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Rainbolt

ABSTRACT Recent work of the first author, Negut and Rasmussen, and of Oblomkov and Rozan-
sky in the context of Khovanov—Rozansky knot homology produces a family of polynomials in
q and t labeled by integer sequences. These polynomials can be expressed as equivariant Eu-
ler characteristics of certain line bundles on flag Hilbert schemes. The ¢, t-Catalan numbers
and their rational analogues are special cases of this construction. In this paper, we give a
purely combinatorial treatment of these polynomials and show that in many cases they have
nonnegative integer coefficients.

For sequences of length at most 4, we prove that these coefficients enumerate subdiagrams
in a certain fixed Young diagram and give an explicit symmetric chain decomposition of the set
of such diagrams. This strengthens results of Lee, Li and Loehr for (4,n) rational g, t-Catalan
numbers.

1. INTRODUCTION

The last decade revealed deep, and yet partially conjectural connections [11, 9, 12,
13, 6, 7, 8] of the HOMFLY-PT link homologies with various intricate constructions
in algebraic combinatorics such as ¢, t-Catalan numbers of Garsia and Haiman [4],
LLT polynomials [14], and the elliptic Hall algebra [25]. Some of these conjectures
were recently proven (mostly for the torus knots and links) by Elias, Hogancamp and
Mellit [3, 17, 23).

An interesting class of knots, which best fits in the framework of the above conjec-
tures, are the so-called Coxeter links defined as closures of braids

B(alv"'van) = 6(111 "'Ezntl "'tnflv

where ¢; = t;_1---tity---t;—1 are Jucys—Murphy elements and ¢; are the standard
braid group generators. Here a; are arbitrary integers, but in this paper we will mostly
assume a; > 0, so that all crossings in the braid S8(aq,...,a,) are positive.

Motivated by the geometry of the flag Hilbert scheme of points on the plane (see
Section 2.2 and references therein) we can approximate the invariants of such knots
with the following combinatorial expressions. Define

n

(1) f(al,...,an)zz,z‘l“---zf{" H L Hw(zi/zj),

S (=2 (1 =gtz /2) P
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where the sum is over standard tableaux 7' with n boxes, z; is the (g,t)-content
c—ltr—l _ (A-z)(1—qtx)
q T (1—qx)(1—tx)"
A priori, this is a rational function in ¢ and ¢, but we prove in Section 2.3 that it
is always a polynomial in ¢ and ¢ with integer coefficients. This polynomial can be
expressed as a sum over Tesler matrices with row sums a; as in [9] and especially [1],
where similar polynomials have already appeared.
In the special case when

o -stn= ] [6502].

of the box labeled by 7 in row r and column ¢ in T, and w(x)

n n

by [9] the function f(S;(m,n)) agrees with the rational q,t-Catalan number ¢y, »(q,t). ()
By the main result of [22], this is a polynomial in ¢ and ¢ with nonnegative coefficients.

More precisely,
Cm,n(% t) — Z qarea(D)tdinv(D)7
D

where the sum is over all Dyck paths D in the m xn rectangle and area(D), dinv(D) are
certain combinatorial statistics (see for example [15]). In the even more special case
m =n+1, we obtain a; = S;(n+1,n) = 1 for ¢ > 1, and the polynomial f(1,...,1) =
f(2,1,...,1) agrees with the ¢, t—Catalan number of Garsia and Haiman [4].

Motivated by [10, 24], we expect that the beautiful combinatorics of g, t-Catalan
numbers and their rational analogues can be generalized to the case of arbitrary a;,
possibly constrained by some inequalities. In fact, as we show in this paper, that
varying a; allows one to compute the invariants f(a,...,a,) recursively, see Corol-
lary 2.21 for the n = 4 example.

Using the machinery of Tesler matrices, we prove the following result.

PROPOSITION 1.1. Suppose that a; > 0. Then f(a1,...,a,) is a polynomial in q and
t. At t =1, this polynomial specializes to

a,...,a — IM@)=lul

T n)’tzl ug%a)q
where Ma) = (ag + -+ ap,a3+ -+ an,...,a,).
ExXAMPLE 1.2. For n = 2, one has

flay,ag) = [ag + g1 = q" + ¢t 4o 4 gt~ + 12,
For n = 3 and ay > a3 one has
fla1,a2,a3) = [ag + 2a3 + 14t + gtlaz + 2a3 — 2)g0 + - - + ¢**t%[ag — a3 + 1] 4.

See Examples 2.18 and 2.19 for derivations of these formulas.

The following conjecture was communicated to the authors by Andrei Negut.

CONJECTURE 1.3 (Negut). If a1 = ag = -+ = an = 0, then f(a1,...,as) is a polyno-
mial in q¢ and t with nonnegative coefficients.
For general a1 > as > -+ > a, = 0, it is still an open problem to find an explicit
statistic stat on partitions p such that
(2) flay,... an) = Z g M@=l gstat(u)
nCA(a)

In this paper, we solve the problem for n = 4:

(DNote that the formula for S;(m,n) in [9] used floors instead of ceilings, but the two are related
by the change i — n+ 1 — 4. This change is implicit in [9] since that paper uses opposite conventions
for standard tableaux.

Algebraic Combinatorics, Vol. 3 #4 (2020) 856



Generalized q,t-Catalan numbers

THEOREM 14. For a4+ 1 2 b, a4+ 1,b+1 > ¢ > 0, the polynomial F(a,b,c) :=
f(a1,a,b,c) has nonnegative integer coefficients and can be written in the form (2).
The statistic stat(u) arises from an explicit decomposition of the set of 1 C A(a) into
symmetric chains.

See Section 3 for further details.
Since a symmetric chain specializes to g2 g
immediately obtain the following corollary.

k 1

at=q -, we

COROLLARY 1.5. Fora+1 > b, a+1,b+1 > ¢ > 0, the coefficients of the specialization
F(a,b,c)|i—q-1 are unimodular in even and in odd degrees.

REMARK 1.6. By [10, 24] the specialization of f(a1,...,a,) at ¢ = t~! coincides with
the part of the HOMFLYPT polynomial of the knot 8(a1,...,a,).

REMARK 1.7. Our statistic and decomposition is different from that in [19, 20]. In par-
ticular, some of their chains are not symmetric, but the authors show that partitions
come in symmetric pairs.

We provide a recursion for F(a,b,c) and prove that the combinatorial expression
also satisfies the recursion (see Sections 2.5 and 4.6).

The set of Young diagrams p contained in the diagram A(a) is in bijection with the
Demazure crystal [18, 21] with highest weight (ay,...,a,) and Weyl group element
¢ =1ty -th_1. The size of u can be easily expressed in terms of the weight of the
corresponding element of the crystal basis. This observation leads to many interesting
questions:

e What is the crystal-theoretic interpretation of the statistic stat?
e Is there a crystal-theoretic interpretation of the symmetric chains and the
polynomials f(ay,...,a,)?

REMARK 1.8.In the terminology of [2], subdiagrams of A(a) correspond to so-called
s-Dyck paths, and it is shown in [2] that they are in bijection with remarkably many
combinatorial objects, just as usual Catalan numbers are in bijection with trees,
triangulations etc. It would be interesting to relate the results of [2] both to Demazure
crystals and to the above statistic stat.

The paper is organized as follows. In Section 2, we discuss the algebraic aspects of
the function f(aq,...,a,) (or equivalently F(as,...,ay)). The definition of the func-
tion f(ay,...,ay) is given in Section 2.1. In Section 2.2, we briefly recall its connection
to flag Hilbert schemes and knot invariants; combinatorially inclined readers are wel-
come to skip this section. In Section 2.3, we connect f(aq,...,a,) to Tesler matrices
and prove that they are indeed polynomials in ¢ and ¢. In Section 2.5 we prove the
recursion for n = 4. Section 3 contains the combinatorial expressions for F'(a, b, ¢). We
also provide examples. In Section 4, we construct the symmetric chains underlying
the combinatorial formulas explicitly and also prove the combinatorial formulas.

2. THE ALGEBRAIC SIDE

2.1. THE FORMULA. Given a standard tableau T of size n, we define a vector 2(T") =
(2i)1<ign, Where z; is the (g, t)-content of the box in T' labeled by ¢. The (g, t)-content
of the box with row and column coordinates (r,¢), is ¢~ 1¢"~1. For example, for the
tableau

T =

»—nooqk‘
ot

2[6]7]
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we have
2(T) = (1,q,t,8*,qt,¢%, ¢°).
By convention, z; = 1. We define the weight of a tableau T by

_ T 1 (1 —2i/2;)(1 — qtzi/2;)
i) =) =l e o= n—emy

Note that some of the individual factors in this product (both in the numerator and
denominator) could vanish, and the convention is that we simply ignore these factors.

Given a vector of integers (as, ..., a,) with n > 2, we define
(3) Flag,...,an) =Y 25% 20 - wi(T),
T

where the summation is over all standard tableaux of size n.

PROPOSITION 2.1. For all integer vectors (az, ..., ay), the function F(as,...,a,) is a
polynomial in q and t with integer coefficients.

The proof is very similar to the computations in [9, Section 6.5], but we present it
in Section 2.3 for completeness.

REMARK 2.2. For ag = -+ = a,, = m, the polynomial F(as,...,a,) agrees with the
Fuss—Catalan polynomial, see [9] and [22].

The following conjecture was communicated to the authors by Andrei Negut.

CONJECTURE 2.3 (Negut). For as > ag > -+ > a, > 0, the polynomial F(aa, ..., a,)
has nonnegative coefficients.

In this paper, we prove this conjecture for n = 2,3 and 4 in the slightly more
general case as +1 > as, as + 1,a3 +1 > a4 > 0. In addition, we provide explicit
combinatorial formulas for F'(as, ag, a4) in this case (see Section 3).

REMARK 2.4. Note that it is not enough to assume that a;_1+1 > a; in the conjecture.
For example,

F(0,1,2) = ¢®+qTt+ P2+ PP+ gMA+ B+ O+ gt +18 + ¢St + P+ A3+ Bt
+ 20 + gt + Ot 4 2¢* % + 26383 + 2%t + qt° — ¢*t — P12 — PP — ¢t
On can check that F'(1,2,3) contains negative terms as well.

2.2. FLAG HILBERT SCHEMES. The definition of F'(as,...,a,) is motivated by the
geometry of the flag Hilbert scheme of points on the plane, which we briefly review
here.

The flag Hilbert scheme FHilb"(C?) is defined as the moduli space of flags

FHilb"(C?) = {Clz,y] =TIy D [, D I, D --- D I,,},

where all I}, are ideals in C[x, y] of codimension k. Similarly, the punctual flag Hilbert
scheme FHilb™(C?,0) is defined as the set of such flags, where all I, are supported at
the origin.

The dilation action of (C*)? on C? defined by (x,y) + (¢, ¢~ y) lifts to an action
on both FHilb"(C?) and FHilb"(C?,0). The fixed points of this action correspond
to the flags of monomial ideals, and it is easy to see that these are in bijection with
standard Young tableaux of size n. The flag Hilbert scheme carries natural line bundles
Ly, := Ij,_1/I;, which are equivariant with respect to the action of (C*)2. The weight
of the line bundle L at a fixed point corresponding to a standard tableau T equals
the (q,t)-content zx(T). Note that the line bundle £, is trivial.

The results and conjectures in [10, 24] lead to the following conjecture.

