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Abstract

This paper describes the design, analysis, and experimental evaluation of a new method to integrate measurements from
light detection and ranging (LiDAR) and inertial measurement units (IMU). A tight IMU/LiDAR integration scheme is
developed, which aims at exploiting the complementary properties of the two sensors while facilitating safety risk evaluation.
In particular, the IMU is used to improve LiDAR position and orientation prediction (or pose), thereby reducing the the risk
of incorrectly associating sensed features with mapped landmarks. Conversely, LIDAR pose estimation updates can limit the
drift of IMU errors over time. In order to further improve data association, LiDAR return-light intensity measurements are
incorporated, which helps distinguish landmarks and thus reduces the risk of incorrect associations. The new method is
evaluated and analyzed using experimental data.

1. Introduction

This work is intended for automated driving systems (ADS) applications. In order to quantify safety risks in ADS
navigation, this paper leverages prior analytical work in aviation navigation where safety is assessed in terms of integrity.
Integrity is a measure of trust in sensor information. The integrity risk is the probability of undetected sensor errors causing
unacceptably large positioning uncertainty [1]. Several methods have been established to predict integrity risk in Global
Navigation Satellite Systems (GNSS)-based aviation applications [2, 3]. Unfortunately, the same methods do not directly
apply to ADS, because ground vehicles operate under sky-obstructed areas where GNSS signals can be altered or blocked by
buildings and trees.

ADS require sensors in addition to GNSS, including IMU, LiDARs, cameras, or radars. This paper focuses on IMU and
LiDARs. A raw LiDAR scan is made of thousands of data points, each of which individually does not carry useful navigation
information. Raw measurements must therefore be processed before they can be used for localization. These processes can
include identifying and tracking recognizable, static features in the perceived environment.

The features that we will exploit not only include landmark position, but also surface reflectivity. Previous knowledge of
feature parameters can be provided from a landmark map. To estimate the ADS pose starting from a raw laser scan, two
intermediary pre-estimator procedures must be carried out: Feature Extraction (FE), and Data Association (DA).

First, FE aims at finding the few most consistently recognizable, viewpoint-invariant landmarks in the raw sensor data.
The extracted features must not only be identifiable over repeated observations but must also be distinguishable from one
landmark to another. Second, LiDARs provide pose estimation by comparing current-time landmark feature measurements to
prior knowledge of these features from the landmark map. DA aims at finding the ordering of mapped landmarks that
matches that of sensed, extracted landmarks over successive observations [6, 7]. The incorrect association is a well-known
problem that can lead to large navigation errors, thereby representing a threat to navigation integrity.

FE and DA can be challenging in the presence of sensor uncertainty. This is why many sophisticated algorithms have
been devised [8-11]. Several publications on multi-target tracking describe relevant approaches to evaluate the probability of
correct association in the presence of measurement uncertainty [9, 12-14]. However, these algorithms are not well suited for
safety-critical ADS applications due to their lack of prediction capability, to approximations that do not necessarily upper-
bound risks, and to high computational loads. Also, the risk of FE is not addressed. Overall, research on integrity and
continuity of FE and DA is sparse.
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This paper builds upon prior work in [15-18], where we developed an analytical integrity risk prediction method for FE
and DA. At the FE step, we established a probabilistic normalized separation metric between landmarks, ensuring that they
could be reliably, quantifiably distinguished from each other. We then derived a multiple-hypothesis Extended Kalman filter
(EKF) innovation-based DA process [16], which provides the means to evaluate the Probability of Incorrect Associations
(PIA) while considering all potential measurement combinations and permutations (i.e., all potential incorrect associations).
PIA was used to establish a compact expression for the integrity risk of laser-based pose estimation over successive
iterations. References [16-17] showed that PIA could quickly grow in the presence of poorly distinguishable landmarks. One
approach to mitigate this problem is to select a subset of features sensed by the LiDAR in the environment [18, 19]. But, this
approach reduces the number of redundant associations and lowers the ability to detect unwanted, unmapped landmarks [18].

In response, in this paper, we enhance data association and integrity performance by two other means: first, by tightly
integrating LiDAR with IMU; second, by incorporating LiDAR return-light intensity measurements. In addition, we design
and implement an experimental testbed to statistically evaluate the data association and localization performance of the
IMU/LiDAR algorithm.

Integration of LiDAR with IMU can help improve pose prediction and hence increase the success rate of EKF
innovation-based data associations. Prior work on IMU/LiDAR integration includes loose and tight coupling schemes
primarily aimed at using IMU to coast between LiDAR pose updates and at using LIDAR updates to calibrate IMU biases
[20]. One implementation uses the IMU to determine the laser scanner’s tilt angle [21-22]. In our previous work [15], we
developed a tightly-integrated IMU/LiDAR process specifically to quantify integrity risk. We performed covariance analyses
for a two landmark scenario, suggesting IMU integration could reduce integrity risk not only by improving pose estimation
but also by reducing the risk of incorrect associations. In this paper, we test this risk quantification algorithm using
experimental data.

In parallel to IMU/LiDAR integration, we evaluate a new method to exploit return-light intensity measurements, which
LiDARs can provide in addition to range and bearing angle observations. Light intensity measurements can improve the
system’s ability to distinguish landmarks if the landmark surfaces have different reflectivity properties. For example, LIDAR
intensity can help identify an aluminum pole from a pedestrian.

