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Abstract—Nowadays, driven by the needs of autonomous driv-
ing and edge intelligence, integrated CPU/GPU heterogeneous
platform has gained significant attention from both academia and
industry. As the representative series, NVIDIA Jetson family per-
form well in terms of computation capability, power consumption,
and mobile size. Even so, the integrated heterogeneous platform
only contains one limited physical memory, which is shared by
the CPU and GPU cores and can be the performance bottleneck
of the mobile/edge applications. On the other hand, with the
unified memory (UM) model introduced in GPU programming,
not only the memory allocation is significantly reduced, which
mitigates the memory bottleneck of the integrated platforms but
also the memory management and programming are simplified.
However, as a programming legacy, the UM model still follows
the conventional copy-then-execute model, initializing data on
the CPU side after allocating memory. This legacy programming
mode not only causes significant initialization latency but also
slows the execution of the following kernel. In this article, we
propose a framework to enable the latency-aware data initializa-
tion on the integrated heterogeneous platform. The framework
not only includes three data initialization modes, the CPU ini-
tialization, GPU initialization, and hybrid initialization, but also
utilizes an affinity estimation model to wisely decide the best
initialization mode for an application such that the initializa-
tion latency performance of the application can be optimized.
We evaluate our design on NVIDIA TX2 and AGX platforms.
The results demonstrate that the framework can accurately select
a data initialization mode for a given application to significantly
reduce the initialization latency. We envision this latency-aware
data initialization framework being adopted in a full-version of
autonomous solution (e.g., Autoware) in the future.

Index Terms—Affinity estimation, data initialization, hetero-
geneous platforms, integrated GPU (iGPU), latency, unified
memory (UM).
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I. INTRODUCTION

THE EMERGENCE of heterogeneous System-on-a-
Chip (SoC) has pushed the computing platforms of

many edge-intelligence applications, such as driving automa-
tion system, drone, and robots, on the verge of a major
design shift from high performance, energy-consuming dis-
crete CPU and GPU equipped platform, to effective, energy-
efficient integrated CPU and GPU platform. As the major
game player, NVIDIA has developed a series of heterogeneous
SoC platforms, such as Jetson SoCs [1] and Drive SoCs [2],
for autonomous embedded systems and driving automation
systems, respectively. The integrated CPU and GPU heteroge-
neous platform typically shares the physical memory between
the CPU and GPU cores. For example, NVIDIA TX2 pos-
sesses an on-chip memory of 8 GB, which is physically
connected by CPU and GPU cores.

Exploiting integrated GPU (iGPU) heterogeneous platform
for autonomous and intelligent workloads processing can bring
better size, weight, and power (SWaP) tradeoff compared to
traditional discrete GPU (dGPU)-based solutions. Moreover,
the lower price makes the iGPU platform an excellent choice for
embedded autonomous systems. Despite the advantage of the
iGPU-enabled heterogeneous platform, building future embed-
ded autonomous systems based on this hardware is further
stymied by the unprecedented challenges that are specifically
imposed by the stringent latency requirements and memory
footprint of autonomous systems, and the intrinsic hardware
restrictions of iGPU-enabled heterogeneous SoC platforms.

First, modern autonomous systems, such as drones and
driving automation systems need a vast amount of percep-
tion data for decision-making guidance [3]. An autonomous
vehicle is typically equipped with 8 to 12 surrounding cam-
eras to provide 360-degree visibility around the vehicle, with
a single two-megapixel camera (24 bits per pixel) operating
at 30 frames/s generates 1440 MB of data every second. If
a poorly managed memory allocation method such as the tra-
ditional copy-then-execute model is used, where memory is
allocated on both host and device side, such a large amount
of raw data can easily exhaust the memory of iGPU-based
heterogeneous platform.

Second, modern autonomous systems consider the process-
ing latency as one of the most important tenets for safety
and functionality. The latency from image capture to recog-
nition completion is critical since the response time of the
control operations depends on it. Failing to execute actuation
in time may cause catastrophic consequences, such as financial
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TABLE I
MATRIX OPERATION SCALE (M.O.S.) OF TYPICAL DNN MODELS

APPLIED IN AUTONOMOUS DRIVING, INCLUDING MATRIX

MULTIPLICATION AND ADDITION

repercussions or even loss of human lives. However, modern
driving autonomous systems adopt a variety of DNN models
to achieve complete functionalities, while the DNN func-
tions typically involve large-scale matrix operations. Table I
shows the matrix operations scale of several representative
DNNs models adopted by the mainstream autonomous driving
solutions.

To meet these rigorous requirements on memory foot-
print and processing latency for the iGPU-based heteroge-
neous computing platforms, tapping into the emerging unified
memory (UM) model is considered as a promising solution.
Recent NVIDIA GPU architectures enable UM [8] to ease the
explicit programming efforts of handling data movement and
address translation. The UM address space is shared among
CPU nodes and GPU nodes in the system. By uniforming
the address space, the programmer can minimize the efforts
of explicitly managing the data movement between CPU and
GPU. The UM is particularly beneficial for iGPU platform to
process autonomous workloads since it replaces the explicit
data copy in the traditional copy-then-execute model with
implicit data initialization and addresses translation, which can
save memory footprint.

However, we observe that the current UM model does not
further reduce the processing latency on iGPU-based het-
erogeneous platforms, such as NVIDIA Jetson TX2. Our
characterization shows that the inherited routine of initializ-
ing data on the CPU side provided by the UM model not
only results in significant latency due to the limited compu-
tation capability of CPU but also slows the following GPU
kernel execution. Especially, we observe that the existing
CPU-based matrix initialization can introduce striking latency
for GPU tasks with large-scale matrix operations. Here, ini-
tialization refers to the process of filling out the input buffer.
Intuitively, for some simple applications, the input variables
can be directly assigned with constant/specific values (e.g.,
being copied from another constant buffer) or the input vari-
ables can load values from the existing file (e.g., read input
feature map for the CNN model). For example, regarding
the intelligent and autonomous workloads, the object-detection
CNN models are widely adopted and the model can either load
image data from system memory or fetch data from the sensor
memory for realtime detection.

Based on these findings, to reduce the data initialization
latency as well as the entire application’s response time, we
design a framework that enables the latency-aware data ini-
tialization for iGPU-based heterogeneous platforms. More
specifically, the framework provides two new data initial-
ization modes, the GPU-side initialization (GPU-Init) and
the hybrid initialization (Hybrid-Init, i.e., the initialization

is cooperatively implemented by both CPU side and GPU
side) on top of the existing CPU-side initialization (CPU-
Init). Furthermore, we develop an affinity estimation model,
which can estimate the affinity to a certain initialization mode
for an application based on the application’s characteristics
(e.g., the size and the diversity of the initialized data) and
the platform’s features (e.g., the computation capability), to
help the framework wisely choose the corresponding initial-
ization mode such that the initialization latency performance
of the application can be optimized. Finally, we extensively
evaluate our latency aware data initialization framework on
the NVIDIA Jetson TX2 and Xavier AGX platforms using
Rodinia benchmarks [9] and a popular object detection CNN
model. The evaluation demonstrates the accuracy of the affin-
ity estimation model and the efficacy of the framework in
deciding an initialization mode and optimizing the initializa-
tion latency performance for an application. In summary, this
article makes the following contributions.