Algebraic Combinatorics, Vol. 3 #4 (2020) 858
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CONJECTURE 2.5. For all a; the Khovanov—Rozansky homology of the closure of the
braid B(ay,...,an) (defined in the introduction) is isomorphic to the total sheaf coho-
mology

H*(FHilb"(C?,0), L' @ --- @ L),

For small values of n, the geometry of FHilb™(C?2,0) can be described explicitly.
For n = 2 we have

FHilb?(C?,0) = P!, £, = O(1),
6]
H*(FHilb*(C?,0), L5 £3?) = H* (P, O(ay)).
Furthermore, for a; > 0 higher cohomology vanishes and the (C*)?-equivariant char-
acter of the space of global sections agrees with F(asg).

For n = 3 the space FHilb®(C2, 0) is a smooth cubic Hirzebruch surface, and the line
bundles £ £5%£3* and their cohomology can be described explicitly for all a1, as, as,
see [10]. Indeed, there is a natural projection 7: FHilb*(C2,0) — FHilb?*(C?,0) = P*
and for az > 0 one has

T L5 = Sym™ (O(2) ® O(—1)) = O(2a3) & O(2a3 — 3) @ --- ® O(—as3),
SO
(4)  H*(FHilb*(C?0), L L2 L3) = H* (P!, O(az) @ m.L5?)
= H*(P',0(2a3 +a3) ® --- ® O(az — az)).

In particular, for a; > asz higher cohomology vanishes and the (C*)2-equivariant
character of the space of global sections agrees with F'(as,as), compare (4) with
Example 1.2.

REMARK 2.6. For (ag,as) = (0,2) we obtain by (4):
H*(FHilb?(C?,0), £3) = H*(P',0(4) ® O(1) @ O(-2)).

Note that H'(P!,O(—2)) is one-dimensional, which corresponds to the negative
term in

F(0,2) = ¢* + 3t + ¢*t* + qt® + t* + Pt + qt* — qt.

However, for n > 4 the spaces FHilb"(C?,0) become very singular and reducible.
Still, they carry a natural virtual structure sheaf, and one can use virtual localization
techniques to prove the identity

X(c+yz (FHIID™(C?,0), L' @ -+ ®@ L") = F(ag, . .., an).

Here on the left hand side, we obtain the (C*)?-equivariant Euler characteristic which
can be computed as an explicit sum over fixed points of (C*)? or, equivalently, over
standard Young tableaux. This sum agrees with (3). We refer the reader to [9] and [10]
for further details.

It is important to point out that, although the polynomial F(as,...,a,) has a
geometric interpretation, this does not immediately imply Conjecture 1.3. Indeed,
for n = 2,3 this follows from vanishing of higher cohomology, but no such vanishing
results are available yet for n > 4. It would be interesting to compare the results of
this paper with the geometry of FHilb*(C2,0). See [10, Section 1.4] and [24, Conjec-
ture 6.4.2] for more on the geometric context.

Algebraic Combinatorics, Vol. 3 #4 (2020) 859
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2.3. TESLER MATRICES. To prove Proposition 2.1, we need to use the formalism of
Tesler matrices, developed in [16, 1, 5]. Given a sequence a = (ay,as,...,a,) of
nonnegative integers, we define a Tesler matriz to be an upper-triangular matrix
M = (my;);>; with nonnegative integer coefficients m;; > 0 satisfying a system of
linear equations

(5) miri-zmji—Zmij:ai for 1 <i<n.

j<i j>i
LEMMA 2.7. The set of Tesler matrices is finite for fixed a.

Proof. Equation (5) can be rewritten as follows:

(6) My + -+ + M, + Z Mk = a; + -+ + ap.
J<i ki

Since all m;; are nonnegative integers, we obtain m;; < a; +---+a, forall4,5. O
Given a sequence (as,...,a,), we define a partition or Young diagram
Aa)=(ag+ 4 an,...,an)

note that a; is not used). Let us call a Tesler matrix two-diagonal, if m;; = 0 for
J
j>i4 1.

LEMMA 2.8. There is a bijection between the set of two-diagonal Tesler matrices as-
sociated to a = (ai,...,a,) and the set of subdiagrams of M as, ..., ay).

Proof. Tf M is a two-diagonal Tesler matrix, then for ¢ > 2 (6) simplifies to
M+ -+ My + M1, = a; + -+ ap,
while for ¢ = 1 we obtain
M+ Mg = ag + -+ + ay,.
This means that for ¢ > 2 the diagonal elements of M define a subdiagram of A(a)
Mg+ + My, < @+ + ap = Ni—,

while m1; and all m;_; ; are uniquely determined by the diagonal. O

We define the functions A(m) and B(m) by the equations

3 Atmem = (B =1 000 )
R R L
3 B = = = 2t )™

THEOREM 2.9. For all a; > 0, we have

(7) F(a27...7an):ZHB(mi,i+1) H A(mi,j)»
M i

j>i+1

where the sum is over all Tesler matrices M satisfying (5).

Algebraic Combinatorics, Vol. 3 #4 (2020) 860
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Proof. The proof is very similar to [9, Section 6.5], but we present it here for com-
pleteness. Since (7) is an identity between rational functions in ¢ and ¢, without loss
of generality we may assume that ¢ and ¢ are complex numbers very close to 1. Pick
real numbers 1 € r; < --- < r,, and consider the torus

T={lz1] =r1,...,|za| =} C C".

Given a = (ay, ..., a,), consider the rational function

n n

ay an 1 1 o
(I)a(zla .. ~7Zn) =21 A H (1 o 2;1) H (1 — thi—l/Zi) HOJ(Zl/ J)'

i=1 i=2 1<j

We would like to prove that the integral

I(a/17--~7an>:/(I)a(Zl,...’Zn> d21 .. dZn
T

2Tz 2mizy,

equals both the left and the right hand side of (7). First, we can write it as an iterated
integral

dz dz,
Ia’)"‘)a”fl :/ / (baza"'7zn . te N .
( ' ) |zn ‘=rn [z1]=r1 ( ' ) 27[-7’2:1 271—7’277«

Given za,..., z,, the possible poles of ®,(z1,...,2,) in 21 are at 21 = 1, 21 = 2/q
and 21 = zi/t. By our choice of r;, we observe that z; = 1 is the only pole inside the
circle |z1| = 71, so the integral

d Z1
Rl(Zg,...,Zn):/ (I)a(Zl,...,Zn)Q -
|z1|=r1 ™21
equals the residue at this pole, which is an explicit function in zs, ..., 2z,. Similarly, it
is easy to see that for fixed zs, ..., z, the only poles of Ry(zs,...,2,) are 2o = ¢ and
zo =t (see Example 2.10) and compute the integral
d V)
RQ(Zg,...7Zn):/ Rl(ZQ,‘..,Zn)Qi_
|z2|=r2 129

as a sum of residues at these poles. More generally, one can prove that for a; > 0 the

only poles that appear in the computation of I(aq,...,a,) are at points (z1,...,2,)
corresponding to the (g, ¢)—contents of all standard tableaux, and (3) can be inter-
preted as a sum of residues at these poles. Therefore I(aq,...,a,) = F(aa,...,a,).

On the other hand, we can change the order of integration and write

dz, dz
(al, ’a") /21|T1 /ZnTn a(Zh ’Zn)27rizn 2mizy

For fixed z1,...,2,—1 the possible poles are at z, = 1,2, = qz; and z, = tz; (note
that the denominators (1 —gtz;—1/2;) cancel out) which are all inside the circle |z,| =
7. Therefore the integral can be written as a residue at infinity

dz, dz,
Du(21y.y2n)—— = —Res,, —0o Pu(21, .-+, 2n) —,
/|zn = a( 1 n) 27T’LG Zp =00 a( 1 n) 27T7,Zn
and similarly we have the iterated residue at infinity
dz, dz;

I(ay,...,an) = (—1)"Resz, =00 - - - ReSz, —00 Pa(21,- - - s Z")2m'z miny

Algebraic Combinatorics, Vol. 3 #4 (2020) 861
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To deal with these residues properly, we introduce new variables u; = z; 1 Note that
zi/%; = uj/u;. Hence I(a1,...,an) equals

Resy, =0 - - - Resy,, =0
n n

- 1 du duy
air ., g~ 0n n_o.
“ Un H (1- uz) H (1 - qtu Jui—1) Hw /1) omiu,  2miug

i=1

which is precisely the coefficient of the rational functlon

n n

H lful H lfqtu/ui 1) Hw (us/ui)

i= =2 1<j

at uf* ---u%". On the other hand, we can expand the rational function as follows:
n n—1

H 1_% <] (1 — uit1/u;) " H o

1 - quz+1/UZ)(1 - tuz+1/uz)

i=1 i=1 >i+1
M, i1 mi,j
U; Ui
§ : Mg 2 : i+1 2 : J
= u; X mz it1 ( ) X A(mw) () .
Uj Us
miq Mi,i+1 mq,

The terms in the sum in (8) are parameterized by the exponents my;, m; 41, m;
which can be combined in a single upper-triangular matrix M = (m;;). Such a term

contributes to ujy?* - - - uln if
=D i) mgi = ai,
j>i i<i
which is precisely the Tesler matrix condition (5). O

ExAMPLE 2.10. For n = 2, we have
21" 25° (1 — 21/22)
(1—27)(1 =2 )1 — gz /2) (1 — tz1/22)

For fixed zo, the poles are at z1 = 1,21 = 29/q and z; = 29/t, and only the first one
is inside the circle |z1| = r1. Therefore

) = s dz; 25%(1 —1/z9)
R = [ elamg =

(1 —q/z)(1—t/2)
At the first step we compute the residue at z; = 1, and at the second we cancel the
factors (1 — z5 ) Now R; (2’2) has poleb at 2o = ¢ and 2o = t, and the residues of

D,(21,22) =

RQ(ZQ)Q(:FZZ) are equal to % / and g / 2, respectively.

-1

To compute the residue at mﬁmty, we write u; = z; - and

uy “ug (1 — ug/uq) dus du
(1 —wu1)(1 —u2)(1 — qua/ut)(1 — tug/21) 2miug 2miug

I(ay, a2) = Resy, —o Resy,—0

Now we expand

E umn’ E um22’
1-— u1

mi120 Mmoo >0

= Z B(mlg)(u2/u1)m12.

mi1220

1—UQ/U1
(1 — quo/u1)(1 — tug/uq)
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By multiplying these three series and picking up the coefficient at u{*u3? we get

mi1 — M1z = a1, Moo + M12 = az, S0 m11 and Mmoo are determined by mio < as and

I(a1,a2) = Z B(miz) = [az + 1]g,.

miz2<az
COROLLARY 2.11. For all a; > 0 the function F(as,...,a,) is a polynomial in q and t.
Proof. Indeed, by Lemma 2.7 there are finitely many terms in the sum (7), and for
all m > 0 both A(m) and B(m) are polynomials in ¢ and ¢. O
COROLLARY 2.12. The specialization of F(as,...,a,) at t = 1 agrees with the sum

Z gr@I=lul

nCA(a)

where a = (ag, ..., an).

