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SURGERY ON LINKS OF LINKING NUMBER ZERO AND THE
HEEGAARD FLOER d-INVARIANT

EUGENE GORSKY, BEIBEI LIU, AND ALLISON H. MOORE

ABSTRACT. We study Heegaard Floer homology and various related invariants (such
as the h-function) for two-component L-space links with linking number zero. For
such links, we explicitly describe the relationship between the h-function, the Sato-
Levine invariant and the Casson invariant. We give a formula for the Heegaard Floer
d-invariants of integral surgeries on two-component L—space links of linking number
zero in terms of the h-function, generalizing a formula of Ni and Wu. As a consequence,
for such links with unknotted components, we characterize L—space surgery slopes in
terms of the v'-invariants of the knots obtained from blowing down the components.

We give a proof of a skein inequality for the d-invariants of 41 surgeries along
linking number zero links that differ by a crossing change. We also describe bounds
on the smooth four-genus of links in terms of the h-function, expanding on previous
work of the second author, and use these bounds to calculate the four-genus in several
examples of links.

1. INTRODUCTION

Given a closed, oriented three-manifold Y equipped with a Spin® structure, the Heegaard
Floer homology of Y is an extensive package of three-manifold invariants defined by
Ozsvath and Szab6 [OS04b]. One particularly useful piece of this package is the d-
invariant, or correction term. For a rational homology sphere Y with Spin® structure t,
the d-invariant d(Y,t) takes the form of a rational number defined to be the maximal
degree of any non-torsion class in the module HF~(Y,t). For more general manifolds,
the d-invariant is similarly defined (see section 2.2). The d-invariants are known to
agree with the analogous invariants in monopole Floer homology (see Remark 2.4). The
terminology ‘correction term’ reflects that the Euler characteristic of the reduced version
of Heegaard Floer homology is equivalent to the Casson invariant, once it is corrected by
the d-invariant [OS03]|. The d-invariants have many important applications, for example,
to concordance [MOO07, Pet10], Dehn surgery [NW15, Doil5] and the Heegaard Floer
theoretic proofs of Donaldson’s theorem and the Thom conjecture [OS03], to name a
few.

From the viewpoint of Heegaard Floer homology, L—spaces are the simplest three mani-
folds. A rational homology sphere is an L—space if the order of its first singular homology
agrees with the free rank of its Heegaard Floer homology. A recent conjecture of Boyer,
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Gordon and Watson [BGW13, HRRW15, HRW16, Ras17a] describes L-spaces in terms
of the fundamental group, and it has been confirmed for many families of 3-manifolds.
A link is an L-space link if all sufficiently large surgeries on all of its components are
L—spaces.

Given a knot or link in a 3-manifold, one can define its Heegaard Floer homology as
well. The subcomplexes of the link Floer complex are closely related to the Heegaard
Floer complexes of various Dehn surgeries along the link. In the case of knots in the
three-sphere, this relationship is well understood by now and, in particular, the following
questions have clear and very explicit answers:

e The formulation of a “mapping cone” complex representing the Heegaard Floer
complex of an arbitrary rational surgery [OS11];

e An explicit formula for the d-invariants of rational surgeries [NW15];
e A classification of surgery slopes giving L-spaces [OS11, Proposition 9.6].

In this article, we expand the existing Heegaard Floer “infrastructure” for knots in
the three-sphere to the case of links. The work of Manolescu and Ozsvéath in [MO10]
generalizes the “mapping cone” formula to arbitrary links. For two-component L—space
links, their description was made more explicit by Y. Liu [Liul7] and can be used for
computer computations. Both [MO10] and [Liul7] start from an infinitely generated
complex and then use a delicate truncation procedure to reduce it to a finitely generated,
but rather complicated complex. On the one hand, it is possible to use the work of
[MO10, Liul7] to compute the d-invariant for a single surgery on a link or to determine if
it yields an L—space. On the other hand, to the best of authors’ knowledge, it is extremely
hard to write a general formula for d-invariants of integral surgeries along links, although
such formulas exist for knots in S3 [NW15] and knots in L(3,1) [LMV17].

In general, the characterization of integral or rational L—space surgery slopes for multi-
component links is not well-understood. The first author and Némethi have shown
that the set of L—space surgery slopes is bounded from below for most two-component
algebraic links and determined this set for integral surgery along torus links [GN18,
GN16]. Recently, Sarah Rasmussen [Ras17b] has shown that certain torus links, satellites
by algebraic links, and iterated satellites by torus links have fractal-like regions of rational
L—space surgery slopes.

Nevertheless, in this article we show that the situation simplifies dramatically if the
linking number between the link components vanishes. We show that both the surgery
formula of [MO10] and the truncation procedure lead to explicit complexes similar to the
knot case. We illustrate the truncated complexes by pictures that are easy to analyze.
They are closely related to the lattice homology introduced by Némethi [NOS, GN15],
and best described in terms of the H-function H,(s), which is a link invariant defined
over some lattice H(L) (see Definition 2.11, see also [GN15]). Note that for a knot K,
our H-function Hk(s) agrees with the invariant V& of Ni and Wu [NW15] (see also
Rasmussen’s local h-invariant [Ras03]). For 2-component links £ with vanishing linking
number, we define:

he(s) = He(s) — Ho(s)
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where s € Z? and Hp(s) is the H-function of the 2-component unlink.

Let Sg(ﬁ) denote the p = (p1,...,pn) framed integral surgery along an oriented n-
component link £ in the three-sphere with vanishing pairwise linking number where
p; # 0 for any i. We will identify the set of Spin®-structures on Sg(ﬁ) with Zy,, X...XZy,.
The following result generalizes [NW15, Proposition 1.6] and [OS12, Theorem 6.1].

Theorem 1.1. The d-invariants of integral surgeries on a two-component L—space link
with linking number zero can be computed as follows:

(a) If p1,p2 < O then
d(S3(L), (i1,i2)) = d(L(p1,1),i1) + d(L(p2, 1), i2).
(b) If p1,p2 > 0 then
d(Sp (L), (i1,i2)) = d(L(p1,1),i1) + d(L(p2, 1), i9) — 2max{h(sx(i1,42))},
1) (2

where sy (i1,42) = (s’,s1’) are four lattice points in Spin°-structure (i1,42) which are
closest to the origin in each quadrant (see section 4.2).

(c) If p1 > 0 and p2 < 0 then
d(Sp (L), (i1,42)) = d(Sp, (L), ir) + d(L(p2, 1), i2)-

Remark 1.2. If £ is a link with vanishing linking number then all d-invariants of all
surgeries are concordance invariants.

When p; = po = 1 then Sg(ﬁ) is a homology sphere, and so i1,i3 = 0. Moreover
d(L(p1,1),11) = d(L(p2,1),i2) = 0 and s14(0,0) = (0,0), hence

d(5},(L)) = —2h(0,0).

This is analogous to the more familiar equality for knots, d(S3(K)) = —2V;"(K), where
Vo(K) is the non-negative integer-valued invariant of [NW15], originally introduced by
Rasmussen as the h-invariant ho(K) [Ras03].

As another special case, we consider nontrivial linking number zero L-space links £ =
L; U Ly with unknotted components. Let L) (i = 1,2) denote the knot obtained by
blowing down the other unknotted component, i.e. performing a negative Rolfsen twist
as in Figure 11. Then the h-function and v*-invariant [HW16, Definition 2.1] of L/ can
be obtained from the h-function of L.

Proposition 1.3. Let £L = L U Ly be a nontrivial linking number zero L-space link
with unknotted components, and let L and L}, be the knots obtained from L by applying
a negative Rolfsen twist to Ly and Ly respectively. Then vt (L) =b; +1 fori=1,2.

Here, b; and by are nonnegative numbers defined by b; = max{s; : h(s1,0) > 0} and
be = max{sy : h(0,s9) > 0}. This allows us to determine, in terms of the v™ invariants
of L} and L}, how large is ‘large enough’ in order to guarantee that the surgery manifold
is an L—space.
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Theorem 1.4. Assume that L = L1 U Lo is a nontrivial L—space link with unknotted
components and linking number zero. Then Sghm(ﬁ) is an L—space if and only if p1 >
20 (L)) — 2 and py > 2vF(Lh) — 2.

Remark 1.5. This gives a characterization of the unlink since it is the only 2-component
L—space link with unknotted components, vanishing linking number and arbitrarily pos-
itive and negative L—space surgeries. For a general discussion about L—space surgeries
on 2-component L-space links, we refer the reader to [Liul9b].

The following corollary suggests that twisting along a homologically trivial unknotted
component will almost always destroy the property of being an L—space link, in the sense
that it puts strong constraints on the image knot L}. It is worth comparing Corollary
1.6 with [BM17, Corollary 1.6], which characterizes infinite twist families of tight fibered
knots. Because L—space knots are necessarily tight fibered, Baker and Motegi’s result
shows that at most finitely many L—space knots can be produced by twisting along a
homologically trivial unknot.

Corollary 1.6. Assume that L = L1 U Lo is a nontrivial L-space link with unknotted
components and linking number zero. Then L} is an L-space knot if and only if (1,p2)
surgery on L is an L—space for sufficiently large po. By Theorem 1.4 this is equivalent
toby =0 and v (L)) = 1.

In section 6 we investigate the relationship of the h-function for two-component links with
the Sato-Levine invariant 3(£) and the Casson invariant A(S3(£L)), and make explicit
how to express these as linear combinations of the A-function of sublinks of L.

Proposition 1.7. Let L = L U Ly be an L-space link of linking number zero. Let
h'(s) = h(s) — hi(s1) — ha(s2)
where h, h1, and hy denote the h-functions of L, L1, and Lo. Then:
(1) The Sato-Levine invariant of L equals B(L) = — Y ocz B (s).

(2) Consider surgery coefficients p1,p2 = £1. The Casson invariant of (p1,p2)—
surgery along L equals

A(SS (L)) = pipa Z K (s) +m Z hi(s1) + p2 Z ha(s2).

s€Z? S1€EZL $2€Z

Peters established a “skein inequality” reminiscent of that for knot signature [Pet10,
Theorem 1.4] . We extend this to links as follows.

Theorem 1.8. Let L= LiU---U Ly, be a link with all pairwise linking numbers zero.
Given a diagram of L with a distinguished crossing ¢ on component L;, let Dy and D_
denote the result of switching c to positive and negative crossings, respectively. Then

d(SY.. 1(D-)) =2 < d(ST.. 1(D+)) < d(SF . 1(D-)).

We will also generalize Peters’ and Rasmussen’s four-ball genus bounds to links with
vanishing pairwise linking numbers. Recall that the n components of a link £ = L; U
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-+ U Ly, bound pairwise disjoint surfaces in B* if and only the pairwise linking numbers
are all zero. In this case, we may define the smooth 4-ball genus of L as the minimum
sum of genera Y ;- | g;, over all disjoint smooth embeddings of the surfaces ¥; bounding
link components L;, for i =1,---n.

The following proposition is closely related to work of the second author in [Liul8]; this
is explained in section 8.

Proposition 1.9. Let £ C S3 denote an n-component link with pairwise vanishing
linking numbers. Assume that p; > 0 for all 1 < i <n. Then

(1.1) d(S® ., <Zd —pi, 1), ti) + 2f, (1)
and
(1.2) —d(S3 .. ( <Zd —piy 1), t:) + 2f, (L)

Here the Spin-structure t is labelled by integers (t1,--- ,t,) where —p;/2 < t; < p;/2,
and fg, 1 Z — Z is defined as follows:

9i — ’ti’-‘
(1.3) fo(t) = { 2 It < 9
0 til > gi

The d-invariant of (£1, £1)-surgery on the 2-bridge link £ = b(8k, 4k + 1) was computed
by Y. Liu in [Liul4]. Together with this calculation, we are able to apply the genus
bound (1.2) to recover the fact that such a link £ has smooth four-genus one. We also
demonstrate that this bound is sharp for Bing doubles of knots with positive 7 invariant.
For more details, see section 8.2.

Because Theorem 1.1 allows us to compute the d-invariants of Sip(ﬁ) for two-component
L—space links, when we combine Theorem 1.1 with Proposition 1.9 we have the following
improved bound.

Theorem 1.10. Let L = L1 U Ly denote a two-component L—space link with vam’shmg
linking number. Then for all p1,ps > 0 and a Spin®-structure t = (t1,t3) on Sp1 pa7
have

(1.4) h(s1,82) < fou(t1) + fgu(t2)
where —p; /2 < t; < p;/2 and (s1,s2) is a lattice point in the Spin®-structure t.