1) We conduct a comprehensive characterization of the
current UM model on emerging integrated CPU/GPU
platform, the NVIDIA TX2. Our characterization results
show that the existing CPU-side data initialization mech-
anism can cause significant processing latency for the
overall application.

2) For an application, we develop a latency-aware data ini-
tialization framework that includes three initialization
options, the CPU-Init, GPU-Init, and Hybrid-Init.

3) The framework can utilize an affinity estimation model
that incorporates the workloads and system features
(e.g., the input data size, initialization diversity, and plat-
form capacity) to wisely decide the initialization mode
to optimize the initialization latency performance of the
application.

II. BACKGROUND

A. Memory Management Methods and Unified Memory

There exists various methods to manage the memory
between the host CPU and the device GPU in CUDA pro-
gramming. Conventionally, the memory management follows
a copy-then-execute model. That is to say, the host CPU
has to calls specific API [i.e., malloc() and cudaMalloc in
CUDA programming] to allocate memory space on both CPU
side and GPU side for the data. After allocation, the host CPU
initializes data (e.g., assign values to the variables) on its own
memory, and then copy the initialized data from host memory
to the device memory before a GPU kernel can execute. Once
the kernel execution completes, the results data are copied
back from the device memory to the host memory. In this pro-
cess, a comparable data-size space is created on both host and
device memory regions, which requires 2× memory space to
be allocated to the same data. Also, the data transfer between
the host memory and device memory typically contributes to
the response time of the application.

Later, the UM model is developed, which not only frees
the developers from this complicated data copy process but
also significantly reduces the allocated memory space for an
application. Typically, the UM can provide an illusion of
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Fig. 1. Schemes of (a) UM programming model and (b) Parker-based TX2
architecture.

CPU–GPU unified virtual memory to avoid explicit data copy
and ease memory management. The programmer only allo-
cates memory once, which can be accessed by either CPU or
GPU through a shared pointer. As a result, the memory foot-
print is reduced. The API cudaMallocManaged() corresponds
to UM allocation in CUDA programming. As a matter of
fact, NVIDIA’s UM management model has been introduced
since CUDA 6 [10]. The architecture is shown in Fig. 1(a).
After CUDA 8 being available, the advanced Pascal archi-
tecture can further exploit the benefits of the UM model
by introducing an on-demand page faulting and migration
mechanism to support concurrent access from code running
on either CPUs or GPUs [11]. Specifically, when the API
cudaMallocManaged() is used to allocate data space in the
memory, there is no physical memory space allocated on either
host or device. Instead, the memory will be allocated and
migrated on-demand when the processor encounters a page
fault during memory access. As the on-demand memory allo-
cated, new page table entries (PTEs) are created in the GPU
page table and these entries are validated upon completion
of migration [12]. However, on-demand paging is not sup-
ported on the integrated Jetson GPU [13] as of now. On
iGPU platform, there typically exists the data page mapping
process. Specifically, after the CPU calles the API cudaMal-
locManaged() to allocate the memory space for the data, the
data populates in the CPU side and the page tables covering
the data are set valid. Then if the GPU tries to access the
data, the page tables on CPU side are set invalid first and then
remapped to the GPU side. After the page tables are set valid
and the data populates in GPU side, the GPU can access the
data smoothly [14], [15]. We will discuss the detail of the UM
memory management in Section III-B.

Besides, another memory management method, the host-
pinned memory [i.e., the API cudaHostAlloc() in CUDA pro-
gramming] also provides the benefit of avoiding explicit
data copy and reducing memory footprint [8]. However, the
method bypasses the CPU and GPU side caches to directly
access the memory, causing significantly latency. We will not
discuss this method in our work.

B. Integrated CPU/GPU Platforms

NVIDIA proposes its Jetson line of iGPU platforms target-
ing autonomous systems and embedded intelligence and Jetson
iGPU platforms include a series of Tegra SoCs, such as Parker

(a) (b)

Fig. 2. Average CPU-Init latency under Def. and UM. models on TX2 as
well as the corresponding initialization ratio in the overall application
response time. (a) MatAdd. (b) MatMul.

TABLE II
LONGEST CPU-INIT LATENCY AS WELL AS THE INITIALIZATION RATIO

UNDER DEF. AND UM. MODELS. EACH CELL (a, b, c) INDICATES THE

INIT., OTHERS, AND RATIO, RESPECTIVELY

and Xavier. Typically, the iGPU platform shares a physical
memory between the CPU and GPU cores.

NVIDIA Parker SoC: Fig. 1(b) illustrates the
NVIDIA Parker SoC embedded platforms, such as Jetson TX2
and NVIDIA Drive PX2 [16], which are widely practiced in
many autonomous drone or vehicle applications (e.g., used
in Volvo XC90 and Tesla Model S [17]). NVIDIA Parker
SoC contains a “big.LITTLE” CPU cluster composed of two
Denver2 and four ARM Cortex A57 cores. The chip has
an integrated twocore Pascal GPU with 256 CUDA cores
connected via an internal bus. The integrated TX2 platform
shares up to 8 GB of LPDDR4 memory with up to 50 GB/s
of bandwidth in typical applications.

NVIDIA Xavier SoC: NVIDIA Xavier is the latest SoC from
NVIDIA used in Xavier AGX and Drive AGX Pegasus plat-
forms. Xavier has an 8-core “Caramel” CPU (based on ARM
V8) and an 8-core Volta GPU with 512 CUDA cores, and 16
GBs of shared main memory. We include both NVIDIA Parker
SoC and AGX Xavier SoC in our evaluation. Note that
even though our motivation and evaluation are based on
NVIDIA Parker and Xavier, our methodology is applica-
ble to all the integrated CPU/GPU architectures that utilize
a UM model.

Due to the limited physical memory on these iGPU plat-
forms, UM model can be utilized to reduce the memory
footprint. Even though the UM model is adopted, which allows
the CPU and GPU to share one pointer to access the allocated
data region and avoids the explicit data copy between the CPU
and GPU, the data initialization process is still implemented
on CPU side by default, which is a programming legacy from
the conventional copy-then-execution model. As we demon-
strate later, the CPU-initialization on CPU side can contribute
to significant latency to the overall application latency. It is
actually unnecessary to implement the data initialization on
CPU, especially with the support of the UM model on the
iGPU platform.
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(a) (b)

Fig. 3. Average initialization and kernel execution time in the cases of
CPU-side and GPU-Init under UM. (a) MatAdd. (b) MatMul.