Proof. Tt is clear that at t = 1 the coefficients A(m) and B(m) specialize as follows:
A — 0 for m >0, AO‘ -1, B —_—
(m)| _ =0form O], _, (m)]_, =4
Therefore at t = 1 the sum (7) specializes to the sum over two-diagonal Tesler matrices
which by Lemma 2.8 correspond to subdiagrams u C A(a). The weight of such a two-
diagonal Tesler matrix specializes to [[, g™+ = g @l =lul, O

COROLLARY 2.13. For a; > 0 and a,, = 0 we have
F(ag,...,an-1,0) = F(az,...,an-1).
Proof. The last equation in (5) reads as

My + E Min = Qn-
j<n

Hence if a,, = 0, we obtain m;, = 0 for all j. Therefore a Tesler matrix with parame-

ters (a1, a9, ...,a,-1,0) is just an (n—1) x (n— 1) Tesler matrix with row parameters
(a1,a2,...,an—1) completed with a column of zeroes. Since A(0) = B(0) = 1, the
weight of a Tesler matrix in (7) does not change after adding this column. O

2.4. SEPARATING THE SUM. It is useful to separate the sum (3) into two pieces.
Clearly, for any tableau T with at least two boxes either zo = ¢ or zo = t. Let us
call a standard tableau T' head-like if zo = ¢q. Given such a tableau, we define reduced
weight wt(T) = (1 — t/q) wt(T') and
H(ag,...,an;q,t) = Z 292 20 wi(T).
z2(T)=q

Similarly to the proof of Proposition 2.1 one can prove that H(as,...,a,) is a poly-
nomial in ¢ and ¢ with integer coeflicients.

REMARK 2.14. The polynomial H(as, ..., a,) depends on as only by an overall factor
of ¢®2:

Hla, . caniqt) =g [ 30 2§52 - wA(T)

z2(T)=q
REMARK 2.15. In the geometric setup of Section 2.2 the series H (aq, . . ., a,) computes
the equivariant character of the pushforward m,(£32------ L) at one of the fixed

points on FHilb?(C?,0) = P'. Here : FHilb"(C?,0) — FHilb?(C?,0) is the natural
projection.
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The following is clear from the definition:

9) F(a27~~~7an):1_71t/q

Therefore any linear relation on H(a) implies a linear relation for F'(a).

1
H ceeyGni gyt ——H(asg,...,a,;t,q).
(a27 yans q )+ I—Q/t (aQ a Q)

LEMMA 2.16. Assume that H(as,...,ay) is a polynomial in q and t with nonnegative
coefficients, where all monomials ¢'t? satisfyi > j. Then F(aa, ..., a,) is a polynomial
in q and t with nonnegative coefficients.

Proof. By linearity of (9) it suffices to prove the statement for a single monomial ¢*t/

with ¢ > j. In this case
i—j+1 _ pimjtl

qitj qjti j q S i
— tJ = q/t) 1J+_,_+tlj
Tt T Togii ¢ p— 7't (q )
— gt W gt i O
COROLLARY 2.17. Assume that the polynomial H(asz,as,...,a,) has nonnegative co-

efficients. Then for all sufficiently large N the polynomial F(N,as,...,a,) has non-
negative coefficients.

Proof. Indeed, by Remark 2.14 we have
H(N,as,...,a,) = q¢"""H(ay,...,ay,)
and for sufficiently large IV all terms in it satisfy the condition in Lemma 2.16. [

As we will see below, writing the formulas for H(a; g, t) is much more efficient than
the ones for F'(a;q,t), and the sums contain half as many terms.
EXAMPLE 2.18. Consider the case n = 2. There is only one tableau with 22(T) = ¢,
and z(T) = (1,q). A direct computation shows that wt(1,q) = 1_7115/(], so wt(l,q) =1

Therefore H(a) = ¢*. By the proof of Lemma 2.16, this confirms Example 1.2.

ExAMPLE 2.19. Consider the case n = 3. There are two tableaux with zo = ¢ and

W 4,94 ) = (17t/q)(17t/q2)’ w yq,l) = (17t/q)(1*q2/t)
—_— 2 - - - =
We obtain
a+2b agb : i 14
(10) H(a,b) = — a = q" (@ +d Pt ) =) ()

0—t/¢)  (U-/t) 2

(2

Note that (10) holds for any integer a and b > —1. Furthermore, H(a,—1) = 0 for
all integers a. For a > b > 0 the conditions of Lemma 2.16 are satisfied, and F'(a,b)
has nonnegative coefficients. Using (9), one can confirm the explicit expression in
Example 1.2 (see also Lemma 2.23).

2.5. RECURSION FOR n = 4. The situation for n = 4 is more interesting. We record
here the reduced weights wt(T') for all five head-like tableaux:

— 9 B 1 =~ 2 4y 1

wt(1,q,¢ ’qg) = (I—t/g®) (1 —t/¢3)’ wi(l,9,0% ) = (1—t/¢*>)(1—¢3/t)’
. . (1—-1) ~ 2y _ 1
B ([ 7 M (e DY
V(L. tqt) = !

(1=¢?/t)(1—q/t) (1 —t/q)
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LEMMA 2.20. The polynomials H(a,b,c) satisfy the following recursion

c—1
H(a,b,c) = H(a+1,b+1,c—1)+(gt)°H(a+c,b—c)+» (qt)" "2 H(a—b—2c+4i).
=0

Proof. Let us compute the contribution of all tableaux to H(a,b,c) — H(a + 1,b +
1,c—1). Let £(T;a,b,c) = 2§2525. Then

0(1,q,¢%, % a,b,c) = ¢T3 = 0(1,¢9,¢*,¢*;a+ 1,b+ 1,c — 1),

U(1,q,4° ta,b,0) = q"P210, U(1,q, % a4+ 1,b+1,c— 1) = ¢* T3
0(1,q,t,q% a,b,c) = ¢*>t°,  L(1,q,t,¢%a+ 1,0+ 1,c—1) = ¢* 21+
0(1,q,t,t%a,b,c) = "7, L(1,q,t,t%a+ 1,0+ 1,c— 1) = ¢* T2,

(
((1,q,t,qt; a,b,¢) = ¢*Tt*e = 0(1,q,t,qt;a + 1,b+1,¢ — 1).
Therefore the contributions of (1,q,q?,¢®) and (1,q,t, qt) cancel, and
H(a,b,c)— H(a+1,b+1,c—1)=¢" ?t°(1 — ¢*/t)wt(1, ¢, ¢*, 1)
+q (1~ t/g)wi(l,q,1,6°)
+ T2 — q/t)wh(L, g, ¢, £7)
g2 ger2eb (1 — 1) ot
(1—t/¢?)  (1-t/¢>)(1-¢/t)  (1-¢*/t*)
On the other hand, by (10) we obtain

qa+2btc qa+2ctb
qt)°H(a+c¢,b—c) = + ,
(a4t )= T=g® T a-@
SO
a+2ctb atb+20
H(a,b,c) = H(a+1,b+1,c~1) — (¢t)°H(a+c,b—c) = —— !

(—¢/e) " (=)
Comparing this with the last term in the recurrence, we find

c—1 c—1

Z(qt)b+20—2iH(a —b—92+ 42) — Z(qt)b+20_2i . qa—b—2c+4i
i=0 1=0
c—1 ) ) 1— 25t72c
— Z qa+2ztb+2572z — qatb+2c q
-
athrc _ a+2ctb
- % O
1—¢2/t
COROLLARY 2.21. The polynomials F(a,b,c) satisfy the recursion relation
c—1
F(a,b,c) = Fla+1,b+1,c=1)+(qt)°F(a+c,b—c)+_(qt)" > > F(a—b—2c+4).
i=0

Note that the entries a — b — 2c+ 44 in the recurrence of Corollary 2.21 can become
negative. However, the following symmetry relation holds.

PRrROPOSITION 2.22. We have for a > 0

F(—a) = - F(a—2).

(qt)a—l
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Proof. By (9) and Example 2.18, we have

_ . 1o L1 (/9!
PO =T T T e
Hence
_ —a+1 _ a—1

Note that using Corollary 2.21 and Proposition 2.22; F(a,b,c) fora >b>c >0
can be reduced to F(a,b) for a > b > 0 and F(a) for a > 0, which are given in
Example 1.2.

Now we compute F(a,b) explicitly by separating the sum.

LEMMA 2.23. For b > —1 and a > b — 1 we have
b a+2b—2i

Z Z jt(a+2b %)

Proof. We may express F'(a,b) in terms of H(a,b) by separating the sum as above.
Using the expression for H(a, b) from Example 2.19 (note that this expression is valid
for b > —1 and any value of a) this gives us

b

F(a,b) = 1_t/qq Z )i 4 lq/tt“Z(tz)b‘iqi

i=0 i=0
a+1 b 741 a+1 2\b—1 1
- (e )
b a+2b+1—2i41 a+2b+1-21 z b a+2b—2i
q ' —t j+(a+2b—1)
t

Sy I TS

where the last step is legal because we are assuming a > b —1. O

LEMMA 2.24. We have F(—1) = F(a,—1) = 0 for a > —2 and F(a,b,—1) = 0 for
a,b>1.

Proof. Since H(—1;q,t) = ¢!, Equation (9) implies F(—1) = 0. On the other hand,
Lemma 2.23 immediately implies F'(a, —1) = 0. Finally, by Corollary 2.21 we have
Fla—1,0—-1,0)=F(a—1+1,b—1+1,0—1)+ (¢t)°F(a —1+0,b— 1 —0).

But by Corollary 2.13 we have F(a — 1,0 —1,0) = F(a — 1,b — 1) and the lemma
follows. O

The recursion of Corollary 2.21 implies the following “two-step” recursion. It has
the advantage that it does not contain any negative arguments, which will be advan-
tageous for the combinatorial analysis of Section 4.

LEMMA 2.25. Fora>b—1,a,b>c—1 >0, we have

F(a,b,¢) =F(a+2,b+2,¢—2)+ (qt)° Fla4+c¢,b—c)+ (¢t) P Fla+ec,b—c+2)

min(a—>b,2c) 1
+ > (@) Fla—b+2-2)— Y (qt)" Fla—b+2c—2j).
Jj=2 j=a—b+1

REMARK 2.26. If a > b then the last sum is empty. If @ = b or a = b — 1 then the next
to last sum is empty, and the last sum contains one or two terms, respectively.
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Proof. Using the recurrence in Corollary 2.21 and then the same recurrence again on
the term F(a+ 1,0+ 1,¢ — 1), we obtain

F(a,b,c) = F(a+2,b+2,¢—2)+ (qt)° Fla+c¢c,b—c)+ (qt)* ' Fla+c,b—c+2)

c—1 c—2
+3 (g)"T T F(a—b—2c+4i) + Y (qt)"T* T T F(a — b— 2c+ 2+ 4i).
1=0 1=0

The first three terms are the same as in the statement of the lemma. The last two
sums can be combined to

2¢c—2

> (g)"* I F(a— b 2c+ 2j),
j=0

or, reversing the order of the sum:

2c

(11) > (gt)" T F(a—b+ 2c—2j).
j=2

If 2¢ < a — b the corollary is proved. Otherwise we may break expression (11) above
into two pieces to obtain

a—b 2c
> (@) F(a—b+2c—2j) + > (qt)" 7 F(a — b+ 2c — 2j),
j=2 j=max(a—b+1,2)

or equivalently

a—b 2c
Z(qt)b+jF(a—b—|—2c—2j)+ Z (qt)" ™ F(a — b+ 2c — 2§)
=2 j=a—b+1

1

— > (g)"F(a—b+2c—2)).
j=a—b+1

Therefore, if we show that the middle sum above is 0 the corollary is proved. However,
setting K = —a + b — 2¢ we have

2c
> ()" F(a—b+2c-2j)= Y (qt)" TR,
j=a—b+1 —K<r<K-2

where the sum is over only those r such that 2|(K + r). Since F(—1) = 0 this can be
split into

S @ E PR+ 3 (g R,

2<r<K 0<s<K—2

where again the sum is only over r with 2|(K +r). However, applying Proposition 2.22
term-wise to the left sum gives precisely the opposite of the right sum. O

3. COMBINATORIAL EXPRESSIONS

In this section, we present a combinatorial formula for F(a,b,c¢) when a +1 > b,
a+1,b+1>c>0.
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3.1. SYMMETRIC CHAIN EXPRESSION. Recall that A(a,b,¢) = (a+b+c¢,b+¢,c). We
set A= |X(a,b,¢)| =a+2b+ 3¢, €;; =max(0,i+j—b—c), and m.; = c—j (mod 2)
for convenience. Define the symmetric chain for k < £ as

[k, g = q"tF + g R+ b gE T Rt
We may write F'(a,b,c) as a sum of symmetric chains.

