials 1 to 2, and from

trials 2 to 3, of each block; corrected p < 0.05, paired t test,

data pooled across sessions; n = 4 mice). Mice rarely licked on

‘‘no-go’’ trials (Figures 3D and 3F).

In four well-trained mice, we imaged the dorsal cortex during

this task (all mice yielded >1,000 neuronal sources per session;

mean = 1,195). After observing sources with reliable trial-type-

related dynamics, we assigned sources to one of five task-related

classes: responsive selectively for one trial type (go 1, go 2, go 3,

or no go) or responsive to amixture of trial types (mix) (Figures 3H–

3J; consistent results were observed across these mice and also

in a different genotype, Rasgrf2-dCre;Ai93D;CaMK2a-tTA, also

targeting layer 2/3 neurons; Figures S5A and S5B). Sources

from each class appeared randomly distributed across the dorsal

cortex (Figures 3K and S5C; there was no consistently significant

spatial pattern across mice for corrected p < 0.05, permutation

test in STAR Methods; this analysis is sensitive to clusters

>1 mm in diameter, Figure S5D; Hofer et al., 2005). For each

task class, sources were present in all regions (Figure S5E). We

also found sources across the cortex with clear encoding of

each trial type (Figure 3L) and a subclass of sources with sus-

tained activity during the pre-odor period followed by reduced ac-

tivity at odor onset of the ‘‘go’’ trials (Figures 3M, 3N, and S5G;

fraction of sources across n = 4 mice: 1.8% ± 0.4%, mean ± SD).
r Actions

ent SEM across animals.

imals. Licks taken after odor presentation but before (left) or after (right) reward

ls when a given spout is active.

re indicated in green.

p values from paired t test).

k time.

no task classes were significantly different than the null distribution (p > 0.05).

Neuron 107, 351–367, July 22, 2020 357



A B C

D

Figure 4. Unaveraged Data Exhibit More Localized Correlation Structure Than Trial-Averaged Data

(A) Seeded trial-averaged activity correlations (for a single seed): top, spatial distribution; bottom, correlation versus distance to the seed (black dot).

(B) Seeded unaveraged activity correlations (format matches that in A).

(C) Example illustrating unaveraged activity correlation (locations indicated on atlas inset). Red arrows indicate time points when the seed source and its neighbor

are active simultaneously.

(D) Summary across all mice of correlation analyses shown in (A) and (B). Lines for each mouse represent the mean correlation across all pairs of sources (binned

and normalized). Statistic shown at 1-mm distance (***corrected p = 0.0001, paired t test; n = 4 mice).
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Correlations of Unaveraged Activity Exhibit Localized
Spatial Structure
We next investigated the structure of correlated neural activity

across cortex—taking advantage of the simultaneity of our

large-scale data—via correlation maps, where we computed

the correlation magnitude of the 29.4-Hz activity of a seed

source with that of every other source (at zero lag with

Gaussian-smoothed, SD = 50 ms, deconvolved spiking activity;

STAR Methods). We computed this correlation map using either

unaveraged traces from the whole session (i.e., the concate-

nated time series from all single trials after removing the

variable-length intertrial interval) or concatenated trial-averaged

traces (similar to Figure 3J). With trial-averaged data, sources

with high correlation to the seed source were distributed widely,

in support of our initial observations (Figure 4A). In contrast, with

unaveraged data, we found many instances of localized correla-

tion structure for seeds located throughout the cortex (Figures

4B and S6). This correlation did not result from a localized imag-

ing artifact, as raw extracted fluorescence traces demonstrated

that, although neighboring sources exhibited occasionally corre-

lated firing, they had distinct activity patterns (Figure 4C).

Additionally, there existed bilaterally symmetric correlations (Fig-

ure S6B). When summarizing the correlation versus distance for

all pairs of sources, we observed a consistent pattern across

mice (Figure 4D). For example, at a separation distance of

1 mm, unaveraged correlations were consistently lower than

trial-averaged correlations (p = 0.0001, paired t test; n = 4
358 Neuron 107, 351–367, July 22, 2020
mice). Thus, although sources throughout the cortex exhibited

similar activity when averaged according to trial type, correla-

tions in unaveraged cortical activity showed increased depen-

dence on spatial proximity.

Single-Trial Representations of Distinct Motor Actions
Are Distributed across Cortex
We used the synchronous-recording capability of COSMOS to

assess how populations of sources jointly encoded information

about ongoing behavior on single trials. We first characterized

the ability of each individual source to discriminate any of four

different ongoing actions: licking to spout 1, spout 2, or spout

3 or not licking at all. We found that most of the sources detected

in each mouse exhibited significant discrimination capacity

(78%± 4%of all neuronal sources for n = 4mice), where discrim-

ination capacity was defined for each source as corrected

p < 0.05 (Kruskal-Wallis H test for whether the source time series

could discriminate any of the four actions; Figure S7A). These

discriminating sources were distributed across all dorsal cortical

regions (Figure S7B).

Next, we asked how cortical neurons jointly encoded informa-

tion about ongoing actions. Across all four mice, a linear decoder

could predict lick direction at the frame rate of our deconvolved

Ca2+ data (29.4 Hz) with high accuracy on single-trial data

(Figures 5A–5C; receiver operating characteristic [ROC] curves

shown; STARMethods). Indeed, as demonstrated in Figure S7C,

we could readily decode individual lick bouts to different spouts,
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Figure 5. Representations of Distinct Motor

Actions Are Distributed across Dorsal Cortex

(A) Schematic for decoding ongoing licks.

(B) Row-normalized lick confusion matrix for one

mouse.

(C) Receiver operating characteristic (ROC) curve for

each mouse, averaged across folds. Dashed lines

indicate ROC curves for shuffled data.

(D) Improvement in the area under the ROC curve

(AUC) as more neural sources are included. Red

lines indicatemeans across mice. Gray lines indicate

circularly permuted control. Corrected p values from

paired t test are shown for each of the sources

versus the closest evaluated number of sources.

(E) Decoding using only sources from within single

cortical regions (using the 75 sources per area with

best discrimination ability; M, motor; S, somato-

sensory; p,= parietal; R, retrosplenial; V, visual).

Corrected p values for two-sided t test are shown for

each region versus AUC = 0.5.

(F) Unique contribution of each region to decoding

accuracy, measured as 1 � AUC (without region)/

AUC (with region). Corrected p values from two-

sided t test are shown for each region versus AUC =

0.0.

ns denotes corrected p > 0.05; *corrected p < 0.05;

**corrected p < 0.01.
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even when interleaved within a single trial. Thus, ongoing motor

actions of the mouse are represented with high temporal fidelity

by neuronal sources in the dorsal cortex.

Finally, we compared decoding performance when using

different numbers of sources. To provide a fair comparison,

only the most discriminative sources were used for decoding

(according to the ordering in Figure S7A), and all decoding

models had the same number of parameters. We found a mono-

tonic increase in decoding performance as more sources were

included (Figure 5D, corrected p < 0.01, paired t test comparison

versus area under the ROC curve [AUC] with next closest num-

ber of sources; n = 4mice). To further examine this phenomenon,

we decoded lick events using only the 75 most discriminative

sources from each region (merged across hemispheres). Each

region could decode lick direction far above chance (Figure 5E,

corrected p < 0.01 for all regions, t test versus AUC = 0.5; n = 4

mice). Finally, by comparing decoding using all but one region

with decoding using all regions (again, using only the top 75 sour-

ces per region), we demonstrated that at least some cortical re-

gions—somatosensory and motor, in this case—contained sig-

nificant unique information that was not present in the top

sources sampled from other regions (Figure 5F; corrected p <

0.05, t test versus unique AUC = 0; n = 4 mice).

History-Guided Motor Plans Are Encoded by Neuronal
Populations across Cortex
In this history-guided task, the mouse must maintain information

during the pre-odor intertrial interval about where it plans to lick

at odor onset. To detect and localize neural representations of

this information, we trained decoders using ‘‘pre-odor’’ denoised
neural Ca2+ data taken from the final 2.2 s of the intertrial interval,

which preceded any stimulus or licking. We could successfully

predict the spout that wasmost licked between odor and reward

onsets (the ‘‘preferred spout’’) using a linear technique (partial

least-squares regression [PLS]; Figure 6A). Trials containing

pre-odor licks were not used for prediction (0.1%–10.3% of all

recorded licks were during the pre-odor period).

These PLS-based decoders exhibited above-chance perfor-

mance, as exemplified in the predictions for a representative da-

taset (Figures 6B and 6C; four dimensions and up to 500 sources

were used for training; see Figures S7D and S7E and STAR

Methods for fitting details; sources were ordered by discrimina-

tion ability; Figure S7F). These decoders could predict the

preferred spout using neural activity taken from the entire trial,

the pre-reward period, or just the pre-odor period (Figure 6D).

Performance was quantified by comparison with randomized

controls with shuffled preferred spout labels. Shufflingwas either

performed randomly or, more conservatively, by circularly

permuting the labels by random numbers of trials. Decoding

was significant relative to either control (Figure 6D; corrected

p < 0.01, paired t tests versus randomly shuffled; corrected p

< 0.01 versus circularly permuted).

We next tested the decoding performance of different

cortical regions, using only the 75 most discriminative sources

from each region. We found that areas across the cortex

yielded above-chance performance (Figure 6E; corrected p <

0.05, paired t tests versus random shuffle; corrected p <0.05

for all areas but parietal versus circular permutation), including

the visual cortex, even though no task elements were visible to

the mouse. Decoder prediction of the true active spout was
Neuron 107, 351–367, July 22, 2020 359
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Figure 6. The Direction of Future Licks Is Encoded by Neurons Distributed across the Dorsal Cortex

(A) Schematic of approach.

(B) Row-normalized confusion matrix predicting preferred spout location from pre-odor neural data (chance is 0.33).

(C) Predictions for one behavioral session (training trials and trials that contain any licks during the pre-odor period are not shown).

(D) Preferred spout neural decoding performance using data from three different time epochs. Red lines denote means across mice. Black lines and gray lines

denote random shuffle and circularly permuted controls, respectively.

(E) Pre-odor neural decoding performance quantified for: motor (M), somatosensory (S), parietal (p), retrosplenial (R), and visual (V) areas. Each area-specific

decoder used the 75 sources with best discrimination ability. Corrected paired t test values are shown versus both random controls in (D) and (E). Error bars in (D)

and (E) show 99% bootstrapped confidence intervals over 20 model fits to different sets of training data.

(F) Pre-reward neural decoding of the spout most licked during the pre-reward period (purple) and fraction of pre-reward licks toward the active spout (cyan),

shown as a function of location within a trial block. Note that both sets of lines use identical data taken from testing trials.

(G) Pre-odor behavioral decoding performance using data from both lower and upper cameras and a decoder trained on motion energy principal components

derived from both the upper and lower videos (1,000 from each).

ns denotes corrected p > 0.05; *corrected p < 0.05; **corrected p < 0.01; ***corrected p < 0.001.
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comparable to that of the preferred spout (Figure S7G; cor-

rected p = 0.42, paired t test; n = 4 mice; only trials where the

preferred and active spouts were identical were used for model

training in all PLS analyses; in the test set; these labels were

similar but not identical).
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Additionally, we investigated how the ability to predict the

preferred spout changed within each block of trials. Multiple tri-

als were required for licking to adapt to a new active spout (Fig-

ure 6F, cyan points; comparison of trial 1 to trial 2 or 3; corrected

p < 0.01, paired t test). In contrast, preferred spout decoding
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Figure 7. Population Neural Activity Encodes Upcoming Lick Bouts toward Specific Spouts

(A–C) Neural trajectories from mouse A (trial averaged in first and third columns, single-trial in second column). Basis vectors computed as in the previous figure

using PLS regression on entire training trials and sources from all (A), only motor (B), or only visual (C) areas. Scale bars are arbitrary units but indicate an

equivalent length in each dimension.

(D) Schematic of analysis scheme used in (E) and (F). Bottom panel shows summed intercluster Mahalanobis distance for clusters fit to data from each mouse.

Corrected p values from a paired t test are shown versus visual data. M, motor; S, somatosensory; V, visual, All, all sources.

(legend continued on next page)
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performance remained relatively constant over this period (Fig-

ure 6F, purple points; comparison of trial 1 to trial 2 or 3; cor-

rected p = 0.43). However, we found a relationship between de-

coding and lick selectivity, with significantly greater performance

on trials with >80% of pre-reward licks to a preferred spout

compared with trials where <80% of licks were selective (cor-

rected p < 0.05, paired t test; n = 4mice; Figure S7H). Thus, while

we can successfully predict future actions throughout trial

blocks, performance is reduced when future licking behavior is

less selective. Moreover, when decoding the true active spout

(instead of the preferred spout), performance with ‘‘correct go’’

trials where >70% of all licks were toward the active spout was

significantly higher than either with ‘‘incorrect go’’ trials, where

<70% of licks were toward the active spout, or with the error-

prone second trials of each block (Figure S7I; corrected p <

0.05, paired t test).

Finally, we explored whether this ability to use neural data to

predict upcoming actions might also be manifested in the visible

behavior of the animal during the pre-odor period. We attempted

to decode the preferred spout using only video of behavior (200-

Hz video recordings of the face and body of each animal during

neural data acquisition). We predicted the preferred spout using

the top 1,000 principal components from each video (and then us-

ing PLS and identical training/test trials as with the neural ana-

lyses). We found that it was, indeed, possible to decode the

preferred spout based on behavior (corrected p < 0.001 versus

shuffle; corrected p < 0.01 versus circularly permuted labels; Fig-

ure 6G; Figures S8A–S8C). By decoding using specific regions of

interest, we determined that movements of the mouth and whis-

kers contain information about the preferred spout during the

pre-odor period, despite exclusion of all trialswith detected licking

to spouts during the pre-odor period (Figure S8D). Consistentwith

a neural representation of the upcoming spout target, distributed

bodily signals well before lick onset may represent a physical

readout of this neurally maintained information.