Organization of the paper. Section 2 covers necessary background material. In sub-
section 2.2, we introduce standard 3-manifolds along with the definition and properties
of the d-invariants for such manifolds. In subsection 2.3, we define the h-function of
an oriented link £ C S% and review how to compute the h-function of an L-space link
from its Alexander polynomial. Sections 3 and 4 are devoted to the generalized Ni-Wu
d-invariant formula and its associated link surgery and cell complexes. In subsection
3.1 we briefly review the surgery complex for knots, and in subsection 3.2 we set up
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the Manolescu-Ozsvath link surgery formula for links, and describe an associated cell
complex and the truncation procedure. In section 4 we prove Theorem 1.1 and the sub-
sequent statements involving v*. In section 5, we classify L-space surgeries on L-space
links with unknotted components and prove Theorem 1.4. In section 6, we represent the
Sato-Levine invariant and Casson invariant of Sil,il(ﬁ) as linear combinations of the
h-function for two-component L—space links with vanishing linking number. In section 7,
we prove that the d-invariants of surgery 3-manifolds satisfy a skein inequality. In section
8, we describe several bounds on the smooth four-genus of a link from the d-invariant
and use this to establish the four-ball genera of several two-component links.

Conventions. In this article, we take singular homology coefficients in Z and Heegaard
Floer homology coefficients in the field F = Z /27 unless otherwise stated. We consider
nonzero surgeries Sgl,---,pn(ﬁ) on links £ = Ly U---UL, in S3, i.e. p; # 0 for any
1 < ¢ < n. Our convention on Dehn surgery is that p surgery on the unknot produces
the lens space L(p,1). We will primarily use the ‘minus’ version of Heegaard Floer
homology and adopt the convention that d-invariants are calculated from HF~(Y,t) and
that d=(S%) = 0. Section 2 contains further details on our degree conventions.

2. BACKGROUND

2.1. Spin‘“-structures and d-invariants. In this paper, all the links are assumed to be
oriented. We use £ to denote a link in S3, and L, - - - , L,, to denote the link components.
Then £; and L5 denote different links in 52, and L; and Ly denote different components
in the same link. Let |£] denote the number of components of £. We denote vectors in
the n-dimensional lattice Z™ by bold letters. For two vectors w = (uy,us9,- - ,uy) and
v=(v1,  ,v,) In Z", we write u 2 v if u; <v; foreach 1 <i<n,andu <vifu <v
and u # v. Let e; be the vector in Z™ where the i-th entry is 1 and other entries are 0.
For any subset B C {1,--- ,n}, let eg =), g e;.

Recall that in general, there is a non-canonical correspondence Spin®(Y) = H2(Y'). For
surgeries on links in S? we will require the following definition to parameterize Spin‘-
structures.

Definition 2.1. For an oriented link £ = Ly U--- U L, C S3, define H(L) to be the
affine lattice over Z™:
lk(Li, £\ L)

H(L) = & Hi(£), Hi(L) = Z+ 2
where (k(L;, £\ L;) denotes the linking number of L; and £\ L.

Suppose £ has vanishing pairwise linking numbers. Then H(L) = Z"; we will assume this
throughout the paper. Let Sg’h___ (L) or Sg(ﬁ) denote the surgery 3-manifold with in-
tegral surgery coefficients p = (p1,- - ,pn). The quotient Z™/AZ™ can be naturally iden-
tified with the space of Spin® structures on the surgery manifold Sg‘h,,, o (L), where A is
the surgery matrix with diagonal entries p; and other entries 0. So Spin“(S3, ., (L)) =
IV AT = Ly, @ - B Ly, = HZ(SE,(E)). We therefore label Spin‘structures t on

Sgl,...,pn(ﬁ) as (t1,---,t,) such that —|p;|/2 <t; < |p;|/2.
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For a rational homology sphere Y with a Spin®structure t, the Heegaard Floer homology
HF*(Y,t) is an absolutely graded F[U~!]-module, and its free part is isomorphic to
F[U~1]. Likewise HF~(Y,t) is an absolutely graded F[U]-module. Given an oriented
link £ in S3, one can also define the link Floer complex. An n-component link £ induces
n filtrations on the Heegaard Floer complex C'F~(S%), and this filtration is indexed by
the affine lattice H(L). The link Floer homology HF L™ (L, s) is the homology of the
associated graded complex with respect to this filtration, and is a module over F[U]. We
refer the reader to [OS03, MO10] for general background on Heegaard Floer and link
Floer homology, and to [BG18] for a concise review relevant to our purposes.

Remark 2.2. Following [MO10], we will sometimes need to work with the completed
surgery complexes, which are defined as modules over F[[U]]. For a rational homology
sphere Y, the complex CF~(Y) and its completion over F[[U]] carry the same informa-
tion.

The d-invariant d(Y,t) is defined to be the maximal degree of a non-torsion class = €
HF~(Y,t). In this article we adopt the convention that d(S®) = 0. This is consis-
tent with the conventions of [MO10, BG18] but differs (by a shift of two) from that of
[OS03].

We require the following statements on the d-invariant.

Proposition 2.3. [0S03, Section 9] Let (W,s) : (Y1,t1) — (Ya,t2) be a Spin® cobordism.
(1) If W is negative definite, then d(Ya,ta) — d(Y1,t1) > (c1(s)? + ba(W))/4.
(2) If W is a rational homology cobordism, then d(Y1,t1) = d(Ya, t2).

Remark 2.4. An equivalence of monopole Floer and Heegaard Floer homology has been
established by work of Kutluhan-Lee-Taubes [KL10a, KL.10b, KL10c, KL11, KL12] and
Colin-Ghiggini-Honda [CGH12b, CGH12¢, CGH12a| and Taubes [Taul0]. A further
equivalence between monopole Floer and the S'-equivariant homology of the Seiberg-
Witten Floer spectrum is proved in [LM18]. Following further work in [Ram14, RH11,
CG12], the absolute Q-gradings of these theories agree. For rational homology spheres,

A(Y,t) = —2h(Y, t) = 25(Y, 1),

where h(Y,t) is the Frgyshov invariant in monopole Floer homology [KMO07, Fr¢10] and
d(Y,t) is the analogous invariant of the Floer spectrum Seiberg-Witten theory [Man16].

2.2. Standard 3-manifolds. In this subsection, we will introduce d-invariants for stan-
dard 3-manifolds, and in particular, for circle bundles over oriented closed genus g sur-
faces.

Let H be a finitely generated, free abelian group and A*(H) denote the exterior algebra
of H. As in [OS03, Section 9], we say that HF>°(Y") is standard if for each torsion Spin®
structure t,

HF>®(Y,t) 2 A*HY(Y;Z) @7z F[U, U]
as A*Hy(Y;Z)/Tors ® F[U]-modules. The group A*H!(Y;Z) is graded by requiring
gr(AMY)HY (Y Z)) = b1(Y)/2 and the fact that the action of Hy(Y;Z)/Tors by con-
traction drops gradings by 1. For example, #"52 x S' has standard HF>° [0S04b).
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For any A*(H)-module M, we denote the kernel of the action of A*(H) on M as
KM:={xeM|v-z2=0 V veH}
Let Z denote the (two-sided) ideal in A*(H) generated by H. Define
OM := M/(T - M).

For a standard 3-manifold Y, we have the following induced maps:

(2.1) K(r): KHFE>®(Y,t) = KHF'(Y,t)
and
(2.2) Q(m) : QHF™(Y,t) — QHFT(Y,1).

Define the bottom and top correction terms of (Y,t) to be the minimal grading of any
nonzero element in the image of K(7) and Q(7), denoted by dpor and dop, respectively
[LR14]. Levine and Ruberman established the following properties of di,p and dpor.

Proposition 2.5. [LR14, Proposition 4.2] Let Y be a closed oriented standard 3-manifold,
and let t be a torsion Spin® structure on'Y. Then

dtop(K t) = _dbot(_Y’ t)

Proposition 2.6. [LR14, Proposition 4.3] Let Y, Z be closed oriented standard 3-manifolds,
and let t,t' be torsion Spin® structures on Y, Z respectively. Then

dpot (Y # 2, 444t) = dpot (Y ) + dpot (Z, 1)

and
diop (Y H#ZAH#) = diop (Y, 1) + dpop(Z, 1),

Let B,, denote a circle bundle over a closed oriented genus g surface with Euler charac-
teristic n # 0. It can be obtained from n-framed surgery in #2952 x S! along the “Bor-
romean knot.” The torsion Spin® structures on B,, can be labelled by —|n|/2 < i < |n|/2
[Par14, Ras04], though the labelling is not a bijection. A surgery exact triangle argument
for the Borromean knot shows that

HF™(B,,i) = HF™(#%95% x S 1),

where t is the unique torsion Spin® structure on #29(S52 x S!). Hence, B, is also standard

for n # 0 [Parl4, Ras04].
The d-invariants for circle bundles B,, have been computed in [Parl4].

Theorem 2.7. [Parl4, Theorem 4.2.3] Let B_, denote a circle bundle over a closed
oriented genus g surface Xy with Euler number —p. If p > 0, then for any choice of
—p/2<i<p/2

dbot(Bp’i) = _dtOP(B*p’Z.) = gb(pai) - 9.

and
—o(p,i) — g iflil >g
oot (Bps) = —6(p.1) — | iflil < g and g+ is even
—o(p,i) —|i| +1 if |i| < g and g+ is odd,
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where

6(p,1) = d(L(p, 1), ) = m L <1 _ M) |

— ax -
{seZ|s=i(mod p)} 4 p

Remark 2.8. For the rest of the paper, we use ¢(p,i) to denote the d-invariant of the
Spin¢ lens space (L(p,1),i7) where —p/2 < i < p/2 and p > 0. For p < 0, ¢(p,i) =
—¢(—p,i). In this paper, we use the convention that p-surgery on the unknot yields the
lens space L(p, 1).

Remark 2.9. Observe that we can rewrite the formula in Theorem 2.7 using the function

f defined by (1.3):
(2.3) doot(B—p, 1) = =(p, 1) + 2f4(i) — .

Ozsvath and Szabé established the behaviour of the d-invariants of standard 3-manifolds
under negative semi-definite Spin“-cobordisms.

Proposition 2.10. [OS03, Theorem 9.15] Let Y be a three-manifold with standard
HFE®, equipped with a torsion Spin® structure t. Then for each negative semi-definite
four-manifold W which bounds Y so that the restriction map H' (W) — HY(Y) is trivial,
we have the inequality:

(2.4) c1(5)? + by (W) < ddpor (Y, £) + 261 (Y)

for all Spin® structures s over W whose restriction to Y is t.

2.3. The h-function and L—space links. We review the h-function for oriented links
L C 53, as defined by the first author and Némethi [GN15].

Alink £L=LiU---UL, in S? defines a filtration on the Floer complex CF~(S%), and
the filtration is indexed by the n-dimensional lattice H(L) (see Definition 2.1). Given
s=(s1, -+ ,8,) € H(L), the generalized Heegaard Floer complex A~ (L,s) C CF~(53)is
the F[[U]]-module defined to be a subcomplex of CF~(S?) corresponding to the filtration
indexed by s [MO10] (here we implicitly completed CF~(S%) over F[[U]], see Remark
2.2).

By the large surgery theorem [MO10, Theorem 12.1], the homology of 21~ (L, s) is isomor-
phic to the Heegaard Floer homology of a large surgery on the link £ equipped with some
Spin‘-structure as an F[[U]]-module. Thus the homology of 20~ (L, s) is non-canonically
isomorphic to a direct sum of one copy of F[[U]] and some U-torsion submodule, and so
the following definition is well-defined.

Definition 2.11. [BG18, Definition 3.9] For an oriented link £ C S3, we define the
H-function Hp(s) by saying that —2H(s) is the maximal homological degree of the
free part of H. (A~ (L, s)) where s € H.

Remark 2.12. We sometimes write Hz(s) as H(s) for simplicity if there is no confusion
in the context.

More specifically, the large surgery theorem of Manolescu-Ozsvath [MO10, Theorem
12.1] implies that —2H(s) is the d-invariant of large surgery on L, after some degree
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shift that depends on the surgery coefficient and s (see [MO10, Section 10], [BG18,
Theorem 4.10]). Note that the H-function is a topological invariant of links in the
three-sphere since it is defined in terms of the link invariant C'FL°°.