III. CHARACTERIZATION AND MOTIVATION

In this section, we mainly characterize the significant
latency caused by the conventional CPU-side data initial-
ization as well as other hidden latency in the UM model,
which can strongly motivate our design of the latency-aware
data initialization framework.

A. Data Initialization Latency

As we stated above, an application typically initializes
data on CPU by default. Intuitively, data initialization is the
process of assigning specific values to the defined variables.
For example, assigning variable a with constant or randomly
generated values [i.e., variable a = rand()]. Conventionally,
it’s an action of CPU filling the input buffer. To explore
the latency introduced by CPU-Init, we breakdown the exe-
cution time of two representative micro-benchmarks, Matrix
Add (MatAdd) and Matrix Multiplication (MatMul), for both
copy-and-execute model (Def.) and UM model (UM), and ana-
lyze the latency of the initialization part and other part in
detail. We implement the experiments on NVIDIA TX2 plat-
form and use gettimeofday() to extract the time of each phase.
Specifically, in the Def. model, we divide the entire bench-
mark response time into two parts: 1) data initialization time
(init.) and 2) other times (others) that covers the data migra-
tion between CPU and GPU as well as kernel execution on
GPU. In the UM model, since there is no data copy on iGPU
platform, the entire benchmark time includes initialization time
(init.) and other time (others) that only covers kernel execution
on GPU.

The result is shown in Fig. 2, where the x-axis indicates
the increasing input data size. The 1 to 4 corresponds to
the matrix size equaling 9000*9000, 12000*12000, . . . and
18000*18000, respectively. We run 10 times and report the
average latency value. We also report the longest-observed val-
ues in Table II. More specifically, the bars in Fig. 2(a) and (b)
show the latency of each part in the two models for bench-
marks MatAdd and MatMul, respectively, which corresponds
to the y-axis on the left. For MatAdd, we can observe that
the data initialization latency is nontrivial in the Def. model,
which can compete with the latency of other parts. With the
data size increases, the data initialization latency increases
drastically. Intuitively, the CPU has to process a larger amount
of data, thus leading to greater latency. In the UM model, the
latency of data initialization is also significant, which even
dominates the entire benchmark response time due to the fact
that the kernel execution latency of the two benchmarks are

TABLE III
INITIALIZATION AND KERNEL EXECUTION TIME IN THE CASES OF

CPU-SIDE AND GPU-INIT. EACH CELL (a, b) INDICATES THE INIT.
AND KERNEL LATENCY, RESPECTIVELY

reduced. For MatMul, in either Def. model or UM model, the
data initialization latency almost follows the same pattern.

Besides, we calculate the ratio of the initialization-latency
in the entire benchmark response time for both two models, as
indicated by the dots in Fig. 2(a) and (b), corresponds to the
y-axis on the right. For both benchmarks, the ratio of initializa-
tion latency in the runtime has been around 50% in Def. model,
and even been around 90% in the UM model. This indicates
that the CPU-Init latency is exacerbated in UM model.

Observation 1: As the programming legacy of the copy-
then-execute model on the dGPU platform, data initialization
is typically implemented on CPU side. Obviously, the CPU-
side data initialization process can result in significant execu-
tion latency and prolong the entire workload response time.
In the UM model, the data initialization latency dominates the
overall benchmark response time. In fact, UM model on the
iGPU platform does not require explicit copy of the initialized
data from CPU side as the Def. model does, the initialization
may not be necessarily performed on CPU side, which pro-
vides opportunities to reduce the initialization latency as well
as overall benchmark response time.

B. Kernel Latency

As we stated above, in the UM model, GPU can utilize the
pointers shared with CPU to access the data in the allocated
memory region. Also, it is GPU kernels instead of CPU ones
that access the data after initialization in most cases. Therefore,
it is possible to perform data initialization on the GPU instead
of the CPU. Furthermore, GPU side initialization is feasible
because data initialization is typically well-structured and par-
alleled. Initializing data on GPU may benefit significantly due
to GPU’s acceleration in parallel computing. Therefore, we
propose to initialize the data on GPU side using an initial-
ization kernel under the UM model and compare the latency
of each part with the latency of the conventional CPU-Init
case. Similarly, we utilize the two benchmarks and implement
the GPU-Init on TX2, as show in Fig. 3. The x-axis indi-
cates the increasing data size, which corresponds to the size
in Fig. 2, and y-axis indicates the specific latency. We run
10 times and report the average latency value. We also report
the longest-observed values in Table III. Compared to the con-
ventional CPU-Init case, in the GPU-Init case, the initialization
latency is reduced up to 93.7% for the benchmark MatAdd and
95.0% for the benchmark MatMul, respectively. Furthermore,
the kernel execution time also is surprisingly reduced. We deep
dive this and find that the reduction of kernel execution time
is benefited from the migration of the page mapping. More
specifically, Fig. 4 shows the specific process. The figure on
the top demonstrates the conventional CPU-Init case. Since
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Fig. 4. Process of CPU initialization and GPU initialization process under
UM model on iGPU platform.

the data is initialized on the CPU side, the pages covering the
data has to been mapped from the CPU side to the GPU side
before the kernel executes [18]. Therefore, the kernel time here
includes both the mapping latency and the execution latency.
Also, based on our characterization, the mapping latency even
is larger than the kernel execution latency. In comparison, the
figure on the bottom demonstrates the proposed GPU-Init.
Since the initialization is implemented in the init kernel on
GPU side, the page covering the data has been mapped to the
GPU before the following kernel executes. As a result, the
kernel time only includes execution time. Overall, the entire
benchmark response time is reduced as well. For the bench-
mark MatAdd, the latency is reduced up to 91.0%, and for the
benchmark MatAdd the latency is reduced up to 90.7%.

Observation 2: Under the UM model, if the GPU-Init is
introduced, the initialization latency is significantly reduced
compared to the conventional CPU-Init case. Furthermore, the
iGPU platform inherently introduces extra latency on kernel
launch due to the address translation and page mapping. The
GPU-Init can premap the page covering the data before the real
kernel execution, thus benefiting the kernel execution latency
performance as well as the entire application’s response time.

IV. DESIGN

In this section, we propose a data initialization framework
for an integrated CPU/GPU platform, which can choose the
best data initialization mode for an application with the goal
of optimizing the initialization latency performance of the
application. Our design consists of three key components.
First, we develop three different data initialization modes,
namely, the CPU initialization mode (CPU-Init), GPU initial-
ization mode (GPU-Init), and GPU-CPU hybrid initialization
mode (Hybrid-Init), and then discuss the execution details and
advantages of each mode. Second, we explore the workload
and system features that can impact the latency performance
of these initialization modes. Third, we establish an affinity
estimation model to help framework wisely choose the best
initialization mode for an application.