Distinct Patterns of Population Neural Activity Encode
Different Motor Plans and Actions
We next examined population dynamics by projecting neural ac-

tivity onto the four-dimensional PLS basis that defined our de-

coders (which was optimized to discriminate preferred spout di-

rection, not to explain the most variance; Figure S7J). On correct

trials, trial-averaged neural trajectories were already segregated

into distinct zones in state space at trial onset (black dots),

before diverging further upon lick onset (using held-out ‘‘correct

go’’ trials where >70% of all licks were toward the active spout,

and, thus, the preferred and active spouts were always identical;

Figure 7A, left; Video S5). This dynamical structure appeared

reproducibly, albeit with greater noise, when examining held-
(E) Distributions of (same cluster Mahalanobis distances) � (next closest cluster

computed using a Wilcoxon test. Comparisons versus ‘‘correct go’’ trials used a M

second trials from 4 mice.

(F) Format matches that of (E), using sources from all areas and comparing pre-od

before odor, during odor, and after reward onset. Statistics were computed ac

bootstrapped confidence intervals.

ns denotes corrected p > 0.05; *corrected p < 0.05; **corrected p < 0.01; ***corre

(false discovery rate) corrected, and comparisons that yielded corrected p > 0.0
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out single-trial data (Figure 7B, middle). On ‘‘no-go’’ trials, which

were indistinguishable from ‘‘go’’ trials before odor onset, we

also saw clear separation of the trial types at trial start, but trajec-

tory differences diminished as mice forewent licking. Further-

more, we observed qualitatively consistent dynamics when

repeating this analysis with neuronal sources taken from only

motor (Figure 7B) or only visual areas (Figure 7C).

We next investigated the consistency across single trials of the

pre-odor trajectory segregation. Pre-odor population activity

occupied clusters in state space corresponding to the preferred

spout on that trial (for all training trials used to define clusters,

active and preferred spouts were identical). The separation

distance between clusters was not the same in each area, with vi-

sual cortical clusters significantly closer than all-area clusters (Fig-

ure 7D, bottom; corrected p < 0.05, paired t test versus visual).We

computed an index representing the distance from the average

pre-odor position in state space of a given trial to the cluster cor-

responding to the preferred spout on that trialminus its distance to

the next closest cluster (Figure 7E; see STAR Methods); negative

values indicate that population activity is nearest the preferred

spout cluster. We found that ‘‘correct go’’ and ‘‘no-go’’ trials

had distributions centered below zero (except for the visual cor-

tex, which was not significantly positive).

In contrast, on error trials, we would expect this trend to be

weakly present—if present at all—as the trajectory could encode

confusion or incorrect spout preference evident in the animal’s

subsequent behavior. ‘‘Second trials’’ (where there was uncer-

tainty in behavior after an active spout change; Figure 3G) high-

lighted data wherein mice often lick to the wrong spout—but

after demonstrating awareness of the correct spout on the pre-

ceding trial (only 50% ± 38% [mean ± SD] of pre-reward licks

on ‘‘second trials’’ were toward the active/correct spout, while

74% ± 17% of reward period licks were toward the active spout

on corresponding ‘‘first trials’’; 37 trials pooled over 4 mice). We

found that ‘‘incorrect go’’ (<30% of trial licks were toward the

correct spout) and ‘‘second trials’’ (situations with many licks

to spouts besides the active/correct one) both had distributions

centered above zero. The index was significantly lower for ‘‘cor-

rect go’’ trials than for ‘‘incorrect go’’ and ‘‘second trials’’ (cor-

rected p < 0.05 or less, Mann-Whitney U test) across all cortical

areas analyzed (consistent with Figure S7I).

We tracked this index across time by repeating the analysis

using data following either odor onset or reward onset (Figure 7F;

see STARMethods). During ‘‘correct go’’ trials, the neural trajec-

tories moved even further along the direction of the preferred

spout cluster (corrected p < 0.001, Wilcoxon test versus pre-

odor). In contrast, ‘‘incorrect go’’ trial trajectories moved away

from the preferred spout cluster as mice licked toward incorrect

spouts (corrected p < 0.05, pre-odor epoch versus odor and
distances). Data are pooled across four mice. Comparisons versus zero were

ann-Whitney U test. 223 ‘‘correct go,’’ 110 ‘‘no go,’’ 29 ‘‘incorrect go,’’ and 37

or clusters to single-test-trial trajectories averaged over different time epochs:

ross time intervals using a Wilcoxon test. Error bars in (E) and (F) show 99%

cted p < 0.001; ****corrected p < 0.0001. All statistical comparisons were FDR

5 are not shown in (E) and (F).
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reward epochs). ‘‘No-go’’ trajectories also moved away from the

preferred spout cluster as mice suppressed licking (corrected

p < 0.05 for all comparisons between epochs).

Together, these findings further support the presence of a pop-

ulation representation of targeted action-related motor plans

across the cortex. Additional analyses suggest that there is a

distinction between the population representation of motor plans

versus motor plan execution (Figures S8E–S8G). Finally, multi-re-

gionoptogenetic inhibition revealedevidence forapotential causal

role of non-motor regions in motor plan execution (Figure S9).

DISCUSSION

Here, we developed a new technique, COSMOS, for simulta-

neously measuring the activity of over a thousand neuronal sour-

ces spread across the entirety of the mouse dorsal cortex. We

demonstrated that COSMOS iswell suited for studying population

dynamics across many cortical areas, with resolution enabling re-

covery of sources composedof�1–15neuronsover a centimeter-

scale field of view at �30 Hz. We then used COSMOS to investi-

gate cortical neuronal population dynamics during a three-spout

lick-to-target task. We found that, although unaveraged correla-

tions exhibit localized spatial structure, widespread populations

of neurons—with no apparent mesoscale spatial structure—

encode targetedmotor actions and history-guidedplans on single

trials.

Distributed Cortical Computation
Our observations indicate that ongoing and planned motor ac-

tions are encoded in the joint firing of superficial cortico-cortical

projection neurons (derived from the Cux2 lineage; Franco et al.,

2012; Gil-Sanz et al., 2015) throughout the dorsal cortex. Recent

work has demonstrated that many cells throughout the brain

exhibit mixed-selectivity tuning, which can be driven strongly

by ongoing, spontaneous movement (Allen et al., 2017; Musall

et al., 2019; Stringer et al., 2019). Building upon this work, we

focused on assessing the extent to which the joint activity of

many neurons together could encode targeted motor behaviors,

rather than seeking to explain the activity of individual neurons

based on a breakdown of contributing behavioral factors. We

found that, asmore neuronal sourceswere used for training clas-

sifiers, the ability to decode ongoing lick actions improved, a

hallmark of distributed codes (Rigotti et al., 2013).

We also found modes of neural activity that predicted future

history-guided motor actions. Our ability to simultaneously mea-

sure the multi-unit activity of many neurons across the dorsal

cortex on single trials—in addition to our specific behavioral

task—may account for the fact that we found a population en-

coding future actions beyond the frontal cortex, unreported in

previous work (Steinmetz et al., 2019). Interestingly, on trials

with nonselective licking, neural decoding performance for the

preferred spout (Figure S7H) and the active spout (Figure S7I)

was significantly reduced. On these trials with disorganized

behavior, the mouse is potentially in a distinct brain state that

does not map onto the subspace defined using correct trial data.

Our results suggest that neural representations of history-

guided motor plans may not be confined to cortical regions

predicted to be involved in the task, at least for layer 2/3 neurons.
We identified a widespread population encoding of targetedmo-

tor actions and plans, a lack of structure in the spatial distribution

of trial type selective sources, and diffuse trial-averaged seeded

correlations. At first glance, these results could be consistent

with a non-hierarchical view of cortical computation (Hunt and

Hayden, 2017)—or even with a weak version of Lashley’s ‘‘law

of mass action’’ (Kolb and Whishaw, 1988)—but we also impor-

tantly observed localized spatial structure when analyzing

cortex-wide single-trial correlations. Thus, theremay be an inter-

play between local and global computation whereby individual

neurons intermittently encode task-related information, but a

reliable population code still persists (Gallego et al., 2020).

We propose two potential interpretations for our observations

of widespread encoding of motor plans and actions. First, infor-

mation arising across the cortex (itself predictive of future

actions) may converge onto classical motor regions, as local

‘‘specialist’’ areas process and transmit disparate information

streams that are integrated into a plan in the motor cortex. Sec-

ond, an efference-copy-like plan may be generated in the motor

cortex and broadcast widely, potentially as a contextual signal to

aid in distributed processing or learning. In a predictive coding

framework, for example, widespread motor plan encodings

could contribute to a predictive signal in each region against

which ongoing activity is compared (Friston, 2018; Keller and

Mrsic-Flogel, 2018; Schneider et al., 2014). Distinguishing

between these hypotheses will likely require the ability to simul-

taneously record from and inhibit large regions of cortex (Sauer-

brei et al., 2020), which could be built upon COSMOS.

Our results also showed that upcoming licking can be de-

coded from gross body movements observed before the onset

of licking. These predictive body movements could represent a

consequence, rather than a cause, of our observed predictive

cortical activity patterns (like a poker tell or an instance where

a latent brain state manifests physically; Dolensek et al., 2020).

As themouse cannot determine which spout is active by sensing

the pre-odor environment, a broadcast signal could facilitate

global preparation for the upcoming targeted action. Alterna-

tively, these subtle movements could help the mouse remember

the information (like a physical mnemonic), guided by centrally

derived neural activity. Distinguishing between these possibil-

ities will require targeted manipulations, potentially by disrupting

the mouse’s ability to move its body (as in Safaie et al., 2019).
Imaging Large-Scale Population Dynamics
Over the past decade, one-photon Ca2+ imaging—using wide-

field macroscopes or microendoscopic approaches—has seen

renewed popularity due to comparative technical simplicity

and compatibility with increasingly sensitive and bright geneti-

cally encoded Ca2+ sensors (Allen et al., 2017; Chen et al.,

2013; Scott et al., 2018; Ziv et al., 2013). Early microendoscopic

imaging in hippocampal CA1 (Ziv et al., 2013), where sparsely

active neurons are stratified into a layer only 5–8 cells thick (Miz-

useki et al., 2011), provided evidence that activity signals in sin-

gle neurons could be resolved, but cellular resolution does not

appear to hold universally across all systems. In the birdsong

system, one-photon imaging data (Liberti et al., 2016) yielded

results in conflict with a follow-up two-photon imaging study
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(Katlowitz et al., 2018) that showed significantly more stable sin-

gle-neuron representations than in the earlier work.

As our results estimate that each COSMOS source is likely a

mixture of 1–15 neurons (akin to multi-unit spiking activity),

neuronal sources arising from COSMOS should not be treated

as single units unless so validated. High-resolution two-photon

or electrophysiological approaches would be better suited for

questions that require true single-cell resolution, albeit over

smaller fields of view. However, COSMOS data also exist in a

regime complementary to previous methods, and, as demon-

strated, key population analyses that work with COSMOS

cannot be performed using conventional widefield imaging data.

Much work in the realm of large-scale neural population dy-

namics leverages dimensionality reduction techniques that esti-

mate a neural state vector as a linear combination of the activities

of individual neurons (Churchland et al., 2012). Recent work has

begun to investigate the idea that major results derived from

sorted individual unit recordings can be recapitulated just as

well from multi-unit activity (Trautmann et al., 2019) and, likely,

also COSMOS data. Indeed, as attention in systems neurosci-

ence increasingly broadens from a focus on individual neurons

to more abstract population codes (Saxena and Cunningham,

2019; Yuste, 2015), COSMOS provides a means of measuring

distributed codes in genetically defined populations of neurons

across cortex and for testing how cortical dynamics vary across

diverse behaviors.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Chlorprothixene Sigma-Aldrich Cat# C1671-1G

Tamoxifen Sigma-Aldrich Cat# T5648

Corn oil Acros Organics Cat# AC405430025

Trimethoprim Sigma-Aldrich Cat# T7883-25G

DMSO Sigma-Aldrich Cat# 472301

Experimental Models: Organisms/Strains

Mouse: Tg(Thy1-GCaMP6s)GP4.3Dkim

(Thy1-GCaMP6s)

The Jackson Laboratory Jax Stock# 024275

Mouse: Cux2-CreERT2 Franco et al., 2012 N/A

Mouse: Ai148(TIT2L-GC6f-ICL-tTA2)-

D (Ai148)

The Jackson Laboratory Jax Stock# 030328

Mouse: VGat-ChR2-EYFP The Jackson Laboratory Jax Stock# 014548

Mouse: Rasgrf2-2A-dCre The Jackson Laboratory Jax Stock# 022864

Mouse: Ai93(TITL-GCaMP6f)-

D;CaMK2a-tTA

The Jackson Laboratory Jax Stock# 024108

Software and Algorithms

Image registration, signal extraction, and

analysis tools for two-photon and one-

photon imaging data.

This paper http://github.com/deisseroth-lab/

cosmos-tools

CNMF-E Zhou et al., 2018 http://github.com/zhoupc/CNMF_E

IPython Pérez and Granger, 2007 http://ipython.org

Numpy Van Der Walt et al., 2011 http://numpy.org

Matplotlib Hunter, 2007 http://matplotlib.org

Pandas McKinney, 2010 http://pandas.pydata.org

Scikit-learn Pedregosa et al., 2011 http://scikit-learn.org

SciPy Oliphant, 2007 http://scipy.org

Seaborn Waskom et al., 2017 http://seaborn.pydata.org

Statsmodels Seabold and Perktold, 2010 http://statsmodels.org

Keras Chollet, 2015 http://keras.io

PsychoPy Peirce, 2007 http://psychopy.org

Micromanager Edelstein et al., 2014 http://micro-manager.org

Fiji Schindelin et al., 2012 http://imagej.net/Welcome
RESOURCE AVAILABLILITY

Lead Contact
Further information and requests for requests for resources and reagents may be directed to and will be fulfilled by the Lead Contact,

Karl Deisseroth (deissero@stanford.edu).

Materials Availability
This study did not generate new unique reagents. Information about how to build a COSMOS macroscope using publicly available

parts can be found at http://clarityresourcecenter.com/.

Data and Software Availability
Pre-processed data generated during this study are available at http://clarityresourcecenter.com/. Owing to the large size of our

datasets, raw data and relevant processing code will be made available upon reasonable request.
e1 Neuron 107, 351–367.e1–e19, July 22, 2020

mailto:deissero@stanford.edu
http://clarityresourcecenter.com/
http://clarityresourcecenter.com/
http://github.com/deisseroth-lab/cosmos-tools
http://github.com/deisseroth-lab/cosmos-tools
http://github.com/zhoupc/CNMF_E
http://ipython.org
http://numpy.org
http://matplotlib.org
http://pandas.pydata.org
http://scikit-learn.org
http://scipy.org
http://seaborn.pydata.org
http://statsmodels.org
http://keras.io
http://psychopy.org
http://micro-manager.org
http://imagej.net/Welcome


ll
Article
EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were in accordance with protocols approved by the Stanford University Institutional Animal Care and Use Committee

(IACUC) and guidelines of the National Institutes of Health. The investigators were not blinded to the genotypes of the animals. Both

male and female mice were used, aged 6 - 12 weeks at time of surgery. Mice were group housed in plastic cages with disposable

bedding on a standard light cycle until surgery, when they were split into individual cages and moved to a 12 hr reversed light cycle.