Many practitioners of Heegaard Floer homology are more accustomed to working with
the integer-valued knot invariants V" and HJ of Ni and Wu [NW15]. For knots,
Hgk(s) = V;5. For example, the H-function of the left-handed trefoil is H(s) = 0
for s >0, H(s) = —s for s < 0.

We now list several properties of the H-function.

Lemma 2.13. [BG18, Proposition 3.10] (Controlled growth) For an oriented link L C
S3, the H-function Hp(s) takes nonnegative values, and Hp(s —e;) = H(s) or Hp(s —
e;) = Hr(s) + 1 where s € H.

Lemma 2.14. [Liul7, Lemma 5.5] (Symmetry) For an oriented n-component link £ C
S3, the H-function satisfies H(—s) = H(s) + > 1, s; where s = (81, , $p).

Note that in [Liul7] the symmetry property is stated for L—space links, but the statement
holds more generally. This is because the H-function is determined by the d-invariant
of large surgery along the link and because d-invariants are preserved under Spin®-
conjugation. See for example [HLZ15, Lemma 2.5].

Lemma 2.15. [BG18, Proposition 3.12] (Stabilization) For an oriented link £ = Ly U
-+-U Ly, C 8% with vanishing pairwise linking number,
Hl:(Sl, te ,Sifl,N, Si+1," " asn) - HL\Li(Sla oty 8i—1,Si4+1, 00 asn)

where N is sufficiently large.

For an n-component link £ with vanishing pairwise linking numbers, H(L) = Z". The
h-function hr(s) is defined as

he(s) = He(s) — Ho(s),
where hy = 0, O denotes the unlink with » components, and s € Z". Recall that
for split links £, the H-function H(L,s) = Hyp,(s1) + -+ + Hp, (sn) where Hy,(s;) is
the H-function of the link component L;, [BG18, Proposition 3.11]. Then Hp(s) =
H(s1) + --- H(sy) where H(s;) denotes the H-function of the unknot. More precisely,
Ho(s) =1, (Isi] — si)/2 by [OS08b, Section 2.6]. Hence H.(s) = hz(s) for all s = 0.
By Lemma 2.14 we get
(2.5) h(—s) = h(s).
Lemma 2.16. The function h is non-decreasing towards the origin. That is, h(s—e;) >
h(s) if s; >0 and h(s — e;) < h(s) if s; <0.

Proof. If s; > 0 then Hp(s;) = Ho(s; —1) =0, so
h(s) —h(s—e;) =H(s)— H(s—e¢;) <0.
If s; <0 then Hp(s;) = —s; and Hp(s; — 1) =1 —s;, so
h(s) —h(s—e;)=H(s)—H(s—e;)+1>0.
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Corollary 2.17. For all s one has h(s) > 0.

Proof. We prove it by induction on the number n of components of £. If n = 0, it is
clear. Assume that we proved the statement for n — 1. Observe that by Lemma 2.15 for
s; > 0 we have h(s) = hp\r,(s) > 0. For s; < 0 by (2.5) we have

h(s) = h(—s) = hE\Li(_S) > 0.

Now by Lemma 2.16 we have h(s) > 0 for all s. O

In [OS05], Ozsvéath and Szabé introduced the concept of L-spaces.

Definition 2.18. A 3-manifold Y is an L—space if it is a rational homology sphere
and its Heegaard Floer homology has minimal possible rank: for any Spin®-structure s,
HF(Y,s) =T or, equivalently, HF'~(Y,s) is a free F[U]-module of rank 1.

Definition 2.19. [GN15, Liul7] An oriented n-component link £ C S2 is an L-space
link if there exists 0 < p € Z" such that the surgery manifold Sg(ﬁ) is an L—space for

any q =~ p.

We list some useful properties of L—space links:

Theorem 2.20. [Liul7] (a) Every sublink of an L-space link is an L-space link.
(b) A link is an L—space link if and only if for all s one has H (A~ (L, s)) = F[[U]].

(c) Assume that for some p the surgery S;’,(L) is an L—space. In addition, assume that
for all sublinks L' C L the surgeries S;’,(E’) are L—spaces too, and the framing matriz A
is positive definite. Then for all q = p the surgery manifold S;?(E) is an L—space, and
so L is an L-space link.

Remark 2.21. If all pairwise linking numbers between the components of £ vanish,
then A is positive definite if and only if all p; > 0. Therefore for (c) one needs to assume
that there exist positive p; such that S;’,(ﬁ’ ) is an L-space for any sublink £'.

For L-space links, the H-function can be computed from the multi-variable Alexander
polynomial. Indeed, by (b) and the inclusion-exclusion formula, one can write

(2.6) X(HFL (L,8) = Y (-1 He(s—ep),
Bc{1,--,n}
as in [BG18, (3.14)]. The Euler characteristic x(HF L™ (L, s)) was computed in [OS08a],
(2.7) Alty, -+ tn) = Y X(HFL (L, )5t -3
seH(L)
where s = (s1,--+ , 8,), and

- / if n
00 Bt { QS
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Remark 2.22. Here we expand the rational function as power series in ¢!, assuming
that the exponents are bounded in positive direction. The Alexander polynomials are
normalized so that they are symmetric about the origin. This still leaves out the sign
ambiguity which can be resolved for L—space links by requiring that H(s) > 0 for all s.

One can regard (2.6) as a system of linear equations for H(s) and solve it explicitly
using the values of the H-function for sublinks as the boundary conditions. We refer to
[BG18, GN15] for general formulas, and consider only links with one and two components
here.

For n =1 the equation (2.6) has the form
(HFL™(£,5)) = H(s — 1) — H(s),

SO

=Y X(HFL (L,s) ZtSH )=t 1AL()/(1 -t

s'>s
For n = 2 the equation (2.6) has the form
(29) x(HFL (L,s)) =—H(s1 —1,s9—1)+ H(s1 — 1,89) + H(s1,82 — 1) — H(s1, $2).
Lemma 2.23. Suppose that Ly and Ly are unknots and lk(Ly, L2) = 0, then

A(ty,t2).

7!
(2.10) t1't5°h(s1,82) = — IR
)3 C—6)0-5)

Proof. By Lemma 2.15 for sufficiently large N we have H(s1, N) = Hi(s1) and H(NV, s2)
Hy(s2) . By (2.9) we get

H(sl,SQ) — Hl(sl) — HQ(SQ) = H(Sl,SQ) — H(sl,N) — H(N, 82) =
— > X(HFL™(L,$)).

s'=s+1
Since L and L9 are unknots, we get h(sy,s2) = H(s1,s2) — H1(s1) — Ha(s2) and

S HHRh(s1,s0) == > > HUPX(HFL (L)) =

S1,52 81,82 8/ =s+1
ity S S (HPL (L, 8) M R
y S = - ) .
CA-ghHa-ph &t (- Ha-6hH 7
S

O
Example 2.24. The (symmetric) Alexander polynomial of the Whitehead link equals
/2 ,—1/2\,,1/2 ,—1/2
Al tz) = (10" =170 —1,"7%),

SO
Aty t2) = (t1t2) 2 At t2) = —(t1 — 1)(t2 — 1).
The H-function has the following values:
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824

One can check that (2.9) is satisfied for all (s1,s2). Also,

h(s1,s9) = {1 if (s1,s2) = (0,0)

0 otherwise,
which agrees with (2.10).

Lemma 2.25. If for an L-space link L one has h(0,0) = 0 then L is the unlink.

Proof. 1f h(0,0) = 0 then by Lemma 2.16 we have h(sy, s2) = 0 for all s1,s9. The rest
of the proof follows from [Liul8, Theorem 1.3]. O

For example, the H-function, and consequently HFL and the Thurston norm of the link
complement of an L—space link of two-components may be calculated from the Alexander
polynomial, albeit with a nontrivial spectral sequence argument, as in [Liul9a].

3. SURGERY FORMULA AND TRUNCATIONS

3.1. Surgery for knots. In this subsection we review the “mapping cone” complex
for knots [OS08b], and its finite rank truncation. We will present it in an algebraic
and graphical form ready for generalization to links. Let K be a knot in S% and let
pEZ.

For each s € Z we consider complexes 2! := A~ (K, s), and AL = A~ (). The surgery
complex is defined as

C=]]¢ Cs =20+l

The differential on C is induced by an internal differential ®” in 29, 2L and two types

0
of chain maps, ®f : A} — AL, &7 : A — AL, . Then D, = < cI>+(icI>* CI?@ )
S S

The complex (C, D) is usually represented with a zig-zag diagram in which we omit the
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internal differential <1>®

1) oA, w0,

l\.\i\l\\

h,-fv

Here the vertical maps are given by ® and the sloped maps by ®;. We instead present
the complex C graphically as follows: for each s we represent Cs as a circle at a point s
containing two dots representing AY and 2. The internal differential and ®F act within
each circle, while @ jumps between different circles. To avoid cluttering we do not draw
the differentials in this picture. See Figure 1.

One can choose a sufficiently large positive integer b such that for s > b the map ®F
is a quasi-isomorphism, and for s < —b the map ®_ is a quasi-isomorphism. The first
condition means that we can erase all circles (and all dots inside them) to the right of
b without changing the homotopy type of C. The second condition is more subtle and
depends on the sign of the surgery coefficient p.

FIGURE 1. The surgery complex C for a knot.

If p > 0, we can use ®; to contract 2A? with le+p for s < —b. By applying all these

contractions at once, we erase all 20 for s < —b and all 2., for s < p —b. As a result,

s+p
graphically we will have a width p interval [—b, p— b) where each circle contains only A,
and a long interval [p — b, b] where each circle contains both subcomplexes. See Figure
2.

[ ]

=X ]
- _3!
=K
x
3
é~o
2
C)
<
=X
L

FIGURE 2. The complex C after contraction when p > 0.

If p < 0, a similar argument shows that we will have a width p interval [p — b, —b) where
each circle contains only 2!, and a long interval [—b,b] where each circle contains both
subcomplexes. Note that in both cases in each Spin® structure there is exactly one half-
empty circle and a lot of full circles. Denote the truncated complex by Cp. See Figure

3.
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b

FiGURE 3. The complex C after contraction when p < 0.

Next, we would like to match 22 and 21! in C, with the cells in a quotient or sub-complex
CW(p,i,b) of a finite 1-dimensional CW complex. Each A corresponds to a 1-cell, and
2! to a 0-cell, and the boundary maps correspond to ®F. The complexes corresponding
to the previous two pictures are comprised of disjoint unions of |p| intervals. Depending
on the sign of p, each connected component is identified with one of the interval on the
line subdivided by integer points pictured in Figure 4.

More specifically, for p > 0 and each Spin®-structure ¢ (identified with a remainder mod-
ulo |p|), the complex CW(p, i,b) has one more 1-cell than 0-cell and can be identified with
an open subdivided interval. We think of this as the closed subdivided interval R with
its two boundary cells OR erased. The homology of CW(p, i,b) over F is H,(R,0R) =< F,
generated by the the sum of all 1-cells.

For p < 0 we have instead one more O-cell than 1-cell. The complex CW(p,i,b) is
now a closed interval R with no boundary cells erased. The homology of CW (p,i,b) is
H,.(R,() = F, generated by the class of a 0-cell.

p>0

p<O0

FIGURE 4. The complex CW(p,1,b).

So far, all of this is really just a rephrasing of the mapping cone formula of [OS08b].
However, we will see that such pictures are easier to handle for more components, and
the topology of the complexes CW(p,i,b) plays an important role. We will use this
observation later in section 4.

3.2. Truncation for 2-component L—space links. We first review the Manolescu-
Ozsvéth link surgery complex [MO10] for oriented 2-component links £ = L U Ly with
vanishing linking number. Let H* = (X, a, 3, w, 2) be an admissible, generic, multi-
pointed Heegaard diagram for £. Note that H(L) = Z2.
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For any sublink M C L, set N = L — M. We define a map
pM o 7lEl 5 7N

to be the projection to the components corresponding to L; € N. For sublinks M C L,
we use XM to denote the Heegaard diagram of £ — M obtained from H* by forgetting
the z basepoints on the sublink M. The diagram H%~ is associated with the generalized
Floer complex A~ (HE~M M (s)).