THEOREM 3.1. For nonnegative integers a,b,c anda+1 > b, a+1,b+1 > ¢, we have

Fla,be)= Y [i+eijA—2i—jlgu
(i,5)€Q
where Q = {(1,§) | 0<j<e¢, j<i<b+e, 2i+2j <a+b+2c—me).
The proof of Theorem 3.1 is given in Section 4, see in particular Corollary 4.14. For
the various conditions appearing in @), see the conditions for quasiheads in Table 3.

Note that Theorem 3.1 immediately implies that the right hand side is symmetric in
q and t.

REMARK 3.2. Note that the conditions on ¢ and j imply that ¢ +¢;; < A —2i — 3.
Namely, since ¢ < b+ ¢, we have i + ¢;; < max(b + ¢, + j). Furthermore, since
2i+2j<a+b+2c, wehave A —2i—j=A—2i—2j+4+j > b+ c+ j which in turn
is greater or equal to max(b+ ¢,i + j) given that j > 0 and i < b+ c.

REMARK 3.3. Note that the interval [i + €;;, A — 2¢ — j] of integers that appears in
the symmetric chains in Theorem 3.1 will be called the area range in Section 4 as it
is the range of the area statistic for the given symmetric chain.

REMARK 3.4. Surprisingly, the identity H(a,b,c) = Z(i,j)e@ A2 It*¢5 does not
hold in general, as the right hand side satisfies slightly different recursion relation, see
Lemma 4.11.

3.2. COMBINATORIAL EXPRESSION. The symmetric chain expression of Theorem 3.1

leads to a purely combinatorial expression for F'(a, b, ¢) as a sum of all subpartitions of

A(a, b, ¢) with two associated statistics. The area statistic for A C A(a, b, ¢) is given by
area(A) = |A(a, b, c)| — |Al.

The second statistic requires a little more notation. We set L = a + b + c. Further-

more, we name the following cases:

CASE 1.z > min(b + ¢ — z, [45%])

(@) z4+y—2+2¢, <L

(b) x+y—2+2¢,>L
(i) y+z<b+c
(i) y+2z=>b+c

CASE 2. z <min(b + ¢ — z, [45%]).

With this, we are ready to define the t-statistic, where A = (z,y, z) is a partition
withz>2y>2arx>20andex<a+b+c,y<b+c z2<c
4+ max(0, [ ],y + 2 —b—c, [%]) in Case 1(a),
—L+ 2z +y — 2 + max(0, [ LE252=4]) in Case 1(b)(i),
(12) stat(A\) =<2z +3y+2— (a+3b+3c)
+ max(0, fww,a +2b+2c—x—2y) in Case 1(b)(ii),
y+z in Case 2.

Our main result is the following.
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THEOREM 3.5. Let a, b, ¢ be nonnegative integers with a+1 > b, a+1,b+1 > c. Then
F(a,b,c) = Z grea)gstat(A),
ACA(a,b,c)
The proof of Theorem 3.5 is given in Section 4.7.

EXAMPLE 3.6. Let us take a = b = ¢ = 1, so that A(1,1,1) = (3,2,1). The subpar-
titions A of (3,2,1) together with their monomial g2V ¢t2t(\) are listed in Table 1,
organized in the chains associated to Theorem 3.1.

TABLE 1. Subpartitions of (3,2,1) with their monomials

qarea()\)tstat(/\)
chains ‘ subpartitions with statistics
oo, | o O [ O H
¢° e G2 P>t3 g2t qt® 16
[]‘74]q7t |
q4t q3t2 q2t3 qt4
w3, | O o [
H | L[]
q3t q2t2 qt3

REMARK 3.7. Note that stat(\) is in general different from dinv(A) and bounce(A).
As stated in [15, Exercise 3.19], dinv()) is the number of cells = in A such that
leg(z) < arm(A) < leg(z) 4+ 1. Here leg(x) is the number of cells in A above z in the
same column as x and arm(x) is the number of cells in A to the right of z in the same
row as x. Then ¢ ¢dinv(Y) for the partitions in Table 1 read row by row, top to
bottom, left to right are

@®, ¢t "%, 1, Pt gt 10, 4, P P gt Pt 1R, gt

which differs from Table 1. Similarly, one may check that bounce(\) is in general
different from stat(\).

ExaMPLE 3.8. Consider (a,b,c) = (1,1,2), so that A\(1,1,2) = (4,3,2). The subpar-
titions A of (4,3,2) together with their monomial ¢@@M¢5t2t(M) are listed in Table 2
organized in the chains associated to Theorem 3.1.

REMARK 3.9. As the parameter a becomes larger with respect to b and ¢, simplifica-
tions occur.

e When a > b+c—1, the statistic in (12) can be simplified by eliminating Case 2
and setting any expression that appears inside a “[-]” to 0. Moreover, in Ta-
ble 3 the parameters 6;; and 6% become uniformly 0 and the condition (15d)
becomes unnecessary.

e When a > b+ 2¢, all the above simplifications hold. Moreover, in Table 3 the
conditions (14c), (15¢), and (17¢) become unnecessary.
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TABLE 2. Subpartitions of (4, 3,2) with their monomials

qarea()\)tstat()\)
chains ‘ subpartitions with statistics
0.9, | ¢ O M OD OO0 H o B B B
q9 qSt q7t2 q6t3 q5t4 q4t5 q3t6 q2t7 th t9
M H -H
L7, | H B Ho B HH N |
q7t q6t2 q5t3 q4t4 q3t5 q2t6 qt7
1. 6lg. Ejiuiu\ijwuﬁu
q6t q5t2 q4t3 q3t4 q2t5 qtﬁ
2.5 EnlNAE
o | D ] |
q5t2 q4t3 q3t4 q2t5
[3’3]q,t
q3t3

4. PARTITION CHAINS AND PROOFS

In this section, we assume that a > b — 1, a,b > ¢ — 1. We provide four different
indexing sets for symmetric chains that partition the set

A:={X] X C A(a,b,c) and X a partition}
called tails, pseudoheads, heads, and quasiheads. The tails, pseudoheads, and quasi-
heads are defined as
Set of tails T := {TF¥ | conditions (14a)-(14c) on E, F},
(13) Set of pseudoheads P := {P;; | conditions (15a)-(15d) on ¢,j},
Set of quasiheads @ := {Qs; | conditions (17a)-(17¢c) on s,t},

where TFF P;j, and Qs are defined in Table 3 and for convenience A = a + 2b 4+ 3¢
and L = a + b+ ¢ throughout this section. In addition, we write P = P~ U P, where

Piz{ﬂjepl(gijgeij} and P+:{Pij€P|5ij>€ij}

and €;; and d;; are also given in Table 3.
Finally, we define the set of heads H = H~ U HT, where H~ = P~ and

HT = {(k,0,0) |a< <k <b+c}

For a negative head, the area range is the same as its area range as a pseudohead.
For positive heads we set the area range to

RL=[,A—k—1].

EXAMPLE 4.1. In terms of the indexing sets of Table 3, the symmetric chains in Table 1
of Example 3.6 from top to bottom correspond to the tails 7% = (3,2,1), T1° =
(2,2,1), T% = (3,1,1), the pseudoheads (and heads) Py = (0,0,0), P;p = (1,1,0),
Py = (1,1,1), and the quasiheads Qoo = (0,0,0), Q10 = (1,1,0), @11 = (1,1,1),
respectively. The tails are the largest partitions in the chain and the pseudoheads
(heads, quasiheads) are the smallest partitions in each chain.
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ExXAMPLE 4.2. The symmetric chains in Table 2 of Example 3.8 from top to bottom
correspond to the tails 7% = (4,3,2), T'0 = (3,3,2), T°! = (4,2,2), T! = (3,2,2),
T? = (2,2,2), the pseudoheads Pyy = (0,0,0), Pip = (1,1,0), P;; = (1,1,1), Py =
(2,2, 1), P22 = (2,2,2), the heads POO = (0,0,0), P10 = (1,1,0), P11 = (1, 1, 1),
H2 = (2,2,0), Py = (2,2,2), and the quasiheads Qoo = (0,0,0), Q10 = (1,1,0),
Q11 = (1,1,1), Qa0 = (2,2,0), Qa2 = (2,2,2), respectively. The tails are the largest
partitions in the chain and the heads are the smallest partitions in the chain. For the
chain [2, 5],,, the head and pseudohead are not the same.

The set of tails, pseudoheads, heads, and quasiheads are all in area preserving
bijection. That is, if X, Y are one of the sets tails, pseudoheads, heads, and quasiheads
and the area ranges for x € X and y € Y are R, and R,, respectively, then there
is a bijection ®: X — Y such that R, = Ry, for all z € X (see Sections 4.1, 4.2
and 4.5).

In Section 4.4, we define chains (using the strings of Section 4.3) and prove in
Theorem 4.8 that the chains partition A, the set of all subpartitions of A(a, b, ¢). In
Section 4.6, using the quasiheads, we show that the combinatorial symmetric chain
function G(a,b,c) satisfies the same recursions as F'(a, b, c), thereby proving Theo-
rem 3.1. The proof of Theorem 3.5 is given in Section 4.7.

4.1. AREA PRESERVING BIJECTION BETWEEN TAILS AND PSEUDOHEADS. We now
construct an area preserving bijection between tails and pseudoheads.

LEMMA 4.3. Define maps ¥ and ¥~ by
U(E,F) = (E+F — PF F 4 PF),
Ui, ) = (i — § + 265, 5 — €ij)-
Then ¥ induces a bijection from T to P wvia the rule that if V(E, F) = (i,7) then
(a+b+c—E,b+c—F,c)— (i,i,5).

The inverse of this bijection is induced by W= wvia the rule that if V=1(i,j) = (E, F)
then

(4,4,5) = (a+b+c— E,b+c— F,c).
Moreover, if V(E,F) = (i,7), then RFF = R;;.