Following recovery after surgery, micewerewater restricted to 1mL/day. All experiments were performed during the dark period. The

mouse strains usedwere Tg(Thy1-GCaMP6s)GP4.3Dkim (Thy1-GCaMP6s, JAX024275), Cux2-CreERT2 (gift of S. Franco, University

of Colorado), Ai148(TIT2L-GC6f-ICL-tTA2)-D (Ai148, Jax 030328) (gift of H. Zeng, Allen Institute for Brain Science),

B6.Cg-Tg(Slc32a1-COP4*H134R/EYFP)8Gfng/J (VGAT-ChR2-EYFP, Jax 014548), B6;129S-Rasgrf2tm1(cre/folA)Hze/J (Rasgrf2-

2A-dCre, Jax 022864), and gs7tm93.1(tetO- GCaMP6f)Hze Tg(Camk2a-tTA)1Mmay (Ai93(TITL-GCaMP6f)-D;CaMK2a-tTA, Jax

024108), all bred in a mixed C57BL6/J background. Mice homozygous for Ai148 and heterozygous for the CreER transgenes

were bred to produce double transgenic mice with the genotype Cux2-CreER;Ai148.

To induce GCaMP expression in Cux2-CreER;Ai148 mice, tamoxifen (Sigma-Aldrich T5648) was administered at 0.1 mg/g. Prep-

aration of the tamoxifen solution followed (Madisen et al., 2010). Specifically, tamoxifen was dissolved in ethanol (20 mg/1mL).

Aliquots of this solution were stored indefinitely at �80 C. On the day of administration, an aliquot was thawed, diluted 1:1 in corn

oil (Acros Organics, AC405430025) into microcentrifuge tubes, and then vacuum centrifuged (Eppendorf Vacufuge plus) for 45 mi-

nutes (V-AQ setting). After vacuuming, no ethanol should be visible, and the tamoxifen should be dissolved in the oil. Eachmousewas

weighed, and for every 10 g of mouse, 50 mL of solution was injected intraperitoneally.

To induce GCaMP expression in Rasgrf2-2A-dCre;Ai93D;CaMK2a-tTA mice, trimethoprim (Sigma-Aldrich T7883-25G) was dis-

solved in DMSO (Sigma-Aldrich 472301) at 10mg/mL and administered at 50 mg/g. Each mouse was weighed, and for every 10 g

of mouse, 50 mL of solution was injected intraperitoneally.

METHOD DETAILS

Optical implementation details
The COSMOSmacroscope uses a 50mm f/1.2 camera lens (Nikon) as themain objective. It is mounted on a 60mmcage cube (Thor-

labs LC6W), which was modified to be able to hold a large dichroic (Semrock FF495-Di03 50mm x 75mm). It is also possible, though

not optimal, to use an unmodified cage cube with a 50mm diameter dichroic. Illumination is provided by an ultra-high power 475 nm

LED (Prizmatix UHP-LED-475), passed through a neutral density filter (Thorlabs NE05A, to ensure that the LED driver was never set to

a low-power setting, which could cause flickering in the illumination), an excitation filter (Semrock FF02-472/30), and a 50mm f/1.2

camera lens (Nikon) as the illumination objective. An off-axis beam dump is used to capture any illumination light that passed through

the dichroic. The detection path consists of an emission filter (Semrock FF01-520/35-50.8-D), followed by a multi-focal dual-lenslet

array which projects two juxtaposed images onto a single sCMOS camera sensor (Photometrics Prime 95B 25mm). The approximate

system cost was $40,000 USD, where the Prime 95B camera was �$30,000. Raw images collected by the COSMOS macroscope

contain sub-images from each lenslet, each focused at a different optical plane. The camera has a particularly large area sensor with

a 25mm diagonal extent. The lenslet array is fabricated by mounting two modified 25mm diameter, 40mm focal length aspherized

achromats (EdmundOptics #49-664) in a custommount (fabricated by Protolabs.com, CAD file provided upon request). Tomaximize

light throughput as well as position the optical axis of the two lenslets such that the two images fit side-by-side on the sensor,

7.09 mm was milled away from the edge of each lenslet (using the university’s crystal shop). The mount was designed to offset

the vertical position and hence the focal plane of each lenslet by a specified amount - in our case 600mm. The mount was further

designed to position the camera sensor at the midpoint between the working distance of each lenslet. A small green LED (1mm,

Green Stuff World, Spain) was placed close to the primary objective such that it did not obstruct the image but was visible to the

sensor and was synchronized to flash at the beginning of each behavioral trial. We measured the point spread function of each

sub-image using a 10 mm fluorescent source; the focal planes were offset by 620 mm, close to the designed 600 mm.

There were a number of factors contributing to this final system design, which we describe here.

First, based on our simulation analyses in Figure S2, we determined that a multi-focal approach would yield the highest signal-to-

noise ratio (SNR) across the target field of view. In particular, a dual-focal design best leveraged all of the light passing through the

main objective, achieving a balance between increasing the total transmitted signal from each neuronal source and keeping the

signal from each source compact. Although one obvious approach to increasing the depth of field of an imaging system is to simply

close down the aperture, this comes at the cost of reducing the light throughput, SNR, andmaximum spatial resolution of the system

(Brady and Marks, 2011). Such a trade-off has spurred the development of multiplexed computational imaging approaches for ex-

tending the depth of field while maintaining high SNR. Computational imaging yields performance advantages specifically when the

average signal level per pixel is lower than the variance of signal-independent noise sources, such as read noise (Cossairt et al.,

2013). In particular, multiplexing approaches begin to fail when the photon noise of the signal overwhelms the signal-independent

noise (Schechner et al., 2007; Wetzstein et al., 2013). As shown in Figure S2, our imaging paradigm falls within the regime where

computational imaging ought to be beneficial. In particular, this is due to the bright background from autofluorescence and

out-of-focus fluorescence that adds significant noise to the neuronal signal.
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We thus took inspiration from a number of computational imaging techniques to develop an approach suitable for the requirements

of our preparation: large field of view, microscopic resolution, high light-collection, high imaging speed, and minimal computational

cost. In particular, there exist a number of potentially applicable extended depth of field (EDOF) imaging techniques, including use of

a high-speed tunable lens (Liu and Hua, 2011; Wang et al., 2015), multi-focal imaging (Abrahamsson et al., 2013; Levin et al., 2009),

light fieldmicroscopy (Levoy et al., 2006), andwavefront coding (Dowski and Cathey, 1995).While these techniques extend the depth

of field, they require deconvolution to form a final image, which is computationally expensive and, as demonstrated later in our noise

analysis, also provides a lower SNR for shot noise-limited applications such as our own. Additionally, further analyses of these tech-

niques have demonstrated that the performance of any EDOF camera is improved if multiple focal settings are used during image

capture (Brady and Marks, 2011; Hasinoff et al., 2009; Levin et al., 2009). We thus decided to pursue a multi-focal imaging approach

and to design our system such that post-processing did not require a spatial deconvolution step.

Second, we found that the maximum illumination power is limited, and it was therefore essential to optimize the light throughput of

the detection path in order to achieve maximum SNR. We found empirically that there was a maximum allowable illumination power

density: continuous one-photon illumination intensity of around 500 mW/cm2 yielded adverse effects on the mouse, including an

enhanced risk of blood vessel rupture. Thus, indeterminately turning up the illumination power to increase signal is not an option,

even if ultra-bright light sources exist.

Third, we require high image quality across a large, centimeter-scale field of view. When paired with the light throughput require-

ment, this means the optical system must have high etendue; without the use of large and extremely expensive custom optics, it is

difficult to simultaneously maintain image quality and prevent light loss when passing the image through relay optics. We thus

preferred designs that minimized the number of optical components in the detection path. In particular, rather than demagnifying

an image onto a smaller camera sensor, we gained flexibility by using a large area sensor. Furthermore, it was also problematic

to use a beamsplitter approach followed by relaying images to separate cameras, in terms of light throughput, image quality, and

data acquisition complexity. Not only is a multi-camera beamsplitter approach costly and complex, but the beamsplitter approach

is worse than the lenslet approach: in this setup, each image from the beamsplitter shares light that passed through the same central

region of the aperture of the main objective; on the other hand, each lenslet image uses light that passed through one of two non-

overlapping regions of the aperture of the main objective. Thus, for a given depth of field of each sub-image, and consequent f/#

of either the lenslet or post-beamsplitter relay optics, each lenslet image will receive twice as much light as compared with the

each beamsplitter image. Finally, because the lenslets themselves are physically large, we needed to be wary of aberrations (geo-

metric and chromatic) induced by the lenslets. For microlenslets, this is less of an issue and is often ignored. The easiest, most cost-

effective, and most reproducible way to fabricate high performance lenslets is to leverage the design of commercial off-the-shelf

aspherized achromats. We found that with minor machined modifications to existing optics, it was possible to produce lenslets

with the right physical dimensions while maintaining the high performance associated with aspheric optics. In the end, our image

quality and light throughput of each lenslet image was on par with an image from a simple macroscope with equivalent aperture-

size (as shown in Figure 1G, H); the multi-focal design is thus uniformly better than the conventional approach. Note that to generate

Figure 1H, wemanually merged the two focally offset sub-images (in Photoshop, Adobe). This was the only instance in which we ever

needed to merge the image data; for all other processing, we processed each sub-image separately and then merged the extracted

neural sources.

We characterize the resolution of our system in Figure S2N, and we find it to be sufficient for our application. The resolution of the

system would likely be improved with smaller pixels; at the time of development, the only sCMOS camera available with a large

enough sensor and fast enough framerate had 11 mm pixels, which with the magnification of our system yields pixels that sample

from 13.75 mm in the specimen. However, the current resolution is likely acceptable for a number of reasons. First, cortical neuron

somas are around 10-20 mm in diameter; with scattering, the point spread function of each neuronal source is further enlarged. Sec-

ond, our current labeling strategy also labels dendrites, which serves to further increase the spatial spread of each source. Third,

although an increased resolution could potentially help in distinguishing nearby sources, because of scattering it is unlikely that a

slightly increased resolution would fundamentally change the data. Fourth, an increased resolution would lead to larger dataset sizes

and consequent processing times without a concomitant increase in capability. Nevertheless, future improvements in the design will

likely harness increased resolution. In particular, the most immediate improvements to the system could be achieved by using a

custom primary objective with larger numerical aperture, or a camera with a larger or higher resolution sensor. Additionally, use of

structured illumination is a viable route for potentially reducing the effect of scattering and for increasing the ability to discriminate

between nearby sources.

Neuronal source extraction pipeline
The first step of processing raw videos collected on the COSMOSmacroscope was to load the video (i.e., image stack) into memory

from a remote data server, followed by cropping and then saving out to a local workstation separate image stacks for the top-focused

and bottom-focused regions of interest (ROI). We applied rigid motion correction to each lenslet sub-image independently. Each ROI

wasmotion correctedwith a translation shift that was computed using the peak in the autocorrelation of a few sub-ROIs relative to the

first frame in the stack. The motion correction was tested by plotting the maximum shift associated with additional test sub-ROIs, as

well as manually inspecting each video, to ensure that motion throughout the video is smaller than 1 pixel in radius and that there are

no large nonrigid movements. A proper surgery and rigid head fixation were adequate to maintain image stability.
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Motion corrected stacks were then processed using Constrained Nonnegative Matrix Factorization for microendoscopic data, im-

plemented in MATLAB (CNMF-E; Zhou et al., 2018). This algorithm is an improved version of the original CNMF (Pnevmatikakis et al.,

2016), which has been modified primarily to incorporate better background subtraction, specifically for one-photon data. This back-

ground subtraction is very important for COSMOS data, since one-photon widefield recordings can be contaminated by large scale

fluctuations in blood-flow related fluorescence modulation (Allen et al., 2017). Importantly, since we are extracting signal from sparse

point sources, it is possible to separate the spatially broad background fluctuations from the more spatially compact neuronal

signals–this was not the case in previous widefield preparations such as Allen et al. (2017). In particular, the CNMF-E algorithm excels

at this background removal. As parameters for CNMF-E, we used a ring background model, with a 21-pixel source diameter initial-

ization. For initializing seed pixels, we used a minimum local correlation of 0.8, and a minimum peak-to-noise ratio of 7. To analyze a

60,000-frame dataset, on a workstation with 512 GB of RAM, we can use 7 cores in parallel without running out of memory. With less

available RAM, the number of parallel cores must be correspondingly scaled down. Since the algorithm is factorization based, the

time for processing a dataset depends on the number of neuronal sources and the length of the video. Processing the top-focused

and bottom-focused videos for a 60,000-frame dataset (equivalent to a 30-minute recording) requires about 36 hours in total. There

are a number of paths to making this more efficient in the future: multiple workstations could be used to separately process the top-

focused and bottom-focused videos; source extraction could be run only on the in-focus regions of the top-focused and bottom-

focused stacks; and the improved background removal of CNMF-E could be applied to OnACID, an online version of the original

CNMF algorithm that has demonstrated real-time processing speeds (Giovannucci et al., 2017). While all processing and analysis

code for this project was written in Python, we elected to use the MATLAB implementation of CNMF-E because, as of the time

when we were implementing our data analysis pipeline (in early 2018), the CNMF-E implementation in Caiman (Giovannucci et al.,

2019) returned inferior results because it only initialized neural components with the full CNMF-E background model and then

performed iterative update steps using a simpler background model.