In general, the surgery complex is complicated. For 2-component links with vanishing
linking numbers, we describe the chain complex and its differential in detail. For the

surgery matrix, we write
0
A= (P .
(0 P2

For a link £ = L U Lo, a two digit binary superscript is used to keep track of which
link components are forgotten. Let A2 = A~ (H%,s), AW = A~ (HE L2, 51), AL =
A~ (HE 11 59) and AL = A~ (HE L1712 &) where s = (s1,82) € Z2. Let

C.= P aye
517526{071}
The surgery complex is defined as
Cc(HE A =[] Cs
s€Z2

The differential in the complex is defined as follows. Consider sublinks &, L1, =Ly and
+1L71 &+ Ly where + denotes whether or not the orientation of the sublink is the same as
the one induced from £. Based on [MO10], we have the following maps, where ®% is the
internal differential on any chain complex 252,

oLt AW A’ o A AW,

L2 AW A% o L2 AW AL,

L 01 11 -L 01 11
Qo AS = Ay, P RAT A

Lo . o(10 11 —L2 . (10 11
D2 AT = Ay, P Ug AN,

52

(3.2)

where A; is the i-th column of A. In addition, there are “higher” differentials
oltle ql Al et Al Al

—~Li+La . o(00 11 —L1—La . 9(00 11
O (RS = AN, P tR:Ag = RAgin A,

(3.3)

Let

Ds — (13? + q).:stLl 4 q).:sl:Lz 4 @$L1 4 (I>§|:2L2 + (I);tLliL27
and let D = [], .2 Ds. Then (C(H*,A),D) is the Manolescu-Ozsvath surgery com-
plex.

The surgery complex naturally splits as a direct sum corresponding to the Spin®-structures.
The Spin‘-structures on S3 (L) are identified with H(L)/H(L,A) & Z,, x Z,, where
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H(L,A) is the subspace spanned by A. For t € H(L)/H(L,A), choose s = (s1,52)

corresponding with t and let
C(A7 t) = @ CS+iA1+jA2'
1,JEZL
Then by [MO10],
HF™(S3(£),t) = H.(C(A,1),D)
up to some grading shift.
Now we review the truncation of the surgery complex (C(H*,A), D) [MO10], which
mimics the truncation of the mapping cone for knots.

Lemma 3.1. [MO10, Lemma 10.1] There exists a constant b > 0 such that for any
1=1,2, and for any sublink M C L not containing the component L;, the chain map
*L; . o— - - —M-L; i
Py - AT (MM M (s)) = A (MR M (s))
mnduces an isomorphism on homology provided that either

o s € 7% is such that s; > b, and L; is given the orientation induced from L; or

o s € 72 is such that s; < —b, and L; is given the orientation opposite to the one
induced from L.

Q

}@ e
DOOOD ==

IS]:[)

FIGURE 5. Truncated complex for pi,ps > 0

Without loss of generality, we will assume that
b > max(|p1|, |pz])-
We consider five regions on the plane:

Q = {ls1] < b,[s2] < b}, Ry = {s1 >b,s2 <b}, Ro={s1 > —b,s2 > b},
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R3 = {81 < —b, So > —b}, Ry = {81 < b, So < —b}.

Remark 3.2. One can also use different constants b1,by to truncate the complex in
vertical and in horizontal directions. As a result, the rectangle (Q would be bounded by
the lines s1 = +£b1, 80 = £by. All results below hold unchanged in this more general
case.

Depending on the signs of p; and ps, the surgery complex may truncated as follows (see
also the detailed case analysis of [MO10, Section 10]).

Case 1: p; > 0,po > 0. In this case, let Cg,ur, be the subcomplex of C(HZ,A)
consisting of those terms 2A5'*? supported in R; U Ry. The subcomplex Cg,ur, is acyclic
[MO10]. In the quotient complex C/Cr,ur,, define a subcomplex Cr,ur, consisting of
those terms RA5'*2 with the property that s —ejA; — ea2As € R3 U Ry. Let Cg be the
quotient of C/Cr,ur, by Cryur,.- Then Cg is quasi-isomorphic to the original complex
C(H~, A), and Cq consists of dots inside the box indicated as in Figure 5.

| | |
I I | R
I | | .
R L E
S I A |
| R q>£1 Qll“
. o |
I ol |
@D GO
- - - -6 - GHRIPOHD- - - - =~
o @ 1
Ry I I
Sl**br’pl le*b lsy =
|

FIGURE 6. Truncated complex for pi,ps <0

Case 2: p; < 0,p2 < 0. This is similar to Case 1, except that Cr,ur, and Cr,ur, are
now quotient complexes, and Cg is a subcomplex as shown in Figure 6. Note that Cq
contains all the solid dots pictured, including those outside of box Q.

Case 3: p; > 0,p2 < 0. First define two acyclic subcomplexes: one is Cg,, which consists
of terms A5'*? such that s € R;. The other is Cg,, and consists of terms 2A5'*? such that
either s —e1A; € Rz or (s € Ry,e9 =1 and s — 1A — Ag € R3). After quotienting by
these acyclic subcomplexes, define two further acyclic quotient complexes C'r, consisting
of A5*? with s € Ry, and Cg, consisting of 2'*2 such that s —e2As € Ry. Let Cg be
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the resulting subcomplex which is shown as in Figure 7. The case where p; < 0,ps > 0
is similar.

———————
N

] W |

l: !

B
——————— - HOPEOOD -1,
@ @ B 1
oo E- 2—"‘:;7,;,,9

FIGURE 7. Truncated complex for p; > 0,ps < 0.

The truncated complex Cg with the differential obtained by restricting D to Cg is ho-
motopy equivalent to (C(#%,A), D). Then the homology of the truncated complex is
isomorphic to HF~ (53, (L)) up to some grading shift which is independent of the link,
but only depends on the homological data [MO10].

For L-space links, Y. Liu introduced the perturbed surgery formula to compute the
homology of the truncated complex. For the rest of the subsection, we let £ = Ly U Loy
denote a 2-component L-space link with vanishing linking number. By Theorem 2.20,
each sublink is also an L—space link. Then

H, (A~ (HE M 9 (s))) = F([U]]

for all s € H(L) and all sublinks M C L [Liul4, Liul7]. Moreover, since A~ (HL=M M (s))
is defined as a bounded complex of free finitely generated F[[U]]-modules, and its ho-
mology is also free, A~ (HL=M M (s)) is homotopy equivalent to F[[U]].

Therefore the surgery complex is homotopy equivalent to the perturbed surgery complex
where each A~ (HEM M (s)) is replaced by F[[U]] with the zero differential. The maps
_)

@iﬁu(s) are replaced as follows:

(i)i:Li — pH(Es1Es2)—Hy(£s7) . F[[U]] — F[[U]],
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oLl = gHixs) . F[[U]] — F[[U]).

Here 7 € {1,2} \ {i} and H;(s;) denotes the H-function for L;, i = 1,2. Finally, the
“higher” differentials ®TX1%52 are replaced by some differentials ®F%1¥52 which must
vanish by parity reasons [Liul7, Lemma 5.6].

We will denote the resulting perturbed truncated complex by (éZg,D). Its homology
is isomorphic to the Heegaard Floer homology of Sg(ﬁ) [MO10, Liul7]. Because we
are using truncated complexes from here on, it suffices to consider polynomials over

FlU].

Remark 3.3. Similar complexes and their truncations can be defined for any link with
an arbitrary number of components and vanishing pairwise linking numbers. However,
for general links with two components the higher differentials could be nontrivial. For
L-—space links with three or more components one can define the perturbed complex as
above, but the higher differentials might survive in it as well. See also [Lid12] for a
discussion of associated spectral sequences.

3.3. Gradings. In the above discussion we ignored the gradings on all the complexes in-
volved in the surgery formula. The homological grading on the surgery complex consists
of three separate parts:

(a) The Maslov grading on A~ (HE=M M (s)) as a subcomplex of A~ (S3).
(b) The shift depending on s but not on M (see Remark 3.6).
c¢) The cube degree which we define as 2 for A%, 1 for A% and AL and 0 for ALL.
S S S S

We will call the internal degree the sum of the first two parts and denote it by deg. The
homological degree is then the sum of the internal degree and the cube degree. The
components of the differential in the surgery complex change these degrees differently:
@2 decreases the internal degree by 1 and preserves the cube degree, ®% preserve the
internal degree and decrease the cube degree by 1, and ®F1#L2 increase the internal
degree by 1 and decrease the cube degree by 2. The action of U decreases the internal
degree by 2 and preserves the cube degree. Note that after perturbation of the surgery
complex, the only non-vanishing differentials are the ®%i, which preserve the internal
degree.

Remark 3.4. Note that our cube degrees (shifts applied to cells) differ from the shifts in
the Ozsvath-Szab6 mapping cone formula. In is important to note that the calculations
we do with our surgery complex are not absolutely graded, but depend on an overall
shift calculated from a two-component unlink.

For L-space links, we can replace 2~ (HL=M M (s)) by a copy of F[U], the internal
degree in it is completely determined by the internal degree of the generator. For M C
{1,2} let zps(s) denote the generator in the homology of A~ (HX=M M (s)). By the
above, in the perturbed surgery complex the differential preserves the internal degree
and decreases the cube degree by 1.
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Proposition 3.5. The internal degrees of zpr(s) can be expressed via the internal degrees
of z12(s) as following:

(3.4) degzi(s) = degzi 2(s) — 2Ha(s2), degza(s) = degzi 2(s) — 2H1(s1),

(3.5) degzy(s) = degz1 2(s) — 2H (s1, 52).

Also, the internal degrees of z12(s) satisfy the following recursive relations:
(36) degng(Sl + p1, 82) = degng(sl, 82) + 2s7,

(3.7) degz1 2(s1, 82 + p2) = degzi 2(s1, 52) + 2s2.

Remark 3.6. The shift mentioned in the beginning of this subsection is nothing but
degzl,g(s).

Proof. The differential has the following form:

D(z(s)) = UH(S)*H1(31)Z,2(81’ s2) + UH(s)—Hg(sQ)Zl(S17 52) +
UHE 0 2 (51, 59 4 po) + UH 1200505 (51 4y 59),
D(za(s1,82)) = UMz 5(s1,80) + UM 2 5(s1 + p1, 52),
D(z1(s1,82)) = U202z 5(s1,89) + U252 2 5(s1, 50 + p2),
D(z12(s1,52)) = 0.

The differential preserves the internal degree, therefore degz;(s) = degz1 2(s) — 2H2(s2)
and degzy(s) = degzi(s) — 2(H(s) — Ha(s2)). By Lemma 2.14, Hy(—s1) = H1(s1) + s1,
Hy(—s2) = Ha(s2) + s2. Therefore

—2H(s1) + degz12(51,52) = —2H1(—s1) + degzi 2(s1 + p1,52) =

—2H(s1) — 2s1 + degzy 2(s1 + p1, 52),
which implies (3.6) and (3.7). O

3.4. Associated CW complex. Observe from the definition of the iterated cone, we
may assign each summand of Cq with the cells of a quotient or sub-complex CW(p, i, b)
of a finite rectangular CW complex R, in a similar manner as was done for knots. In
particular, each A corresponds to a 2-cell, each of AL and AL to a I-cell, and AL
to a 0-cell, with boundary maps specified by (3.2). For example, the following diagram
shows the 2-cell corresponding with A% when pq,py > 0.

o oM o1

11 01
(38) le—f—/\g Q[s—i—/\g le+/\1 +As
L2 L2 oLz
L —L
10, % 00 o 10
le le 22[erAl
oL2 oL2 dL2
oL

—L
01 o1 11
A QlS+A1
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In all of the cases of the truncation, the resulting complex CW(p, 2, b) will be a rectangle
on a square lattice, possibly with some parts of the boundary erased. The squares, edges
and vertices are all cells in this complex.

— N —
— e e Wi £
I —Ly I l (PL-Z \ l \
AN S IS p h— | o | gn |/ /
| YT v )T SR N
L) I I o]
| N
N <
I 7 7 I
| |
|
I , , - N , RN
| 4 \ 7 \
|
) Y | ‘ / ‘ /
l/. \ l/ \ | N N+
| / /
\N— ) — — — X 7 — |
p1>0,p2>0 pr < 0,p2 <0

FIGURE 8. Cases (a) and (b).