A. Data Initialization Modes

In the conventional copy-then-execute model, two sepa-
rate data-size space is allocated on CPU and GPU side. The
data initialization has to be implemented on CPU side before
the data is copied from CPU to GPU. Under an UM model,

Algorithm 1 Pseudocode the Three Initialization Modes
CPU_Init_Mode

float* data;
cudaMallocManaged(&data, size); {Allocate memory in UM model}
cpu ini(data,· · · ); {Initialize data on CPU side}
kernel exe<<<Grid, Block>>>(data,· · · ); {Specific kernel execution on
GPU}
cudaFree(data); {Free memory in UM model}

GPU_Init_Mode

float* data;
cudaMallaocManaged(&data, size); {Allocate memory in UM model}
gpu ini<<<Grid, Block>>>(data,· · · ); {Initialize data on GPU side}
kernel exe<<<Grid, Block>>>(data,· · · ); {Kernel Execution on GPU}
cudaFree(data); {Free memory in UM model}

Hybrid_Init_Mode

float* data;
cudaStreamCreate(&s1); {Creates the CUDA stream s1}
cudaMallaocManaged(&data, size); {Allocate memory in UM model}
cpu ini(data,· · · ); {Initialize partial data on CPU side}
gpu ini<<<Grid, Block, s1 >>>(data + offset,· · · ); {Initialize partial
data on GPU side}
cudaStreamSynchronize();
kernel<<<Grid, Block>>>(data,· · · ) {Kernel execution on GPU}
cudaFree(data) {Free memory in UM model}

although the data is not required to be explicitly copied from
CPU to GPU, the data initialization is still implemented on
the CPU side by default, which is a programming legacy.
We consider this mode as the CPU-Init mode, as shown by
CPU_Init_Mode in Algorithm 1.

As a matter of fact, the CPU and GPU cores share one
physical memory on the integrated CPU/GPU platform. Also,
with the support of UM, only one data-size region is allo-
cated in the memory space. Both CPU and GPU utilize one
shared pointer to access the region. Since it is unnecessary to
implement the initialization process on the CPU side in this
situation, we propose to initialize the data on the GPU side,
which is named as GPU-Init mode. Specifically, we imple-
ment a kernel to achieve the initialization process on GPU, as
shown by GPU_Init_Mode in Algorithm 1.

Apart from the CPU-Init mode and GPU-Init mode, with the
support of CUDA concurrent streams and multithreads [19],
we propose to implement the data initialization by CPU and
GPU cooperatively, which we consider as the Hybrid-Init
mode, as shown by Hybrid_Init_Mode in Algorithm 1.

Generally, in three initialization modes, the API cudaMal-
locManaged() is called by the CPU to allocate memory for
the initialized data. Then, the pointer data can be shared by
the GPU to directly access the allocated data region. More
specifically, in CPU-Init mode, a subfunction, cpu_init() is
implemented to initialize the data. In GPU-Init mode, a kernel,
gpu_init() is called by the CPU to initialize the data. In Hybrid-
Init mode, both the subfunction cpu_init() and the kernel
gpu_init() can execute concurrently to cooperatively initial-
ize partial data. We will demonstrate later that the cooperative
CPU-initialization and GPU-initialization in the Hybrid-Init
mode can significantly outperform the other two initialization
modes in some cases.
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(a) (b)

Fig. 5. Impact of (a) input data size and (b) initialization diversity on
initialization latency performance (average latency).

On the other hand, we observe that the specific features
and requirements of different applications can impact the exe-
cution time of different initialization modes. In most cases,
data initialization is a process of assigning specific values to
input variables. For some large-size workloads, the initializa-
tion process is highly paralleled and structured, thus GPU-Init
mode can benefit this kind of initialization considering that
GPU is good at highly paralleled operations. In contrast, some
initialized data is in small scale and less structured, and CPU-
Init mode can be chosen due to that CPU is better at dealing
with complex and divergent operations. Besides, some ini-
tialization cases are much more complicated. Some partial
initialization may be less paralleled and unstructured while the
other part is highly structured. Hybrid-Init mode is thus suit-
able for this kind of initialization. Therefore, we explore the
workloads characteristics and system features that can impact
the latency performance of the different initialization modes
in Section IV-B.

B. Impacting Factors

Regarding the initialization process, many factors, such
as the initialization scale, the structure of the initialized
data, etc., can influence the initialization latency performance.
Also, when the initialization process is implemented on
different platforms, it may perform differently. Therefore,
it is important to understand how these different work-
loads and system features impact the latency performance
of the initialization process before an appropriate initial-
ization mode can be chosen. Here, we mainly consider
four factors, the input data size, the initialization diver-
sity, the platform capability, and CPU–GPU assignment
ratio.

Input Data Size: Intuitively, initialization latency varies as
the data size changes. Therefore, we first explore how the input
data size impacts initialization latency performance. We imple-
ment the CPU-Init and GPU-Init modes on TX2 to initialize
a matrix with different input data sizes, as shown in Fig. 5(a),
where x-axis represents the increasing data size for the input
matrix and y-axis represents data initialization latency. We
run 10 times and report the average latency value. Also,
we report the longest-observed values as below, CPU:0.002,
0.003, 0.01, 0.101, 0.100, 9.646, 50.603, 536.012, GPU:0.043,
0.043, 0.041, 0.049, 0.083, 0.187, 1.253, 11.691. The values
correspond to the eight points of the two lines in the figure.

Obviously, if the input size is large enough (e.g., over 4096),
GPU-Init outperforms CPU-Init. Typically, GPU has a large
number of parallel cores and can be scaled up well to handle
the increasing amount of data initialization requests while CPU
has limited cores and can be easily saturated by the increasing
requests. On the other hand, if the input size is small (e.g.,
below 4096), CPU-Init surprisingly has better performance
than GPU-Init. That is because GPU-Init mode has higher
inherent overheads. For example, GPU-Init has to be launched
from the host CPU and then scheduled and dispatched to the
GPU processing cores to execute, in which kernel launching,
scheduling, and dispatching lead to unavoidable latency for
GPU-Init. When the input data size is small, GPU compu-
tation units cannot be fully utilized and thus, the benefits
of GPU-Init from parallel cores will be offset and CPU-
Init becomes a better choice. Besides, we conduct the same
test on AGX platform and observes that the CPU-Init mode
and GPU-Init mode follows the same track. That is, if the
input size is small, the CPU-Init mode outperforms GPUInit
mode, if the input size is relatively large, GPU-Init mode per-
forms better. The threshold lies in the input size equaling
about 14208.

