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Abstract—Baseline estimation is a critical task for commercial
buildings that participate in demand response programs and
need to assess the impact of their strategies. The problem is
to predict what the power profile would have been had the
demand response event not taken place. This paper explores the
use of tensor decomposition in baseline estimation. We apply the
method to submetered fan power data from demand response
experiments that were run to assess a fast demand response
strategy expected to primarily impact the fans. Baselining this
fan power data is critical for evaluating the results, but doing
so presents new challenges not readily addressed by existing
techniques designed primarily for baselining whole building
electric loads. We find that tensor decomposition of the fan power
data identifies components that capture both dominant daily
patterns and demand response events, and that are generally
more interpretable than those found by principal component
analysis. We conclude by discussing how these components and
related techniques can aid in developing new baseline models.

Index Terms—Baseline estimation, demand response, principal
component analysis, tensor decompositions.

I. INTRODUCTION

Baselining power profiles is a critical task for commercial
buildings participating in demand response programs, which
incentivize changes in building electricity consumption to im-
prove grid reliability and economics. The problem is to predict
what the power profile would have been had the demand
response event not occurred. Baselines are generally used to
assess the impact of demand response strategies and are further
used in the case of incentive-based demand response programs
to calculate financial compensation for participants [1].

Traditionally, baseline models for demand response predict
whole building electric loads and fall into three categories.
Averaging models take the mean load of several recent base-
line days [2], i.e., days without demand response. Regression
models use historical data to fit a relationship between some
explanatory variables and the load [3], [4]. Control group
models use data mining to find a cluster of load curves from
baseline days of the same building and/or other buildings to
use in baselining [5]–[7]. Some models further incorporate
multiplicative or additive adjustments [2].

We consider the problem of baseline modeling for a fast
demand response strategy that is expected to primarily impact
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the fans in the Heating, Ventilation, and Air Conditioning
(HVAC) systems [8]. Hence, our goal is to baseline fan power
data, but doing so presents new challenges. For example, we
have found that fan power does not depend strongly on outdoor
temperature, so regression against this variable is less effective.
Fan power during demand response events is baselined in [9]
by linearly interpolating based on measurements just prior to
and some settling time after each event, and [8] employs a
low pass filter for signal bandwidth separation.

This paper explores using the tensor decomposition of fan
power data to discover dominant patterns that reveal typical
behavior and that can inform baselines. We consider subme-
tered fan power data collected at the University of Michigan
to assess a demand response strategy [10]. The data naturally
forms a three-dimensional time × fan × day array, i.e., a third
order tensor, making tensor decomposition a natural option.
Tensor decomposition is new to baseline modeling, but has
been previously used for power system energy consumption
breakdowns [11] and model reduction [12]. Its matrix coun-
terpart, principal component analysis (PCA) [13], has also
been applied to the highly related problem of short-term load
forecasting. Intra-day load variation is captured by PCA in
[14] to reduce model complexity, and [15], [16] use PCA to
reduce the number of variables in their regression models.

We specifically consider the canonical polyadic (CP) tensor
decomposition. Our investigation finds that CP decomposition
is able to identify meaningful components in the fan power
data that capture both dominant daily patterns and demand
response events. Furthermore, the decompositions provide
granular per-fan insights into fan power since they work from
the full data, rather than reducing to a matrix, e.g., by using
total fan power. Comparing with a PCA of total fan power,
we also find that the components found by CP decomposition
are generally more interpretable, likely because CP does not
require factors to be orthogonal. We close the paper with a
discussion of how these components and other related tensor
techniques might be used for developing new fan power
baseline models.

II. EXPERIMENTS AND DATA

Fan power data were collected at the Rackham Building on
the University of Michigan campus in Ann Arbor, MI over the
course of 90 days from August 1, 2017 to October 29, 2017 to
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Fig. 1: Fan power traces from August 8, 2017 (a non-event
day) and September 11, 2017 (an event day). Events at 9:00-
10:00 and 13:00-14:00 can be seen in (b).

assess the impact of a demand response strategy. Each day has
measurements taken by sensors on 8 fans (4 supply, 4 return) at
a sampling rate of one measurement per minute. The Rackham
Building is a 157 957 ft2 office/auditorium space with 8 AHUs,
8 supply fans, and 8 return fans. Its 2016 energy consumption
was 972MWh with a peak demand of 226 kW.