We can consider the corresponding chain complex C over F generated by these cells and
the usual differential 0. The homology of this complex is naturally isomorphic to the
homology of R relative to the union of erased cells. Specifically, we will consider three
situations:

N N
/ a —_—
I \
( | ot @}2 . ( | |
! D |
N — oo N N |
| e
N I
| I
| I
I
|~ ~ - N
/ '/ ]
| I \ by !
I / I I
\JI R N N |
I
J
p1p2 <0

FIGURE 9. Case (c).
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(a) If none of the cells are erased, then R is contractible, so Ho(C, ) = F is generated
by the class of a O-cell, and all other homologies vanish. This corresponds to the
case when both surgery coefficients are negative as in Figure 8.

(b) If all 1- and O-cells on the boundary of R are erased, then (R,0R) ~ (S?, pt).
Therefore Hy(C,0) = F is generated by the sum of all 2-cells, and all other
homologies vanish. This corresponds to the case when both surgery coefficients
are positive.

(c) If all 1- and O-cells on a pair of opposite sides of R are erased, then R relative
to erased cells is homotopy eqivalent to (S',pt). Therefore Hi(C,0) = F is
generated by the class of any path connecting opposite erased boundaries, and
all other homologies vanish. This corresponds to the case when the surgery
coefficients have different signs as in Figure 9.

4. THE d-INVARIANT OF SURGERY

4.1. d-invariant from cells. Given the CW complex CW(p, ¢, b) in Section 3.4, we can

reconstruct the (perturbed, truncated) surgery complex (Cg, D) as follows. Each cell O
of CW(p,1,b) corresponds to a copy of F[U] generated by some element z((J). It has
some internal degree which we will denote by deg((J). Every component of the boundary
map in CW(p, ¢, b) corresponds to a component of D. By [Liul7], D is nonzero and hence
given by multiplication by a certain power of U. By Proposition 3.5 the internal degrees
deg(d) have the same parity and deg([J;) > deg(0) if OJ; shows up in the differential of
0. We get the following equation:

(4.1) D(x(0)) = Y U2es@-dee@ ) if o0 = 0.

As above, the complex (%,D) is bigraded: the cube grading of z(O)U* equals the di-
mension of [J, while the internal degree of z((J)U* equals deg((]) — 2k. The differential
D preserves the internal degree and decreases the cube grading by 1. The actual homo-
logical grading on the surgery complex is the sum of two degrees.

The homology of (éZQ,D) could be rather complicated, and is similar to the so-called
lattice homology considered by Némethi [NOS]. Nevertheless, the homology of ((35, D)
modulo U-torsion can be described explicitly. Let (C,0) denote the chain complex
computing the cellular homology of CW (p,1,b). Consider the map

e:Co—C, e(z(@U" =0

Clearly, ¢ is a chain map, that is, 9 = eD. Given a cell 00, we call z(O)U” its graded
lift of internal degree deg(CJ) — 2k. The following proposition is straightforward.

Proposition 4.1. Let ¢ be a chain in C. It admits a graded lift of internal degree N
(that is, a homogeneous chain o in Cq such that e(a) = ¢) if and only if N is less than
or equal to the minimal internal degree of cells in c. If a graded lift exists, it is unique.
Any two graded lifts of different internal degrees are related by a factor U* for some k.
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Lemma 4.2. Let z be a homogeneous chain in 5@5 Then z is a cycle if and only if £(z)
is a cycle. Also, U*z is a boundary for large enough k if and only if £(2) is a boundary.

Proof. If z is a cycle then £(2) is a cycle since ¢ is a chain map. Conversely, if £(2) is a
cycle, then e(D(z)) = 0, and hence D(z) = 0.

If U*z = Da then by applying € we get £(2) = de(a). Conversely, assume that £(z) = 93.
Pick a graded lift « of internal degree N such that () = 5. Then e(Da) = &(z), so
Da is a graded lift of z. By Proposition 4.1 we have Da = U3 (deg(z)=N) . 0

Corollary 4.3. The free part of the homology H, (65, D)/Tors is generated by the graded
lifts of representatives of homology classes in H,(C,0). Two classes are equivalent if and
only if they have the same internal degree and lift the same homology class.

It follows that in all cases (a)-(c) in section 3.4 the free part H*((EZ;, D)/Tors is isomor-
phic to F[U]. Let d denote the internal degree of the generator of this copy of F[U] (this
is essentially the d-invariant of the surgery). We are ready to compute d:

Theorem 4.4. The d-invariant of the complex (éZQ,D) can be computed in terms of
CW(p,1,b) as following:

(a) If no cells of the rectangle R are erased, this is the mazximal value of deg(XJ) for
0-cells .

(b) If all boundary cells are erased, this is the minimal value of deg(0) for 2-cells 0.

(¢) If two sides are erased, this is max. minge. deg(0)), where ¢ is a simple lattice
path connecting the erased sides.

Proof. In (a), H.(C,0) is generated by the class of a point (that is, a O-cell). All points
are equivalent in Cg modulo torsion, and any lift of a 0-cell (I has the form U k2(O) and
has internal degree less than or equal to deg([J). Therefore the maximal internal degree

of a graded lift of a point equals max deg(0J).

In (b), H.(C,0) is generated by the sum of all 2-cells. The graded lift of this chain exists
in internal degrees min deg([J) and less.

In (c), similarly, for a given 1-chain ¢ representing the nontrivial homology class, a graded
lift is possible in internal degrees minqe. deg([]) and less. Therefore to find the internal
degree of the generator of F[U] we need to take the maximum over all c¢. It remains to
notice that any such ¢ contains a simple lattice path ¢ connecting the erased sides, and
minge deg(d) > minge, deg(0). O

4.2. Proof of Theorem 1.1. Let us describe the gradings on the surgery complex in
more detail.

Let us fix a Spin“-structure 2 = (iy,42) on Sg(ﬁ). The four quadrants on the plane are
denoted (£, £). In each quadrant, we can find a unique point s44(¢) in Spin®-structure
1 that is the closest to the origin, as in Figure 10. If i1 = 0 or io = 0 then some of s
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coincide, and in particular, if iy = ia = 0 then sy (¢) = (0,0) for all signs. We also

define integers sg.:l) and sf) to be the coordinates of the points, i.e.

sie = (s§),s)).

Lemma 4.5. If py > 0,p2 > 0, then

degzp(s++(2)) = degzy 2(s44(i1,12)) — 2h(s++(i1,12)).

Proof. Assume that s44(i1,72) = (s1,s2). By Equation 3.5,

degzy(s++(2)) = degz1,2(s4+(4)) — 2H (s44(2)).

Suppose s1 # 0, s9 # 0. By Proposition 3.5,

degzp(s—+ (1)) = degz1 2(s—1(3)) — 2H (s (1)) =
degz12(s4+ (%)) — 2(s1 — p1) — 2H (s—+(4)).

Similarly,

degzg(s1—(4)) = degz12(s 4+ (2)) — 2(s2 — pa2) — 2H (54 (7)),

degzp(s——(2)) = degz1,2(s44(2)) — 2(s51 — p1) — 2(s2 — p2) — 2H (5 (4)).
For the unlink O with two components, we have
Ho(s4+(2)) =0, Ho(s—+(2)) = p1 — s1, Ho(s4+- (%)) = p2 — 52
and
Ho(s——(2)) =p1 — 81+ p2 — s2.

Therefore,
degzp(s++(2)) = degz1,2(54+(4)) — 2H (s1£(2)) + 2Ho(s1+(4)) =
degz1 2(s4+(2)) — 2h(s++(2)).
If sy =0 and sy # 0, then

s+4(2) = (0,52), s+—(2) = (0,52 — p2).

It is easy to check that the equation in Lemma 4.5 still holds. Similarly, it also holds in
the case s9 = 0. ]
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FIGURE 10. For each Spin“—structure ¢, there is a unique point sy (%)
in each quadrant that is the closest to the origin.

Lemma 4.6. Ifp; > 0 then
deg22(8$),t) = degzl,g(sgrl), t) — 2h1(s$)).

Proof. The proof is similar to the proof of Lemma 4.5. Assume that s; = ssrl) # 0. Then

s(_l) = s1 — p1 and

degza(s1,t) = degzi 2(s1,t) — 2H1(s1) = degzi 2(s1,t) — 2hi(s1),

degza(s1—p1,t) = degzi2(s1,t) —2H (51 —p1) —2(s1 —p1) = degz1 2(s1,t) —2h1 (51 —p1).
O

Proof of Theorem 1.1: (a) Assume pi,p2 < 0. Then by Theorem 4.4(a), in which
case no cells are erased, we get
d(Sp(L), (i1,i2)) = max  degzia(s1, 52).
Sp=tktarpi
The internal degree of 21 2(s1, s2) does not depend on the link, but depends on the fram-
ing matrix A. Since the (pi, p2)-surgery on the unlink decomposes as L(pi, 1)#L(p2,1)
and has the same framing matrix, then

d(S3(L), (i1,12)) = ¢(p1,i1) + ¢(p2,iz).

(b) Assume p;,ps > 0. Then by Theorem 4.4(b), in which case all boundary cells are

erased, we get
d(S3(L), (i1,i2)) = min  degzg(sy,s2) + 2.

Sk=lg+arpk
Note that we add 2 here because the homological degree of a generator is a sum of deg
and its cube degree. Let us prove that degzy(s1, s2) decreases towards the origin. Indeed,
by combining (3.5) and (3.6), we get:

degzp(s1 + p1, s2) = degzy(s1, $2) + 281 + 2H (s1, 52) — 2H (s1 + p1, $2).
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By Lemma 2.13

0 < H(s1,s2) — H(s1 +p1,82) < p1.
Therefore for s; > 0 we have degzy(s1 + p1, s2) > degzy(s1, s2) and for s; < —p; we have
degzp(s1 + p1,52) < degzy(s1, 52)-

Therefore the minimal value is achieved at one of sy (¢). By Lemma 4.5,

degzg(s++ (1)) = degz1 2(s4+ (%)) — 2h(s1x(2)).
Then
d(S3(L), (i1,12)) = degz1 2(s4+(3)) — 2max h(sz+ (i) + 2,

where, as above, degz; 2(s44(?)) does not depend on the link. For the unlink h = 0,
hence

degz12(s4+4(4)) + 2 = d(S3(0), (i1, i2)) = ¢(p1,i1) + ¢(p2,i2).-
(c) Assume that p; > 0,p2 < 0. Then by Theorem 4.4(c), we get
d(SS’,(E), (i1,12)) = max Iélin deg(d) + 1
¢ €c

where c is a simple lattice path connecting the erased sides. Let ¢(t) be the horizontal
path connecting erased boundaries at height ¢. Let us compute minge. ) deg(0). By
Proposition 3.5 we get

degza(s1 + p1,t) = degza(s1,t) + 2H1(s1) — 2H1(s1 + p1) + 2s1.

and similarly to case (b) we conclude that the minimum is achieved at one of (sg) t).
Also, by Lemma 4.6 we get

(4.2) Dmi?) deg(O) = degzl,Q(sS}), t) — 2max hl(sg)).
ec(t

By Proposition 3.5, we have
degza(s1, S2 + p2) = degza(sy, s2) + 2s9.
Since py < 0, this means that for fixed s; the internal degree of z5(s1,t) increases towards

the origin and achieves its maximum at g = sf) + pa.

For an arbitrary simple path ¢ connecting the erased boundaries, it must contain a
horizontal segment corresponding to 2’2(82:1 ), t). Then

min deg() < degzz(sil),t) < degzz(sil),to) = min deg(O).
Oec! Oec(to)

Therefore,

max mindeg((J) = min deg(0d) = degng(sSrl), sf)

— 2max by (s1).
c [Oec Oec(to) +p2) fax I(Si)

The second equality follows the same argument as the one for (4.2). Again, the first term
does not depend on the link and hence equals the d-invariant of the lens space:

degz1 (s, 58 + po) + 1 = d(S3(0),i1,12) = d(p1,i1) + d(pa, ia).
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Finally, it follows from [NW15, Proposition 1.6] that

d(S3 (L1),i1) = ¢(pr,ir) — 2maxh(s1),
d(Sp(L), (ir,i2)) = d(Sp, (L1),i1) + ¢(p2, ia)-
O

4.3. Example: d-invariants and twisting. We can use this result to prove a curious
property of the H-function for L-space links of linking number zero. Suppose that
Ly is an unknot. Then after performing a Rolfsen twist, a (41, py)-surgery on L is
homeomorphic to pa-surgery on some knot L} obtained from Ly by a negative full twist
[GS99, Section 5]. See Figure 11. Note that while Theorem 2.20 implies that Lo is an
L-space knot (since £ is an L-space link), L}, does not need to be an L-space knot, see
Corollary 1.6.