Once CNMF-E has extracted neuronal sources (i.e., their spatial footprints and corresponding denoised time series) from the top-

focused and bottom-focused videos, wemerge the best in-focus sources from each focal plane, while ensuring that no sources were

double counted by finding a classification line that spatially segmented the in-focus region of each sub-image. First, using a pair of

manually selected keypoints, easily selected just once per dataset, we align the top-focused and bottom-focused coordinate sys-

tems. Then, in a semi-automated manner, we draw a separation curve for each cortical hemisphere, such that on one side of the

separation curve we use sources extracted from the bottom-focused plane, and on the other side of the curve we use sources

from the top-focused plane. This curve traces out the crossover in focus-quality between the two focal settings along the curved

cortical surface. Due to different positioning and tilt of the headbar, these curves are not always in the same location across

mice, even if the implanted glass window has identical curvature. Here, we use the radius of the source spatial footprints as a proxy

for focus-quality across the field of view.

After merging sources from the top-focused and bottom-focused videos, we verify the quality of each source. First, we ensure that

for each source the deconvolved trace returned by CNMF-E has a correlation of at least 0.75 with the corresponding non-decon-

volved trace. The deconvolution algorithm assumes that the traces are generated by GCaMP, with a fast onset and a slow, exponen-

tial decay. Thus, any sources for which the deconvolved trace does not match the raw trace are likely not GCaMP signal. Second, we

manually inspect all remaining traces, only keeping sources that are not located over blood vessels, that have radially symmetric

spatial footprints, or that have a high signal-to-noise ratio. This process provides confidence that we have high-quality sources

with minimal contamination. Finally, we manually align the atlas to each dataset based on the intrinsic imaging alignment assay,

such that sources from all mice are situated in the same coordinate system.

Comparison of COSMOS with conventional macroscope
Onemousewith goodGCaMPexpression and a clear windowwas used for this experiment. Over one hour, three independent videos

each of 1800 frames were recorded at each macroscope setting: f/1.2, f/2, f/2.8, f/4, f/5.6, f/8, as well as with the detection lens re-

placed by themultifocal lenslet array. Themouse was awake but was sitting in a dark and quiet environment while not performing any

behavioral task. The recordings for each macroscope setting were interleaved with one another throughout the session, such that

recordings of the same setting were not captured sequentially, tomitigate the impact of any changes in themouse’s behavioral state.

The intensity of the excitation light at the sample remained constant throughout the experiment. In particular, changing the detection

aperture setting did not alter the illumination, as the aperture was only changed on the detection lens as opposed to on the primary

objective. The videos were processed using the same neuronal source extraction pipeline used throughout this paper, with identical

parameter settings. During manual quality inspection and culling of the recovered sources, the operator was blinded to the macro-

scope setting of that video.

The COSMOS macroscope outperformed a comparable conventional macroscope in terms of depth of field while maintaining

equivalent light throughput. We qualitatively compared the fidelity and depth-of-field of an image captured with a f/2 macroscope

versus an image generated by merging the lenslet sub-images. Whereas a conventional macroscope offered nearly zero contrast

at the lateral edges, the COSMOS macroscope provided good contrast laterally with only slightly reduced contrast medially. Light

throughput of each lenslet was the same as that of a standard macroscope with the aperture set to f/2, and the light from defocused

emitters was not diminished by vignetting.
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The resolution of COSMOS was characterized using two approaches. The point spread function was acquired using a 10 mm

precision pinhole (Thorlabs P10D) atop a fluorescent slide (Thorlabs FSK5, green). Additionally, an image was acquired of a USAF

1951 resolution chart (Thorlabs R3L3S1N) atop a fluorescent slide.

Intrinsic imaging for atlas alignment
Based on Garrett et al. (2014), Juavinett et al. (2017), and Nauhaus and Ringach (2007), a macroscope was constructed using two

back-to-back 50mm f/1.2 F-mount camera lenses (Nikon), mounted using SM2 adapters (Thorlabs), and an sCMOS camera (Hama-

matsu Orca Flash v4.0). A 700/10nm optical filter (Edmund Optics) was inserted between the lenses. Illumination was provided using

a fiber-coupled 700nm LED (Thorlabs M700F3) that was positioned for each mouse so as to maximize coverage of the left posterior

region of cortex (contralateral to the right visual field). A small green LED (1mm, Green Stuff World, Spain) was inserted after the op-

tical filter and was synchronized to flash for 30 ms at the beginning of every trial. Mice were lightly sedated using chlorprothixene

(Sigma-Aldrich C1671-1G, 2 mg of chlorprothixene powder in 10 mL of sterilized saline, administered 0.1 mL/20 g per mouse),

and inhaled isoflurane at 0.5% concentration throughout the acquisition session. Mice were visually monitored during the session

to ensure that they were awake.

The visual stimulus was generated using PsychoPy. Based on Zhuang et al. (2017), it consisted of a bar being swept across the

monitor. The bar contained a flickering black-and-white checkerboard pattern, with spherical correction of the stimulus to stimulate

in spherical visual coordinates using a planar monitor (Marshel et al., 2011). The pattern subtended 20 degrees in the direction of

propagation and filled themonitor in the perpendicular dimension. The checkerboard square size was 20 degrees. Each square alter-

nated between black and white at 6 Hz. The red channel of all displayed images was set to 0, to limit bleed-through onto the intrinsic

imaging camera. To generate a map, the bar was swept across the screen in each of the four cardinal directions, crossing the screen

in 10 s. A gap of 1 s was inserted between sweeps, resulting in repetition period of 11 s. Owing to the large size of our stimulus

monitor, we also used a spherical warping transformation (PsychoPy function psychopy.visual.windowwarp) to simulate the effect

of a spherical display using our flat monitor.

Finally, we developed a protocol for aligning a standardized atlas (Lein et al., 2007), shown in Figures 2J, S3C, and S3D, to each

recorded video. We take advantage of the retinotopic sign reversal that occurs on the border between visual areas V1 and PM (Gar-

rett et al., 2014). We use optical intrinsic imaging to record low spatial resolution neural activity in response to a drifting bar visual

stimulus (Garrett et al., 2014; Juavinett et al., 2017) yielding a clear border between visual regions that can be computationally pro-

cessed to define a phase map indicating the V1/PM border (Video S3). This landmark, in combination with the midline blood vessel

can be used to scale and align the atlas to each mouse (Figure S3C). In Figure S3D, we provide the atlas alignment for all mice in the

cohort. We used intrinsic imaging since, due to the sparsity of the cellular labeling in our Cux2-CreER mice, GCaMP imaging did not

provide a spatially smooth enough signal to extract a phase map.

We performed 150 repeats of the stimulus. This number of repeats is higher than previous reports likely due to the 10x smaller pixel

well capacity of our camera (5e4 electrons, compared with the 5e5 electron well depth of the Dalsa Pantera 1m60 used in Juavinett

et al. (2017) and Nauhaus and Ringach (2007)), and subsequent increase in the minimum variance of photon shot noise.

The computer monitor was oriented at 60 degrees lateral to the midline of the mouse, tilted down 20 degrees, and placed 10 cm

away from the right eye. Tape was placed around the around the headbar to prevent themouse’s whisker and body from entering the

imaging field of view. The mouse and microscope were covered with black cloth to occlude any external visual stimuli. Video was

recorded at 20Hz with 2x2 pixel binning, with an effective pixel size of 13 mm at the sample. These acquisition parameters trade

off dynamic range with dataset size. Illumination was adjusted to fill the dynamic range of the camera.

To process the video, it was first scaled down by a factor of 2 in x, y, and t dimensions. Trial start frames were extracted using the

flashes from the synchronization LED. Trials of the same orientation were averaged together into an average video. In this average

video, one should be able to see a bar propagating in one direction across V1 and a second bar propagating in the opposite direction

across AM. A phase map was computed from this video by, for each pixel, finding the frame when the signal reached its minimum

(corresponding to maximum hemodynamic absorption when the visual stimulus passes within the retinotopic field of view of that

pixel). A 2D top-projection atlas was generated from the annotated Allen Brain Atlas volume, version CCFv3 (Lein et al., 2007), in

MATLAB (MathWorks). The atlas was aligned to the phase map based on the location of the border between V1 and AM, and the

midline. By aligning the intrinsic imaging field of view to the COSMOS field of view using landmarks along the edge of the window,

the atlas could then be aligned to the COSMOS recordings.

Visual orientation selectivity assay
Sinusoidal visual gratings were presented to mice under the COSMOS macroscope using a small 15.5 cm x 8.5 cm (width x height)-

sized LCD display mounted horizontally on an optical post (ThorLabs). The monitor (Raspberry Pi Touch Display) was centered

7.5 cm in front of the left eye of the mouse (at a 30� offset from perpendicular with the center of the eye). Contrast on the display

was calibrated using a PR-670 SpectraScan Spectroradiometer (Photo Research). Significantly, this orientation of the monitor

stretched across the midline of each animal and thus delivered some visual stimulation to both eyes. To block stray stimulation light

from reaching the cranial window on themouse, we attached a light-blocking cone that we designed to attach to the head bar of each

animal (Figure S2K).
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Gray sinusoidal grating stimuli were generated using PsychoPy (running on a Raspberry Pi 3 Model B). Eight stimuli (separated by

45�) were successively presented to each mouse (4 s per stimulus, with a 4 s intertrial interval). Each stimulus was presented five

times, each time in the same order. The spatial frequency of the grating pattern was 0.05� and its temporal frequency was 2 Hz.

Comparison of COSMOS with two-photon imaging
The same three mice that had their visual responses characterized using drifting gratings under the COSMOSmicroscope were also

imaged beneath a two-photonmicroscope (Neurolabware). Data were obtained at 30 Hz using an 8 kHz resonant scanner. We used a

Nikon CFI LWD 16Xwater dipping objective (Thorlabs N16XLWD-PF) with clear ultrasound gel used as an immersion medium (Aqua-

sonic, Parker Laboratories) between the surface of the cranial window and the objective itself. Following motion correction using

moco (Dubbs et al., 2016), activity traces were extracted using the standard CNMF algorithm implemented the February 2018 version

of Caiman (Giovannucci et al., 2019).

An identical visual stimulation system (the same model computer and display) was used with our two-photon microscope as with

the COSMOSmicroscope. The display was calibrated to use the same contrast settings and the computer was loaded with identical

stimulus code. Because the whole visual stimulation apparatus wasmounted on an optical post, alignment relative to themouse was

similar in both settings.

The results from this characterization reveal that the present preparation affords an intermediate, complementary level of resolution

relative to other techniques. We can access a field of view equivalent to existing widefield techniques, but with greatly improved near

single-neuron-scale resolution; and we can record with reduced single-neuron detection ability compared with two-photon micro-

scopy, but across a much larger field of view. For further thoughts about this, please see details described in the ‘‘Source Mixing

Model,’’ described later in the methods section.

Robotic surgery protocol
Following Kim et al. (2016), we implanted a curved window over dorsal cortex. The dimensions of the window are described in

Figure S1. The window was fabricated by first having glass blanks cut to the specified dimensions (TLC International) as shown in

Figure S1, and then curved to the specified radius (Glaswerk).

We developed a semi-automated protocol for performing consistent large area craniotomies, which is one of themost crucial steps

of the surgery. We used a computer-controlled drill and motorized stereotactic system (Neurostar GmbH, mounted on Kopf

Model 900).

In Figures S1E–S1J, we show the state of the craniotomy at key steps during the surgery. In Figure S1C are the coordinates of the

keypoints used for defining the drill path, as well as the approximate skull thickness at each location across mice. The keypoints (yel-

low) and interpolated drill positions (blue) are shown graphically in Figure S1B. In Figure S1D is a photograph of the robotic drill and

the vacuum mount used for positioning the window implant (a 20-gauge needle with the sharp tip removed using a saw).

The surgical protocol is as follows:

1. Anesthetize mouse with isoflurane (3%, adjust to 1.5% after mouse is unconscious).

2. Positionmouse on stereotaxic bite bar, do not engage earbars. Ensuremouse is breathing consistently and is unresponsive to

toe pinch. Turn down the isoflurane to (1.5%).

3. Sterilize the skin and hair with an alcohol pad and cut off at least 1cm diameter circle of skin on the top of the head.

4. Secure mouse tightly with the ear bars. Push the skin down (i.e., with a cotton swab) while positioning the ear bars, such that

the ear bars are in direct contact with the muscle, and the skin is fully out of the working area. Level the mouse.

5. Clean off and dry the skull completely. Use back side of cotton swab stick to pull back muscle on the posterior left and right

corners.

6. Apply eye ointment to both eyes.

7. Clean the copper grounding clip connected to the Neurostar drill (i.e., with an alcohol wipe—you want to make sure there will

be good conductive contact), and clip it to the skin on side of the skull and position the clip such that the clip is out of the way.

Ensure there is a good connection with the moist underside of the skin. Ensure the clip is not in contact with the ear bars.

8. Open the Neurostar software. Tools- > Project- > New project. If you have previously used the same drilling coordinates that

you will use for this surgery, you can ‘Select a template project’, and check the box ‘Keep Protocol elements’.

9. Use flat drill bit (Neurostar). This facilitates drilling along the curved lateral edges of the skull. A standard spherical drill bit may

work, but not as well.

10. In the Neurostar software, open Tools- > Correct for Tilt and Scaling.

11. Find and set bregma for the drill (Ensure that ‘Drill’ is selected. See Neurostar documentation for navigation directions. Arrow

keys and pg-up/pg-down control drill movement). Do not set lambda (this will rescale the window coordinates, which we do

not want, since our window is of fixed dimensions). Ensure that midline is straight, parallel to the anterior-posterior axis of the

drill. Ensure that angle of stereotax is set to 0. Ensure that anterior blood vessel (between the olfactory bulb and prefrontal

cortex) is no closer than +3.25 AP. Adjust bregma if this is not the case. Ensure that �4.90AP looks reasonable at the

back (i.e., it should be slightly behind the lambdoid suture).
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12. Open drill menu. If you have never input the drill keypoint coordinates, then do so at this time (see Neurostar documentation

for more detail). Press Ctrl+Shift+D so you can see details about the seed points. Turn on auto-stop.

13. Press F6. Turn ‘auto-speed’ on.

14. Go to next seed. Manually move the drill until it is touching the surface of the skull. Click ‘set surface.’ Press the ADVANCE

button to advance the drill in 50 mmsteps slowly until the conductance drops. Pause between each advance to ensure that the

skull has time to settle. Click ‘set dura.’ Repeat. Note: The first depth should be between 300-600 mm. If autostop is not work-

ing (which sometimes happens), then there are other ways to determine whether you have drilled deeply enough. These

include: observing bleeding (this means you probably drilled slightly too far); listening for the drill to not be going through

bone anymore–there is a subtle but detectable difference in the sound of drilling through bone versus past the bone; and dril-

ling to within the range of average thickness for that seed point location.