The second section of the paper describes the tightly-integrated IMU/LIDAR algorithm. Non-linear continuous-time
process and measurement equations are derived, linearized, and discretized. The third section of the paper is an overview of
the multiple-hypothesis DA risk and integrity risk evaluation method [16]. The focus is on the contribution of IMU and
LiDAR intensity measurements on the innovation-based DA. The fourth section describes an experimental testbed
specifically designed to evaluate navigation integrity risk. In the fifth section of the paper, we present and analyze
experimental test results. The reference configuration uses LiDAR range and bearing angles only. We quantify the reduction
in integrity risk obtained when incorporating (a) IMU data, (b) LiDAR intensity measurements, and (c) both IMU data and
LiDAR intensity.

2. IMU and LiDAR Measurement-Level Integration

2.1 IMU Measurement model

2.1.1  Nonlinear Vehicle Acceleration Equation

IMU accelerometers measure vehicle acceleration with respect to the inertial frame (labeled ‘I’) and ADS position and
orientation are expressed in the navigation frame ‘N’ (for example, in the East, North, Up directions). We also define the earth
frame ‘E’, which is earth-centered, earth-fixed. The IMU is fixed in the ADS body frame ‘B’, which can be oriented along the
vehicle’s maximum moment of inertia axes as described in [21, 22].

We use the Newton and Euler method to describe the ADS translational and rotational motion. The vehicle’s velocity
and position differentiated with respect to earth frame ‘E’ and expressed in navigation frame ‘N’ are written as [23,25]:
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The vehicle’s Euler angular velocity differentiation can be expressed as [23,26]:

€ps = B¢,9,W(B(T)IB -C g(N(T)IE + N('T)EN)) 3)
where
“Vios s the 3x1 vehicle velocity with respect to earth, and expressed in the navigation frame
cy is the 3x3 rotation matrix from body frame to navigation frame [23]
Nx s 18 the 3x1 vehicle position expressed in navigation frame
Bf'  isthe 3x1 measured specific force vector at IMU axis center w.r.t. frame I expressed in B [23]
Nw™ is the angular velocity vector of frame E w.r.t frame I expressed in N
Y™ is the angular velocity vector of frame N w.r.t frame E expressed in N
B~—IB

is the meausred angular velocity vector of frame B w.r.t frame I expressed in B

g is the local gravity vector at IMU axis center w.r.t frame E expressed in N [23, 24].
[ax] 1is the skew-symmetric matrix of vector a.

B is the 3x3 coefficient matrix defined in Appendix A.

b0y
Discrete-time forms of equations (1-3) can be found in Appendix B.

2.1.2  Vehicle Angular Velocity Measurement Equation

An IMU provides a measurement of the angular velocity vector "™ of the sensor’s body frame ‘B> with respect to ‘I’
expressed in frame B. The following equations are used to model the continuous-time form of the errors impacting the IMU

angular velocity measurement. The IMU’s measurement of "™ can be expressed as:

PO =[1+S,+M,]"0" +b, +v, (4)
where
@™ s the 3x1 true angular velocity vector of body B with respect to I expressed in body frame B
B ~IB

@~ is the measured angular velocity vector of body B with respect to I expressed in B

S, and M, are the actual gyroscope scale factor and misalignment matrices in B
b, is the gyroscope time-varying bias vector in B

v, is gyroscope measurement white noise error component expressed in B

2.1.3  IMU Sensor Error Model

Equation (4) expresses the fact that the gyroscope scale factor and misalignment matrices (S,and M, ) affect the
measured angular velocity @™ . Scale factor and misalignment errors are corrected to obtain *@®"™ , which is the vector used

in practice as gyroscope output.

B(T)IB:[I+Sg+M 17'°@"™ -b,) (5)
where
S . and Mg are the estimated gyroscope scale factor and misalignment matrices in B

2639



ﬁg is the estimated gyroscope time-varying bias vector in B

The time-varying part of the gyroscope bias b, can be modeled as a first order Gauss Markov Random Process (GMRP)
[20, 24], and the continuous-time GMP equation can be written as:

. 1
b, =——b, +n, (6)
g
where
7, is the GMP time constant
n, is a 3x1 vector of GMP time-uncorrelated driving noise

The discrete-time form of equations (4) to (6) are provided in Appendix B [23]. In equations (4) to (6), subscript ‘g’ stands for
‘gyroscope’. We can write similar equations for the specific force vector of the body frame with respect to the inertial frame

Bf! which is measured by accelerometers (subscript ‘a’).

TS, M, ] P 4, o, (7
TS, M B ®)
. 1
b,=——b,+n, )
T

a

2.1.4  Linearized IMU Equations

The IMU state parameters include ADS position, velocity, orientation, and IMU biases. The continuous-time model is
linearized using a first order Taylor series expansion about reference state parameter values [6]. We use the notation ‘3’ to
indicate deviations of state parameters relative to the reference values. Using IMU measurement error equations (5) and (8)
and gyro and accelerometer bias equations (6) and (9), we can write a continuous-time linearized state propagation model as

[7]:

ox =F ox+ow (10)
8x =[8x s OV, del, by db;] (11)
[0 | 0 0 0 [ 0
F,, 0 [“f'¥] 0 (o C)(-3S,°f' =M, °f' —v,)
F=| 0 F, H'o"x] -C} 0 |, dw= —Cg(—SSg B(T)IB—SMg B(TJIB—vg) (12)
0 0 0 —r;I 0 n,
0 0 0 0 -1 i n,
where
F,,; and F,,, are defined in Appendix A.
No™ is the angular velocity vector of frame I with respect to frame N expressed in frame N; we have

N

Nfl

(JJIN:N(I)IE+N(I)EN.

is the estimated specific force expressed in navigation frame.