Theorem 4.7. Let L = L1 U Ly be an L-space link of linking number zero, and Ly is
an unknot. The H-function for LY equals H(0, s2).

Proof. By definition, the H—function is equal (up to a shift) to the d-invariant of S3, (L)
or, equivalently, of S} po (L) for pa > 0. Since p1 = 1, a Spin“-structure on the surgery is
given by a lattice point (0,i3) where —py/2 < iy < py/2. The d-invariant is determined
by the values of the H-function of £ at the points (0,i3). By Theorem 1.1 we get

d(Sp,(Lh),iz) = d(S7 (L), (0,i2)) = 0+ ¢(pa, iz) — 2h(0,2).

Indeed, ¢(1,0) = 0 since 1-surgery of S% along the unknot is S®. Then h(0,i3) = by, (i2).
Hence, the H-function for L), equals H (0, s2). O

L1
Ly

p1/q LZL) :| | | |:p1/ g1 +np1)
| 1]

lk(Ly, L
D | p2 +n(lk(Ly, La))?

FIGURE 11. A Rolfsen twist. Here we take p1/q; = £1 and n = F1.

Remark 4.8. Similarly, we can consider (—1,p2)-surgery on L. Let L} be the knot
obtained from Ly by a positive full twist. By Theorem 1.1,

d(S? ,,(L),i2) = d(Sp, (L), ia) = d(Sp, (Ls), i2).
Hence, Hp,(s) = Hpy(s).
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Example 4.9. If L is the positively-clasped Whitehead link then L is the right-handed
trefoil, and LY is the figure eight knot. See Figure 12. The values of the H-function for
the Whitehead link on the axis agree with the values of the H-function of the trefoil (see
also Example 2.24). The values of the H-function for the unknot agree with the values
of the H-function for the figure eight knot.

Assume from now on that L is nontrivial so that H(0,0) > 0. If L; is an unknot, then
by the stabilization property (Lemma 2.15) for so > 0 we have H(0,s2) = H;(0) = 0.
We define

by = max{sq : H(0,s2) > 0}.
Clearly, by > 0. Since H(s) = h(s) for s > 0, note that we could have also defined by as
max{ss : h(0,s9) > 0}.

Corollary 4.10. In the above notations one has vt (Ly) = by + 1.

Proof. By Theorem 4.7 H(0,s2) agrees with the H-function of L}, and following the
definition of the invariant v in [HW16],

v (L) = max{ss : Hypy(s2) >0} +1=max{sy: H(0,s2) >0} +1=0bp+1. [

In particular this means that L} has nonzero H-function and positive v*-invariant. Note
that Proposition 1.3 is the special case of Corollary 4.10 when we assume that both L
and L9 are unknotted.

4.4. Example: +1 surgery. Let £ = L U Ls denote an L-space link with vanishing
linking number. If p; = ps = —1, then by Theorem 4.4, no cells in the truncated
square are erased, and the d-invariant of the surgery complex d(Sil,fl(ﬁ)) equals the
d-invariant of the lens space L(—1,1)#L(—1,1) which is zero.

If py = pp = 1, there is a unique Spin®structure (0,0) on d(S};(£)). Then s1++(0,0) =
(0,0). By Theorem 1.1,

d(S?,(L)) = —2h(0,0).

1 +1

FicURE 12. After +1 surgery along component L; of the positively-
clasped Whitehead link we obtain the right-handed trefoil in S3.
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5. CLASSIFICATION OF L—SPACE SURGERIES

For L—space links with unknotted components, we give a complete description of (inte-
gral) L-space surgery coefficients. We define nonnegative integers by, by as in Corollary
4.10:

by = max{s; : h(s1,0) > 0}, by = max{sy : h(0,s2) > 0}.

Theorem 5.1. Assume that L is a nontrivial L—space link with unknotted components
and linking number zero. Then Sgl,m(ﬁ) is an L-space if and only if p1 > 2b; and
pa > 2bo.

Proof. By Lemma 2.16 we have h(s1,s2) = 0 outside the rectangle [—by,b1] X [—ba, ba].
Also, h(—b1,0) = h(b1,0) > 0, so by Lemma 2.16, h(s1,0) > 0 for —b; < s1 < by.

Assuming that p; > 2b; and ps > 2by, then we can truncate the surgery complex to
obtain a rectangle where in each Spin® structure 4, there is exactly one lattice point 2A%;
see Figure 5. Hence, HF~(S3(L), i) = H,.(AY) = F[U]. Therefore S3(L) is an L-space.

Conversely, assume that Sg(ﬁ) is an L—space. Let us first prove that p;,ps > 0. Indeed,
since H(0,0) > 0 the boundary of z4(0,0) is divisible by U, so let a = U~1D(2(0,0)).
Then U« is a boundary, which implies that « is U-torsion in homology. Hence « is 0 in
homology since Sg(ﬁ) is an L—space. Therefore o = D(f) for some 3, and 5 must be
supported on all 2-cells outside (0,0). This is possible only if all cells on the boundary
are erased, which occurs when p1, ps > 0.

Now, assume that py > 0 and 0 < p; < 2by. Then h(—b1,0) > 0 and h(p; — b1,0) > 0.
Similarly, the boundary of zy(—b1,0) is divisible by U, so let o/ = U~'D(zy(—b1,0)) and
o/ = D(f'). Then degf’ = dega/ = degzy(—b1,0) + 2 and f’ is supported on all 2-cells
outside (—b1,0). In particular, it is supported at (p; — b1, 0) hence

degzy(p1 — b1,0) > degB’ = degzy(—b1,0) + 2.
By swapping the roles of (—b1,0) and (p; — b1, 0), we obtain
degzy(—b1,0) = degzg(p1 — b1,0) + 2,
which is a contradiction. Therefore p; > 2b; and likewise ps > 2bs. O

Remark 5.2. After combining Theorem 5.1 with Corollary 4.10, we obtain the state-
ment of Theorem 1.4 stated in the introduction.

Example 5.3. For the Whitehead link we have b; = b = 0, so Sgl po(£) is an L-space
if and only if p;,ps > 0. See also [Liul4] for a detailed discussion of Heegaard Floer

homology for surgeries on the Whitehead link.

Example 5.4. It is known [Liul7] that for k¥ > 0 the two-bridge link b(4k?+4k, —2k—1)
is an L—space link with linking number zero. The corresponding h-function was computed
in [Liul7, BG18] (see also [Liul8, Example 4.1]), and it is easy to see that by = by =
k — 1. Therefore a (p1, ps)-surgery on b(4k? + 4k, —2k — 1) is an L-space if and only if
p1,p2 > 2k — 2.
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For more general L—space links with linking number zero, we know that H(0,0) > H;(0)
and H(0,0) > H3(0). If both of these inequalities are strict, then similarly to the proof
of Theorem 5.1 one can prove that for L—space surgeries we must have p1,ps > 0. In
general, we have the following weaker results.

Proposition 5.5. Suppose that L is a nontrivial L-space link with linking number zero.
if Sgl,pg(ﬁ) is an L-space then either p1 > 0 or ps > 0.

Proof. If both L; and Lo are unknots then the statement follows from Theorem 5.1.
Otherwise assume that L; is a nontrivial L-space knot, and so H1(0) > 0. Assume that

both p; and py are negative and 53171’72('6) is an L—space.

Let us choose sy such that 25(0, s2) has maximal possible grading. We have

D(22(0,s2)) = UHl(O)(Z1,2(0, s2) + z1,2(p1, 52))-

Since p1,p2 < 0, then by Theorem 4.4 z; 2(0, s2) and 21 2(p1,s2) are nonzero (and even
non-torsion) in homology. They have the same degree, so their sum must vanish. This
means that there exists a 1-chain v with endpoints at (0, s2) and (p1, s2) such that its
graded lift is bounded by z12(0, s2) + 21,2(p1, 52)-

Such v must contain a segment connecting (0, s5) and (p1, s5) for some s, so its graded
lift contains U*z1 (0, s) for some k > 0. Then

degz1(0, s5) > degUkzl(O, sh) = deg(z1,2(0, s2) + 21,2(p1, 52))
> degz1,2(0,52) — 2H1(0) = degz1 (0, s2).

Contradiction, since z1 (0, s3) had maximal possible grading. O

Proposition 5.6. Suppose that L is an L—space link with linking number zero. If
S5, 5o (L) is an L-space then either Sy (Ly) or S5, (Ls) is an L-space.

Proof. If L or Ly are unknots, the statement is clear. Suppose that both L; and Lo
are nontrivial with genera g; and g2. Then we need to prove that either p; > 2¢g; — 1 or
p2 > 2go — 1. Assume that, on the contrary, p1 < 2¢g; — 2 and py < 2g9 — 2.

Consider the generator 21 2(s1,s2). It appears in the boundary of z;(s1, s2) with coeffi-
cient UH2(52) in the boundary of 29(81,82) with coefficient UH1(51) in the boundary of
21(81, 82 —p2) with coefficient UH2(p2=52) and in the boundary of 29(81—p1, $2) with coef-
ficient UH1(P1—51)  For s1 = g1—1, 89 = go—1, by the assumptions we have p;—s; < g1 —1
and py — s2 < go — 1. Recall that for an L—space knot,

g(K) = v (K) =max{s : Hg(s) >0} + 1.

Thus, since Ly and Ly are L-space knots, all four exponents Hi(s1), Ha(s2), Hi(p1 —
s1), Ha(p2 — s2) are strictly positive. Therefore the cycle zj2(s1,s2) does not appear
in the boundary of any chain and hence is nontrivial in homology. On the other hand,
by Lemma 5.5 either p; or py is positive, so by Theorem 4.4 z;2(s1,s2) is a torsion
class. Therefore 21 2(s1,s2) is a nontrivial torsion class, and S3 (L) is not an L-space.

.. p1,p2
Contradiction. O



32 EUGENE GORSKY, BEIBEI LIU, AND ALLISON H. MOORE

Remark 5.7. The examples considered in [GN18, Ras17b] show that for many L-space
links it is possible to have L-space surgeries with p; > 0 and py < 0. For 2-component
L-space links with linking number zero, this is not possible (see [Liul9b]). For general
2-component L—space links, there are similar results to the ones in Propositions 5.5 and

5.6 [Liul9b].

6. RELATIONSHIP WITH THE SATO-LEVINE AND CASSON INVARIANTS

6.1. Sato-Levine invariant. Let £ = L; U Ly denote a 2-component link with linking
number zero. Then for i = 1,2, component L; bounds a Seifert surface 3; in B* such
that ¥; N L; = @ for i # j. Let L1 = X1 N X2 denote the link with framing induced
from ¥; (or Xg). The self-intersection number of Ly, is called the Sato-Levine invariant
B(L), due to Sato [Sat84] and independently Levine (unpublished).

The Conway polynomial of £ of n components is
Vie(z) = 2" Yag + agz® +agz +--), a; € 7.

We will write a;(£) = a; when we want to emphasize the link. For a link £ of two
components, we normalize the Conway polynomial so that

Vo2 =72 = (12— ) ALt ),

where Ag(t1,t2) denotes the multi-variable Alexander polynomial of £. The first co-
efficient ag is —Ik(L1, L2) by [Hos85]. When ag = 0, write V£(2) = V(2)/2®. Then
V£(0) = az = —5(L) by [Stus4].

Since lk(L1, La) = 0, the Torres conditions [Tor53],

imply that Az(¢1,1) =0 and Ag(1,t2) = 0. Hence, we can write
Ap(ty ta) =t 252 (4 — 1)(ty — DAL (t1, 1),
where A, is normalized as in equation (2.8).

Lemma 6.1. Let £L = LU Ly be a link with linking number zero. Then
B(L) = AL(1,1).

Proof. After setting t; = to = t to obtain the single variable Alexander polynomial, we
have

Ap(tt) = (B2 =t 22 AL(1 1) = —2°Ve(2)
where the last equality is with the change of variable z = t1/2 — =12 Setting t = 1 we
obtain A’,(1,1) = =V (0) = B(L). O

Lemma 6.2. Let L = Ly U Ly be an L-space link with linking number zero. Then
B=— 251732 B (s1,s2) where h'(s1,s2) = h(s1,82) — h1(s1) — ha(s2).
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Note that by stabilization (Lemma 2.16) and Lemma 2.15, h/(s1, s2) has finite support,
so the above sum makes sense.