Initialization Diversity: As we discussed above, some ini-
tialized data is highly paralleled and structured and while some
others are less paralleled and even unstructured. Therefore,
we consider an indicator here, initialization diversity, to mea-
sure how these difference impacts the initialization latency
performance. More specifically, initialization diversity is
defined as the values variance of the input data. We consider
a common case here: 1) assigning value a to all variables
and 2) assigning value a to some variables but value b to
the other variables. The two initialization cases show different
initialization diversity and thus may have different initializa-
tion latency. Intuitively, low initialization diversity indicates
the variables to be initialized have less variance, are well
paralleled and easy to be assigned with structured values. In
contrast, the variables with high initialization diversity have
complicated structures and requires more operations to be
initialized.

To clearly demonstrate the influence of data diver-
sity/variance on the initialization latency performance, we
conduct experiments using both CPU-Init mode and GPU-
Init mode to initialize a matrix with different data diver-
sity/variance. The input data size is set 10 240 and the result
is shown in Fig. 5(b), where the x-axis represents the ini-
tialization diversity/values variance of the input matrix and
the y-axis represents data initialization latency. For exam-
ple, x = 6 indicates that there are 6 different values being
distributed in the matrix. In this case, the CPU-Init mode
and GPU-Init mode causes about 0.34 and 0.28 ms latency,
respectively. We run 10 times and report the average latency
value. Also, we report the longest-observed values as below,
CPU:0.098, 0.153, 0.201, 0.269, 0.320, 0.353, 0.368, 0.403,
0.433, GPU:0.044, 0.113, 0.148, 0.213, 0.263, 0.278, 0.368,
0.450, 0.533. The values correspond to the nine points of the
two lines in the figure. Although the initialization latency of
both CPUInit and GPU-Init increases with the initialization
diversity increasing, we can find that GPU-Init mode performs
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(a) (b)

Fig. 6. Impact of (a) platform capability and (b) CPU–GPU assignment ratio
on the average initialization latency performance.

well in initializing low-diversity data while CPU-Init mode
outperforms GPU-Init mode in initializing data with high
diversity. That is because GPU is throughput-oriented in the
design and powerful in dealing with highly structured data,
which can initialize the low-diversity data efficiently. The
increasing diversity leads to the increasing divergence, which
can degrade the GPU computation performance. On the con-
trary, CPU is latency-oriented and equipped with powerful
branch prediction and locality capability, which can deal with
high-diversity data more efficiently than GPU.

Platform Capability: Nvidia has issued different generations
of Jetson series iGPU platforms. Here, we mainly investigate
two types of iGPU platforms: 1) the Parker SoC-based TX2
and 2) the Xavier SoC-based AGX. The two platforms have
different micro-architectures (i.e., TX2 is Pascalbased while
AGX is the Volta-based), and thus, have different comput-
ing capability defined by Nvidia (i.e., TX2 is 6.2 and AGX
is 7.2). Also, under UM model, on-demand paging is sup-
ported by Volta architecture. To further explore how platforms
influence the initialization performance, we conduct GPU-Init
mode on TX2 and AGX, respectively. Fig. 6(a) shows the
results, where the x-axis represents input data size and the y-
axis represents the initialization mode latency. We observe that
the latency of GPU-Init on the two platforms are not exactly
the same even though the latencies of both platforms increase
with the data size increasing. When the data size is small,
GPU-Init mode on TX2 has lower initialization latency than
GPU-Init mode on AGX. However, GPU-Init mode on AGX
outperforms the mode on TX2 when the data size reaches
a relatively large threshold. Basically, the different microar-
chitectures as well as the different supporting mechanisms for
the UM of the two platforms can lead to different initialization
performance. Although AGX is the latest iGPU platform, it
counter-intuitively shows worse performance than TX2 under
the small data size, this should be attributed to the extra over-
head of Volta architecture. Apart from the GPU-Init mode,
we compare the CPU-Init mode on both platforms as well,
as shown in Fig. 6(a). We observe that the CPU-Init mode
latency on two platforms almost follow the same track. The
latency performance on the two platforms are very close with
each other.

CPU–GPU Assignment Ratio: As we discussed above, the
CPU–GPU Hybrid-Init mode may bring performance benefits
in the case of initializing partially structured data. However,

it is nontrivial to effectively divide the initialization work
between CPU and GPU such that the latency performance of
the initialization process can be optimized. Here, we define
the CPU–GPU assignment ratio to describe how the initial-
ization work is divided between CPU and GPU. The ratio
indicates how much data is assigned to be initialized on CPU
side in the entire initialization work. For example, 0% rep-
resents the complete GPU-Init mode while 100% represents
the complete CPU-Init mode, and 30% indicates that 30% of
data is initialized on CPU side and the remaining 70% data is
initialized on GPU side. Then, we implement the Hybrid-Init
mode on a matrix with the input size of 10 240 on TX2 plat-
form to preliminarily explore how the CPU–GPU assignment
ratio impacts the initialization latency performance. The result
is shown in Fig. 6(b), where the x-axis indicates the specific
CPU–GPU assignment ratio and the y-axis indicates the corre-
sponding initialization latency. Considering that the CPU part
initialization and GPU part initialization can be implemented
in parallel, the latency only indicates the maximal initializa-
tion latency between the two parts (i.e., the maximal value
between the CPU-Init and GPU-Init latency).

We observe that there exists a minimum point (i.e., 30%)
in the curve, indicating an optimal ratio between CPU and
GPU assignment. When CPU–GPU assignment ratio is less
than 30%, the initialization latency decreases as the ratio
increases. However, when the ratio is larger than 30%, the
latency increases drastically with the growing CPU ratio and
even reaches the maximum as the ratio equals 100% (i.e., a full
CPU-Init mode). This is because the GPU-Init part dominates
the initialization work when the input data size is small in the
beginning (i.e., before 30%). Thus, the decreasing GPU-Init
ratio results in the decreasing initialization latency. However,
as Fig. 5(a) shows that the CPU-Init mode causes significantly
larger initialization latency than GPU-Init mode under this
input data size, therefore, with CPU-Init ratio increasing, the
CPU-Init part dominates the initialization work and contributes
to the increasing initialization latency eventually.

Furthermore, we explore how the optimal ratio in the CPU–
GPU assignment changes with the varying input data sizes, as
is shown in Fig. 7, where the x-axis indicates the increasing
ratio of CPU-Init part and the y-axis indicates the initial-
ization latency. We can observe that as the input data size
decreases from 20480 to 2048, the optimal ratio has an increas-
ing range from 0% to 100%. When the input size reduces to
2048, the Hybrid-Init mode with any CPU–GPU assignment
ratio (i.e., the CPU-Init mode if the ratio = %100) outper-
form GPU-Init mode in terms of initialization latency. That is
because when input data size decreases, CPUInit mode grad-
ually causes lower latency than GPU-Init mode. Thus, the
increasing ratio of CPU-Init part results in increasing initial-
ization performance and the latency is even the minimal if the
CPU-Init part ratio is 100%.