Researchers carried out demand response experiments on 16
September weekdays. Each event day consists of two events,
one at 9:00-10:00 and another at 13:00-14:00. In each event,
109 temperature setpoints in the 4 instrumented AHU zones
were modulated in one of two ways:

1) the setpoints are decreased below their usual value for 30
minutes then increased symmetrically above their usual
value for 30 minutes, or

2) the reverse, i.e., setpoints are increased then decreased.
Fig. 1 plots the 8 fan power traces for August 8, 2017 (a non-
event day) and September 11, 2017 (an event day); events can
be seen as spikes in Fig. 1b.

The goal was to assess whether buildings consume more
energy when demand response is used to shift load over
short (< 1 hr) timescales. A baseline is necessary to calculate
the energy impact of the demand response event. Previous
analysis with simple baseline models found that buildings
generally consume more energy when doing this type of short
time scale shifting, but the quantitative results are imprecise
since the baseline model error is potentially large [10]. This
paper explores tensor methods as a tool for developing new,
more reliable models. See [10] for further discussion of the
experiments and data collected.

III. OVERVIEW OF TENSOR DECOMPOSITIONS

In this paper, a tensor refers to a multi-dimensional array.
For example, the fan power data is naturally expressed as a
three-dimensional time × fan × day array, as shown in Fig. 2.
Namely, it forms a third order or three-way tensor with three
modes: a) time, b) fan, and c) day. A matrix can be formed
from the same data, e.g., by vertically concatenating the
matrices for each day to form a time/day × fan matrix. Doing
so makes it possible to apply matrix methods such as PCA, but
this representation does not capture correlation across days as
naturally. One could also sum across the fans to form a time
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Fig. 2: Forming a three-way tensor from fan power data and
its rank r tensor decomposition.

× day matrix of total fan powers, but this representation loses
the per-fan breakdown of power usage. Tensor representations
instead capture and preserve these underlying structures in the
data. We focus on third order data tensors in this paper, but the
techniques we discuss generalize to arbitrary order tensors.

Power usage over the course of the day is likely to share
some common overall patterns across both fans and days,
and these patterns may be useful for estimating baselines.
The canonical polyadic (CP) tensor decomposition1 finds such
underlying patterns by fitting the data tensor X ∈ Rn1×n2×n3

with a rank r tensor, i.e., a sum of r outer products

M = a(1) ◦ b(1) ◦ c(1) + · · ·+ a(r) ◦ b(r) ◦ c(r), (1)

where
• a(1), . . . , a(r) ∈ Rn1 are the r factors for mode one,
• b(1), . . . , b(r) ∈ Rn2 are the r factors for mode two,
• c(1), . . . , c(r) ∈ Rn3 are the r factors for mode three,

and ◦ denotes an outer product, as illustrated in Fig. 2. Written
in terms of its entries, (1) is equivalently

Mijk = a
(1)
i b

(1)
j c

(1)
k + · · ·+ a

(r)
i b

(r)
j c

(r)
k .

We call each outer product a component, and M is rank (at
most) r since it can be written as the sum of r components.
Each component of M captures correlations across all three
modes simultaneously. For example, fibers of the first compo-
nent along the time mode are of the form

(a(1) ◦ b(1) ◦ c(1)):jk = a(1)b
(1)
j c

(1)
k ∈ Rn1 ,

i.e., they are a single temporal pattern a(1) modulated by fan
weights b

(1)
j and day weights c

(1)
k . Likewise, fan mode fibers

are a single fan profile b(1) modulated by time weights a
(1)
i

and day weights c
(1)
k , and similarly for day mode fibers.

