
ONLINE TENSOR COMPLETION AND FREE SUBMODULE TRACKING WITH THE T-SVD

Kyle Gilman Laura Balzano

University of Michigan
Department of Electrical and Computer Engineering

ABSTRACT

We propose a new online algorithm, called TOUCAN, for
the tensor completion problem of imputing missing entries
of a low tubal-rank tensor using the tensor-tensor product (t-
product) and tensor singular value decomposition (t-SVD) al-
gebraic framework. We also demonstrate TOUCAN’s ability
to track changing free submodules from highly incomplete
streaming 2-D data. TOUCAN uses principles from incre-
mental gradient descent on the Grassmann manifold to solve
the tensor completion problem with linear complexity and
constant memory in the number of time samples. We com-
pare our results to state-of-the-art batch tensor completion al-
gorithms and matrix completion algorithms. We show our re-
sults on real applications to recover temporal MRI data under
limited sampling.

Index Terms— t-SVD, t-product, Grassmannian opti-
mization, online tensor completion, MRI reconstruction

1. INTRODUCTION
Modern data is increasingly high-dimensional and multiway,
increasing the storage and computational burden of signal
processing algorithms. Many practical applications collect
data over multiple modalities. Batch processing of large-scale
tensor data quickly becomes computationally intractable, and
even storing these tensors is problematic as the memory re-
quirements grow rapidly with the number and size of the
tensor modes. Additional challenges include large numbers
of missing tensor entries and streaming multiway data that
needs to be processed on the fly.

In this paper, we consider sampling and recovery of three-
way tensors using the algebraic framework of the t-SVD,
where tensors are treated as linear operators over the space
of oriented matrices [1, 2, 3]. Using this framework, one
obtains an SVD-like factorization referred to as the tensor-
SVD (t-SVD) with a defined notion of rank referred to as the
tubal-rank. A key property of the t-SVD is the optimality of
the truncated t-SVD for data approximation under the Frobe-
nius norm measure [4]. The t-SVD has been well-studied
in exact tensor recovery [4], image and video inpainting
[5, 6, 7], hyperspectral data [8, 9], and solving tensor robust
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principal component analysis (RPCA) problems for video
foreground/background separation [10, 11].

Most existing t-SVD based methods are batch methods
that require all of the data to be stored in memory at com-
putation time and/or compute multiple SVDs, which is time-
consuming and inefficient for large-scale data. Little work has
been done to extend online matrix completion methods to the
case of tensor data using the t-SVD framework, apart from
the works in [12] and [11]. The work in [12] must compute
multiple SVDs, and the authors in [11] proposed an online
tensor RPCA algorithm for free submodule estimation, but
their method cannot predict missing tensor values and does
not estimate an orthonormal factorization.

We propose a new algorithm called TOUCAN (Tensor
Rank-One Update on the Complex Grassmannian) to recover
low-rank tensor data from streaming, highly-incomplete mul-
tiway data with incremental gradient descent on the product
manifold of low-rank matrices in the Fourier domain using
the t-SVD. Our method is online by nature, avoids computing
the SVD, and scales linearly in computation with the number
of samples. We show our method’s ability to track dynami-
cally time-varying low-rank FSMs from streaming two-way
data in undersampled MRI data. Additionally, our method
can be extended to higher-order tensors.

2. PRELIMINARIES
The following notation and preliminaries are adopted from
the work in [1, 10]. We denote a three-way tensor as
AAAn1×n2×n3 . We use AAA(i, :, :), AAA(:, i, :), AAA(:, :, i) to denote
the tensor’s i-th horizontal, lateral, and frontal slices respec-
tively. Frontal slices are also denoted as AAA(i). AAA∗ denotes
the conjugate transpose tensor. The conjugate transpose of
a tensor AAA ∈ Cn1×n2×n3 is the tensor AAA∗ ∈ Cn2×n1×n3

obtained by conjugate transposing each frontal slice ofAAA and
then reversing the order of transposed slices 2 through n3.

We denote the Frobenius norm as ‖AAA‖F =
√∑

ijk |AAAijk|
2.

Any lateral slice of size n1 × 1 × n3 is denoted
−→
XXX , and any

tube along the 3rd dimension of length n3 is denoted as
−→
t .