The discrete-time form of equation (10) is provided in Appendix B. It can be expressed as:
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ox,,, =D,0x, +dw, (13)
where @, is the state transition matrix between time step k and k+1.

2.2 LiDAR Feature Extraction Measurement Model

A LiDAR provides a cloud of points in the sensor’s frame. The point cloud is a representation of the environment that
must be interpreted for navigation. FE aims at determining consistently identifiable landmark features. Figure 1 shows an
example LiDAR point cloud collected in our experimental testbed. The testbed includes easy-to-distinguish static vertical
cylinders serving as landmarks to facilitate feature extraction (FE). FE is not the primary focus of the paper. The color code
represents return light intensity measurements: red is a high-intensity data-point, blue is low intensity.

Figure 2 illustrates the three-step FE algorithm implemented to extract landmark information from LiDAR point clouds.
In this paper, FE aims at finding the center of quasi-circular ellipses formed by the projection of vertical cylinders in the
LiDAR’s zero-clevation plane. (1) Segmentation: We use the predicted vehicle pose to place the LiDAR in the landmark
map and segment the data in point sets corresponding to cylinders. (2) Model-Fitting: We then project each point set in the
LiDAR zero-elevation plane and fit a circle through each point set. (3) Feature Parameter Estimation: The center of the
best-fit circle is the extracted point-feature, which we identify by range and bearing angle with respect to the LiDAR.

Figure 1. LiDAR Point Cloud Showing Return-Light Intensity
(color-coded from blue to red, from low intensity to high intensity).
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Figure 2. (a) 3D Segmentation of LIDAR Point cloud - (b) Circle Fitting and Point-Feature Measurement Extraction
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The following derivation is to express the extracted point-feature range and bearing angle measurement equations. First,
let n;, be the number of extracted landmarks. We define 'd and ‘a as the range and bearing angle measurements in LiDAR
frame for landmark ‘i ’, for i ranging from 1 to n;. In the landmark map’s navigation frame, the horizontal position of the

cylinder’s center is time-invariant. Its cartersian East and North coordinates are noted 'p, and 'p, for landmark ;. In

parallel, parameters in our IMU/LiDAR state space realization include the ADS position x4ps and orientation e4ps in
navigation frame (also appearing in the state error equation (11)), which are expressed as:

Xps = [xE v Xy ]T (14)

EADSZ[¢ 0 '//]T (15)

The non-linear LiDAR range and angular measurements are respectively given by:

d=Cpy=x,) +(py—x,) +0, (16)
‘q = arctan [ip”—_x”’]—(// +u, (17)
Pr —Xg

where v, and v, are random feature measurement errors. In Appendix C, we show that the distributions of v, and v, are
not Gaussian, but can be overbounded (in the CDF-sense [4,5]) by zero-mean normal distributions. We use the over-
bounding distributions to model feature parameter measurement uncertainty. We can stack range and bearing measurements
for all visible landmarks to obtain the following 2n, x1 nonlinear LIDAR measurement equation:

z, =h,,(x,)+v, (18)
2,=(d - d, a - a,lT (19)
v=lb, v v vl (20)
where
X, is the state vector whose corresponding state error vector is defined in equation (11)
v, is the 2m, x1 feature measurement error vector modeled as a vector of normally distributed random variables with

zero mean and covariance matrix V, . We use the notation: v, ~ N(0, V,).

In equation (18), the subscript 0 indicates that measurements (‘d,'a) are correctly matched with the corresponding
landmark parameters (' p,, ‘p,). We can linearize equation (18) about our best prediction of the vehicle and landmark

positions. The resulting linearized range and angular measurement and measurement error vectors are respectively noted 8d,
da and v,, v, . The linearized LIDAR measurement equation can be written as:

OX s
Fd} {Fd 0 0 0 0} ?/‘DS {nd} o
= e =+
da F,, 0 -F, 0 0| " v
k “| db, k
Sb

L a i

2642



where the coefficient matricesF, ., F, and F,, are determined using the state prediction vector and assuming correct

X

association as described in Appendix A.

Let n, be the number of extracted feature measurements per landmark (7, = 2 for the LiDAR’s angular and ranging
measurements), and let », be the number of visible landmarks. The total number of extracted feature measurements is
n=nn,. Let Z, be the nx1 feature measurement vector in (18). We use the analysis in Appendix C to model Z, as:

Z, ~N(z, , V,). Equation (21) can be re-written in terms of the predicted state vector X, under the correct association
hypothesis (subscript 0) as:

z,—h,,(x,)=Hdx, +v, (22)

where the observation matrix H ; 18 the measurement-to-state coefficient matrix given in equation (21) [28].

In addition to range and bearing angle measurements, LiDAR provides intensity measurements for each point in the
cloud. We obtain a mean intensity measurement for landmark ‘i * by averaging intensity values for all points in a point set

associated with landmark ;. The n, x1 return-light intensity measurement vector is defined as:
S, =8, +Vv,, (23)

We assume that §, is normally distributed with mean s, and covariance matrix V,, . We use the notation: §, ~N(s, , V).
s, is the vector of true mean landmark intensity. Vector v, is an n, x1 intensity measurement error vector modeled as

v, ~N(0, V,,). Equation (22) and (21) are the LIDAR’s linearized extracted feature measurements.