CP decomposition seeks a least-squares fit to X , namely a
low-rank tensor M that minimizes

‖X −M‖2F =

n1∑
i=1

n2∑
j=1

n3∑
k=1

(Xijk −Mijk)
2. (2)

CP decompositions are typically computed via an alternating
least-squares algorithm. Minimizing (2) with respect to the
factors is a nonconvex optimization problem, so running alter-
nating least-squares from different initializations can produce

1Strictly speaking, this paper uses approximate tensor decompositions.
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Fig. 3: Factors from rank-6 CP tensor decomposition of 3-way
power tensor. In the day factors, Fridays are purple, Saturdays
are red, Sundays are blue, Mondays are dark blue, and all
other days are green.

different factors (e.g., due to local minima). One often runs
several times with random initializations to verify that the
patterns identified appear consistently, finally taking the run
with the best fit. We use 20 runs with the implementation of
alternating least squares in the Tensor Toolbox for Matlab [17],
[18]. See [19, Section 3] for a further discussion and overview
of CP tensor decompositions.

IV. INITIAL CP DECOMPOSITION COMPARED TO PCA

This section applies CP tensor decomposition to the full
1440 time steps × 8 fans × 90 days data tensor X de-
scribed in Section II. This tensor contains both days with
and without demand response events, and we carry out a
rank-6 CP decomposition. For this data, lower rank decom-
positions captured too few interesting patterns; higher rank
decompositions capture more diverse behaviors but eventually
begin to find redundant factors. A rank-6 decomposition yields
the factors a(1), . . . , a(6) ∈ R1440, b(1), . . . , b(6) ∈ R8, and
c(1), . . . , c(6) ∈ R90, shown in Fig. 3 as the first, second,
and third columns of plots, respectively. Each row of plots
in Fig. 3 corresponds to one of the six components. Since
a(1), . . . , a(6) are time factors, we plot their 1440 values versus
the corresponding times (0 and 24 correspond to midnight,
and 12 is noon). Likewise, b(1), . . . , b(6) are fan factors so
we plot their 8 values as bars labeled by fan name. Finally,
c(1), . . . , c(6) are day factors so we plot their 90 values as
scatter plots. The relative scaling of factors in each component
is arbitrary, e.g., doubling a(`) and halving b(`) has no overall
impact, so we normalize all factors to have unit norm for
plotting and print each component’s relative magnitude on left.

The components reveal some interesting patterns. Looking
at the fan and day factors for the first two components indicate
that they capture weekday patterns across fans; negative values
in the second fan factor result in some cancellation when added
to the first component in (1). Component 3 appears to differ-
entiate August and September from October. Component 4
captures a pattern arising Saturday-Monday that primarily
involves supply fan 2, and component 5 separates Fridays from
the other weekdays. Finally, component 6 captures a pattern

in zone 8 that appears primarily on Saturdays between 9:00am
and 3:00pm in August-September.

In general, the time factors are fairly continuous as is natural
to expect for temporal traces. The channel factors indicate that
supply fans typically consume more power than return fans,
with the notable exception of return fan 8. The day factors
show general separation between weekdays and weekends.
Notably, the tensor decomposition identified these inherent
properties from the data alone. The method is otherwise
“blind” to which days correspond to weekdays and was not
explicitly regularized to encourage any smoothness in time.
The factors provide a view into the underlying patterns of
the data, yielding insights about fan power behavior that can
inform baseline estimates.

Conventionally, one might identify dominant patterns like
these from total fan power (a 1440 times × 90 days ma-
trix) by using matrix methods such as PCA. Fig. 4 shows
the first six principal components for total fan power; we
use singular value decomposition (without standardization)
and show the scaled singular vectors in the same way as
Fig. 3. Component 1 again captures an overall weekday trend.
Components 2 and 3 appear to roughly correspond with a
combination of components 5 and 6 in Fig. 3. They separate
Fridays from the other weekdays like component 5 in Fig. 3
with similar activity after 9:00pm, and they capture activity
between 9:00am and 3:00pm on Saturdays like component 6
in Fig. 3. Component 4 reflects the demand response events in
its time factor, but the extent of its day factor is not limited to
the event days. The interpretation of components 5 and 6 is not
as clear, but they seem to be somewhat more active August-
September. For this data, the PCA factors are generally more
challenging to interpret, likely because PCA requires factors
to be orthogonal. CP decomposition, on the other hand, does
not enforce any constraints on the factors and hence can more
flexibly find interpretable patterns. Furthermore, these PCA
factors do not provide per-fan insights since they come from
total fan power. One can instead consider PCA factors from
a concatenated time/day × fan matrix, but in our experiments
these factors were also less interpretable than those from CP.
CP decomposition gives granular insights while utilizing the
natural structure of the data.