The matrix conjugate transpose of a matrix A is denoted A′.
Denote the Discrete Fourier Transform (DFT) matrix for

operation on a length-n signal as Fn ∈ Cn×n and the DFT of
some vector v ∈ Rn as v̄ = Fnv ∈ Cn. Note that Fn/

√
n is

unitary, i.e. F ′nFn = FnF
′
n = nIn and F−1

n = F ′n/n. The
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DFT is commonly computed in O(n log n) time by the fast
Fourier transform (FFT) as v̄ = fft(v).

We denote Ā̄ĀA ∈ Cn1×n2×n3 as the result of computing the
DFT along the 3rd dimension, i.e. performing the DFT on the
tubes of AAA. The block-diagonal matrix Ā ∈ Cn1n3×n2n2 is
the n3n1×n3n2 matrix with n3 blocks of size n1×n2 that are
the frontal slices of Ā̄ĀA, denoted Ā(i) ∀i = 1, . . . , n3, along
its diagonal, Ā = bdiag(ĀAA) = diag(Ā(1), . . . , Ā(n3)). We
define the block-circulant matrix of the frontal slices ofAAA as

bcirc(AAA) =


A(1) A(n3) . . . A(2)

A(2) A(1) . . . A(3)

...
...

. . .
...

A(n3) A(n3−1) . . . A(1)

 ∈ Rn1n3×n2n3

From properties of block-circulant matrices, bcirc(AAA) can
be block-diagonalized by the DFT

Ā = (Fn3
⊗ In1

) · bcirc(AAA) · (F−1
n3
⊗ In2

) (1)

where⊗ denotes the Kronecker product, and (F−1
n3
⊗In2

)/
√
n3

is unitary [10]. For AAA ∈ Rn1×n2×n3 we define the unfold
operator that mapsAAA to a matrix of size n1n3×n2 and fold
as its inverse operator [1]:

unfold(A) =
[
A(1)′ A(2)′ . . . A(n3)′]′

fold(unfold(A)) = A

[T-product] [1]: LetAAA ∈ Rn1×n2×n3 andBBB ∈ Rn2×l×n3 .
The t-productAAA∗BBB is defined to be a tensor of size n1×l×n3,

AAA ∗BBB = fold(bcirc(AAA) · unfold(BBB)) (2)

By considering three-way tensors to be matrices whose
entries are a tubes lying in the third dimension, the t-product
can be understood as matrix-matrix multiplication but with
circular convolution between the matrix elements. This is
equivalent to matrix-matrix multiplication in the Fourier do-
main, i.e. CCC = AAA ∗ BBB is equivalent to C̄ = ĀB̄, and can be
computed using FFTs as shown in Alg. 1 of [5].

[Identity tensor][1] The identity tensorIIInnn3
∈ Rn×n×n3

is the tensor whose first frontal slice is the n × n iden-
tity matrix, and all other frontal slices are zeros. Property:
AAA ∗III = III ∗AAA =AAA

[Orthogonal tensor] [1] A tensor QQQ ∈ Rn×n×n3 is or-
thogonal if it satisfiesQQQ∗ ∗QQQ =QQQ ∗QQQ∗ = III.

[T-SVD] [1] Let AAA ∈ Rn1×n2×n3 . Then it can be fac-
torized as AAA = UUU ∗ SSS ∗ VVV∗ where UUU ∈ Rn1×n1×n3 ,VVV ∈
Rn2×n2×n3 are orthogonal, and SSS ∈ Rn1×n2×n3 is a ten-
sor whose frontal slices are diagonal matrices. For anyAAA ∈
Rn1×n2×n3 , the tensor tubal rank–rankt(AAA)–is defined as
the number of nonzero singular tubes of SSS from the t-SVD,
i.e., rankt(AAA) = #{i : SSS(i, i, :) = 0}.

We refer the reader to [10] for a detailed description on
the t-SVD and its efficient implementation using FFTs.