Proof. Since
Np(tr,t2) =D qeysnti 52,
and B
Ap(tr,ta) = (1 — 1)tz = DAL(t1,12) = D ag, st 3157,
the coefficients are related by

asl,SQ = qsl,SQ - qsifl,SQ - QS178271 + QS17175271'

Recall that the inclusion-exclusion formula (2.6) gives the coefficients of the Alexander
polynomial in terms of the h-function of £ as

Qsy,59 = X(HFL7(£7 (317 82))) =

—H(Sl,SQ) +H(81 — 1,82) +H($1782 — 1) —H(31 — 1,89 — 1).

Observe that h'(s1, s2), as defined above, can also be written
W (s1,s2) = H(s1,52) — Hi(s1) — Ha(s2)
where Hy and Hs denote the H-function of Ly and Lo, respectively. Then
Ugy50 = —h/(sl, s9) + h/(sl —1,89) + h/(sl, s9—1)— h'(51 —1,89—1)
- qsl,sg - q81—1782 - q81782—1 + qsl—l,sg—l-
Note that when L; and Lo are both unknots, h/(s1, s2) = h(s1, s2).
Observe that g5, s, = 0 as s; — £00 and sy — %00, and h/(s;, s2) = 0 as s; — too and
$9 — Fo0o. Therefore,
qsl,sg == —h,(Sl,Sz).

Hence,

(6.1) BL) = AL(1,1) = goe = — Y _ N (s51,52). O

Remark 6.3. Similarly, for a knot we have that ay = ) h(s), where as is the second
coefficient of the Conway polynomial.

Corollary 6.4. If L = L1 U Ly is an L—space link with vanishing linking number and L;
are unknots for all i = 1,2, then B(L) <0 and B(L) =0 if and only if L is an unlink.

Proof. Since L; are unknots, we have h'(i,j) = h(i, ) for all ¢,j. By Corollary 2.17,
B(L) = =32 hi,j) < 0. If B(L) = 0 then h(i,j) = 0 for all (4,7) € Z2. Since L is an
L-space link, £ is an unlink [Liul8]. O

A link £ is called a boundary link if its components L and Lo bound disjoint Seifert
surfaces in S3.

Corollary 6.5. If L = L1 U Lo is an L—space link with vanishing linking number and L;
are unknots for all i = 1,2, then L is concordant to a boundary link if and only if L is
an unlink.
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Proof. Clearly the unlink is a boundary link, so instead assume that £ is concordant to
a boundary link. For boundary links 3 vanishes by definition. Since  is a concordance
invariant [Sat84], we get S(L£) = 0. By Corollary 6.4 we have that £ is an unlink. [

6.2. Casson invariant. Here we assume that £ = L; U Ly ---U L, is an oriented link
in an integer homology sphere Y with all pairwise linking numbers equal zero, and with
framing 1/¢; on component L;, for ¢; € Z. Hoste [Hos86] proved that the Casson invariant
A of the integer homology sphere Y14, .. 1/4, (L) satisfies a state sum formula,

(62) )\(Yl/q1,"',1/Qn (ﬁ)) = )\(Y) + Z <H Qi) a2(£’; Y),

L'CL \ieLl!
where the sum is taken over all sublinks £’ of £. For example, given a two-component
link £ = L; U Ly in S? with framings p; = +1, formula (6.2) simplifies to
(6.3) A(Sp, pa (£)) = =B(L) + az(L1) + az(La).

By Ozsvath and Szabé [OS03, Theorem 1.3], the Casson invariant agrees with the renor-
malized Euler characteristic of HFT(Y),

AY) = X(HE,(Y)) — 5d(Y),

where we omit the notation for the unique Spin®-structure. In terms of the renormalized
Euler characteristic for HF~(Y'), we have

_ 1

A(Y) = _X(HFred(Y)) o §d(Y)

where the change in sign is due to the long exact sequence HF; (Y) — HEF>(Y) —
HF(Y) — HF_,(Y). Asin [0S03, Lemma 5.2], the renormalized Euler characteristic
can also be calculated using the finite complex

(6'4) )‘(Y) - _X(HF_(YQT‘>—2N—1)) + N+ 17

which has been truncated below some grading —2N — 1 for N >> 0. This can be
observed by writing

(6.5) X(HF™ (Ygrs_an—1)) = x(FIU)/U*™) + x(HE,_,(Y)),

where k = %d(Y) + N, and noting that d(Y") is even because Y is an integer homology
sphere.

Remark 6.6. In [OS03] Ozsvath and Szab6 use the renormalized Euler characteristic
for HF ' instead of HF~. From the long exact sequence one sees that these two Euler
characteristics add up to the renormalized Euler characteristic of HF*° (truncated both

at sufficiently large positive and negative degrees), which vanishes. This explains the
sign change between (6.4) and [OS03, Lemma 5.2].
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6.3. The Casson invariant from the h-function for knots. We will review how
to obtain Casson invariant from the H-function for Y = Sf’tl(K ) using the mapping
cone.

Lemma 6.7. Consider =1 surgery along a knot K in S3. Then
S:I:l Z ih :F Z X tor7

where (A)sor denotes the torsion summand of A0 and its Euler characteristic is taken
with respect to internal degree. In particular, when K is an L-space knot, \(S31,(K)) =

225 Eh(s).

Proof. Apply observation (6.4) to the truncated cone complex (Cp, D), as defined in
Section 3.1. This complex has now been truncated in two directions: it is truncated
so that —b < s < b, for s € Z = Spin“(Y, K), and is truncated in every summand
so that gr(z) > —2N — 1, N >> 0 for all chains z € C,. Recall from section 3.3
that the homological degree on the surgery complex is a sum of the internal degree
and the cube degree. In particular, each of the summands A? (in cube degree 1) and
2! (in cube degree 0) has an internal degree deg that is itself a sum of the Maslov
grading and a shift by degzi(s) which does not depend on the knot. By Proposition
3.5, degzo(s) = degzi(s) —2H(s). Combining with equation (6.5) we calculate the Euler
characteristic with respect to internal degree as

1
X(ng)>—2N—1 =N-+1+ §degz1(s) - H( ) + X(Ql )tor&

1
X@A)s_ov_1 =N+ 1+ gdegzl(s)-
Let p = +1, then
XHF™ (Ygson-1)) = > (H(s) + X(A)sor) + N+ 1+ degz1( b).
—b<s<b
where the last two terms come from QL(lb.

By (6.4) we obtain:
1
ASH(K) = D (H(s) = x(M)tor) — 5degz1(=b).
—b<s<b
By taking K to be the unknot O we similarly obtain
1
A(5%1(0)) = —b<z<bHO(S) - §deg21(—b)

where Ho(s;) denotes the H-function for the unknot. Noting that S%,(0) = S* and
that A(S3) vanishes, we have

MSTL(E) = Y (H(s) = Ho(s) = X(Mor) = D (hls) = x(AT)tor)-

—b<s<b s
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The case of (—1)-surgery is similar, except that in the mapping cone there is one extra
2A' summand and A° and A switch parity, so that we obtain the equation

MS24(K)) = Y (=H(s)+ Ho(s) + X(A)tor) = Y (—hls) + X(A)ror).

—b<s<b s

Finally, notice that when K is an L—space knot, X(Ql )tor vanishes. We can see that this
agrees with the state sum property (6.2) of the Casson invariant,

AT, (K)) = MS?) = qag(K) =+ h(s)

in the special case ¢ = +1. O

6.4. The Casson invariant from the h-function for links. For a 2-component link
L = L1 U Ly with vanishing linking number, we can now describe the Casson invariant
of (£1,+1)-surgery in terms of the H-function, and recover equation (6.3).

Proposition 6.8. Consider (p1,p2) surgery along an L—space link L = L1U Ly of linking
number zero when p1,ps = 1. Then

Spl,m = P1p2 Z h s) +p1 Z hi(s1) + p2 Z ha(s2).

seH(L) S1€L So€ZL

A(

In particular,

A(Sgl,m) = —p1p2B(L) + praa(L1) + paaz(Lo).

Proof. Assume first that py,ps > 0. Consider the truncated complex (Co(H*,A), D).
For each complete circle contained in the square (), we calculate the local Euler charac-
teristic as follows.

Lemma 6.9. For a 2-component L—space link L = L1ULo with vanishing linking number,
and s € 72, the Euler characteristic of the chain complex

Dg= A0 AP
Ly
Dy
@52\[ J/(I)LQ
Ly
D ®s (0!

equals

—h'(s) = —H(s) + Hy(s1) + Ha(s2)

Proof. We can explicitly calculate the Euler characteristic of D g~ _2ny_1, where all chains
have been truncated below some grading —2N — 1 for N >> 0. By applying (6.5)
and Proposition 3.5 we have the following Euler characteristics with respect to internal
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degree:
@) oy = N1 H(s) + sdegzifs)
X(ngl)>—2N71 = N+1-—H(s1)+ %degzl,z(s)
XA)s—onv—1 = N+1— Ha(so) + %degzl,z(s)
XA s—onvo1 = N+1+ %degz1,2(5)-

By noting the cube grading of 0, 1, or 2, we have that 2%, 2!l are supported in the even
parity, and 2%, A% are supported in the odd parity. Finally, notice that x(Ds) agrees
with the Euler characteristic of the truncated square, which equals

—H(S)+H1(81)+H2(82). ]
Similarly, the Euler characteristics of the chain complexes

o oL2
A3 = At and AL = AL
are equal to Hy(s1) and Hj(s2), respectively.

Consider Y = Sg’l po(L£). If p1 = pa = 1, then we can choose an appropriate truncation
b > 0 such that h'(s) = 0 for all s ¢ Q and h/(+b,£b) = 0. The truncated surgery
complex Cg contains all circles in the square @) except the crosses as shown in Figure
5. The chain complex consisting of the crosses inside one circle has Euler characteristic
Hs(s2) or Hi(s1) depending on whether the circle lies on the vertical boundary or the

horizontal boundary of ). Thus the Euler characteristic is
X(CQ)san1=—Y W(s)— > Hi(s1)— > Hals2)
(6.6) seqQ —b<s1<b —b<s2<b
+ X(Ql%ib7,b))>—2N—17

where the last term handles the circles at the corners of the truncated complex. As in the
knot case, we apply the relation (6.4) between the Casson invariant and renormalized
Euler characteristic (which causes a sign change). We then subtract from (6.6) the
corresponding formula for the unlink to obtain

AY) = ASE(0) = D W(s)+ D hals)+ Y ha(sa).

s€Z? S1€E7Z S2€Z

From (6.1) we get

By Remark 6.3,
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for i = 1,2 where Hp(s;) denotes the H-function for the unknot. Thus
)\(Y) = —,B(ﬁ) + GQ(Ll) + GQ(LQ).

This recovers (6.3) for p; = po = 1. The argument is similar in the case where p; =
po = —1 or p1ps = —1, modulo possible parity shifts. When pips > 0, the homology of
the cone is supported in cube degree two or zero, and when pips = —1, the homology
is supported in cube degree one (corresponding with the three cases of Theorem 4.4).
Also, for negative surgery coefficients the erased part of the boundary of Q) would appear
with the opposite coefficient. In general, for pi, ps = +1 we recover

AMY) = —p1p2B(L) + praz(L1) + paaa(La). O

Corollary 6.10. Let L = L1 U Ly be an L-space link with vanishing linking number and
unknotted components, and let L, be the knot obtained from Lo after blowing down the
+1-framed knot Li. Then for the torsion part A0 corresponding to the knot L}, we have

ZX tor = Z h£(51,52)-

sEZ {(s1,82)€22|517£0}

Proof. By Proposition 6.8 and Lemma, 6.7,

Sll Zhﬁ SI(L/)) = ZhL’Q ZX tor

scZ? seZ SEL
= E h(oa 52 E X tor
SoEZ SEZL

Hence,

ZX tor = Z hﬁ(Sl,Sz). O

SEL {(s1,52)€Z2|5150}

Remark 6.11. If there exists a lattice point (s1, s2) where s; # 0 such that hz(s1,s2) >
0, then >~ 7 x(A)ior < 0 by Corollary 2.17. Hence Lf is not an L-space knot. This
also follows from Corollary 1.6.