15. Ensure the auto cut edge-scaling is set to the second highest setting.

16. Inject 0.5 mL saline subcutaneously.

17. Press ‘autocut.’ Check for bleeding during autocutting. If there is significant bleeding at any point, pause autocutting and use

Gelfoam (Pfizer) soaked in saline to stop the bleeding.

18. After autocut is finished, ensure that each location has been drilled through. You can right click on a point and select go-to drill

depth, and then manually advance from there. The skull flap should be detached all the way around - lightly touching near

each edge with a scalpel or needle should cause the skull flap to move.

19. When skull is detached fully, you can move the drill out of the way, to coordinates AP 35, ML 25, DV �35.

20. Apply a generous amount of saline to the skull. Clean away any hairs.

21. Inject mouse subcutaneously with 1 mL of saline.

22. Pull off the skull flap in one go, pulling up and away. Be sure to get a good grip using forceps and grab on the left posterior

corner. In order to get a grip with the forceps, with the other hand, use a syringe filled with saline to lift up the skull flap, while

simultaneously injecting saline. As a layer of saline begins to float the skull flap, grab it with the forceps and after ensuring a

tight grip, pull the skull flap off in one motion. This is the most difficult and variable part of the surgery to do consistently and

may take some practice. There will be bleeding. However, the blood should all be above the dura and can be cleaned with a

Sugi absorption spear. The key thing to look for here is that the dura is intact and not folded over. If the dura is indeed intact,

then you can spend time cleaning up the blood before implanting the window. This cleaning step can take tens of minutes,

especially if you are waiting for the bleeding to stop. If the dura is not intact, then you can attempt to unfold it, however the

likelihood for a successful surgery is lower.

23. Wash with saline. If you ever touch a Sugi spear to the brain, first ensure that is wet (dip it in saline first).

24. Submerge a Sugi spear in saline so that it is fully wet (dripping wet) and use that to wipe off blood on the surface of the brain.

Keep the brain wet and be gentle.

25. When blood is clear from the brain surface, mount the window on the vacuum holder. The vacuum holder consists of a needle

(16-20 gauge) with the sharp tip drilled off. The needle is connected to a vacuum tube and mounted on the robotic stereotax.

Using a syringe, drip saline onto the bottom of the window so that there is saline between the window and brain, and slowly

bring the window down from above (You can press F6— > Change the DV speed to something small such as 10 mm/s).

26. Push the window down so that all accessible parts of cortex make contact with the window. If you do not push down far

enough, then a number of bad things can happen: the brain will move when the animal moves, leading to motion artifacts;

there will be tissue growth between the window and brain over time; and Vetbond glue (3M) may seep under the window dur-

ing the next step of the surgery. If you push down too far, however, then you may cut off blood supply through the central

blood vessel. Ensure that the blood flow is not restricted (the vessels should not lose color).

27. When thewindow is held down successfully, pause for aminute to ensure that no bleeding begins. If bleeding does begin then

there are two options: either remove thewindow, clean things up, andwait for the bleeding to stop; or raise thewindow slightly

and inject saline under the window while using a Sugi to draw the water and blood out of the other side of the window. Once

the window is in place with no bleeding, then dry the tissue/bone surrounding to the window (while ensuring that you do not

dry up the water layer between the window and brain) and apply Vetbond around the edges of the window. Do not use too

much Vetbond, as it will then take longer to dry. Ensure that no Vetbond is seeping under the window: if it is, then push the

window down further.

28. Once the Vetbond has dried, apply Metabond (C&B, Parkell). At this step, it is key to ensure that there is a very good bondwith

the front of the skull. In particular, be sure that the bone anterior even to the olfactory bulb is visible, accessible and dry. You

can additionally use a surgical blade to score the surface of the skull to provide additional surface area for bonding cement. If

this bond is not good, then when the mouse is first head mounted, the head bar and window may detach.

29. After the cement dries, if mouse is doing okay, you can optionally attach the headbar using additional Metabond. This step

can also be performed in the future (i.e., a few days later) after the mouse has had a chance to recover.

30. Inject mouse with saline and painkiller (buprenorphine).

31. Immediately after surgery, there should ideally be no big blood splotches, and in general the window should be clear. This

does not guarantee that the window will remain clear, and there is a chance that window gets worse. However, sometimes

if there is some blood in the window it may actually clear up. The key to at least having a chance for a good, clear window,
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however, is that the dura is intact and not folded over - it will be impossible to image through areas with a damaged dura, and

this will not heal with time.
Animal behavior hardware
As in Allen et al. (2017), a microcontroller-based real-time behavioral system (Sanworks, Bpod State Machine r1) was used to control

delivery of stimuli and water reward. Three independent waterspouts (Popper animal feeding needle, 22 gauge, 1.5’’ length, Lab Sup-

ply Outlaws part #01-290-2B) were arranged using a custom mount (fabricated by Protolabs.com, CAD file provided upon request),

positioned at 75 degree intervals, with the tips of the spouts aligned along a circle of radius 5mm (determined by an appropriately

sized drill bit). Licks were detected independently for each spout, with a lickometer built using a capacitive touch sensor (Sparkfun

Tinkerkit) and a microcontroller (Arduino Uno). Water was delivered by a gravity-assisted syringe attached to the lickometer and

controlled by a quiet solenoid valve (Lee Valve LHDA1231115H). For olfactory stimuli, an olfactometer was constructed using

pure odorants (ethyl acetate and 2-pentanone, Sigma) diluted to 4% v/v in paraffin oil (Sigma) and pressurized with air (1 L/min).

Two 3-way valves (NResearch #161T031) controlled odor delivery, with the normally open port connected to a blank vial and the

normally closed port connected to an odor vial. Odor delivery was controlled by actuating solenoid valves to switch airflow away

from a blank valve and to the odor valve. Odors were delivered through a Teflon tube (NResearch, #TBGM109 with #102P109-10

connectors), placed �1 cm from the mouse’s nose.

Two cameras (Basler acA1300-200uc), one with a 25mm lens (Edmund Optics #59871), and the other with a 4.5mm lens (Edmund

Optics #86900), were positioned below the mouse to monitor its tongue and whiskers and to the side to monitor the face and body,

respectively. Video acquisition was performed using custom software (Python, using pypylon). A small green LED (1mm Green Stuff

World, Spain) was placed in front of each camera, and was synchronized by Bpod to flash at the beginning of each trial. All valve

openings were controlled with Bpod, which also recorded the time of licks to each spout.

Animal behavioral training
After waiting at least a week after surgery, mice were water restricted to 1mL/day while maintaining > 80% pre-deprivation weight.

After several days of handling and habituation to head fixation, mice were trained to lick for free reward (2-3mL) from a single spout.

Once mice could reliably lick for water, they were started on a shaping protocol that automatically provided water reward (2-3mL)

500 ms after the offset of either of the two odors (delivered for 1 s). Initially, mice were trained to receive water reward from the

central spout in response to the odor. After succeeding at this, they progressed to a protocol where water was provided from each

of the three spouts, but only from one spout on each trial. The spout from which reward was delivered remained consistent for

blocks of 35-40 trials. The mice received the full reward if they licked any of the spouts during the response interval. For the

next stage, a distinction was made between the two odors such that only one of the odors corresponded to a reward trial. Finally,

after the mice demonstrated that they could distinguish between the ‘‘go’’ and ‘‘no go’’ odor, and that they are able to consistently

obtain reward from all three spouts, they progressed to the final stage. For the final protocol, mice learned to lick only to the active

spout of the current block in response to the go odor. Specifically, if the first lick during the response period (which begins 0.5 s

after odor offset) was to the active spout, then the mice would receive a full reward (2-3mL) from the active spout. If the mice re-

sponded by licking to a different spout, then they would instead receive a small reward (0.25 mL) from the active spout. No reward

was delivered if the mice licked during a ‘‘no go’’ odor. Although the mice were only required to lick to the active spout during a

very specific time interval, in general they learned to lick almost exclusively to that spout starting at odor onset. We found that

more complicated schemes requiring the mouse to not lick to any of the other spouts were too difficult during training and led

to demotivation. The whole training process takes 2-8 weeks, with some mice learning faster than others. ‘‘No go’’ trials were cho-

sen by randomly sampling from a Bernoulli distribution with a fixed ratio such that there was a 20% chance that any given trial

would be ‘‘no go.’’

Histology and Tissue Imaging
Animals were transcardially perfused with 4% paraformaldehyde in PBS. The brain was removed from the skull and post-fixed in 4%

paraformaldehyde in PBS at 4�C overnight. Tissue sections (75 mm) were cut with a vibrating microtome (Leica).

Sections were mounted on glass slides with liquid mounting medium (Fluoromount-G with DAPI, ThermoFisher Scientific). Images

were acquired either on the custom-built tandem lens macroscope described earlier or using a confocal microscope (TCS

SP5, Leica).

Multi-region optogenetic inhibition
We built a system for simultaneous inhibition of multiple cortical regions. It is known that projections from S1 can drive M1 activity

and drive the initiation of whisking (Sreenivasan et al., 2016). But in addition, posterior regions like retrosplenial cortex and primary

sensory areas (Barthas and Kwan, 2017; Yamawaki et al., 2016; Zingg et al., 2014), also project to secondary motor cortex and

may thus play an important role in producing any dynamics observed in motor areas. We therefore set out to inhibit activity from

multiple areas, to avoid the possibility that uninhibited areas in cortex might compensate for the acute shutdown of a single area.

VGAT-ChR2 mice were prepared with a cleared skull and headbar as in Guo et al. (2014). The positions of lambda and bregma
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were marked. Mice were trained to > 80% performance on the three-spout block-structured task described earlier. On successive

days, different regions of cortex were inhibited. Specifically, all reachable dorsal cortical regions, just M1 and M2 motor regions, or

all reachable regions except for M1 and M2 were targeted. Stimulation occurred either during the 2 s preceding odor onset (Pre-

odor), or during the 1.5 s following odor onset (Peri-odor). This protocol restricted optical stimulation to the interval of time when

either motor plans were maintained, or motor plan execution initiated. Stimulation turned off before the response period, during

which the first lick the mouse makes is counted as the selected spout. Thus, there was never inhibition during the time when the

mouse actually indicated the selected spout; there was only inhibition during the preceding period when the mouse would other-

wise anticipatorily lick toward the selected spout. Optical patterning was accomplished using a digital micromirror device (DMD,

Polygon400, Mightex Systems) with a large field of view macroscope (OASIS Macro, Mightex Systems). A 5W 488nm laser (Gen-

esis, Coherent) was fiber-coupled into the DMD, after passing through a laser-mode mixer (LMX-015-0400, Mightex Systems). The

field of view accessible for stimulation was about 7 mm diameter, with a power density of 0.5-1 mW/mm2 after correction to

ensure similar intensity across the field of view. Based on the characterizations performed in Guo et al. (2014), this power density

should be adequate to achieve a significant decrease in spike rate while also providing high spatial resolution (< 1mm diameter of

influence per pixel). Custom-written software was used to align the projected light pattern based on the lambda and bregma mark-

ings as imaged using an alignment camera, ensuring consistent alignment across days. The power distribution and vignetting were

calibrated by recording power measurements sequentially throughout the field of view (Thorlabs S175C). A software correction

was applied to correct for a nonuniform power transmission. The displayed stimulation pattern was controlled through MATLAB

using HDMI and treating the DMD as an external display. A blue fiber-coupled LED (Thorlabs M470F3) was directed into the

mouse’s right eye. For eye-LED control sessions, an LED was turned on in place of DMD stimulation, only during stimulation trials.

For stimulation sessions, the LED was turned on for all trials during the time period within the trial corresponding to stimulation.

Sessions were only included if the performance on non-stimulation trials reached a pre-defined threshold of at least 80% correct.

For each stimulation pattern and for each mouse, we used data from at least two complete sessions. Within each session, two

thirds of the blocks were stimulation blocks, and there was at least one non-stimulation block for each of the three possible active

spouts. The ordering of blocks was randomized.

Optical design principles
In this section, we describe the analysis underlying the principles we used to design the COSMOSmacroscope. As the primarymetric

for comparing optical designs, we use the signal-to-noise ratio (SNR) of the reconstructed neural signal. There are two primary sour-

ces of noise in the system: signal-dependent photon shot noise gs, and signal-independent photon shot noise gb. With modern

sCMOS cameras, read noise and dark current can essentially be ignored. Instead, gb derives primarily from the background fluores-

cence that is incident on each pixel, composed of autofluorescence and nonspecific neuropil fluorescence, and which has a mean

value and variance which is roughly independent of how the signal from each individual neuron is fluctuating. For our application, the

mean value of the Poisson distributed gs and gb is in the thousands to tens of thousands (as shown in Figures S2A and S2B), and they

are therefore well approximated as Gaussian distributed. To represent the noise-induced variance, we use zero-mean Gaussian

random variables hs and hb, which have variances equal to that of gs and gb, respectively. We model image formation asby = ac+b+ hs + hb (1)

where by˛Rm3t form pixels and t time points is the sensor video; a˛Rm3n for n neurons is the sensor point spread function of each

neuron; c˛Rn3t is the time course of each neuron’s signal; b˛Rm is the background at each pixel; hs˛Rm is the zero-mean signal-

dependent noise at each pixel; hb˛Rm is the zero-mean signal-independent noise at each pixel. Following Cossairt et al. (2013) and

Wetzstein et al. (2013), we model signal reconstruction using least-squares inversion.

bc = ayðy�bÞ (2)

where ay = ðaTaÞ�1aT . As we derive in the ‘Noise analysis full derivation’ section, we can write the SNR for a single emitting neuron

(i.e., n = 1) as

SNR =
signalffiffiffiffiffiffiffiffiffiffiffi
MSE

p (3)
=
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n
Trace ½ay Cov ðhs + hbÞayT �

q (4)
=

ffiffiffi
a

p
c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i =1ðay½i�Þ2ða½i�c0 +b0½i�Þ
q (5)
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whereMSE is themean-squared-error in the reconstructed signal; c=ac0 is themeasured value of the signal of a point emitter, where

a is the scalar fraction of the full aperture that is transmissive and scalar c0 is the peak value of the signal if the aperture were fully

open; a˛Rm represents the footprint of the emitted light incident on the sensor; ay is the pseudo-inverse used for reconstructing

c; b0˛Rm is the mean value of the background signal incident on each sensor pixel. The three main design principles presented

in the main text can be extracted from Equation 5:

d Background fluorescence substantially degrades SNR if greater than the signal per pixel.

d SNR increases as total light transmission a increases.

d SNR increases when signal photons are dense, as opposed to spread out, on the sensor. This is the case when an emitter is

in focus.