3. Integrity Risk Evaluation Considering Correct and Incorrect Data Association

3.1 EKF-Based Vehicle State Estimation using IMU/LiDAR

We use an EKF to predict using IMU in equation (13) and to estimate using LiDAR in equation (22) the state vector X, .
The LiDAR linearized measurement equation is used to get a correction 8x, , hence, an estimate X, =X, +3x, of the ADS

state vector and covariance matrix 13/{ [27].

In order to analyze the impact of incorporating IMU and LiDAR intensity measurements, we will consider four
configurations: LiDAR-only, IMU/LiDAR, LiDAR with intensity measurements, which we label ‘LiDAR+’, and

‘IMU/LiDAR+’ that incorporates all available sensor information. When using LiDAR only, state prediction X, is obtained

using a coarse kinematic model to replace equation (13). This model propagates ADS states assuming a constant velocity
vector between LiDAR measurement updates. This can be inaccurate for high ADS dynamics or if a LiDAR update is

skipped. When using the IMU, we use equation (13) improve state prediction X, , but also to enhance data association.

This paper makes two contributions to previous association risk evaluation methods in [15]. First, we devise a process to
handle unexpectedly un-extracted landmarks or extracted-but-unmapped landmarks, which can occur if an obstacle moves
into the LiDAR field of view. Second, we derive a method to incorporate LiDAR return-light intensity in data association.

3.2 Innovation-Based Data Association

To perform data association, we use an innovation-based approach [12]. The innovation vector y,, under correct

association is given by [29]:
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Yox = z, - h,, (X,) (24)

The innovation vector can be interpreted as a measure of consistency between LiDAR extracted feature measurements and
state prediction. Thus, the more accurate state prediction is (and it is more accurate using IMU), the more efficient the data
association process becomes.

3.2.1  Handling Landmarks Unexpectedly Coming In and Out of View of the LiDAR

Extracted range and bearing measurements are arranged landmark-by-landmark in an arbitrary order in vector Z, at time

k. In this paper, we account for incorrect associations even in the case where the number of perceived landmarks differs from
the number of mapped landmarks. Let n, be the number of visible landmarks, and n,, be the number of landmarks that are
expected to be visible according to LiDAR pose prediction in the landmark map (the term pose designates position and
orientation). For example, if n,, > n, , then there are C(n,,,n,)=n,,!/((n,, —n,)! n,!) possible combinations of perceived
landmarks with mapped ones. In general, the number of subsets (or landmark combinations) to be considered is
he = C(max{n,,n, }, min{n,,n,}).

In addition, within each subset of min{n,, n,} landmarks , there are different ways that ‘mapped versus perceived’

landmarks can be associated [16]. There are 4, =( min{n,, n,}! ) potential ways for assigning observed with mapped
landmarks, which is the number of possible landmark permutations.

Incorrect association (IA) occurs when the ordering of measured landmarks differs from that of mapped landmarks
assumed in the EKF. There can only be one correctly matched ‘mapped versus perceived’ landmark subset, so that the

number of IA is: A&, =h.h,—1. For risk evaluation, we consider all possible subset orderings of measurements

z,=h,,(X,) and s,, where i=0,..,/,. Subscripts zero indicate the correct association.

The table 1 represents an example scenario where n, =3 landmarks are extracted from the LiDAR (labeled 1, 2, 3), and
n,, =3 landmarks are predicted to be seen using the map (labeled A, B, C). The number of landmark subsets to be
considered is /. =1, and the number of possible landmark permutations is 4, = 6, so that A, =5 IAs are possible. Table 2

shows another scenario where n, =2, and n,, =3 . In this case, 4. =3, and h, =2, sothat s, =5 1As are possible.

Table 1. 1% Example Scenario, 3 Extracted Table 2. 2" Example Scenario, 2 Extracted
vs 3 Mapped Landmarks Association vs 3 Mapped Landmarks Association
[1 2 3] (1 2 O]
S| mBa S| B

IA
=lzlslsls
(@]

2
IA
=z 5z
>
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The innovation vector y,, is zero mean only under correct association. Any other (incorrect) association causes the

mean of the innovation vector to be non-zero. Thus, the innovation vector is a good indicator of incorrect association. The
innovation vector can be expressed as:

Vik = ik - Ai,kCi,khO,k (%) (25)

where Yoo =B h,(x,) , B, =A,,C,—A,,C, .y, =0 (26)

and where A, are nxn permutation matrices of », -dimensional blocks, and C,, are nx(min{n,,,n,}n,.) combination

matrices (also for combinations of »n, -dimensional blocks) for i =0,...,%,. The state prediction vector X, in equations (24)

and (25) is more accurate using an IMU than using an ADS kinematic model. We leverage this fact to reduce the risk of
incorrect associations using IMU data.