Summary: Although we mainly utilize the example of ini-
tializing a matrix to explore how the workloads and system
features impact the initialization mode performance, the results
envision to generalize in other types of initialization cases
in a specific application program. In practice, under these
factors synergistic impact, it may not be easily solved by
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Fig. 7. Optimal CPU–GPU assignment ratio varies under different input
data size with diversity = 2 in Hybrid-Init mode. The x-axis indicates the
ratio of data assigned to CPU side to be initialized.

simple trialand-error solutions to select a best-matching mode
to optimize the initialization performance for an application.

C. Automatic Mode Selection

Affinity Score Computation: From Section IV-B, we find that
several workloads and system features can impact the latency
performance of different initialization modes. It is nontrivial to
decide which initialization mode is the best for an application
to optimize the latency performance. Therefore, we develop
an indicator, Affinity_Score, as shown in (1), which integrates
all these impacting factors together to estimate the affinity to
a certain initialization mode for an application

Affinity_Score = λ ∗ Input Size

Initialization Diversity
∗ Platform Capability. (1)

In (1), the platform capability represents the computing
capability of the platform. We adopt the official statistics pro-
vided by NVIDIA that the Jetson TX2 and AGX is 6.2 and
7.2, respectively, [20]. The parameter λ depends on specific
applications. By utilizing the affinity estimation model, the
initialization framework can holistically consider initialized
data characteristics and workload features as well as platform
capability to wisely choose the best-matching initialization
mode based on the affinity_score to optimize the initialization
performance of the application.

We classify the affinity_score into three bins as shown in
Table IV. Low range indicates that the initialized data is less
structured (e.g., in small input size with high diversity) for
the chosen platform if all impacting factors being taken into
account, while High range indicates that initialized data is
more paralleled and structured (e.g., in large input size with
low diversity) for the chosen platform to deal with. Basically, if
the affinity_score is in Low range, CPU-Init mode is preferred
while if the affinity_score is in High range, GPU-Init mode
can be more suitable. Regarding the Medium range score, the
Hybrid-Init mode can be considered to initialize data.

For example, for breadth-first search (BFS) benchmark,
the input is 36k in size and 4 in diversity, if it’s running
on TX2 platform, we can calculate that its affinity_score is
55800 with λ set 1. We can find that the affinity_score falls into
Medium range, which means Hybrid-Init mode should be cho-
sen. According to our characterizations, the CPU-Init mode,
Hybrid-Init mode, and GPU-Init mode cause 2.3, 1.08, and

TABLE IV
CLASSIFICATIONS OF ESTIMATED AFFINITY SCORE INTO BINS

1.8 ms latency, respectively. We can observe that the Hybrid-
Init mode outperforms the other two initialization modes.
Similarly, if the same data is initialized on AGX, we can calcu-
late the affinity_score is 64800, indicating the GPU-Init mode
should be chosen. Based on our characterizations, the CPUInit
mode, Hybrid-Init mode, and GPU-Init mode cause 1.8, 1.17,
and 0.8 ms latency, respectively, which supports our affinity
estimation. Besides, for an application, if its estimated affinity
score is equal to 1024 or 61440, the CPU-Init or GPU-Init
mode is chosen instead of the Hybrid-Init mode as the CPU-
Init/GPU-Init mode is comparative to the Hybrid-Init mode in
performance but relatively simpler in execution.

Execution Time Prediction: As we stated above, if CPU-Init
mode or GPU-Init mode is chosen, the system can directly
implement the mode as in Algorithm 1 to optimize the
latency performance of the initialization process. However,
if HybridInit mode is chosen, it concerns how to effectively
divide the initialization work between CPU and GPU and find
the optimal CPU–GPU assignment ratio such that the initial-
ization performance can be optimized in the Hybrid-Init mode.

Here, instead of trying different the CPU–GPU assign-
ment ratio, we profiling-based model by testing a large
amount of data to predict the execution time of the CPU-
Init and GPU-Init mode for an application with the given
input data size and diversity on a platform. The prediction
model is a key supplement of the affinity estimation model
in our initialization-latency-aware framework, which can help
system automatically determine an optimal assignment ratio
for a Hybrid-mode-affiliated application. Specifically, (2)
and (3) show the predicted GPU-Init execution time and
CPUInit execution time, respectively. The N indicates the input
size/diversity and the others (e.g., a, b, c, d, e, f ) indicate pro-
filed parameters inclusive of platform capability effect. The
maximal error rate is about 12%. As CPU initialization part
and GPU initialization part are executed in parallel, the execu-
tion time of Hybrid-Init is the maximum value between them.
Theoretically, we can predict the optimal CPU–GPU assign-
ment ratio by making the latencies of CPU initialization part
and GPU initialization part equalled by leveraging our time
prediction model as in (2) and (3). In practice, the predicted
value may not be exactly the same to the absolute optimal ratio
due to the resources contention, etc. However, as Fig. 7 shows
that within an optimal ratio range, the latency performance of
the Hybrid-Init mode does not make a significant difference.
More importantly, the fact is that the Hybrid-Init mode with
the optimized assignment ratio can significantly outperform
the other two initialization modes

T = aebN+c + dN2 + eN + f (2)

T = aNb + f . (3)

Summary: The overall workflow of the latency-aware
data initialization framework is shown in Fig. 8. For a given
CUDA program, the system first considers the input data size,
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Fig. 8. Workflow of the latency-aware data initialization framework.

the diversity of the initialized data and the specific imple-
mentation platform capability and utilize (1) to estimate the
affinity score of the application and then decide whether
CPU-Init/GPU-Init mode or Hybrid mode is potentially the
best-matching. If the CPUInit or GPU-Init mode is selected,
the system launches the corresponding initialization function
in the mode as indicated in Algorithm 1 to complete the
initialization process. However, if the Hybrid-Init mode is
selected, the system will take advantage of execution time
prediction model to predict the latency of the CPU-Init mode
and GPU-Init mode as well as refer to the optimal range to
identify the optimal CPU–GPU assignment ratio to further
optimize the initialization latency performance of the CUDA
application.