Example 6.12. Let ¥(2,3,5) denote the Poincaré homology sphere, oriented as the
boundary of the four-manifold obtained by plumbing the negative-definite 8 graph, i.e.
the plumbing along the E'8 Dynkin diagram with vertex weights all —2. In the equality

M) = XU (Y)) = 5d(Y),

we must assume that the Casson invariant A(Y") is normalized so that A(X(2,3,5)) = —
(see [OS03, Theorem 1.3]). Therefore d(X(2,3,5)) = +2. The Poincaré homology sphere
¥(2,3,5) admits an alternate description as (—1)-surgery along the left-handed trefoil
knot 7'(2, —3). By reversing orientation, —%(2,3,5) is (+1)-surgery along 7'(2, 3), with
d(X2(2,3,5)) = —2. Now we may observe that

AS21(T(2,3)) = +1 = h(T(2,3),0).
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Example 6.13. Consider (+1,+1)-surgery along the positively-clasped Whitehead link
L. Surgery along one component yields a right-handed trefoil in S3, and then (41)-
surgery along the remaining component again produces —3(2,3,5). We observe that

)\(S+1 +1(£)) =41= —,B(ﬁ) + az(Ll) + GQ(LQ) = —(—1) +040= h(ﬁ, (O, 0))

Similarly, consider (—1,—1)-surgery along the Whitehead link. Surgery along the first
component now yields a figure eight knot in S, and (—1)-surgery along the figure
eight knot produces the (oppositely oriented) Brieskorn sphere —(2,3,7), for which
A(S3, (L)) = +1. These two cases correspond with homology supported in cube
gradings two and zero, respectively, for which there is no parity change in the Euler
characteristic calculation.

Alternatively, consider (+1,—1) or (—1,41)-surgery along the Whitehead link. This is
the (positively oriented) Brieskorn sphere (2,3, 7). It has homology supported in cube
grading one, which induces the sign change yielding )\(SiL_l(ﬁ)) =-1

7. CROSSING CHANGES

We now extend the skein inequality of Peters [Pet10, Theorem 1.4] to the case of links
with pairwise linking number zero. We continue to omit the unique Spin“-structure on
an integer homology sphere from the notation.

Lemma 7.1. Let K C Y be a genus one knot in an integral homology three-sphere.
Then we have the following inequalities:

d(Y) =2 < d(Vi(K)) < d(Y).

Proof. The part d(Y1(K)) < d(Y) follows from [OS03, Corollary 9.14]. Now we prove
the inequality that d(Y) — 2 < d(Y1(K)). Since K is a genus one knot, +1-surgery
is a large surgery, i.e. HF™(Y1(K)) = H.(A, (K)) [OS04a]. This is a direct sum of
one copy of F[U] and some U-torsion. Define Hg(s) by saying that —2Hg(s) is the
maximal homological degree of the free part of H,(A; (K)) for s € Z, which is the same
as Definition 2.11. Then d(S{(K)) = —2Hg(0). Note that Hg(0) < Hg (1) + 1 (the
monotonicity of Hy holds in an arbitrarily homology sphere and the proof is similar to
the one in Proposition 2.13), and —2Hk (1) = d(Y). So d(Y1(K)) > d(Y) — 2. O

Theorem 7.2. Let L= Ly U---U Ly, be a link of pairwise linking number zero. Given
a diagram of L with a distinguished crossing ¢ on component L;, let D, and D_ denote
the result of switching ¢ to positive and negative crossings, respectively. Then

d(SY.. 1(D-)) =2 < d(S].. 1(D+)) < d(SF . 1(D-)).

Proof. Consider the distinguished crossing ¢ along component L;. Let L, 1 denote the
boundary of a crossing disk, i.e. a small disk at ¢ that intersects L; geometrically twice
and algebraically zero times, as in Figure 13. The crossing change taking D_ to Dy
is accomplished by performing (+1)-framed surgery along L,+1 C Si___ 1(D-). Let
Y = S} 1(D-). It is an integral homology sphere, and S} (D) = Yi(Lyq1). We
claim that the Seifert genus of L, 41 in Y is at most 1. One can easﬂy create a genus one
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surface bounded by L, in Y, simply by adding a tube in S3\ £ along the L; to the
crossing disk bounded by L, 1 at crossing c¢. Then the inequalities follows from Lemma

7.1 U

>Qr DooC

FI1GURE 13. A crossing change taking Dy to D_.

8. GENUS BOUNDS

8.1. Inequalities. Now we may generalize Peters’ and Rasmussen’s 4-ball genus bounds
to links with vanishing linking numbers [Pet10, Ras04].

Recall that the n components of the link £ = L; U--- U L, bound n mutually disjoint,
smoothly embedded surfaces in the 4-ball if and only if each pairwise linking number is
zero. In this case, we define the 4-genus of L as:

n
94(£) = min {Zgz | gi = g(%:), S1U-- U, < B 0%, = Lz} ;
i=1

where the component L; bounds a surface ¥; with smooth 4-genus g;.

Let B, denote a circle bundle over a closed oriented genus g; surface with Euler charac-
teristic p;. We have that H?(B),) & Z%9 @ Z,, (see for example [Liul8, Proposition 3.1]
for a homology calculation). In [Liul8], the second author constructed a Spin®-cobordism
from (#7, By, t') to (S5, ., (£),1). Following our conventions for the parameterization
of Spin‘structures (section 2.1), the labelling of the torsion Spin®-structures t; on By,

is such that —|p;|/2 < t; < |p;|/2, corresponding to the torsion part of H%(B,,).

We are ready to prove Proposition 1.9. We restate it here for the reader’s conve-
nience.

Proposition 8.1. Let £ C S3 denote an n-component link with pairwise vanishing
linking numbers. Assume that p; > 0 for all 1 <i <n. Then

n

(8.1) (S, e p (£),0) <Y d(L(=pis 1)) + 2, (t:)
i=1

and

(8.2) —d(S5, ., (L)1) < Zn: d(L(=pi; 1), t:) + 2, (i)

i=1
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Proof. By [Liul8, Proposition 3.8] we get the inequality
n

(8.3) d(simwn—pn(ﬁ)’ t) < Z dpot (B—p; ti) + 91+ -+ + gn.
=1

By (2.3) we can rewrite the right hand side as

n

Y it (Bopsti) + g1+ 4 g0 = >_(—0(pi i) + 2[4, (1))
=1

i=1
This proves the first inequality (8.1). If £* is the mirror of £, then
3 _ 3 *
d(Sp(E)’t) - _d(s—p(ﬁ )at)

Since mirroring preserves the 4-genera of knots, the right hand side of (8.3) does not
change if we replace d(S3(L),t) by —d(53,(L*),t). This proves the second inequality
(8.2). O

Proposition 1.9 gives lower bounds on the 4-genera of £ in terms of the 3-manifolds
Sip(ﬁ) where p > 0. Theorem 1.1 allows us to compute the d-invariants of Sip(ﬁ)
for two-component L-space links. Combining these two observations, we obtain the
following bounds for the 4-genera of two-component L—space links with vanishing linking
number.

Theorem 8.2. Let L = L1 U Ly denote a two-component L—space link with vanishing
linking number. Then for all p1 > 0 and py > 0

h(51’82) < fgl(tl) + fg2(t2)a

where (s1,52) € Z* corresponds to the Spin°-structure t = (t1,t2) on SI::’LID (£).

Proof. By Theorem 1.1 we have

2

—d(S3 1, (£),) = = d(pi,ts) + 2max{h(sex(t1, 12)).
i—1

Combining this with (8.2) and dividing by 2, we get
max{h(stx(t1,02))} < fg,(t1) + fg (t2)-
By Lemma 2.16, h(s1, s2) < max{h(s++(t1,t2))}. Hence

h(s1,s2) < fgl(tl) + fg2(t2)' O

8.2. Examples. There exist some links £ for which the d-invariants of the (+1,--- ,+1)-
surgery manifolds are known. In this section we provide some examples where existing
d-invariants calculations can now be applied to determine the 4-genera for several families

of links.
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Example 8.3. The two bridge link £y = b(4k? + 4k, —2k — 1) is a two-component L
space link with vanishing linking number for any positive integer k£ [Liul7]. Theorem
1.1 implies
d(Sil,fl(ﬁ)) =0

and

d(S71(L)) = —2h(0,0) = —2[k/2],
where the h-function of £ can be obtained from the calculation in [Liul7, Proposition
6.12]. When p1, po are sufficiently large positive integers, we obtain that g4(£) > k. We
may construct two disjoint surfaces bounded by £ such that g4(£) = k. For details, see
[Liul8, Example 4.1].

Consider the special case of Inequality (1.1) when p; = --- = p, = 1. There is a unique
Spin® structure to on SL’___ +1(£), and we have

(8.4) —d(S} 1 (L),4%)/2 < [gi/2].
=1

On the one hand, this inequality can be used to restrict the d-invariants of (£1)-surgery
along a genus one link £ with vanishing pairwise linking numbers. This will be the case
in Corollary 8.4. On the other hand, we may bound the 4-genus of a link £ if we know
d(S} ... 1(£)). This will be the case in Example 8.7.

Corollary 8.4. Let L denote a genus one link with vanishing pairwise linking numbers.

Then d(S? . 1(£),t0) =0 or =2, and d(S®; .. _(L),t0) =0 or 2.

Proof. By inequality (8.4),

(S}, 1(£),t0) > 2.
By observing the negative definite cobordism from Si)”___ 71(5) to S3, we have
d(Si,,,,l(ﬁ),tO) < 0. Note also that d(Si___J(E),tQ) is even because Si___J(E) is an
integer homology sphere. Then d(Si___ 1(£),t0) =0 or —2.

Let £* denote the mirror link of £. Then d(S§17,,,771(£), ty) = —d(Sfm ,1(5*), to) equals

0 or 2 since L* is also a genus one link. O

Let D, (K,n) denote the n-twisted positively clasped Whitehead double of K. If K is
an unknot, then D4 (K, n) is also an unknot. Otherwise, D4 (K,n) is a genus one knot.
Corollary 8.4 tells us that d(S§(D,(K,n))) = 0 or —2 and d(S%,(D,(K,n))) = 0 or
2. Indeed, using Hedden’s calculation of 7(K) for Whitehead doubles [Hed07], Tange
calcuated HF*(S3,(D(K,n))) for any knot K, yielding:

Proposition 8.5. [Tan17] Let K be a knot in S3. Then

d(S3(Dy(K,n)),tg) = { (12 Z i gzgg

and

d(S%,(D(K,n)), to) = 0.
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This calculation restates Hedden’s criterion on the sliceness of D (K, n) in terms of the
d-invariant: if n < 27(K), then D, (K, n) is not slice.

Example 8.6. Let B(K) be an untwisted Bing double of K. We label the component
involving K as Lo and the other unknotted component as L;. Then

d(S} 1 (B(K), to) = d(S{(D+ (K, 0)), o).

Since B(K) is related to D4 (K,0) by a band move, when B(K) is slice, this implies
D, (K,0) is slice. In particular, whenever 7(K) > 0, then B(K) is not slice. A genera-
minimizing pair of surfaces may be constructed as follows. Since both components L
and Ly are unknots, they bound disks which intersect transversely at two points in B*.
Add a tube to cancel this pair of intersection points and increase the total genus by one.
This illustrates that the bound given by Inequality 1.1 is sharp, since

2= —d(571(B(K),to) = —d(S{(D4(K,0)),t0) < 2[g1/2] + 2[g2/2]
implies that g; + g2 > 1.

Example 8.7. Let W denote the Whitehead link and £ denote the 2-bridge link
b(8k,4k + 1) where k € N. By the work of Y. Liu [Liul4, Theorem 6.10],

HF—(SiLﬂ(E)) = HF—(SiLﬂ(W)) @ FEL

Then the d-invariant d(S? L1,41) (£)) is the same as the one for the Whitehead link. Hence

by [Liul4, Proposition 6.9],
d(sil(ﬁ)at@) = d(Sil(W),fO) = -2
By Inequality 8.4, we have
[91/2] + [g2/2] = 1.
Observe that both the link components of £ are unknots. Again we add a tube to

eliminate the intersection, obtaining pairwise disjoint surfaces with total genus one.
Hence g4(£) = 1, and the bound obtained by Inequality 1.1 is sharp.
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