The ordering of mapped landmarks that minimizes weighted norm of the innovation vector can be used to identify
correct association [29]. Based on this criterion, we define the minimum separation distance as:

vi= mln "71 k" where ”71‘,1("; =7, Y, and Y, =A,C H P.H (CLAL Y, 27)

3.2.2  Incorporating LiDAR Return-Light Intensity to Improve Association

In addition, comparing the landmarks LiDAR-extracted mean intensity measurements to values in the map improves data
association. We first define the intensity-separation vector as the difference between the LiDAR extracted intensity

measurement and the mean of each landmark intensity as stored in the landmark map. The intensity-seperation vector &, ,

can be expressed as:
éi,k :§k_§i,k 2 éi,k ~N(Sk’ AS‘szS'lkS sz/r S‘zk+VS‘k) (28)

where
S, is the true value of the mean return-light intensity

w>

is the LIDAR’s measured mean return-light intensity for all n, visible landmarks; we assume: §, ~ N(s, , V)

§,, is the mapped mean return-light intensity for the n,, expected landmarks under the i association hypothesis;

S, is the n,, xn,, covariance matrix capturing the uncertainty in mapped landmark’s mean light intensity values
A, ,, are n,xn, permutation matrices similar to the ones in equation (27) but for scalar permutations, for i =0,...,/,,
C,,, are n, xn, scalar combination matrices for ;i =0,..., %,

Similar to the innovation vector in equation (24), the intensity separation vector in equation (28) is zero mean only if the
correct association is found. Landmark intensity parameters are not included in the EKF because they do not provide direct

information on ADS states. Still, we can improve the association criterion by augmenting the innovation vector with &, .

The resulting ‘separation vector’ is defined as: &, = [yf . éf .1". The minimum norm of the separation vector weighted by

its covariance matrix, which we refered to as the ‘separation’, is defined as:

Ai,kCi,kaF/(HiczkAZk + Vk 0

2
) o= 29
=0,....h, 1705z ik 0 A&L/(CSI/(S C{zk s ik +V,k ( )
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3.3 Integrity Risk equation

The integrity risk P(HMI,) or probability of hazardously misleading information (HMI) is the probability of the ADS
being outside of a specified alert limit box when the vehicle position is estimated to be inside this box [4-6]. In ADS lane
centering applications, lateral deviations are of primary concern and the alert limit can be defined as the distance between the
edge of the car and the edge of the lane when the car is at the center of the lane [4-6, 16, 30]. An analytical bound on the
integrity risk that considers all possible incorrect associations is given in [29], and can be expressed as:

P(HMI,) <1-[ 1= P(HMI, | C4y) | f[ P(CA, | CA, )+ 00, (30)
with P(HMI, | CAy) = Q(/ o, ) +1-0(~t/o, ) (31)
P(C4, |C4,.) 2 1—P(q§ > min {L}, /4}) (32)

K designates a range of time indices: K ={0,...k}
Q( ) is the tail probability function of the standard normal distribution

l is the specified alert limit that defines a hazardous situation
o is the standard deviation of the estimation error for the vehicle state of interest

Lipo, 1s the overall integrity risk requirement

11100 18 a predefined integrity risk allocation at FE, chosen to be a small fraction of 7, , .

qu. is a chi-square distributed random variable with a number of degrees of freedom that is the sum of the number of
measurements and of states at time step |

r can be determined at FE, and represents the minimum value of the mean landmark feature separation at DA i and

i.j
time step j. [29]

The probability of correct association in equation (32) is a function of Lf’j , which defines a probabilistic lower bound on

the true value of ¢, in equation (29). This lower-bound on landmark separation is set such that the risk of the true value of

¢, being smaller than L, does not exceed 7,0, -

In this section, by integrating LiDAR with IMU, we can reduce positioning errors, thereby lowering the risk
P(HMI, |CA,) . In addition, IMU measurements are instrumental in improving state prediction, thereby increasing the

ability to distinguish landmarks. In the equations, IMU measurements enable increased values of Li ;» which increases the
probability of correct association P(CA; |CA4, ) and ultimately reduces P(HMI,). Incorporating LiDAR return light

intensity has the same effect, which we quantify using experimental data in the next section.
4. Experimental Testbed

We have designed and built an experimental testbed specifically to quantify the risk of incorrect association and
P(HMI,). This testbed pictured Figure 3 is composed of a rover on a figure-eight track, which houses a sensor platform.
The rover can operate for many hours unattended to collect LIDAR and IMU data over repeated trajectories. The sensor
platform mounted on the rover includes the LIDAR and the IMU stacked vertically in order to minimize lever arms and
misalignments between their sensor frames. In addition, an infrared (IR) camera motion capture system (by VICON)
provides truth trajectory tracking measurements. IR markers are fixed on the rover and LiDAR sensor.

In this experiment, cardboard cylinders serve as landmarks for ease of FE from LiDAR point clouds. They are covered
with white and black felts and retro-reflective straps to provide different surface reflectivity. IR markers are placed around
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the edge of the cylinders for surveying using IR cameras. One of the landmarks will periodically be occluded behind another
one, which will test the data association process’ ability to dynamically distinguish landmarks.

IR Cameras Cylinders LiDAR/IMU Rover Figure-Eight Track

/

S S
Figure 3. Testbed set up

IR cameras (shown in Figure 4) provide truth values for the position and orientation of the LiDAR and IMU sensors in
the navigation frame. They are also used to map landmark locations. Twelve cameras, four VICON MX-T20s and eight
Vantage 5s, record small retro-reflective markers placed on the sensors and landmarks, providing sub-centimeter level
positioning. We also use a Velodyne’s VLP-16 Puck LTE LiDAR and a NovAtel’s IMU-IGM-A1 coupled with NovAtel’s
ProPak6. The IMU is set to record at 100 Hz sampling rate. The IR cameras data set is used as true values to determine
errors in multi-sensor ADS trajectory estimation. All three sensors, IR cameras, LIDAR, and IMU, are time-tagged using the
same computer clock.