Insimulation,weverified thevalidityof theseprinciplesandexplored the repercussions forvariouspotentialdesigns. InFiguresS2C–S2E,

wequantify the background, defocusblur, and recovered signal photons characteristics of the competingdesigns. In FigureS2F,we sum-

marize the SNR at each position along the curvedwindow, based on the data in Figures S2C–S2E. Although the f/1.4 and f/2macroscope

configurations performbest near their single focal plane, the dual-lenslet design performswell across the entire curved field of view. In Fig-

ure S2Gwe summarize the gain in improvement offeredby the dual-lenslet design relative to the other approaches, in terms of themedian

SNR per pixel across the field of view. In conclusion, informed by this analysis, we decided to pursue the dual-lenslet, dual-focus design.

Noise analysis full derivation
In this section, we provide a full derivation of Equation 5, which was fundamental to determining the principles that guided our optical

design. We additionally explore the ramifications of Equation 5. We found that for our application, optical designs which spread light

out and rely on post-capture image deconvolutionmake SNR strictly worse and should be avoided. In particular, we demonstrate that

if there is a background flux of photons incident on each pixel, then signal recovered from an emitter degradeswhen a fixed amount of

emission light is spread across a larger number of sensor pixels. The key assumption is that the background brightness is indepen-

dent of the signal from the emitter and is incident on all sensor pixels. Locally, this assumption is approximately true in the COSMOS

preparation. The implication of this result is that it is better to design a system where as much signal as possible is in-focus and

concentrated, rather than attempting to deconvolve or demultiplex a blurred or distributed signal.

Webeginwith the simple caseof a backgroundof constantmean value incident oneach sensor pixel, for a single timepoint. Let by˛Rm

represent the noisy,measuredvalueof eachof thempixels,b˛Rm represent thenoiseless backgroundvalue, s˛Rm represent thenoise-

less signal value of a single emitter, gb˛Rm �iid PoissonðbÞ the photon shot noise associatedwith b, and gs˛Rm �iid PoissonðsÞ the photon
shotnoiseassociatedwith s. Forhigh ratesPoissondistributionsbecomeapproximatelyGaussianwithavarianceequal to themean (Cos-

sairt et al., 2013).Sinceour total signal is in the tensof thousandsofphotons, this approximation is validandwecanapproximate thenoise

as additive but signal dependent. We thus represent the noise in our image formation model as hb˛Rm �iid Nð0;bÞ the noise associated

with b, and hs˛Rm �iidNð0; sÞ the noise associatedwith s. We canwrite by in terms of its underlying noiseless values and the added noise.by = s+b+ hs + hb (6)

Let’s next assume that we can factor s as the product of a spatial and temporal matrix, s= ac, where s˛Rm, a˛Rm3k , and c˛Rk3t,

withm as the number of pixels, k as the number of neurons, and t as the number of time points. Let’s also assume that a is known: that

is, we know the spatial sensor footprint, or point spread function, associated with the emitter. We add two more assumptions: each

column of a sums to 1, andwe account for differences in aperture light transmission as c=ac0, where 0%a%1 represents the fraction

of the full aperture that is open, and c0 represents the total signal transmittedwith the aperture fully open. Let’s further assume that we

know b, and define it as b=ab0, where b0 is the mean background per pixel with the aperture fully open. Our goal is then to recover c

as themaximum likelihood estimate under the noise assumptions. According to our signal-dependent noise assumptions, Var ðhsÞ=
ac= aac0 and Var ðhbÞ=b=ab0. We estimate c by minimizing the squared error

bc =min
c
jjby � ac� bjj2 (7)

If the variance was the same for each pixel, this would be the maximum likelihood estimate under Gaussian noise. Although this is

explicitly not the case in our scenario, we make a simplifying assumption here that the least-squares estimate is adequate; this also

aligns ultimately with the factorization-based source extraction algorithm we use on our actual data. For known by, a, and b, this is a

simple least-squares problem, which is minimized using the normal equation (here, we ignore any non-negativity constraints).

bc = ayðby �bÞ (8)
= ayðs + hs + hbÞ (9)
= ayðac + hs + hbÞ (10)
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where ay = ðaTaÞ�1aT . For a single emitter, a and b are each a single column-vector, and aTa is a scalar. For a single time point, c is a

scalar. We can reduce Equation 10:

bc = c+ ayðhs + hbÞ (11)

We are then ultimately interested in the signal-to-noise ratio (SNR), defined as the ratio between the signal mean and the standard

deviation of the noise (i.e., the square root of the mean-square-error, or MSE). We can compute the MSE as the trace of covariance

matrix of the noise in the reconstruction. Let h= hs + hb, where h˛Rm, andR= ayh is the noise propagated through the reconstruction,

with R˛Rk .

MSE = E
h
ðR� mRÞ2

i
(12)
= E
h�
ay
�
h� mh

��2i
(13)
=
1

k

X�
ay
�
h� mh

��2
(14)
=
1

k
Trace

�
Cov

�
ayh
��

(15)
=
1

k
Trace

�
ay Cov ðhÞayT� (16)

where Equation 16 results from Cov ðAxÞ=A Cov ðxÞAT , which can be derived by expanding CovðAx;
AyÞhE ðAðx � mxÞÞðAðy � myÞÞT

h i
. We then write out a full expression for the SNR.

SNR =
signalffiffiffiffiffiffiffiffiffiffiffi
MSE

p (17)
=
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
k
Trace ½ay Cov ðhs + hbÞayT �

q (18)

Here, we simplify by assuming that we are recovering the signal of a single emitter, such that k = 1. Furthermore, since we assume the

noise at each pixel is independent of the noise at other pixels, the off-diagonal terms in Cov ðhs + hbÞ are zero. We can therefore

reduce Equation 18.

SNR =
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i =1ðay½i�Þ2ð Var ðhs½i�Þ+ Var ðhb½i�ÞÞ
q (19)
=
ac0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i = 1ðay½i�Þ2ða½i�ac0 +ab0½i�Þ
q (20)
=

ffiffiffi
a

p
c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i =1ðay½i�Þ2ða½i�c0 +b0½i�Þ
q (21)

where i is used to index into each vector. We have thus derived Equation 5.

Now, with Equation 21, we can determine how SNR changes as a, b0, and a change, where a is the spatial footprint of a single

emitter, b0 is the mean background level per pixel relative to the signal level c0, and a is the fraction of the full aperture that is open.

To begin, we can derive an analytical expression for how the SNR changes as the emission light is spread across more sensor

pixels if we use a simple representation of a. In particular, we assume that if there are n non-zero entries in a, then each non-zero

entry has value 1=n, i.e., that light is distributed uniformly within the point spread function. If H= fija½i� > 0g, then for i˛H, a½i�= 1=
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n, and
Pm

i = 1½a i�=Pi˛H½a i�= 1. Here, we deal with only a single time point, such that c=ac0 is a scalar. It follows that only for i˛ H is

s½i�> 0, and thus
Pm

i =1½s i�=
P

i˛H½s i�= c. We can then compute ay.

aTa =
X 1

n2
=
1

n
(22)
�
aTa
��1

= n (23)
ay = naT (24)

Thus, ay is the same as a, except that each non-zero entry has a value of 1 instead of 1=n. From Equation 10, thus

bc =
Xm
i = 1

½ayi�ðs½i� + hs½i� + hb½i�Þ (25)
=
X
i˛H

½si�+ hs½i�+ hb½i� (26)
= c+
X
i˛H

½hsi�+ hb½i� (27)

Because hb is composed of independent random variables, their variances add. Let’s assume that b=B1 for scalar B. Because

hb½i� � Pois ðBÞ, Varðhb½i�Þ=B. Thus

Var

 X
i˛H

½hbi�
!

=
X
i˛H

B= nB (28)

In contrast, the variance of hs does not depend on n,

Var

 X
i˛H

½hsi�
!

=
X
i˛H

½si�= c (29)

and thus,

VarðbcÞ = nB+ c (30)

We can also directly compute SNR based on Equation 21,

SNR =

ffiffiffi
a

p
c0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0 + nB0

p (31)

The result is thus that as n, the number of sensor pixels over which the light from an emitter is spread, increases, so does the variance

of the recovered signal. If the light from a single emitter is spread across more pixels, then the relative influence of the background

shot noise is higher. That is, the recovered signal is noisier and the SNR degrades. Again, the implication of this result is that the best

design should have high overall light transmission, but with the signal photons focused in as concentrated manner onto as few pixels

as possible.

Simulation details
The following describes details of how the simulation results in Figure S2 were generated.

We estimated the level of the background signal relative to the somatic signal based on the output of CNMF-E, which estimates the

background as part of the source extraction process. We captured three one-minute long videos with the aperture open to f/1.4 with

50mW illumination with a Cux2-CreER;Ai148 mouse. Using the quantum efficiency conversion factor of the Prime95b camera (0.93

across the green part of the spectrum), we estimated the number of photons incident on the sensor. The total signal per neuron was

computed as the median across neurons of the maximum signal (across the video) for each neuron, multiplied by the sum across the

footprint weights for each neuron. The number of pixels per neuron was computed based on the number of pixels in the footprint

required to reach 90% of the total weight across the footprint. For the background, we used the reconstructed background output

from CNMF-e. This provides a background image for each frame in the video. We computed the median background value for each

pixel across time, and then using the pixels with values in the middle eight deciles, we computed the median background value per
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pixel. These results, in addition to results for other aperture settings as well as for the dual lenslet design, are shown in Figures S2A

and S2B. For f/1.4, averaged across the three videos, the mean background photons per pixel was nbackground = 10e3, and the total

signal per source was nemission = 13e4.

Defocus Blur

We started by comparing the simulated defocus blur across the extent of the curved glass window for each the following imaging

approaches: stopping down the aperture on a conventional macroscope; a pellicle beamsplitter with two cameras; amulti-focal lens-

let array; and an oscillating tunable lens. The curved geometry of the window is demonstrated in Figure S1A.

To simulate defocus blur, we began with a simple ray-optics model and modified it to include the effects of aperture-induced

diffraction. We assumed 1:1 magnification. We determined the angle of the marginal ray based on the f-number, N, as

qmarg = arctan

�
D=2

f

�
= arctan

�
1

2N

�
(32)

The blur radius at each location along the windowwas determined based on the axial distance to the nearest native focal plane, znear .

For the conventional macroscope, there was one focal plane, for the bi-focal plane, there were two, and for the lenslet array, there

were two focal planes.

b = jz� znear jtan
�
qmarg

�
(33)

For the tunable lenses, we used a slightly different approach. In order to image at 30 Hz, the tunable lenses must oscillate across the

focal volume, as opposed to stepping between fixed focal planes. We modeled the effective blur radius as the average blur radius

across a focal sweep from z0 to z1. For an axial position z between z0 and z1, the average radius is

r =
1

jz0 � z1j
Zz1�z

z0�z

jchjdh (34)
=
1

jz0 � z1j
1

2

�
ch2
�
sign ðchÞjz1�z

z0�z (35)

where c= tanðqmargÞ.
To incorporate the effects of diffraction into this simplified model, we added a constant blur at all depths with a radius computed

according to the Rayleigh resolution criterion, as

rdiffraction =
0:61l

NA
= ð0:61lÞð2NÞ (36)

where we used the approximation of the numerical aperture NA in terms of the f-number N

NA = nsinqmarg = nsin

�
arctan

D

2f

�
z

1

2N
(37)

where nz1 in air.

As is visible in Figure S2D, the maximal defocus blur is substantially smaller for larger f-numbers. However, both the mirror and

lenslet designs achieve similar depth-of-field performance.

Light throughput

We next considered the detected light throughput of each design. Although a smaller aperture yields smaller defocus blur, it also

throws away light. We established experimentally that with 470 nm light, a total constant excitation illumination intensity of 500

mW across the field of view, i.e., 5mW=mm2, causes significant damage to the brain. As it is essential that we are able to perform

long imaging sessions, to be safe we chose a maximum threshold of 50 mW illumination. With an upper limit on excitation power,

it is thus of paramount importance that our light collection is efficient.

We first compared light collection simply based on the open area of the aperture. For the lenslet array, we conservatively assumed

that when reconstructing neuronal traces, for each location across the window we only ever use light from one of the lenslet images,

and thus the image effectively had an f-number of F/D = 40/21.9 = 1.8 where F = 40mm is the focal length of each lenslet, and D =

21.9mm is the diameter of a circular lens with the same area as a 25mm diameter lens with 7mm milled off from the edge. For the

beamsplitter, to yield adequate depth-of-field we set the f-number to be f/2. For the tunable lens, we set the diameter of the aperture

to be the size of the clear aperture of the tunable lens. We normalized all aperture areas based on the total area of the maximum f/1.4

aperture area. These results are shown in Figure S2C.

Overall SNR

We next constructed a measure that incorporates both light throughput and blur size, incorporating the effects of shot noise from

background fluorescence.Webegan by computing the number of photons per sensor pixel detected from an individual emitting point
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source in the specimen. This is an important measurement because there is a relatively high intensity background signal in the

COSMOS imaging preparation, which according to our noise analysis derivation influences the overall SNR of an optical design .

This background derives primarily from diffuse and defocused neuropil fluorescence and tissue autofluorescence, which is

particularly strong around the emission spectrum of GCaMP. For the purposes of this analysis, we treat the background as a

mean constant intensity addition to each sensor pixel. Importantly, however, although the mean intensity is constant, there is photon

shot noise that adds variance to the background. In particular, for a background of mean photon count B, the standard deviation in

photon counts is
ffiffiffiffi
B

p
.

Next, we computed the number of photons per pixel from a single neuronal emitter, at each point along the curved glass window.

We determined the size of the blur disc based on the blur radii shown in Figure S2D, according to a=pr2. We then multiplied the blur

disc by the normalized light collections of Figure S2C. Multiplying this by nemission yielded the number of photons within the blur disc.

We then normalized this by the number of pixels within the blur disc (for pixels of sidelength 11 mm). In Figure S2E, we see that the

multi-focal designs lead to a substantially higher density of collected photons on average.