Proof. First we show that W is a bijection on Z2. Indeed, note that if either U(E, F) =
(i,5) or ¥~1(i,j) = (E,F) we have 6¥F = §;; and e”F = ¢;;. Hence, a simple
computation shows that ¥ o ¥~ and U~! o U are the identity on Z2. Moreover, it
is apparent that U preserves the area range. It remains to show that ¥(T) C P and
u-1(P)CT.
First let TPF € T and suppose ¥(E, F) = (i, 7). We must show that the conditions
in (15a)-(15d) hold:
e Condition (15a): The condition 0 < j < ¢ translates to 0 < F + ¢ < ¢
which is immediate from (14a).
e Condition (15b): The condition j < i < b + ¢ translates to F + e¥F <
E+ F — eBF < b+ ¢. The left hand side follows from the left hand side
of (14b). If ¢£F = 0, then we have E + 2F < b+ ¢ so the right hand side
follows. Otherwise the right hand side reduces to —F + b + ¢ < b + ¢ which
follows from F > 0.
e Condition (15¢): The condition 47 + j < a + 3b + 3c translates to 4E + 5F —
3¢l < a + 3b + 3c which is (14c).
e Condition (15d): The condition i — 2j < a translates to F — F — 3¢ < a
which follows from the right hand side of (14b).
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TABLE 3. Various indexing sets for chains

Tails TEF =(a+b+c—E,b+c—F,c)

(14&) 0<F§C—6EF
Conditions (14b) 2FF <K E<F+a

(14c) AE +5F — 36" < a+3b+ 3¢
Area range REF = [E + F,A — 2E — 3F + max(e&F | §EF))
Notation ePF = max(0, E + 2F — b — ¢) and §PF = [EtE=a]
Pseudoheads Py = (i,1, )

(15a) 0<j<ec

15b <i<b
Conditions (15D) ST e

(15¢) 4i+j<a+3b+3c

(15d) i—2j<a
Area range Rij = [i + €ij, A — 2i — j + max(0, 055 — €i;)]

. . . i+ i — a
NOtatlon (16) 61']' = maX(O,z +] — (b + c))a 517‘ = ’762]—‘
Quasiheads Qst = (s,8,t)

(17a) 0<t<e
Conditions (17b) t<s<b+c
(17¢) 25 +2t<a+b+2c—me

Area range

Ryt = [s+ e, A— 25— 1]

Notation

est = max(0,s +t — (b+¢)) and me = (¢ —¢) (mod 2)

Now let P;; € P and suppose U~1(i, j) =

n (14a)-(14c) hold:

e Condition (14a): The condition 0 < F < ¢ —
c — ePF . The left hand side follows from j =

eEF translates to 0 <

(E, F). We must show that the conditions

— €5 <

0 unless €;; > 0, in Wthh case

it follows from 7 < b+ c¢. The right hand side is equivalent to j < ¢ (since

€ij =€
e Condition (14b): The condition 2¢EF < B <
i—J+2€6; <j—

EF)

right hand side follows from (15d).

e Condition (14c): The condition 4F + 5F — 3¢PF <

4i — 45 + 8¢i; + 5j — beij — 3BT < a+ 3b + 3¢ which follows from (15¢).

F + a translates to 2¢PF <
€ij + a. The left hand side is equivalent to j < % and the

a + 3b + 3¢ translates to

O

4.2. AREA PRESERVING BIJECTION BETWEEN PSEUDOHEADS AND HEADS. We now
construct an area preserving bijection between pseudoheads and heads. Set ¢ = V—Tﬂ
and €, = max(k + 65 —b—c,0).

Algebraic Combinatorics, Vol. 3 #4 (2020)

872



Generalized q,t-Catalan numbers

LEMMA 4.4. Define maps © and ©~1 by
O (k,0) = (0 —eb ke — €+ el +57).

Then © induces a bijection from P to H, which is the identity on P~ and, if ©(i,j) =
(k,0) it acts as (i,4,7) — (k, £,0) on PT. The inverse of this map is the identity on H~
and, if ©71(k,0) = (i,7), then (k,£,0) — (i,i,5) on H*. Moreover if ©(i,j) = (k,{)
then Rij = Ri

Proof. First we show that © is a bijection on Z2. Indeed, note that if either ©(i, j) =
(k,€) or ©~1(k, £) = (i, 7) we have &, = &;; and €}, = ¢;;. Hence, a simple computation
shows that © 0 ©~! and ©~! 0O are the identity on Z2. Moreover, it is apparent that
O preserves the area range.

Now suppose P;; € Pt and O(i, j) = (k, ). We wish to show that (k,¢,0) € H*.
This means we must verify the inequalities a < @ + ¢;; < i+ j — d;5 < b+ c. The
first inequality is immediate because d;; > €;; is equivalent to i — €;; > a. The second
inequality is the same as d;;+¢€;; < j which is equivalent to i —2j < a—3¢;;. If ¢;; = 0,
this is the same as the pseudohead condition i — 2j < a. Otherwise, it is equivalent
to the pseudohead condition 47 + j < a + 3b + 3c. Finally, the last inequality is just
i+ j— (b+c) < d;; which is immediate since the former is less than or equal to ;;
which is by assumption less than d;;.

Now suppose Hj € H* and ©~1(k, /) = (i,j). We need to show that &;; > €;; as
well as the pseudohead conditions (15a)-(15d) for i = £ — €}, and j = k — £ + €}, + 4%,
for any (k,¢) such that a << k<b+c:

e §;; > €. We have 0;; — €;; = 0t — e, = min(—k + b + ¢, d%). But this is a
positive number because k < b+ ¢ and £ > a.

e Condition (15a): The condition 0 < j < ¢ translates to 0 < kf€+e£ +5£ <ec
The left side holds since all of k — £, ¢f, 6 are nonnegative. Now, if € = 0
then k + 5£ <b+c<a+c+ 1<+ cwhich implies the right hand side. On
the other hand, if ef; > 0 the inequality becomes 2k — £ + 26£ < b+ ¢ which
would certainly hold if 2k + QZ_T‘I — 0 =2k —a < b+ 2c. But this is true since
k<btcand k<b+c—1<a+c

e Condition (15b): The left hand side of the condition j < ¢ < b+ ¢ translates
to k — €+ e +0r < 0 —eb, that is, k + 2}, < 20 — §¢. If €, = 0 this says
k<[22 Butk<b+c—1<(a+1)+(a+1)—1=2a+1 On the
other hand ¢ > a implies L‘%%J < 2a+ 1. If € > 0 the left hand inequality
reduces to 3k < 20 — 361, +2b+2c = L“‘TC‘J +a+2b+2c which would certainly
hold if 2k + k = 3k < 2a+2b+2c. But 2k < b+c—2and k < 2a+1
so this holds (in fact strictly). Moreover, the righthand side easily holds as
E—ei<€<k<b+c.

e Condition (15¢): The condition 4i+j < a+ 3b+ 3c translates to 3¢ — Sef; +k+
8¢ < a+3b+3c. If €, = 0, we have k + &), < b+ c. Hence it is enough to show
that 3¢ < a + 2b + 2¢. But this is also true since k + 6£ < b+ c is equivalent
to 2k + ¢ < a+2b+ 2c and ¢ < k. On the other hand, if ei > 0 the inequality
we need to show reduces to 3¢ — 2k — 25£ < a. Since ¢ — k < 0 it suffices to
show that ¢ — 2(5£ < a. But this is clear since ¢ — 25ﬁ </l — 2% =q.

e Condition (15d): The condition i —2j < a translates to 3¢ — 2k — 3¢t — 367, < a.
But this follows from ¢ — 2§¢ < a and £ — k < 0.

This shows that © induces a bijection from P+ to HT. Extending this map to all of
P by declaring it to be the identity on P~ is also a bijection as long as H-NHT = @.
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Indeed, only partitions of the form (m,m,0) may lie in both H~ and H*. Moreover,
being in H~ implies d,,0 — €0 < 0 which means m < a. On the other hand, being in
H* would require a < m. O

4.3. STRINGS. We now consider the set of all partitions A which fit inside the partition
Ma,b,¢) = (a+ b+ ¢, b+ ¢,¢). We call such a partition (z,y,z2) positive if z <
min(b+ ¢ — z, [45%]) and negative otherwise. Write A = A~ U AT,

Let P;; = (i,4,7) be a pseudohead with W(E,F) = (i,5). Suppose that TEF =
(p, q,c). We define the string associated to P;; and TE¥ to be

(18) S(Py)=8(T*") = U (v,3,5) U w,d) U (pg,2)

iSa<p 1<y<q Jj<z<c
LEMMA 4.5. (p,q,¢) is a partition containing (i,4,j) and is contained in A(a,b,c).
Thus every S(P;;) is a nonempty set of partitions contained in X(a,b,c).

Proof. 1t is clear that p = L — E < L by the left side of (14b). Furthermore, ¢ =
b+c—F < b+c by the left side of (14a). Obviously ¢ < ¢. Hence (p, ¢, ¢) is contained
in A(a, b, c).

Nowp—q=L—-—FE—(b+¢c—F)=a—E+F > 0 by the right side of (14b).
Furthermore, ¢ = b+ ¢ — F > ¢ follows from F < ¢ (which comes from the right
side of (14a)) unless b < c. If b < ¢, we must have b = ¢ — 1 so we just need to
show ¢ = (¢c— 1)+ ¢— F > c or equivalently F' < ¢ — 1. Indeed, if F' = ¢ then
ePF = max(2c+ E — (2¢ — 1),0) = max(E + 1,0) > 0 by the left-hand side of (14b).
Thus the right-hand side of (14a) implies F' < ¢ — 1 contradicting the assumption
F = c. This shows that (p, g, ¢) is indeed a partition.

Finally it is obvious that j < ¢ and since we already showed that p > ¢ all that
remains to show is ¢ > ¢. But this says b+c—F >4 or b+ ¢ — (j — ¢;;) > ¢ which is
equivalent to ¢ + j — (b+ ¢) < ¢;; which follows immediately from (16). O

THEOREM 4.6. Let u € A~. Then there exists unique P;; € P such that p € S(P;;).
Conversely, if u € S(P;;) for some pseudohead P;;, then € A~

Proof. Let u= (x,y,2) € A~. Let us set:
E(y,2) =y — 2+ 2¢y. and Fly,2) =2 — €y,.

We prove the first statement in three cases.

(1) First suppose z + &(y,z) < L. Note that this corresponds to Case 1(a) in

Section 3.2. To show uniqueness suppose p € S(P;;) with tail T(E—P)(b+e=a),

If p is from the second union in (18), then u = (p,y, j) for i < y < ¢. Since
E(y,j) = E(4,j) we have:

r+&(y,2) =p+EY,J) 2p+E(i,J) = (L= E(0,4) + €6, 7) = L.
If 44 is from the third union in (18), then u = (p,¢,2) for j < z < ¢

Now ¢ = b+ ¢ — F(i,j) implies ¢ + j > b+ c. From this, it follows that
E(q,z) = E(q, 7). Since E(q,j) = £(i,J) as well we have:

e+ E&(y,2) =p+E(q,j) Zp+E(>LJ) = (L —E(@,j) +£(6,4) = L.

This means that p can only come from the first union, so that we must have
i =y and j = z. Hence p can be in no other string than S(P,,).

Now we show that p € S(P,.). First we need to check P, satisfies the
pseudohead conditions:

e Condition (15a): 0 < z < ¢ is immediate.

e Condition (15b): z < y < b+ ¢ is immediate.
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e Condition (15¢): 4y + 2z < a + 3b + 3c. If ¢, = 0 then the original
assumption becomes x+y—z < L and we also have y+ 2z < b+c¢. Adding
the first inequality to twice the second yields 43y + z < a+3b+3c and
we are done since y < z. If €,, > 0 then the original assumption reduces
directly to = + 3y + 2 < a + 3b 4 3¢ so we are done for the same reason.

e Condition (15d): y — 2z < a. First suppose €,, = 0. Now, since p is a
negative partition we either have z > [#5%] which would mean 2z > y—a
and we would be done, or else, z > b+ c— . In the second case: €,, =0
along with the original assumption imply x +y — z < L, and subtracting
from this the inequality = 4+ 2z > b+ ¢ gives y — 2z < a. Finally, if
€y> > 0 then we have y 4+ 2z > b+ c. Subtracting three times this from
4y + z < a + 3b + 3¢ (which we have already verified) gives y — 2z < a.