(a) (b) (©) (d)

Infrared Markers
IL

5. Navigation Performance Test Results Using LiDAR

In this section, we quantify navigation integrity for the multi-sensor IMU/LiDAR system described in Section 4. As
aanounced in Section 3.1, we consider four configurations: LiDAR-only, IMU/LiDAR, LiDAR+ (i.e., incorporating mean
intensity measurements to LiDAR range and bearing angle), and ‘IMU/LiDAR+’ (using all available sensor information).
We perform four tests to quantify risk reductions brought about by incorporating IMU and LiDAR intensity measurements as
compared to LiDAR-only. In each test, the rover is moving on a figure-eight track next to a predefined set of landmarks,
some of which may be occluded over segments of the trajectory. The four tests can be described as follows.
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o Test 1 — LiDAR-only: We only use LIDAR range and bearing measurements.

o Test 2 — IMU/LiDAR: The IMU data is incorporated with LiDAR range and bearing measurements. We artificially
impose a limit on LiDAR range measurements.

e Test3 — LiDAR+: The LiDAR intensity measurement is incorporated with LiDAR range and bearing measurements.
Landmark occlusions occur causing high risk of incorrect association.

o Test4—IMU/LiDAR+: LiDAR range, bearing and intensity data are incorporated with IMU data.

Table 3 lists parameters and settings which are common to all tests. We use two landmarks in Tests 1-2 and four landmarks
in Tests 3-4. Each landmark is identified by a number ranging from 1 to 4. In Tests 3 and 4, landmark surface properties are
not all the same: we use cylinders with black surfaces (labeled ‘B’ on figures), white surfaces (“W’) and retro-reflective
surfaces (‘RR’). The nominal LiDAR range limit is set to 10 meters in Tests 1, 3, 4, and reduced to 4 meters in Test 2.

Table 3. Common settings and Parameters

System Parameters Values
standard deviation of feature extraction ranging measurement 0.15m
standard deviation of feature extraction angular measurement 3 deg
Laser data sampling interval 0.1s
Vehicle speed 0.6 m/s
Alert limit £ [7] 0.35m

5.1 Using LiDAR Range and Bearing Angle Measurements

In this ‘LiDAR-only’ implementation, we use LiDAR ranging and bearing angle measurements. Two black-colored
landmarks (labeled 1 and 2) are in view of the 360 degree-azimuth LiDAR as shown in Figure 5. The LiDAR range limit is
such that all landmarks are continuously in view of the LiDAR. The estimated trajectory is represented with a blue line and
the true trajectory with a black line. Estimated and true trajectories are overlapping. The black arrow shows the direction of
motion at the starting point. Background colors will help identify segments of the rover trajectory when presenting results
over time: the rover follows straight line paths in the dark gray area, is in the top loop when in the white area, and in the
bottom loop when in the light gray area.

3 — True Trajectory
= Estimated Trajectory
Landmark
2 Y ADS Initial Position
B B
1 1
— ® B
£
£ 0
[<}
=
-1
-2
-3
-4 -3 -2 -1 0 1 2 3 4
East (m)

Figure 5. Landmark Geometry and True versus Estimated Vehicle Trajectory in Local Navigation Frame for Test 1
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Figure 6 shows red covariance ellipses representing two-dimensional positioning uncertainty for ADS locations taken at
regular 0.8 s intervals. Covariance ellipses are inflated by a factor 5 to facilitate visualization. We keep the positioning
update interval and inflation factor the same for Tests 1 to 4.

Figure 7 represents the cross-track positioning error and covariance envelope (the ‘1-o ° one-dimensional envelope
represents the boundary within which 68% of the error samples are expected to lie, assuming zero mean error). In this case,
the cross-track positioning error (thick curve) is within the covariance envelope (thin curves) at all times.

0.5
5 — True Trajectary == Positioning Error
— Covariance Ellipses 0.4 — Covariance Envelope
= Estimeated Trajectory
2 . Landmark 0.3
2 o 3 ADS Initial Position
0.2
1 . ‘l - ‘/\_/—\
— B — 01 — Te—
£ E
g0 E 0 W\—-M
[=] L —
= 01 L,.-—-——-——__ I _\_hh"““-u.._---
-1 W
0.2
2 03
0.4
-3
0.5
-4 -3 -2 -1 1] 1 2 3 4 0 5 10 15
East (m) Time(s)

Figure 7. Cross Track Positioning Error and Covariance
Envelope Over Time for Test 1

Figure 6. Covariance Ellipses at Multiple Time Steps
for Test 1

Figure 8-(a) displays integrity risk bounds for the LIDAR-only implementation. The integrity risk bound is our estimate
of the risk that the cross-track positioning error exceeds a 0.35 m alert limit (we assumed an example 0.35 m limit based on

[30]). The black P(HMI |CA )-curve assumes correct data association at all time steps and is directly derived from the
EKF variance [15]. The red P(HMI) -curve accounts for potential incorrect associations at past or current times. Figure 8-

(b) shows that landmarks 1 and 2 are continuously observed and extracted by the LiDAR. Even though, in this particular run,
the landmarks are correctly associated (if not, we would see large, abrupt changes of the thick curve in Figure 7) we can only
ensure that the risk of incorrect association is between 10 and 102,