V. BASELINE & DEMAND RESPONSE CP DECOMPOSITIONS

Section IV applied tensor decomposition to the full data that
contains both days with and without demand response events.
Next we carry out separate rank-6 CP tensor decompositions
on data from just baseline days and just event days. Fig. 5
shows the factors obtained for the 1440 time steps × 8 fans
× 74 days tensor formed from only the 74 days without
any events. This provides a view into baseline only behavior.
The components capture similar patterns as those in Fig. 3.
Namely, component 1 roughly corresponds to a combination
of components 1 and 2 in Fig. 3, and a combination of
components 4 and 6 seems to correspond to component 3 in
Fig. 3. Finally, components 2, 3 and 5 roughly correspond to
components 4, 5 and 6, respectively, in Fig. 3. This similarity
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Fig. 4: First six principal components for total fan power. Days
are colored as in Fig. 3.
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Fig. 5: Factors from rank-6 CP tensor decomposition of 3-way
baseline days power tensor. Days are colored as in Fig. 3.

is likely because most days are baseline days (only 16 of 90
are event days) and the variations among them (e.g., weekday
versus weekend) appear to be fairly dominant.

Fig. 6 shows the factors obtained for the 1440 time steps ×
8 fans × 16 days tensor formed from only the 16 event days in
September (all weekdays). Component 1 roughly corresponds
to component 1 in Fig. 5 and captures overall power behavior
in the data. A combination of components 2 and 3 appears to
capture other temporal shapes that varied over the course of
September. Like component 3 in Fig. 5, component 4 appears
to separate Fridays from the other weekdays with activity after
9:00pm. Similarly, component 6 separates Mondays from the
other weekdays.

Finally, component 5 appears to primarily capture the
demand response events. The time factor shows a down-up
event at 9:00am followed by an up-down event at 1:00pm.
For the day factor of this component, we color each point by
whether the events that day were down-up followed by up-
down (red) or vice versa (blue). Notably, this factor cleanly
identifies and separates the two experimental protocols even
though the decomposition is unaware of them. Moreover, the
fan factor indicates that zone 8 fans respond the most, followed
by zone 7 and then zone 4.

In both cases, the tensor decompositions identify patterns
in the data that can be used to inform baseline estimates.
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Fig. 6: Factors from rank-6 CP tensor decomposition of 3-way
event days power tensor. Day factors for components 4 and 6
are colored as in Fig. 3. In component 5, down-up followed
by up-down days are red, and up-down followed by down-up
days are blue. Note how this component cleanly splits them.

VI. DISCUSSION

This paper explored the use of tensor decomposition for
identifying dominant components in fan power data. We found
that the components can capture dominant daily patterns
and demand response events, including how much each fan
contributes. The extracted factors lend new insights that can
be used to guide the development of new baseline models.
Baselines might also be formed by regressing measurements
outside event windows against the factors from baseline days,
i.e., by using them as compact representations of baseline data.

Another possibility is to approach baseline estimation as a
tensor completion problem, where measurements in the event
window are considered missing. Since low-rank CP decompo-
sition appears to effectively capture interpretable patterns and
structure in fan power data, one might impute event entries by
seeking a low-rank tensor that closely matches fan power data
on the non-event entries. Doing so corresponds to minimizing
a version of (2) that sums only over the event entries.

One can also try other tensor decompositions. For example,
non-negative CP decompositions [19, Section 5.6] can be even
more interpretable (since everything adds) and generalized CP
decompositions [20] can be configured for outlier-robustness.

In all these cases, choosing the rank is challenging. Note,
e.g., that CP decompositions do not nest; rank-6 factors may
not be part of higher rank decompositions. This paper found
rank-6 decompositions to extract interesting factors, but one
might instead select for sufficient fit, i.e., sufficiently small
residual (2). Developing general rank selection strategies for
baseline models is a topic for future work.

Finally, further work is needed to assess how incorporating
tensor methods in baseline estimation may impact analyses
that use these estimates, e.g., to calculate compensation in
incentive-based demand response programs.
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