Now that P, is in fact a pseudohead it is obvious that p € S(P,;) (in the
first union) because x < L — E(y, z).

(2) Now suppose z + E(y,z) > L and y + z < b+ ¢. Note that this corresponds
to Case 1(b)(i) in Section 3.2. To show uniqueness suppose pu € S(P;;) with
tail T(L—p)(b+c—q)

If 14 is from the first union in (18), then p = (z,1, j) for i < < p. But this
means x + £(i,7) < L, that is, z + E(y, 2) < L, contradicting our assumption.

If 1 is from the third union in (18), then u = (p,q, 2) for j < z < ¢. Now
q="b+c—F(i,j) where F(i,j) = j because y+2z < b+cmeans i+j < b+ec.
Thus g+ j=b+4+csoq+z > b+c, that is, y+ z > b+ ¢, again contradicting
our assumption.

This means that p can only come from the second union in (18). In this
case, p is of the form (p,y,j) for i < y < ¢. In particular, x = p = L —
E(i,j) =L —E(i,z). But i+ 2 < y+2z < b+cso e, =0 and this reduces
to x = L — i+ z. Therefore, i = L + z — x, and we see p can be in no other
string than S(P(14:—z)-)-

Now we show that u € S(P(L+z_m)z). First we need to check that Py 4. _s).
satisfies the pseudohead conditions:

e Condition (15a): 0 < 2z < ¢ is immediate.

e Condition (15b): z < L+ z — x < b+ ¢. The left hand side is immediate

because z < L. On the other hand the first original assumption implies
L+ z—-2 < &(y,2z) + z and the second original assumption implies
Ey,z)=y—z.Thus L+z—x<y<b+e

e Condition (15¢): 4(L + z — x) + z < a + 3b + 3c. Since p is a negative
partition we have z > min(b+c—z, [#5*]). First suppose that z > [¥5*].
This along with the fact that (L+2—z)+ 2 < y+2 < b+ ¢ implies that:

L+z—2)+z2=(L+z—2)+3(L+z—x+2)—22
<y+30b+ce)+(a—y)=a+3b+3c

Otherwise we must have z < [¥5%], but z > b+ ¢ — z. Now [45%] >
b+ c¢—x means y > a + 2b + 2¢ — 2x. Since y < b+ ¢ — z this gives
a~+2b+2c—2x < b+ ¢ — z which becomes 2z — z > a + b+ ¢. Adding
this inequality to « + z > b + ¢ (which is equivalent to the assumption
on hand) we obtain 3z > a + 2b 4 2¢. At this point we suppose for the
sake of contradiction that 4(L + z — z) + z > a + 3b + 3c. This means
(L+z—2+2)+3L+32—3x > a+3b+ 3c which in light of the previous
equation yields (L4 z—x+2)+3L+3z > 2a+5b+5¢. This in turn gives
3L+ 3z >2a+4b+ 4c since L + z — x 4+ z < b+ c. Finally, we are left
with 32 > —a+b+c. But at the same time 4(L+2—x)+2z > a+3b+ 3¢
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means 4(L + z —x + z) — 3z > a + 3b + 3c. And again making use of
L+2z—x+2 < b+c this implies 3z < —a+b+c¢, which is a contradiction.
Hence we must have 4(L + 2z —x) + z < a+ 3b + 3e.

e Condition (15d): (L + z — x) — 2z < a. Again, u is negative so we may
consider two cases. First, if z > [¥5%] then L 4+ z — 2z < y implies
L+z—2—22=(L+z—2)—y+a < a. On the other hand if z > b+c—=x
then (L+z—2)—22=L—-z—2<L-b—-c=a.

Now since Py ._,), is indeed a pseudohead, the facts that L — E(L + 2z —
z,2)=L—(L—z)=cvand L+z—2x<y<b+c—F(L+z—z2%) (since
the latter is equal to b+ ¢ — z) imply that p € S(P(14:—s)-) (in the second
union in (18)).

(3) Now suppose x + E(y,z) > L and y + z > b+ c¢. Note that this corresponds
to Case 1(b)(ii) in Section 3.2. To show uniqueness suppose p € S(P;;) with
tail T(-P)te=a),

If 14 is from the first union in (18), then u = (x,4,5) for ¢ < x < p. This
means that x + E(y, z) = + £(4,j) < L, contradicting our assumption.

If p is from the second union in (18), then u = (p,y, ) for i <y < ¢. Thus
y < b+ c— F(i,j) which is equivalent to y +j — (b + ¢) < €; < €,; which
implies €,; =0 and y + j — (b+¢) <0, contradicting y + j =y +2z > b+c.

This means that p can only come from the third union in (18), so that
we must have x = p and y = ¢. Hence pu can be in no other string than
S(T(L—x)(b-ﬁ-c—y))'

Now we show that p € S(TEL~2)+e=v)) First we need to check that
T =2)(b+e=y) gatisfies the tail conditions (14a)-(14c) for E = L — x and
F=b+tc—y:

e Condition (14a): 0 < F < ¢ — ¢®F. This means 0 < b+c—y < ¢ —
ell=z)(bte=y)  The left-hand side follows from y < b + ¢. The right-
hand side says €(_z)(b+c—y) < ¥ —b. We may assume eL—z)(bte—y) —
a+ 2b+ 2c¢ — x — 2y because if it were 0 then the fact that z < ¢ and
y+2z 2= b+ cimply y —b > 0 which would prove this side. Under this
assumption what we need to show becomes = + 3y > a + 3b + 2¢. But
y + z = b+ c implies that £(y,z) = 3y + z — 2(b + ¢), so the original
assumption that z + &£(y, z) > L becomes = + 3y + z < a+ 3b+ 3¢ which
implies what we wanted to show as z < c.

e Condition (14b): 2¢¥F < E < F + a. If €¥F = 0 the left-hand side is
immediate. Otherwise it is equivalent to z +4y > a+3b+ 3c. This follows
from z + 3y + 2z < a+3b+ 3c unless y < c¢. But this means we must have
z > b to obtain y+ z > b+ c¢. Since y > z this would give b < ¢ — 2 which
is not allowed. The right hand side follows directly from z > y.

e Condition (14c): 4E+5F —3ePF < a+3b+ 3c. This reduces to 4z + 5y +
3elL=2)(bte=y) > 344 6b+6¢. If e(L=2)(b+e=v) — ( we must have z+2y >
a+2b+2c. Adding three times this inequality to the inequality x —y > 0
gives us what we desire. If eZ=2)(0+e=9) > ( then ell-o)(0+e—v) — ¢ 4
2b+2¢—x — 2y and the inequality 4z + 5y + 3e(L=2)(0Fe=v) > 3¢ 4 6b+6¢
reduces to . —y > 0.

Now we know that T(F=#)(b+¢=v) ig a valid tail. Denote W(L —z,b+c—y) =
(i,7). In order to show that p € S(TE—2)(+e=1)) we need only verify that
j < z. That is to say b+ ¢ — y + e(L=2)(bte=v) o If (L=2)(0Fe—v) — () this
follows from the original assumption that y + z > b 4 c¢. Otherwise it reduces
to a+ 3b+ 3¢ < = + 3y + z. But this is equivalent to the original assumption
that © + £(y, 2) > L since y + z > b+ c implies ¢,, =y + 2z — (b+¢).
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This concludes the proof of the first statement.
Now we prove the second statement. Suppose p = (z,y,2) € S(P;;) for some

pseudohead P;;. We must show that z > min(b+ ¢ — z, [¥5*]). We use two cases:

(1) p is in the first union in (18). We show z > [45%]. We have y =i and j = 2
so this becomes j > [£5%]. But the latter is equivalent to 2j > i — a which is
equivalent to condition (15d).

(2) w is in the second or third union in (18). We show z > b + ¢ — . First, if
€;; > 0 then ¢ + j > b+ ¢ directly implies j > b+ ¢ — x so that 2 > b+ c—x.
Now we assume €;; = 0. Since x = L — £(4, j) and z > j it would be enough
to show j > b+ ¢ — (L — (¢ — 7)) which reduces to j > —a + ¢ — j but this
follows from condition (15d). O

If H,g € H', we define the appendage associated to H,‘;] to be

A(HY) = {(k,&z) | 2 < min <b+c—k7 V;“D}

THEOREM 4.7. Let u € A*. Then there exists unique Hy € HY such that p € A(HY).
Conversely, if i € A(HY) for some positive head HY, then u € A%,

Proof. Let p = (z,y,z) € AT. Note that this correspond to Case 2 in Section 3.2.
Then it is immediate that p could only belong to the appendage A(HY). Since z <

min(b+c—x, [#5*]) in particular 0 < min(b+c—x, [#5*]). This implies both 2 < b+-c

and y > a so (as y < x) HY € H*. Since p is positive z < min(b+ ¢ — z, [45%]), so
we A(HY).
Now if p = (z,y,2) € A(H) for some head, then z = k and y = £ and so the
y—a

inequality z < min(b+ ¢ — z, [45%]) is clearly satisfied implying that p € AT. O

4.4. CHAINS. Suppose TP € T. Set (i, j) = W(E, F). If P;; € P* set (k,¢) = O(i, j).
We define the chain of TEF to be

S(Pl) ifPijEP_,

(19) e {S<Pij>uA<H£> if Py € P

Our fundamental result concerning chains is the following.
THEOREM 4.8. A is the disjoint union:

A= | O(TFF).

TEFeT

Moreover, for each integer m € REF = [E+ F, A — 2E — 3F + max(6PF | e&F)] there
is precisely one element p € C(TEF) with area area(u) = m.

Proof. The first statement is immediate by combining Theorems 4.6 and 4.7.

Now fix TEF and set (i,j) = V(E,F). If P;; € P~, then by definition
C(TPF) = S(Py;). By construction, this string has one partition of area m for
each m € [area(T?F) area(P;;)]. But area(T¥F) = E + F. Moreover, area(P;;) =
A—2i—j=A-2E—3F+eP" and since P;; € P~ implies that €;; = max(d;;, €;;) =
max (65, ePF') this means area(P;;) = A — 2F — 3F + max (651, ePF).

Now suppose P;; € P*. Then C(TEF) = S(P,;) U A(Hf) has one partition of
area m for each m € [area(TFT),area(P;;)] and one partition of area n for each

n € [area(H}) —min(b+c — k, [552]) + 1, area(H})]. Again, area(TE¥) = E + F and
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area(P;;) = A — 2E — 3F + ¢ so it suffices to prove the two equations
{—a
2
area(Hf) = A — 2E — 3F + max(6%F PF) = A — 2E — 3F + §PF.
However, we have
k+l=(i+j—0di)+ (i+e;)=2i+7— (05 — €i5)
=2E+F — ) 4 (F 4+ ) — (08F — FF) = 2B 4+ 3F — 6FF,

so that area(Hf) = A — (k+1) = A — 2E — 3F + §FF as desired. On the other hand

min (b—i—c—k, V_G-D
2
= min(b + ¢ — (i+j5ij, P“QJ“D
=min(b+c— (i +J)+ dij,0i;) = 0;; + min(b+c— (i + j),0)
j:(sEF_GEF'

area(Hﬁ)—min(b—i—c—kw D+1=A—2E—3F+6EF+1,

=0ij — €

Hence we have

area(H}) — min (b—i—c—k:, V;G—D = A —2F — 3F + ¢FF — (6FF — €FF)

= A—2E —3F + €8,
which gives the other equation we wanted after adding 1 to both sides. O
Since ¥ and O fix the area range, we can conclude the following statement.