In Figure 8 (a), the red and black curves overlap through most of the trajectory, except for a short time interval between
Times 6 s and 8 s. To better understand this discrepency, the corresponding segment of the trajectory is circled in a red
dashed ellipse in Figure 5. At this location, the rover and the two landmarks are almost aligned. In parallel, Figure 9 shows
the perceived separation between landmarks, i.e., the weighted innovation vector’s norm (7 ) when landmarks 1 and 2 are

incorrectly associated. For small J -values, correct and incorrect associations become difficult to distinguish, which
increases the risk of incorrect association and hence increases the P(HMI) -bound. In this LiDAR-only test where the rover

kinematic model is unreliable, and at this point in the trajectory where landmarks and vehicle are aligned, the navigation
system does not have enough information to guarantee that the vehicle is either facing East or West. Additional information
from an IMU addresses this problem, and can even help coast through periods of lack of LiDAR data.
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Figure 8. For Test 1: (a) Integrity Risk Bounds Assuming Correct  Figure 9. For Test 1: Weighted Norm of Innovation Vector for
Associations Versus Accounting for Incorrect Associations; (b) Incorrectly Associating Landmarks 1 and 2
Landmark Visibility (also referred to as ‘Separation’ between Landmarks 1 and 2)

5.2 Using IMU and LiDAR with Limited Range

In Test 2, we consider two sensor configurations: LiDAR-only and IMU/LIiDAR. IMU parameter values are listed in
Table 4. To evaluate the IMU’s ability to coast through periods of LiDAR data unavailability, we artificially impose a four
meter LiDAR range limit. This limit causes Landmark 2 to become unobservable for a segment of the trajectory, where only

Landmark 1 is visible.

Table 4. IMU Parameter Values

System Parameters Values
Accelerometer Power Spectral Density 0.079 m/s*/ \/E
Gyroscope Power Spectral Density 0.005 rad/ \/;
Accelerometer GMP Bias Correlation Time Constant 3600 s
Gyroscope GMP Bias Correlation Time Constant 3600 s

Standard Deviation of Accelerometer GMP Bias 0.67 m/s?
Standard Deviation of Gyroscope GMP Bias 10 deg

IMU Sampling Time 0.01s

Figure 10 shows the ADS true and estimated trajectories for LIDAR-only in Figure 10-(a) and for IMU/LiDAR in Figure
10-(b). The red segment of the estimated trajectory indicates where Landmark 2 is out of view. As compared to Figure 10-
(a), Figure 10-(b) shows that integrating IMU measurements helps maintain low trajectory tracking errors.

Figure 11 (a) shows LiDAR-only covariance ellipses, which are fairly small when both landmarks are in view, but
increase dramatically when Landmark 2 is out of view. It is worth noting that this is not an integrity issue because we have a
clear indication of poor localization performance. But, it is an availability or continuity issue: we would not use the system
in such a high risk situation. In contrast, in Figure 11 (b), IMU/LiDAR covariance ellipses are smaller than for LIDAR-only
throughout the trajectory, and do not increase greatly when Landmark 2 is out of view.
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Figure 11. Inflated Covariance Ellipses with LIDAR Ranging Limit (a) without IMU Data (b) with IMU Data

Figure 12(a) and (b) respectively show integrity risk bounds and landmark availability over time. In Figure 12 (a), the
black curves are P(HMI | CA) -curves, and red is used to represent P(HMI) ; thin lines are used for LiDAR-only and thick

lines for IMU/LiDAR. When Landmark 2 gets out of view, the P(HMI) and P(HMI|CA) bounds for LiDAR-only
approach one. P(HMI | CA) decreases again when Landmark 2 comes back in view, but P(HMI) stays high because past

time associations can still impact current-time integrity risk. The red and black IMU/LiDAR risk curves overlap and remain
orders of magnitude lower thank LiDAR-only, showing that IMU not only improves estimation performance, but also

reduces the risk of incorrect associations.
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Figure 12. For Test 2: (a) Integrity Risk Bounds Assuming a 4-Meter LIDAR Range Limit Using LIDAR-Only versus
IMU/LiDAR; (b) Landmark Visibility

5.3 Using LiDAR Range, Bearing Angles and Return-Light Intensity

In Test 3, we do not use the IMU, but use LiDAR range, bearing angle, and return light intensity measurements. We
label this sensor configuration LIDAR+. LiDAR intensity measurements are used to improve data association. In this test,
we place four landmarks with different surface reflectivities around the vehicle path. The surface of Landmarks 1 and 2 is
black, that of Landmark 4 is white, and that of Landmark 3 is covered with retro-reflective tape. In this preliminary work, we
compare the mean measured intensity over all data points associated with a landmark to the mean intensities stored in the
map. This helps distinguish landmarks from each other and therefore improves data association..

In addition, as illustrated in Figure 13, Landmark 3 gets occluded by Landmark 1 for a few rover locations in the upper-
loop of the figure eight. This arrangement makes data association more challenging because Landmarks 1 and 3 appear close
to each other for certain rover locations.

In Figure 13, the red segments represent ADS locations where Landmark 3 is hidden behind Landmark 1. Covariance

ellipses are smaller than in Figure 6 because two additional landmarks are visible. Ellipses grow when Landmark 3 is hidden.
LiDAR intensity measurements do not affect trajectory estimation
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Figure 14 (a) shows P(HMI) -curves for LiDAR-only (thin curve), and LiDAR+ (thick curve). Figure 14 (b) displays

the landmark availability. The thin LiDAR-only curve suddenly increases at time ‘3 s’, which is the time when Landmark 3
first gets occluded by Landmark 1. In contrast, low risk levels are maintained using LiDAR+ because intensity
measurements help correctly identify landmarks.