Now, we computed the SNR per pixel. We approximate the footprint a asGaussian weighted across pixels within the blur disc, with

a standard deviation equal the half of the number of pixels within the blur disc. Using ay = ðaTaÞ�1aT , we computed SNR as light trans-

mission according to Equation 21, with c= nemission and b= nbackground.

In Figure S2F, we see that while the large aperturemacroscope designs offer the highest peak SNR, there are large stretches where

the SNR is much lower, i.e., where everything is out of focus. The multifocal designs, however, maintain a good compromise, with

fairly even performance across the field of view, as well as a higher minimum SNR than the other designs. In particular, as shown in

Figure S2G, the dual-focus lenslet provides the best overall performance across the extent of the curved field of view.

QUANTIFICATION AND STATISTICAL ANALYSIS

Open source packages used
The following open source libraries were used in the statistical analyses of the data presented in this paper:

IPython (Pérez and Granger, 2007): https://ipython.org/

Numpy (Van Der Walt et al., 2011): https://www.numpy.org

Matplotlib (Hunter, 2007): https://www.matplotlib.org

Pandas (McKinney, 2010): https://pandas.pydata.org/

Scikit-learn (Pedregosa et al., 2011): https://scikit-learn.org/stable/index.html

SciPy (Oliphant, 2007): https://www.scipy.org

Seaborn (Waskom et al., 2017): http://seaborn.pydata.org

Statsmodels (Seabold and Perktold, 2010): https://www.statsmodels.org/stable/index.html

Keras (Chollet, 2015): https://keras.io

PsychoPy (Peirce, 2007): https://www.psychopy.org

Micromanager (Edelstein et al., 2014): https://www.micro-manager.org

Fiji (Schindelin et al., 2012): https://imagej.net/Welcome

Statistical analysis
The number of subjects used in each experiment was based on numbers used in previous studies. Unless otherwise specified,

statistics were reported as means and SEM values. Probabilities from multiple hypothesis tests were corrected using the Benja-

mini-Hochberg correction (alpha = 0.05) in all cases, unless otherwise indicated.

A single session of imaging data from eachmousewith the Cux2-CreER; Ai148 genotype that were fully trained on the task (defined

as reaching 80% correct in at least three sessions) was included in all imaging analyses. This single session of data was chosen in

each case based only on high behavioral performance. Main experimental analyses were not additionally run on any other undis-

closed datasets.

For the optogenetic inhibition experiments, mice had to achieve at least 75%performance on the task in two consecutive sessions,

with the eye-LED on for a subset of trials, before attempting a day with optogenetic perturbation. Then, for each optogenetic stim-

ulation condition, data were included from each mouse where they had at least two sessions worth of data with performance during

the no-stimulation blocks averaging > 80%. If more than two sessions from a given mouse and condition had no-stimulation perfor-

mance greater than this threshold, the best two sessions were used.

Orientation selectivity analysis
To compute the orientation selectivity of COSMOS and two-photon data taken during visual grating presentation, we used the

following definition of the orientation selectivity index (OSI):

OSI =
rpref � rorth
rpref + rorth
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where rpref is themaximum trial-averaged fluorescence in response to any grating orientation and rorth is the response to the 90� offset
grating using the raw fluorescence traces extracted from CNMF-E. OSI histograms only show values from sources that pass a one-

way ANOVA comparing the average response to the grating stimuli versus blank periods with p < 0.01. These methods are similar to

those previously used in Chen et al. (2013) to characterize GCaMP6 under two-photon microscopy and yielded similar results for our

two-photon data.

Source mixing model
We estimated the number of neurons underlying each extracted COSMOS source using a simple averaging model. We first

computed the OSI histogram for the visual drifting grating data obtained from each of three mice taken under our two-photon micro-

scope and, separately, under the COSMOS macroscope using the procedure described in the previous section. Next, for each

mouse, we attempted to simulate the COSMOS OSI histogram by using mixtures of neurons from the two-photon data. To do

this, we sampled from all of the neurons that comprised the two-photon OSI histogram 500 times, each time generating a ‘‘mixed’’

trace by averaging over a random number of sources. The number of sources to average over on each iteration was chosen from a

uniform distribution. Once 500 sources had been generated using this approach, we then regenerated the OSI histogram for that

simulation.

This processwas repeated 10 times (with different random seeds) for different uniform distributions (i.e., sourcemixing ranges).We

searched over all combinations of uniform distributions [min, max], where min ranged from 1-20 and max ranged from 1-50.

Combinations where min was greater or equal to max were not used.

Finally, we computed the optimal min andmax parameter to approximate the empirical COSMOSOSI histogram by computing the

parameters that minimized the mean Kullback-Leibler divergence between each of the 10 models for a given parameter choice and

the empirical OSI distribution.

The consistency of this observation between animals is likely related to the similar density of neurons in each animal (owing to

similar tamoxifen dosing of 0.1 mg/g); these results could change under a stimulus that recruits a different fraction of the network

(the visual stimuli here may drive particularly strong correlations).

Region specific analyses
After registering the Allen Brain Atlas volume, version CCFv3, to eachmouse (using the procedure described the ‘‘intrinsic imaging for

atlas alignment’’ section), we identified five groups of cortical areas that we analyzed separately at many points in the paper (motor,

somatosensory, parietal, retrosplenial, and visual). Each of these areas is a ‘‘parent’’ node for all the ‘‘child’’ nodes saved in the Allen

Atlas. For example, ‘‘secondary motor area’’ (ID = 993) has parent node ID = 500, ‘‘somatomotor areas.’’ All sources coming from

these ‘‘somatomotor areas’’ are therefore analyzed when we restricted our analysis to motor. These are the parent nodes that we

analyzed in the paper (that are all children of the ‘‘isocortex’’ node):

Motor = ‘‘somatomotor areas,’’ ID = 500

Somatosensory ‘‘somatosensory areas,’’ ID = 453

Parietal = ‘‘posterior parietal association areas,’’ ID = 315

Retrosplenial = ‘‘retrosplenial area’’ 254

Visual = ‘‘visual areas,’’ ID = 669
Task-related class assignment
Using deconvolved spike events smoothed with a Gaussian (s.d. = 50 ms), the mean trace was computed for each of the four trial

types (go-left, go-middle, go-right, no go), for the 2.5 s interval beginning at odor onset. The mean trace was computed on a set of

training trials, and then using a separate set of testing trials the squared-correlation was computed between themean trace and each

single-trial trace of the corresponding trial type. The mean correlation could be used as a proxy for the unique variance explained by

each trial-type for each source. Five-fold cross-validation was used, and the overall correlation was computed as the mean of the

correlation on each fold. We used a bootstrap shuffling procedure to determine the significance of the trial-type correlations for

each source. Specifically, for each shuffle, a random set of 50 trials (the mean number of trials per trial type per session) was

used to define a trial type, and the above five-fold cross validation procedure was performed. A total of 10,000 shuffles was run.

For each source, the maximum correlation value across all shuffles was used as the threshold for determining significance

(p < 0.05 with Bonferroni correction; across n = 4 mice, the fraction of sources that were assigned: 44% +/� 1.1%, mean ± s.d.).

We then assigned each source with significant correlation to any of the trial types to one of 5 groups: lick-left selective, lick-middle

selective, lick-right selective, ‘‘no go’’ selective, and lick-direction independent. Insignificant correlations were set to zero, and the

correlation to each trial type was normalized by summed correlation to all trial types. Sources were assigned to a task-related class

based on the relative strength of correlation to each trial type. A source was assigned to one of the selective groups if the normalized

correlation to that trial type was above 0.6, and the maximum normalized correlation to any other trial type was below 0.3. A source

was assigned to the ‘mixed’ group if the normalized correlation to at least three trial types was above 0.2. Sources that did not meet

any of these criteria were not assigned to a class.
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Spatial pattern analysis
To assess whether there was any regularity or clustering in the spatial distribution of sources within each task-class, we analyzed the

spatial autocorrelation and compared it with a null distribution derived from random spatial distributions. We transformed the

centroid of each source into units of mm based on the measured equivalent pixel size. Then for all sources assigned to each

task-class, we computed the pairwise distance between each source and every other source. We then computed the empirical

cumulative density function (CDF) of probability for each pairwise distance. To generate the null distribution, we used a shuffling pro-

cedure: the task-class labels were randomly permuted across sources, such that each task-class maintained the same total number

of member sources, and the pairwise distance histogram was computed. This procedure was run for 10,000 shuffles. Using these

shuffle distributions, we computed a p value for each value in the corresponding empirical CDF, based on the percentile of the

measured value within the shuffle distributions. This p value was corrected for multiple comparisons using Benjamini-Hochberg

FDR correction, across all values within a single session (i.e., across all trial types and discretized CDF values). Using these corrected

p values, a threshold of 0.05 was used to determine whether a CDF value was significantly different from the null distribution.

We found that across five mice, each with five task classes, only 5/25 CDFs yielded any significant values, albeit with a small effect

size. Furthermore, there was no consistency across mice in terms of which task class displayed significance. Our conclusion was

thus that there was no consistent pattern in the spatial distribution of sources associated with each task class.

As a positive control, and to assess the sensitivity of this analysis, we simulated distributions of sources with known spatial struc-

ture. The same analysis was then applied to these simulated distributions to assess whether the structure was detectable using our

shuffle-based procedure. The simulated distributions consisted of a random selection of 1/3 of the sources within a circle of specified

diameter, in addition to the selection of 30 random sources distributed across the rest of the field of view. By varying the diameter, we

generated simulated distributions with spatial features of different sizes. Our conclusion was that this procedure has a sensitivity to

spatial features around 1mm diameter and above.

Detecting lick-off sources
Only trials where lick onset occurred 300 ms after odor onset were included. For each trial, for each source, mean activity was

computed across pre- and post-lick-onset periods (each 2 s in duration). Separately for each trial type, we determined whether there

was a significant decrease in activity across trials (one-sided t test, Bonferroni corrected across sources, p < 0.001). We then found

sources that decreased on any ‘‘go’’ trial, but that did not decrease on ‘‘no go’’ trials. We allowed for the possibility that a source may

decrease on just one trial type or onmultiple trial types. The locations of these lick-off sources are plotted in the figure and showed no

apparent spatial pattern or restriction that was consistent across mice. To summarize across mice, we computed the mean across

trials and lick-off cells for eachmouse. For visualization, we subtracted from each trace themean activity during the first 300ms of the

baseline.

Single-trial versus trial-averaged correlations
Centroid locations were scaled to units of mm using the measured equivalent pixel size. Gaussian smoothed deconvolved spikes

(s.d. = 50 ms) were used. The Spearman correlation coefficient was computed between all pairs of sources, using either the full, sin-

gle-trial dataset consisting of concatenated trials from the entire session (thus excluding the variable-length part of the ITI), or using

trial-averaged traces consisting of a concatenation of the average trace from each trial type (go 1, go 2, go 3, no go). The distancewas

also computed between each pair of sources. Each pair was only counted once. The absolute value of the correlation was used, to

assess the magnitude of the correlation. Correlation magnitude values were binned based on the distance of the corresponding pair

of sources, with a bin size of 100 mm. Source pairs within 150 mmof one another were excluded from the analysis. Within each bin, the

mean and s.e.m. correlation valueswere computed. The resulting correlation versus distance curveswere normalized by (i.e., divided

by) the maximum value of the curve. A p value was computed for the mean correlation value at a distance of 1 mm, using a paired t

test between the means for each mouse using either single-trial or trial-averaged correlations. For spatial plots related to a single

seed source, the radius, colormap, and alpha value were set according to the correlation magnitude, normalized by the maximum

non-self correlation value. For correlation versus distance plots related to a single seed, a bin size of 500 mm was used.

Decoding lick direction
To analyze the information represented by different subsets of neuronal sources on a single-trial basis, we used a decoding approach

(Glaser et al., 2017). Specifically, we trained a classification algorithm to predict from the activity of a subset of sources whether the

mouse was performing one of four actions: licking to spout #1, licking to spout #2, licking to spout #3, or not licking. The behavioral

data were binned at a temporal resolution of 29.4 Hz, and prediction was performed based on the neural time points (also binned at

29.4 Hz) centered on the labeled behavioral time point. We use this centered time point because here we are explicitly not making any

claims about predicting future action; rather, we are claiming that the ongoing behavior is represented by the neural activity (which

may include delayed neural response to the sensory stimuli associated with the licking action). We used the unsmoothed decon-

volved event output from CNMF-E as the neural data. We randomly assigned trials to training, cross-validation, and test sets with

a ratio of 0.5:0.25:0.25. There were at least 180 trials per mouse, and a trial consisted of 200 time points, yielding a total of at least

36,000 data points split between the training, validation, and test sets. There were at least 1000 neuronal sources for each mouse,

and 1 time point was used for each source, yielding at least 1000 parameters to be fit when decoding using all sources. We used a
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linear model with a softmax over 4 outputs and a categorical cross-entropy loss function, implemented using Keras. The Adam opti-

mizer was used to train the parameters. During optimization, datapoints were weighted according to the inverse of the frequency of

the corresponding class (i.e., because there are somanymore ‘‘no lick’’ datapoints, each such data point wasweighted in an accord-

ingly decreased manner). We also investigated using more complicated networks with hidden layers as well as with nonlinear

activation functions, however we found no appreciable increase in classification performance. This is potentially interesting because

it either implies that information represented by the simultaneously recorded neurons can be characterized in a linear manner, or that

we did not have enough data to adequately fit information stored in nonlinear interactions between neural activation states. To ac-

count for the noisiness of the neural signal and the relative paucity of training data, we regularized using cross-validation-based early

stopping. Specifically, after each training epoch, the loss was computed on the cross-validation set. We then used the parameters

that were set during the best epoch across 20 total epochs. Classification performance was evaluated using the test dataset, which

the algorithm never saw during training. This whole processwas repeated for 4 folds, such that each data point was used in a fold-test

dataset once.

To account for the disparity in class sizes (there weremanymore datapoints where themouse did not lick thanwhen themouse did

lick to any of the spouts), we computed a normalized confusion matrix. Each row was normalized by the sum that row, or (True

Positives + False Negatives). The diagonals of the normalized confusion matrix thus represented the True Positive Rate, (# True

Positives / # Total Actual Positives).