Besides, multiple applications may arrive dynamically, our
initialization framework can address this situation as well. As
our system design targets the autonomous workloads such as
the object detection tasks in driving automation system, such
tasks may possess some traceable input data features. For
example, for the image-detection applications, the input fea-
ture map is typically among the cases of 256*256, 512*512, or
1024*1024 regarding the resolution and the data diversity is
limited up to 256 regarding the gray-scale values. Basically,
our initialization framework can presuppose these input set-
tings to quickly identify the input data features information
once the application arrives. As a supplementary, we can
offline profile more typical applications in advance, or utilize
such tools as imresize(), imadjust() in MATLAB to adjust the
input size and data diversity to a range to speedup the pro-
cess of identifying the application’s input features information,
though some overhead may be caused. This way, the system
can greatly reduce the affinity estimation time and choose the
initialization modes more quickly, which benefits the system to
deal with the incoming applications dynamically. As a matter
of fact, this is a tradeoff behind the performance and accuracy
in practice.

V. EVALUATIONS

A. Test Hardware Platforms and Workloads

The evaluation of the proposed affinity estimation model
performance and the efficacy of the framework is imple-
mented on both NVIDIA Parker and Xavier platforms. We use
Jetson TX2 and AGX as the representatives for Parker and
Xavier SoCs. These platforms target autonomous machines
application and are widely deployed in many drone [21] and
autonomous driving scenarios.

Concerning the workloads, as the initialized data can be
directly copied from another buffer (e.g., assign constant to

TABLE V
INITIALIZATION MODE SELECTION FOR BFS

the data) or be loaded from a file (e.g., read values from an
existing file). We consider two cases here: the initialized data is
1) directly assigned with random/specific values (e.g., being
copied from another constant buffer) or 2) loaded from the
input files (e.g., read the input feature maps for CNN model).
Therefore, we use both well-established Rodinia benchmarks
suite and a CNN instance YOLO to illustrate the two cases.
First, we utilize Rodinia benchmark Suite [9] because it
includes applications and kernels targeting multicore CPU
and GPU platforms and covers a diverse range of application
domains. Each program in the Rodinia benchmark exhibits
various types of parallelism and data-sharing characteristics
as well as synchronization techniques, and correspondingly,
the initialized data possesses multiple features. Second, we
target our application scenario in autonomous machines (e.g.,
drone and autonomous driving). Therefore, we select a pop-
ular CNN instance in these applications, the object detection
function YOLO [5] to evaluate our design in the second case.

Considering the targeted application scenario is typically
safety-critical and time-sensitive, we mainly utilize latency as
the metric to evaluate the design.

B. Case I: Rodinia Benchmarks

Basically, Rodinia benchmarks can be roughly categorized
into two types: 1) memory-intensive and 2) computation-
intensive [22]. We select two representative benchmarks from
each category to evaluate the affinity estimation model and
the initialization system performance. All benchmarks are exe-
cuted under the UM model. For the given input data size, the
diversity of the initialized data as well as the implementation
platform (i.e., either TX2 or AGX), we first utilize our affinity
estimation model to predict which initialization mode is cho-
sen to optimize the initialization latency performance of the
benchmark. Then, we initialize the benchmark input data by
utilizing all of the three initialization modes and profile the
initialization latency in each mode. By comparing the latency
under different initialization modes, we can observe how these
workloads and system features impact the selection of initial-
ization mode. Also, by comparing the predicted mode and the
optimal mode in real execution, we can validate our proposed
affinity estimation model.

1) Memory-Intensive: BFS and Needleman–Wunsch (NW).
BFS is a type of graph traversal algorithm and utilizes the BFS
principle to traverses all the connected components in a graph.
Needleman–Wunsch is a nonlinear global optimization method
for DNA sequence alignments.

Initialization Mode Selection: Table V shows the result of
the benchmark BFS. The first column in the table indicates
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Fig. 9. Prediction of the optimal CPU–GPU assignment ratio for (a) BFS
and (b) NW on TX2.

TABLE VI
INITIALIZATION MODE SELECTION FOR NW

Fig. 10. Prediction of the optimal CPU–GPU assignment ratio for
(a) Gaussian and (b) HotSpot on TX2.

the test number and each row indicates a test case. Column
2 to column 4 indicate the input data size, platform, and
initialized diversity, respectively. We utilize a tuple (input-
size, platform, diversity) here to indicate the specific input
features information. Column 5 indicates the optimal initial-
ization mode selected by our analytical model. The last three
columns indicate the measured latency in the experiments by
applying CPU-Init, Hybrid-Init, and GPU-Init mode in BFS,
respectively. For example, test1 indicates, that to initialize
the data with (0.5k, TX2, 4) parameters, the predicted mode
is CPU-Init. In the experiments, the initialization latency of
the three modes is 0.018, 0.022, and 0.082 ms, respectively.
Obviously, the CPU-Init mode causes the minimal latency
(i.e., indicated by the Bold), and thus, is the best mode to
optimize the initialization latency performance. By comparing
the predicted mode with the measured latency of the three ini-
tialization modes in real execution, we can verify whether our
analytical model can choose the best initialization mode for an
application. In the first three test cases, we change the input
data size, the initialization diversity, and platform capability,
and we observe that our affinity estimation can accurately
predict the optimal mode. Then, we implement test cases 5
and 6 with different input parameters, the results prove the
accuracy of our model as well. Table VI shows the result of
the benchmark NW.

Optimal CPU–GPU Assignment Ratio: As we discussed
above, if we choose Hybrid-Init mode to initialize data, it is

TABLE VII
INITIALIZATION MODE SELECTION FOR GAUSSIAN

TABLE VIII
INITIALIZATION MODE SELECTION FOR HOTSPOT

necessary to find the optimal CPU–GPU assignment ratio such
that the initialization latency can be optimized. Therefore, we
select a Hybrid-Init case of BFS on TX2 to verify whether
our execution time prediction model can identify the optimal
CPU–GPU assignment ratio for a given Hybrid-Init case.
Fig. 9(a) shows the result, where the x-axis indicates the
increasing CPU assignment ratio in the Hybrid-Init mode
applied to the BFS benchmark, and the y-axis indicates the
initialization latency. The two curves indicate the predicted
execution time and experimental execution time for the given
CPU–GPU assignment ratio. The bottom point on the curve
indicates the optimal ratio identified by either the prediction
model or experiment result. We can observe that our prediction
model identifies the optimal ratio correctly for the benchmark
BFS. In the test case, the CPU-Init mode causes larger latency
than GPU-Init mode, therefore, in the beginning, the CPU
assignment ratio (i.e., the ratio is less than 40%), the GPUInit
part dominates the initialization latency. With the GPUInit part
ratio decreasing, the initialization latency decreases as well.
With the CPU ratio increases (larger than 40%), the CPUInit
part dominates the initialization process and contributes to the
increasing initialization latency. Fig. 9(b) shows the results of
the optimal CPU assignment ratio on NW. It follows the same
track as BFS does.