5.4 Using LiDAR Range, Bearing, Intensity and IMU

In Test 4, we integrate IMU with LiDAR range, bearing and intensity measurements, which we refer to as the
‘IMU/LiDAR+’ configuration. We use the same landmarks as in Test 3. Figure 15 shows that the ADS positioning
covariance ellipses are much smaller using IMU/LiDAR+ than using LiDAR+ in Figure 13.

Figure 16 confirms these observation by showing P(HMI) curves for IMU/LIDAR and IMU/LiDAR+, as well as for

LiDAR-only and LiDAR+. LiDAR-only performs relatively poorly in this test, with the P(HMI) -bound approaching 1 as

soon as the first difficult-to-identify landmark geometry is encountered. IMU/LiDAR performs better at the beginning, but
the P(HMI) -bound still approaches 1 after first difficult-to-dinstinguish landmarks. LiDAR+ is consistently better, except

when Landmark 3 gets occluded causing poorer estimation performance because fewer measurements are available. Finally,
IMU/LIiDAR+ expectedly outperforms all other configurations, and our tests show that the resulting P(HMI) -bound is at

least four orders of magnitude lower than in the other cases, remaining below 107" throughout the test.
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6. Conclusion

In this paper, we derived a new IMU/LiDAR integration method that enables integrity risk evaluation while accounting
for all possible incorrect associations between observed and mapped landmarks. Our method also incorporates LiDAR return-
light intensity measurements to better distinguish landmarks, thereby increasing the probability of correct association P(CA).
We implemented a new analytical method to quantify the improvement in P(CA4). In addition, we developed a testbed to
evaluate our method with empirical data in a structured, well-understood environment. Four different configurations were
tested. The four configurations were used to quantify and analyze the P(CA)-improvement provided by IMU data and
LiDAR intensity measurements as compared to using LiDAR-only. The performance assessment shows a reduction in
integrity risk of several orders of magnitude brought by IMU and LiDAR intensity in our selected testing environment.
Future work includes tesing these methods in more realistic, unstructured environments, evaluating multi-sensor integrity risk
over repeated trajectories and using more sofisticated methods for feature extraction.

2654



Appendix A — Linearized IMU and LiDAR Measurement Equations Coefficients
In this appendix, we describe the coefficient matrices used in equations (3) and (12).

The coefficient matrix used in equation (3) is:

—sin(y)cos(d) cos(y) O]
B,,, = sin(6) 0 1

(A.1)
cos(y)cos(d) sin(y) O
The coefficient martrices corresponding to IMU measurements in equation (12) can be defined as [23]:
0
R+h
1 (A.2)
F, = i 0 0
0 —tan(4)
R+h
_ . 2, 0_
R
2
Fyy = §0 0 0 (A3)
0 0 0
where
R is the earth radius
h s the vehicle altitude
A s the vehicle latitude
g, is the acceleration of gravity at zero altitude
The coefficients matrices corresponding to LIDAR measurements in equations (21) are [7]:
B 1 n 17
Pe—Xg . " P X
||1p_iEN|| nLp_XE/v"
ool M (A.4)
d.x 1 — n. —
e N
0 0
! ng e
Py — Xy Py — Xy
Y o 2
" p_XEN" pfxls/v"
F P " Py X (A.5)
0,x 1 _ 2 ng _ 2
" p_XEN" p_XEN"
0 0

Where X, =[x, xN]T (also apering in ADS position states equation (14)) and P =[P, PN]T
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F, =| (A.6)

Appendix B —Discrete-Time Equations of IMU

We use the Van Loan algorithm to determine the discrete-time state propagation matrix @, based on the continuous-

time matrices F and w [27]. The following equations are the discrete-time form of equations (4, 5, 7, 8)

o) =[1+S,+M, 1 0 +b,, +v , (B.1)
"o =[I+S, +M,]17'(°®; -b,,) (B.2)
PE =[1+S,+M,] °f, +b_, +v,, (B.3)
UE =4S, M, (R, ) (B.4)

The following equations are the discrete-time form of equations (6) and (9)

Is
b, =¢ b, +n,, (B.5)
I

b,., =e “b,, +n,, (B.6)

ak+1

Appendix C — Overbounding of Measurement Error Distributions

This appendix outlines the method that we used to derive a probabilistic model for the extracted feature measurements.
This method is based on over-bounding theory [4, 5]. We collected LiDAR point cloud data for 4250 of sensor-to-landmark
geometries (landmarks are vertical cylinders), processed them using our feature extractor, and stored the estimated point-
feature range and bearing angle measurements.

Figures C.1 and C.2 respectively show the range and bearing angle measurement error cumulative distribution functions
(CDF) on quantile to quantile plots. On these plots, the x-axis is the theoretical standard normal distribution quantiles and the
y-axis is the sample measurement error distribution quantiles. If the empirical measurement error distribution were a normal
distribution, the sample points would align along a straight line with slope the sample standard deviation, and y-intercept the
sample mean. Figures C.1 and C.2 show that the core of the distribution behave like a normal distribution within + 2 sigmas,
i.e., 95% of the time. But the sample distributions have wide tails.

We leverage overbounding theory, which is used in aviation navigation, to model these complicated sample distributions
[4, 5, 31]. The black lines in Figures C.1 and C.2 are overbounding Gaussian functions. Their standard deviations are 0.12
meter for the range measurement error (versus 0.03 m for the sample distribution), and 2 degrees for the bearing angle
measurement error (versus 1 deg for the sample distribution).
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