The Receiver Operating Curve (ROC) was computed for each class in a one versus all manner, by varying the classification

threshold and computing the corresponding True Positive Rate and False Positive Rate. This was performed for each class for

each fold. The ROC curves were resampled such that they all had the same discretization of False Positive Rate, and then they

were averaged together (this is the ‘macro’ average in the parlance of sklearn), yielding an overall ROC curve to summarize the clas-

sification for that session. Likewise, the area under the ROC curve (AUC) was computed for each fold and class, and then averaged

together. We use this AUC as the measure for characterizing classification performance across different conditions.

When comparing the information contained in different subsets of neuronal sources, we took a number of steps to ensure that the

comparisons were fair. First, we ordered all sources based on the extent to which they were capable of distinguishing between any of

the behavioral conditions. Specifically, for each source there were around 36,000 time points of neural activity, and an associated

label for each time point indicating whether the mouse was licking to spouts 1, 2, or 3 or not licking. For each source, we performed

a Kruskal-Wallis H test to determine whether the distributions of neural activity during any of the four behavioral conditions were

significantly different. We used the p value output from this test as a proxy for the ability of that source to distinguish the behavioral

conditions. P values were adjusted for multiple comparisons using the Benjamini-Hochberg correction. Using these p values, we

could rank all neuronal sources based on their ability to distinguish the behavior, as shown in Figures S7A and B. Importantly, though,

for the comparisons in Figures 5D–5F, for each subset of sources included in each test condition we used the highest ranked sources,

that is, the sources that contained the most decoding information according to the H test. Although not guaranteeing that we were

using the best combination of sources for decoding, heuristically this approach ensures that we are not using an unfairly bad

combination of sources.

Additionally, we ensured that even if different numbers of neuronal sources were included in each subset, the number of model

parameters was exactly the same. To accomplish this, we performed PCA on the [sources x time] matrix and used the 75 dimensions

that explained themost variance. This [75 x time] matrix was then passed into the decoding algorithm. Thus, there is no chance for the

model to overfit for one subset simply based on the number of model parameters.

Decoding the preferred spout position from neural data
We used Partial Least-squares regression to simultaneously perform linear regression and dimensionality reduction (sklearn class

cross_decomposition.PLSRegression, which implements the PLS2 algorithm). In contrast to the lick decoding analysis, here we

used the denoised Ca2+ signal rather than the deconvolved spike trains. This smoother signal over time enhanced our ability to

construct intelligible single-trial neural trajectories (see subsequent section ‘‘Computing low-dimensional trajectories.’’ for more

details)—which was crucial as the same decoding model was used for both purposes. Our PLS models all used k = 4 components,

which we found to be the minimum value that approximately maximized the normalized model prediction accuracy on held-out test

data across all four experimental mice (as defined as the area under the ROC; see Figure S7D).

In a similar manner to the approach used in an earlier analysis, region specific analyses were performed using the 75 sources from

each area with most discrimination ability for the preferred spout (in Figure 6E) or all sources from each area (in Figure 7). In order to

avoid overfitting on analyses that used sources from all regions in Figure 6, we used a maximum of 500 sources for model training/

evaluation, choosing first those with the lowest p values as for the region-specific analyses. The impact of using different numbers of

sources can be seen in Figure S7E, usingmore than 500 sources appears to show reducedmodel prediction performance on held out

test data. The preferred spout is defined as the one with the most licks in the interval of time between odor onset and reward onset.

To identify the preferred spout discrimination ability of each source, we performed a Kruskal-Wallis H-test that, for each source and

time point, compared the source’s activity between trials where different spouts were active (in Figure S7F). Only time points where

the maximum denoised Ca2+ across trials exceeded 0.1 were quantified here. In this way, sources were each assigned the lowest p

value observed across all time points evaluated. All sources were then sorted by their p values such that the sources with lower p

values were defined as having more discrimination ability.
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We elected to use PLSRegression, a linear approach, instead of a more complex nonlinear algorithm because we wanted to fit the

least complex model possible in order to aid interpretability and because a model with considerably more parameters would take

more data to train. The fact that PLSRegression models simultaneously fit regression weights as well as identifying a related low-

dimensional basis (that we could project single-trial neural activity into) greatly aided us in this with respect to interpretability.

Eachmodel was fitted using 30 total training trials (10 for each active spout condition), out of the approximately 200 trials from each

experimental session (meaning we used approximately 15% of each dataset for training). These 30 training trials were randomly

selected from a list of all ‘‘go’’ trials where at least 80% of all licks on that trial at any time were toward the active spout. We also

explicitly enforced that identity of the active spoutmatched the preferred spout on each training trial. The training datamatrix ([frames

* training trials] x sources) then consisted of all denoised Ca2+ signal time points from either the 75 sources with best discrimination

ability in the region under analysis, or by using up to 500 sources for non-regional analyses. All frames on a given training trial were

used for training. Trials that had licks during the ‘‘pre-odor period’’ were not excluded from training if they met the other requirements

because training was always performed on all trial frames (including those with licks). However, these trials with pre-odor licks were

always excluded when testingmodel performance. The target regressor vectors (([frames * training trials] x spouts) for each training

trial comprised a binary indicator matrix denoting the active spout on each trial—which was constant across each framewithin a trial.

Model evaluation was performed individually on all held-out trials, but specifically enforcing that all evaluated trials had zero licks

during the ‘‘pre-odor period,’’ which was the final 2.2 s of the intertrial interval. Evaluation was specifically performed on the mean of

all time points acquired from this interval of time (a vector of length equal to the number of sources). This resulted in a prediction vec-

tor of size 3 (the number of spouts). The reported prediction of the preferred spout was then defined as the spout with the highest

numerical value in the prediction vector at the optimal classifier setpoint, argmax(predictions * [1-setpoint]), here the setpoint vector

is three-dimensional and ‘*’ denotes element-wise multiplication. For computing model performance (AUC of the ROC), unthre-

sholded predictions were used to compute ‘macro’ AUC values in an identical manner to that described in the previous section

(‘‘decoding lick direction’’).

The only exception to the above training procedure is in Figures S8E–S8G, where models were trained and evaluated on different

temporal epochs of data. Here, trials with a nonzero number of licks during the ‘‘pre-odor period’’ were excluded from both training

and testing (versus just testing). When training on all frames from a trial (as in Figure 6 and 7), models were already exposed to licks

later in every trial, so we did not remove those trials in order to leave more selective ‘‘go’’ trials available for training/testing.

We computed the optimal classifier setpoint by generating a ROC curve using both the true preferred spout and raw predictions on

the training trials.We used this setpoint fit to training data on the held-out test data. The optimal setpoint was defined as the threshold

that maximized the difference between the true positive rate and the false positive rate. The confusion matrix in Figure 6B was

normalized using the same procedure as described in the ‘‘decoding lick direction’’ section earlier in the methods. In Figures 6D,

6E, S7G, and S7H 20 models were trained for each condition of each analysis. The resultant distributions of model performance

were statistically compared to an equally large set of models trained on identical training data, but data where the active spout in-

formation was randomly permuted across trials. This permutation was done in two ways: either by randomly shuffling the correct

spout labels or by circularly permuting the labels. The simple random shuffling procedure breaks the temporal autocorrelation struc-

ture of the task. Therefore, it could destroy long-timescale fluctuations resulting from making the same movement many times in a

row that could persist over many seconds (and thus beyond trial boundaries).

To better control for this, and therefore more solidly test whether we are predicting upcoming actions versus simply decoding a

neural state generated by repeated past actions, we used a much more conservative null model for comparison where, instead of

shuffling, we circularly rotated the trial labels by a random shift of between 0 and the number of trials in the experiment. This manip-

ulation perfectly preserves the temporal autocorrelation structure of the active spout identity over a session. However, because of the

long block length, any rotations that are shorter than a block (15-20 trials) will overlap heavily with the true class labels—making this a

harsher control. Statistics were therefore presented versus both the shuffle and this circular permutation control.

In Figure 6F, we interpolated between some adjacent points in the lines drawn using data from individual mice. This was donewhen

there were gaps in the data at some trial indices that arose from excluding trials where there were a nonzero number of pre-odor licks.

We performed the same analysis either using binning, or by including the currently excluded trials. In both cases, similarly statistically

significant results were found.

To quantify the variance explained by a low-dimensional (k = 4) basis provided by PLS and PCA (Figure S7I), we used all sources

from each area or the top 500 sources withmost spout discrimination ability if pooling over all areas. Thenwe fit PLS and PCAmodels

to data taken from all ‘‘go’’ trials where at least 80% of all licks were toward the active spout. Given the fitted PLS basis vectors, we

computed the total explained variance as:

VarðX$WPLSÞP
VarðXÞ

where X is the mean centered neural data and W are the basis vectors from PLS (stored in the x_rotations_ variable in the PLSRe-

gression model object). This value was computed for the PCA basis in a similar manner. All time points were used from each trial in

this calculation.
Neuron 107, 351–367.e1–e19, July 22, 2020 e18



ll
Article
Decoding the preferred spout position from high-speed video data
Weused PLSRegression to predict the preferred spout from the pre-odor behavior of the animal measured using high-speed (200Hz)

videos taken from below the head and to the side of the body. First, we converted the movies to grayscale and computed their ‘‘mo-

tion energy’’ (Stringer et al., 2019) as the magnitude of the framewise difference in pixel intensities. Treating each motion energy

movie as a centered data matrix X˛RN x M where N is the number of pixels and M is the number of time points, we find the eigende-

composition of the pixelwise covariance matrix C=M�1XXT =VLVT , yielding the left (spatial) eigenvectors of X and their associated

eigenvalues. We then compute the right (temporal) eigenvectors as U=L�1
2VTX, i.e., the motion energy principal components (PCs),

and keep the top 1000 to use as features for prediction. We then apply the same PLS approach we used for neural decoding

described above to predict the preferred spout from pre-odor motion energy PCs. To summarize each trial, we compute the average

of each PC over the 2.17 s (434 frames) preceding odor onset, and train and test the PLSmodels on the identical sets of trials used for

neural decoding, varying the number of PCs used for prediction. To assess the sufficiency of different orofacial components for de-

coding the active spout, we extracted data from 512-pixel regions of interest covering the nose, mouth, and whiskers and applied the

same PCA+PLS decoding analysis on the top 250 PCs separately for each region.

Computing low-dimensional trajectories and analysis of condition type separability
To compute low-dimensional neural trajectories (as shown in Figure 7), we again used PLSRegressionmodels that were trained using

all time points from each training trial (as in Figure 6). But instead of predicting the preferred spout on each trial using only the ‘‘pre-

odor’’ data, we instead projected every time point during each trial into the low dimensional basis found by PLSRegression. Parietal

and retrosplenial areas had the fewest average sources across mice and also had lowest decoding performance (Figure 6E) and

therefore were not analyzed individually here. Training data and testing trials were selected as described in the previous section

for active spout decoding. For evaluation, all ‘‘go’’ trials with at least 80% of licks to the active spout, and zero pre-odor licks,

were projected into the PLS basis in order to plot the dataset-averaged or single trial trajectories. These were defined as ‘‘correct

go’’ trials. ‘‘Incorrect go’’ trials were defined as ‘‘go’’ trials where the fraction of licks to the active spout is 30% or worse. ‘‘No

go’’ trials were subject no further requirements. ‘‘2nd trials’’ simply consisted of all trials that were second in a block, discarding

only those with pre-odor licks. For single region trajectories (e.g., visual only), all sources in the region selected were used, when

pooling across areas, all available sources in each mouse were used.

Toquantify the separationbetween thepositionofneural trajectoriesduring thepre-odorperiod (as shown inFigure7Eand7F),wefirst

fit a PLSmodel to the area under analysis (in the samemanner aswas done to plot neural trajectories). Then, we projected each training

trial into a 4-dimensional PLS basis (as described in the previous section of themethods) and computed the average position of each of

these training trajectoriesduring the pre-odor period. Thisdefineda single point for each training trial (its ‘‘pre-odor position’’).Wegroup-

ed together these ‘‘pre-odor-positions’’ for all trials from each active spout type—defining a set of three means and covariances.

Then, for each testing trial, we computed its ‘‘pre-odor position,’’ ‘‘odor position,’’ and ‘‘rewardposition’’ andmeasured theMahalanobis

distance (in the full 4-dimensional space) between each point and the three different spout-specific clusters. Given these three distances

between the test trial and each cluster (see cartoon in Figure 7D), we computed the statistic: ‘‘same distance’’ – ‘‘different distance.’’ Here

the ‘‘samedistance’’ is thedistancebetween the trial and itshomonymouscluster (e.g., ifweareevaluatingaSpout2 trial, this is thedistance

between that trial and theSpout 2cluster). The ‘‘differentdistance’’ is thedistancebetween the trial and theclosest of theother twoclusters.

The ‘‘pre-odor position’’ was defined by averaging over the frames between trial onset and odor onset, the ‘‘odor position’’ aver-

aged over frames between odor onset and reward onset, and the ‘‘reward position’’ averaged over a period following the reward of

equal length to the odor-reward duration.

In Figure S7H the analysis was conducted in an identical manner to the analyses shown in Figure 6D and 6E, except decoding the

active spout instead of the preferred spout. In addition, ‘‘incorrect go’’ trials were defined as those with less than 70% of total licks

toward the active spout (instead of 30%or worse), and ‘‘correct go’’ trials were still defined as those with at least 70%of trials toward

the active spout. We used a less conservative threshold for defining a trial as ‘‘incorrect’’ here (versus in Figure 6D and 6E) because

data was required for all three active spout types to compute the AUC as we did previously.

The temporal consistency analysis (Figure S8E–S8G) was done by training 40 PLSmodels on sequential sets of data (each of 170ms in

duration). The key concern of this analysis was to determine how neural representations varied over time. Therefore, we used deconvolved

spikingactivity rather thandenoisedCa2+ foronly thisPLSanalysis.Trainingdatawasselectedaspreviouslydescribedandusedall available

sources for decoding.But heremodel evaluation trainingwasperformedonly on trialswhere theactive spout identitymatched thepreferred

spout identity (trialswhere thiswasnot truewere always removed fromall training usingPLSmodels). Ensuring that thepreferred andactive

spouts always matched was done to avoid the chance that block-like structure was artifactually imposed when the mouse switched from

licking one spout pre-reward to lick another post reward. The ‘macro’ AUC-ROC was reported here as in all other similar analyses.

ADDITIONAL RESOURCES

Further information about our study, as well as resources about how to use the COSMOS technique can be found at: http://

clarityresourcecenter.com/.
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