COROLLARY 4.9. Let X represent the set of heads, the set of pseudoheads, or the set
of tails. Then A is the disjoint union of all chains which contain an element of X.
Moreover, for x € X and each m in the area range of x, there is precisely one element
i of area m in the same chain as x.

4.5. AREA PRESERVING BIJECTION BETWEEN HEAD AND QUASIHEADS. We write
Q=Qc.UQzUQt, where
Q¢ ={Q+€Q|s+t<b+es<al,
Qs ={Qsu€Q|s+t>b+c}U{Qsu€Q|s+t=b+c,s>al,
QT={Qs€Q|s+t<b+c,s>a},
and H = P_ U PS U H™, where
Pg:{PijeP_H—i-jéb—i—c} and PS ={P;eP |i+j>b+c}.
PRrROPOSITION 4.10. There is an area range preserving bijection from H to Q.

Proof. We prove the proposition in three parts. First we show that the identity is an
area range preserving bijection from P to Q. Then we define an area range pre-
serving bijection from PJ to 3. Finally we define an area range preserving bijection
from H' to Q.

(1) The set P_ is the set of triples (i,4, ) obeying the conditions (15a)-(15d) as
well as the inequalities 0;; < €;; and i + j < b+ c. In light of (15b), €; =0
and d;; < €;; simply becomes ¢ < a. But this in turn implies (15d). Moreover,
adding i < a to 3i + 3j < 3b + 3c gives condition (15¢). Thus P_ is the set
of triples (4,1, j) satisfying the four conditions in (15a) and (15b) as well as
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i+j < b+cand i < a. On the other hand, Q is the set of triples (s, s,?)
satisfying the five conditions (17a)-(17c) as well as s +¢ < b+ ¢ and s < a.
Since conditions (15a)-(15b) are equivalent to (17a)-(17b), if we can show
that condition (17¢) is implied by the other four conditions, it follows that
Q; = Pg. Indeed, adding the three inequalities s +¢t < b+ ¢, s < a, and
t < c gives 25 + 2t < a + b+ 2¢. This is strict unless we have equality in all
of the three previous conditions. In particular, this would mean ¢ = ¢ so that
met = 0. Thus in any case 2s + 2t < a + b + 2¢ — m;. Therefore, Q; = P_.
Since for P;; € P_ max(0,d;; —€;;) =0, we have R;; = Ry if i = s, j =1, so
that the identity is an area range preserving bijection between the two sets.
(2) Let w;; = max(0, [%]) and define maps ® and ! by

D(i,7) = (i + wij, J — 2wij) and <I>_1(s,t) = (8 — wst, t + 2wst).

Now if ®(i,7) = (s,t) or ®~(s,t) = (i,5), it is clear that w;; = ws. From
this it follows that ® ' o® and ® o ®~! are the identity on Z2. We claim that
® induces an area range preserving bijection from PJ to QS via the rule that
if ®(i,4) = (s,t), then (i,4,7) ~ (s,s,t) with the inverse induced by ®~! via
the rule that if ®~1(s,t) = (i, ), then (s, s,t) — (i,4,7).

First suppose P;; € P, so that conditions (15a)-(15d) are satisfied along-
side 0;; — €;; < 0 and i+ j > b+ c. We need to check that if ®(4,5) = (s,1),
ie. s =i+w;; and t = j —2w;;, then (s,t) satisfies conditions (17a)-(17¢c) and
that s+t >b+cand (s+t=b+c) = s> a.

e Condition (17a): 0 < t < c. This translates to 0 < j —2w;; < c. The right
hand side follows from j < ¢ (see the right hand side of (15a)). If w;; = 0,
the left hand side follows from the left hand side of (15a). Otherwise it
says that 7 > 2[%] Now d;; — €;; < 0 is equivalent to i — €;; < a,
but i +j > b+ cso €;; > 0 and this becomes i — (i +j — (b+¢)) < a or
—j < a—b—c Adding this to (15¢) yields 4i < 2a + 2b + 2¢ or 2i < L.
This is enough to prove j > 2(%] unless 2¢ = L and j is odd. But
then 47+ j is odd and a + 3b+ 3c is even so we have strictness in (15¢),
that is, 4¢ +j < a+ 3b+ 3c. Hence adding this to —j < a — b — c results
in 49 < 2a + 2b + 2¢ which contradicts 2i = L.

e Condition (17b): t < s < b+ ¢. This translates to j — 2w;; < 7+ w;j <
b+ c¢. The left hand side follows from the left hand side of (15b). If
wi; = 0, then the right hand side comes from the right hand side (15b).
Otherwise the right hand side says i + (%] < b+ ¢ which follows
from i + 24=L < b + ¢ (which is equivalent to (15¢)) since b+ c is an
integer.

e Condition (17c): 25 + 2t < a + b+ 2¢c — m¢;. This translates to 2 + 25 —
2wij < a+b+2c—mg; (note that me(j_ow,,) = Mej)- If wiy = 0 then
2i + 7 < L so it suffices to show j < ¢ — m.; which is evident by the
definition of m.; and j < c. On the other hand if w;; > 0, then proving
2i+2j < (2i+j—L)+a+b+2c—m; suffices since (2i+j — L) < 2w;;.
But the former again reduces to j < ¢ — my;.

e s+t > b+c. Thissays i+j—w;; = b+4c. This is clear from the definition
of PJ if w;; = 0 so suppose w;; > 0. Now, as in the first bullet point,
0ij —€i; < 0and i+j > b+c imply j > b+ c—a. The latter is equivalent
to 2 + 25 — 22H=L > 9p + 2¢, or, dividing by 2, i +j — ZH=L > ptc.
But since b + ¢ is an integer, this implies ¢ + j — f%} >b+cas
desired.
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e (s+t=0b+4+c) = s > a. This translates to, if i + j —w;; = b+,
then ¢ + w;; > a. If w;; = 0, the hypothesis would clearly contradict the
assumption ¢ + j > b+ ¢. Thus we may assume w;; > 0 which means
2i +j > L. Adding this to —i — j > —b — ¢ — w;; gives i > a — w;; as
desired.

Now suppose Qs € @<, so that conditions (17a)-(17c) are satisfied along-
side s+t >b+cand (s+t=b+c) = s> a. We need to check that if
O~1(s,t) = (i,]), that is, i = s — wg and j = t + 2wy, then (i, ) satisfies
conditions (15a)-(15c) as well as d;; — ¢;; < 0 and i+ j > b+ c. (We do not
need to check condition (15d) as adding —3i — 35 < —3b — 3¢ to (15¢) yields
i—2j<a.)

e Condition (15a): 0 < j < ¢. This translates to 0 < ¢ + 2wg; < ¢. The left
hand side follows from 0 < ¢ (which is the left hand side of (17a)). Now,
if either ¢t — ¢ or a + b are odd, then 2s + 2t < a + b + 2¢ — m; implies
25+ 2t < a+ b+ 2¢, which is to say t—l—ZW < ¢ so that t +2we < c.
On the other hand if both ¢ — ¢ and a + b are even, then we can only
deduce t + 225H=L L ¢ from (17c¢), but in this case Z2EH=L =) so we
still get what we want.

e Condition (15b): j < 4 < b+c. This translates to t+2ws: < s—wst < b+-c.
The right hand side follows from the right hand side of (17b). If we = 0,
then the left hand side comes from the left hand side (17b). Now suppose
wgt > 0. We need to show that ¢+ 2ws < s—wg. The inequality we wish
to show is equivalent to 2t — 2s 4+ 6wy < 0. Since 2wg; can be rewritten
as 2s +t — L + myp; this becomes 4s + 5t < 3L — 3mp;.

First suppose that s +¢ > b+ ¢ and mr; < me. Since twice (17¢) reads
4s+4t < 2L+42c—2m; it suffices to prove t < a+b—c+2m—3my, since
the sum of the last two inequalities mentioned gives the one at the end of
the last sentence. Since t < ¢, it suffices to show a+b > 2¢—2me +3mp;.
Since s +t > b+ ¢, we have —2s — 2t < —2b — 2¢ — 2 which we can add
to (17c¢) to get a > b+2+mt or a—b = 2+m:. Adding this to 20 > 2¢—2
yields a + b > 2¢ 4+ m¢; which implies a + b > 2¢ — 2m; + 3my, since we
are assuming mr; < Meg.-

Now suppose that s +¢t > b+ ¢, but 0 = mp; < me = 1. Since L + ¢
must be odd, we have strictness in (17c), that is we have 2s + 2t <
a-+b+2c =L+ c. Thus we have 4s + 4t < 2L + 2¢ — 2 so it suffices
to prove t < a+ b — ¢ — 1 since adding these gives 4s + 5t < 3L — 3m
as desired. Again, ¢t < ¢ so its enough to show a + b > 2¢ + 1. Since
strictness of (17c¢) implies 2s + 2t < a + b+ 2¢ — 1, we can add this to
—2s—2t < —2b—2c—2 to obtain a > b+ 3. Since b > ¢— 1, this implies
a—+b>2c+1 as desired.

Finally suppose that s +¢ = b+ ¢ (and so also s > a). We need to
show 4(b+ ¢) +t < 3L — 3myp,, or equivalently, t < 3a —b — ¢ — 3my;.
When s+t = b+ ¢, condition (17¢) becomes a > b+ me;. Thus s > a
implies s > b 4+ m¢ + 1, which in turn means t < ¢ — mg — 1. In
fact t < ¢ — 2 because if t = ¢ — 1 then we would have m., = 1 and
thus t < ¢ — 2. Now since a > b+ me = ¢ — 1 + my this means t <
c—2+(a—b—me)+2(a—c+1—me)or that t <3a—b—c— 3my
which implies t < 3a — b — ¢ — 3myp; unless 0 = my < mp; = 1. But in
the latter case a + b must be odd so a > b implies a > b. Thus we have
az2b+1>csothatt <c—2+(a—b—1)+2(a—c)ort <3a—b—c—3.
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e Condition (15¢): 4i + j < a + 3b+ 3c. This translates to 4s + ¢ — 2wy <
a+3b+3c. If wge = 0, then 25+t < L which we add to two times the right
hand side of (17b) to obtain 4s+t < a+ 3b+ 3¢ as desired. Now suppose
wet > 0. Then 4s +t — 2wy = 4s +t — 2[2H=L] Cgg ¢ — 225H=E =
2s+ L < L+ b+ ¢, where the last inequality comes from the right hand
of (17b).

® J;; —€;; < 0. This reduces to i — ¢;; < a which says that s — ws —
max(0,s +t 4+ wst — (b+ ¢)) < a. Since s+t = b+ ¢, this is equivalent
to —t — 2wg < a—b—c. If we =0 then 2s 4+t < L and which we may
add to —2s — 2t < —2b — 2c to get —t < a — b — ¢ as desired. If wg > 0
then it will suffice to show —t — 2% < a — b — ¢ but this reduces to
—25 — 2t < —2b — 2c.