2) Computation-Intensive: Gaussian Elimination and
HotSpot. Gaussian computes result row by row, solving for
all of the variables in a linear system. HotSpot is a widely
used tool to estimate processor temperature based on an
architectural floor plan and simulated power measurements.
Tables VII and VIII shows the initialization selection result
on the benchmarks, Gaussian and HotSpot, respectively. We
change the input parameters and then compare the predicted
mode with the experimental results. We can observe that our
affinity estimation accurately predict the best initialization
mode for the two benchmarks.

Fig. 10(a) and (b) show the results of how we apply the
execution time prediction model to two benchmarks to find
the optimal CPU–GPU assignment ratio in the Hybrid-Init
mode. Basically, the execution prediction model works well
on the two benchmarks. However, as Fig. 10(a) demonstrates,
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Fig. 11. Initialization latency performance of YOLO in CPU-Init and GPU-
Init mode. (a) TX2. (b) AGX.

the experimental result indicates that the best ratio for the
Gaussian case is about 40% while the model predicts that
the ratio lies in 30%. Considering that CPU-Init mode causes
significantly higher latency than GPU-init mode in the case,
the best ratio exists within a very narrow range. Although the
prediction model may not perfectly identify the best ratio, it
identifies a ratio that approaches the optimal one very much.

C. CNN Model and Loading Input Feature Map

As we discussed that some workloads may directly load
data from a file to initialize the input data, we consider eval-
uating the data loading process and measuring its latency
performance under different initialization modes in this sit-
uation, such as a CNN model reading the input feature map.
As a matter of fact, CNN models are widely deployed in the
intelligent and autonomous machines to achieve such func-
tions as object detection, tracking, localization, etc. Also, these
CNN models need to load the input feature map at a batch and
then implement the inference, for example, an object detection
model loads a frame of data each time and implements detec-
tion function on the frame of data. Therefore, the overall object
detection function is achieved in the premise of data load-
ing. The loading process may significantly impact the overall
application’s performance and the optimization of the loading
process under different initialization modes may benefit the
overall application performance.

To straightforwardly show how the loading process con-
tributes to the latency performance of the overall application,
we demonstrate a binarized YOLO2 model [23] here. As the
quantized CNN model consumes smaller memory footprint,
but can provide more fast and efficient detection, the model
is widely applied in the iGPU platform and edge computa-
tion. Therefore, we characterize the loading latency and the
inference latency of the YOLO model using the feature maps
with resolution 512*512 on TX2 platform and observe that the
loading (i.e., CPU initialization mode by default) causes about
22.7 ms latency while the inference process only causes 7.1 ms
latency. The loading process contributes about 76.1% latency
to the overall YOLO2 performance. Obviously, if the loading
latency can be optimized, the overall application performance
can be further improved. On the other hand, as the binarized
YOLO instance cannot provide high detection accuracy, we
mainly test the loading latency as well as the performance of
the overall application (i.e., the loading plus inference), which
we consider a dummy YOLO instance.

Then, we comprehensively characterize the latency of the
data loading of the YOLO instance under different initializa-
tion modes. More specifically, we input a gray-scale image and
measure the data loading latency under CPU-Init mode and
GPU-Init mode, respectively. The result is shown in Fig. 11,
where the x-axis indicates the increasing input data size, which
is derived by multiplying the number of feature maps and the
resolution and the y-axis indicates the latency performance.
Basically, we can observe that on both platforms CPU-Init
mode causes less latency than GPU-Init mode in the begin-
ning if the input size is small. Especially, on TX2, the
latency of CPU-Init mode is significantly less than the GPUInit
mode latency, while on AGX both latencies are competi-
tive. However, with image size increasing, GPU-Init mode
significantly outperforms CPU-Init mode on both platforms.
On TX2, the latency of both modes increases quickly, while
on AGX only the latency of CPU-Init mode increases dras-
tically. Reasonably, AGX GPU cores adopt the advanced
Volta microarchitecture and possess a more powerful capabil-
ity than the Pascal micro-architecture adopted by TX2, leading
to better performance when the input size is large, though
the Volta demonstrates some hidden overhead when the input
image size is small in the beginning.

On the other hand, we select the images with 512*512 res-
olution and apply the Hybrid-Init mode to evaluate its ini-
tialization latency performance. On TX2, we observe that the
CPU-Init, Hybrid-Init, and GPU-Init mode cause the latency of
1.024, 0.450, and 0.926 ms, respectively. On AGX, the latency
of the three modes are 1.061, 0.252, and 0.388 ms, respec-
tively. Obviously, the Hybrid-Init mode outperforms other
modes in this case. In practice, it is common to input 3channels
RGB image feature map into YOLO instance. This way we
will consider utilizing CPU-Init mode to initialize one or two
channels data and GPU-Init mode to initialize the remaining
channel data. This way, the Hybrid-Init mode may signifi-
cantly benefit the data loading as well as the overall application
performance of the YOLO instance.

VI. RELATED WORK

Much work has been dedicated to analyzing the UM model
on dGPU platforms. Pichai et al. [24], Vesely et al. [25]
Flores [26], and Nielsen and Hussain [27] investigated unify-
ing CPU–GPU memory space to decrease programming bur-
den and increase system performance. Landaverde et al. [22]
analyzed UM access pattern in CUDA programming and
demonstrates that kernels should operate on the subsets of
the output data to improve the application’s performance.
Meanwhile, some work has been done on UM model
performance on the iGPU platform. NVIDIA officially sum-
marizes the main characteristics of conventional and UM
models on the Tegra platform, but it does not breakdown the
overhead for each method [28]. Dashti and Fedorova [8] com-
pared application performance under conventional and UM
models on TK1 platform. Otterness et al. [29] compared the
popular memory models for supporting real-time computer-
vision workloads on TK1 and show that only in some scenarios
can UM benefit the application. Li et al. [30] measured the
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performance loss of UM in CUDA on both integrated and
dGPU systems and explore the underlying reasons. Dashti and
Fedorova [8] compared the performance of applications that
adopt different programming frameworks under the UM mech-
anism on iGPU system. Bateni et al. [15] analyzed the three
memory management methods on NVIDIA iGPU platform and
design guidelines to co-optimize memory footprint and system
performance. However, none of them pay much attention to the
data initialization part in an application and considers reduc-
ing the latency of the part to significantly benefit the entire
application latency performance.

VII. CONCLUSION

In this article, we develop a latency-aware data initialization
framework under UM management method for the integrated
CPU/GPU heterogeneous platforms. The framework includes
three different data initialization modes and utilizes an affinity
estimation model to wisely decide the best-matching initial-
ization mode for an application such that the initialization
latency performance of the application can be optimized. Our
extensive evaluations on two representative platforms shows
the accuracy of the proposed affinity estimation model and
efficacy of our initialization-latency-aware framework.
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