® i+ j>b+c. This means s+t + wg > b+ c. If wg > 0 this follows from
s+t > b+ c. Now suppose wg = 0. Then 2s + ¢t < L which we may add
to —s —t < —b—c to get s < a. Thus the assumptions s+t > b+ ¢ and
(s+t=b+c) = s>areveal that s+t >b+c.

This proves that ® induces a bijection from P to Q<. Moreover if P;; €
P2, then 6;; < €;; and i+ j > b+ ¢, so the area range reduces to R;; =
20 4+j— (b+c¢),A—2i—j]. Now if ®(7,5) = (s,t), then since by the above
Qst € Q< we have s+t > b+c so that we get Rs; = [2s+t—(b+¢), A—2s—t].
Since it is clear that 2i +j = 25+t we see that R;; = R, and so the bijection
induced by ® preserves the area range.

(3) Define maps 2 and 27! by

Q(k,0) = (L, k—2) and Q7 (s, t) = (s +t,8).

Since ) is an invertible linear transformation (with inverse Q71), it is im-
mediate that 271 0 Q and Q0 Q™! are the identity on Z2. We claim that
induces an area range preserving bijection from H* to Q% via the rule that,
if Q(k,¢) = (s,t), then (k,£,0) — (s,s,t) with inverse induced by Q! via the
rule that, if Q71(s,t) = (k,¢) then (s,s,t) — (k,£,0).

First suppose that Hf. € H* so that a < £ < k < b+ ¢, and that Q(k, () =
(s,t), that is, s = £ and t = k — £. We need to check inequalities (17a)-(17c)
as well as s+t < b+ cand s > a.

e Condition (17a): 0 < ¢ < ¢. This translates to 0 < k — £ < ¢. The left
hand side is true because ¢ < k. Moreover, since £ > a > b — 1, the
inequalities £ > band k <b+cgive k — ¢ < c.

e Condition (17b): ¢t < s < b+ c. This translates to k — ¢ < £ < b+ ¢. Now
kE<b+c—1<2a+1 < 2¢ which established the left hand side. On the
other hand ¢ < k < b + ¢ makes the right hand side obvious.

e Condition (17¢): 2s + 2t < a + b+ 2¢ — m. This translates to 2k <
a+b+2c—mep_g. But k <b+c—1andsincea>b—1alsok <a+ec
Since adding these gives 2k < a + b+ 2¢ — 1 we are done.

e s+t < b+ c. This translates to £ + k — ¢ < b+ ¢, that is, k < b+ ¢, as
assumed.

e s > a. This says ¢ > a, as assumed.

Now suppose that Qs € QV so that the inequalities (17a)-(17¢) hold and
we have s +t < b+ c and s > a. We need to show that if Q~1(s,t) = (k, /)
then Hﬁ € H', thatis,a </ <k <b+c. Since k = s+t and ¢ = s, this says
a<s<s+t<b+c The left and right hand inequalities are those assumed
above. The middle inequality follows from the left hand side of (17a).
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This proves that  induces a bijection from H* to Q*. Moreover if Hf € H*,
then RY = [¢, A — k — {]. Now if Q(i,j) = (s,t), then since by the above Q,; € QV,
we have s +¢t <b+cso ey =0and Ry = [s,A —2s —t] = [{,A—2{ — k +{]. Thus
Ri = R, and so the bijection induced by 2 preserves the area range. O

4.6. COMBINATORIAL RECURSION. In this section, we show that the combinatorial
expression of Theorem 3.1 also satisfies the recursion relations of Lemma 2.25 for
¢ > 1 and equals F(a,b,0) and F(a,b,—1) for ¢ =0 and ¢ = —1, respectively.

Recall that the set of quasiheads is defined as

Qa,b,e) ={(i,)) |0<j<c,j<i<b+¢,2i+2j<a+b+2c—me;}

where m.; = c¢—j (mod 2). Define

(20) Heomb(a,bye) = Y ¢4 2igite,
(i.)€Q(a,b,c)
where €;; = max(0,i+j —b—c¢).
LEMMA 4.11. Fora4+1>2b,a+1,b+1>c> 1, we have
(21)  Heomb(a,b,¢) = Heomb(a + 2,04 2,¢ — 2) + (qt)°H(a + ¢, b — ¢)
+ (qt)c_lH(a +ec, b—c+ 2) + Z qa+20—€t€+b _ 6a,b—1qa+26tb
2</4<min(2¢,a—b)
- (6a,b + 6a,b71)qa+2c_1tb+17
where H(a,b) is given by (10).
Proof. Observe that if (a’,b', ") = (a+2,b+2,¢—2), then b/ +¢ = b+c¢, a’' +b' +2¢ =
a+ b+ 2c, mej = me;. Therefore

Q' b, ) ={(i,7) |0<j <, j<i<b+e,2i+2j <a+b+2c—me}.
We conclude that @(a’ ) C @(a, b, ¢) and the difference of these two sets consists
of (i,7) € Q(a,b,c) with j = c or j = ¢ — 1. In the former case, the inequalities have
the form
(22) c<i<b+e, 2i<a+b
and the contribution to Heomp equals

Z qA—c—Qi ti—&—max(o,i—b).

c<i<b+c
2i<a+b

This sum breaks into two parts for c <7 < band forb+1 <1

§ qa+2b+20—2i tl + 2 qa+2b+20—2i t2i_b.

e<i<b b+1<i<bte
2i<a+b 2i<a+b

If a > b, the restriction 2i < a 4+ b in the first sum is redundant and so it becomes
(gt)°H(a + ¢,b — c¢). On the other hand if a = b — 1, the first sum does not contain
the i = b term ¢*+t2°t® but (qt)°H(a + ¢,b — ¢) does. Thus we conclude the above is
equal to

(qt)CH(a +c, bh— C) _ 6a,b—1qa+20tb + Z qa+2b+20—2i t2i—b.
2b+2<2i<min(2b+2c,a+b)
Similarly, in the case j = ¢ — 1 for a > b we obtain

c—1<i<bt+e, 2i<a+b+1
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and the contribution to He.omp equals

Z qa+2b+20—21+1 tz + Z qa+2b+20—2z+1 t21—1—b.

c—1<i<h+1 b+2<i<b+-c
2i<atbr1 2i<atb+1

If @ > b the restriction 2¢ < a + b+ 1 in the first sum is redundant and so it becomes
(qt)¢"'H(a + ¢,b — ¢ + 2). On the other hand if @ = b or a = b — 1 the first sum
does not contain the i = b+ 1 term ¢®+t2¢~1¢*+1 or the i = b term ¢®+2>°t® but
(qt)"*H(a + ¢,b — ¢ — 2) does. Thus we conclude the above is equal to

(¢) " H(a+¢,b—c+2) = (Sap_1 + 0ap)g? T2 1e0T!
4 Z qa+2b+2072i+lt2iflfb'
2b+3<2i—1<min(2b+2c—1,a+b)

Finally,

Z o2 +2e=2iy2i=b
2b+2<2i<min(2b+2c,a+b)

+ E qa+2b+2072i+1t2i717b
2b+3<2i—1<min(2b+2c—1,a+b)

— Z qa+2b+2c7ktk7b
2b+2<k<min(2b+2c,a+b)
where we combined terms with even and odd k. If we denote ¢ = k — 2b, then

§ qa+2b+2cfktkfb _ § qa+207€ téer. 0O
2b+2<k<min(2b+2c,a+b) 2<4<min(2¢c,a—b)

COROLLARY 4.12. Let

Feomb (a, b, C) = Heomb (a7 b, c;q, t) Hcomb(aa b, c;t, Q)~

1
1—t/q T

Then fora+1>b,a+1,b4+12>c>1 we have
(23)  Feomb(a,b,¢) = Feomp(a+2,0+2,¢—2) + (¢t)°F(a+ ¢,b—¢)
+(¢) *Fla+c,b—c+2) + Z (qt)**PF(a — b+ 2¢c — 20)

2<¢<min(2c,a—b)
1

— > (g)"F(a—b+2c—2j).
j=a—b+1

Proof. This follows directly from Lemma 4.11, using (9), and Example 2.18. Also note
that

1
Z ()" T F(a —b+2¢ —25) = Sap(qt)" T F(a — b+ 2¢ — 2)
j=a—b+1

+ 6ap-1 [(qt)°F(a—b+2c) + (qt)" T Fla—b+2c—2)]. O
We need to check the base cases.

LEMMA 4.13. We have
Feomb(a,b,0) = F(a,b,0) fora,b>0,
Feomp(a,b,—1) = F(a,b,—1) fora,b> 1.

Algebraic Combinatorics, Vol. 3 #4 (2020) 883



E. Gorsky, G. HAWKES, A. SCHILLING & J. RAINBOLT

Proof. For a,b > 0 and ¢ = 0, we have j =0 in @(a, b,0), so 0 < i < b. Therefore, by
comparing (20) with (10)

Hcomb(a; bv O) = H(a7 b)7

and hence Feomp(a,b,0) = F(a,b). Furthermore, by Corollary 2.13 the first claim
follows.

For a,b > 1, we have by Lemma 2.24 and the fact that Feomp(a,b,—1) = 0 by
definition that F(a,b, —1) = Feomb(a,b,—1) = 0. O

COROLLARY 4.14. For nonnegative integers a,b,c anda+1>b, a+1,b+1 > ¢, we
have F(a,b,c) = Feomb(a, b, ¢) proving Theorem 3.1.

Proof. By Lemma 2.25 and Corollary 4.12, F'(a, b, ¢) and Fiomp(a, b, ¢) satisfy the same

two step recursion. Hence the equality F(a,b,¢) = Feomb(a,b,c) can be reduced to
the equalities F'(a,b,0) = Fromb(a,b,0) for a,b > 0 and F(a,b,—1) = Feomp(a, b, —1)
for a,b > 1. These are given in Lemma 4.13. 0

4.7. PROOF OF THEOREM 3.5. By Corollary 4.14, we have that F(a,b,c) =
Feomb(a,b,¢). By Proposition 4.10, there is an area preserving bijection between
quasiheads and heads. Combined with Corollary 4.9, there is also an area preserving
bijection with pseudoheads and tails. Furthermore, each A C A(a, b, ¢) sits in precisely
one chain indexed by a given pseudohead (or head). The proofs of Theorems 4.6
and 4.7 tell us, which chain ) sits in depending on the cases spelled out in Section 3.2:

Case Chain membership

Case 1(a) AeC(

Case 1(b)(i) | A€ C(P1ams:)

Case 1(b)(ii) | A € C(TF—2)(b+e=v))
(

Case 2 rxeC

Now if the area range for a given chain is [r, R], then due to the symmetry between
q and t in each chain, we have

stat(A)=r+ R—area\) =r+ R—A+z+y+=2

for A = (x,y, z). Using the area ranges for pseudoheads, tails, and heads as given in
Table 3 and the beginning of this section, this yields (12). In Case 1(a), we first obtain
stat(\) = x+max(eyz, dy), which is equal to 2 +max(0, [45*], y+2—b—c, (%])
In Case 1(b)(i), we first obtain stat(\) = —L+2r+y— 2z +max(€(L42—a)z) O(L42—2)2),
but using that y + 2 < b+ cand L + 2 —x < y, we obtain €4, ). = 0 and
N Ltz—a)z = [W} Combined with Theorem 3.1 this proves Theorem 3.5.
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