[Free Module over the commutative ring][11] Define
Mn1
n3

, a free module of dimension n3 over the commutative
ring R(Gn3

), to be the set of all 2-D lateral slices of size n1×

1× n3 [11]. Since for any element
−→
XXX ∈Mn1

n3
and coefficient

tube
−→
t ∈ R1×1×n3 in the commutative ring R(Gn3

), the
lateral slice

−→
YYY =

−→
XXX ∗−→t is also an element of Mn1

n3
, and Mn1

n3

is closed under tubal-scalar multiplication. One can construct
a spanning basis {

−→
UUU 1,
−→
UUU 2, . . . ,

−→
UUU r} for this module, and we

can uniquely represent any element
−→
VVV ∈ Mn1

n3
as a r < n1

dimensional t-linear combination of the spanning basis with
some tubal coefficients −→w i,

−→
VVV =

∑r
i=1

−→
UUU i ∗ −→w i = UUU ∗

−→
WWW .

Here, UUU ∈ Rn1×r×n3 and
−→
WWW ∈ Rr×1×n3 .

3. PROPOSED METHOD
Given n2 2-D data samples

−→
XXX 1, . . . ,

−→
XXX n2

of size n1×n3, we
arrange them as lateral slices to make a 3-D tensor XXX of size
n1×n2×n3. We consider lateral slices arriving sequentially
in time and containing missing entries. We learn the spanning
r-dimensional free submodule (FSM) of Mn1

n3
of this multi-

way streaming data in an online way similar to the GROUSE
algorithm [13]. We allow for the FSM to possibly evolve over
time. For full details, see [14].

Let UUU ∈ Rn1×r×n3 be an orthonormal tensor whose r lat-
eral slices span the the FSM of Mn1

n3
. At every time t, we

observe an incomplete lateral slice
−→
VVV t ∈ Mn1

n3
on the indices

Ωt ⊂ {1, . . . , n1} × {1, . . . , n3}. A natural global optimiza-
tion problem with squared `2 error loss is

Û̂ÛU , Ŵ̂ŴW = argmin
UUU∈Rn1×r×n3

WWW∈Rr×T×n3

1

2n3T

T∑
t=1

‖AΩt(
−→
VVV t −UUU ∗

−→
WWWt)‖2F

s.t. UUU∗ ∗ UUU = IIIrrn3 . (3)
Above, AΩt

(·) is the linear operator that extracts the
observed samples in the set Ωt. We minimize the cost func-
tion for each slice

−→
VVV t with a stochastic gradient descent

procedure. Let Lt(UUU ,
−→
WWWt) = 1

2‖AΩt(
−→
VVV t − UUU ∗

−→
WWWt)‖2F .

Then the objective in (3) is 1
n3T

∑T
t=1 Lt(UUU ,

−→
WWWt). We

will take a gradient step for each Lt sequentially. We
write the objective function using the definition of the t-
product in (2) and the block-diagonalization in (1). We
therefore have Lt(UUU ,

−→
WWWt) = 1

2‖FΩt
(v̄ − Ū w̄)‖22 in the

Fourier domain, where v̄ = unfold(V̄t) ∈ Cn1n3 and
w̄ = unfold(W̄t) ∈ Crn3 for convenient notation. Above,
PΩt is a subsampled identity matrix of size |Ωt| × n1n3

that selects the corresponding indices in Ωt. Finally, FΩt
=

PΩt
· (F−1

n3
⊗ In1

)/
√
n3 ∈ C|Ωt|×n1n3 is the subsampled

inverse Fourier transform. Here we have used the notation
from Eq (1) for Ū which is of size n1n3 × rn3 and gives us
another representation of ŪUU , with the frontal slices of ŪUU on
the diagonal, with n3 blocks of size n1 × r. This represen-
tation requires an additional constraint, that the elements not
on these diagonal blocks must be zero. We define the convex
set K to represent these matrices (without any orthogonality
constraint).

This is a nonconvex problem from the biconvexity be-
tween Ū and w̄ and the orthonormality constraint. The prob-
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lem is also separable in each frontal slice in the Fourier
domain, and each is a Grassmannian optimization problem
where Ū (i) ∼ G(n1, r)∀i = 1, . . . , n3, denoting Ū (i) as a
point on the Grassmannian–the set of all subspaces of dimen-
sion r in Cn1 . The Grassmannian is a compact Riemannian
manifold, and its geodesics can be explicitly computed [13].

Our optimization approach uses block coordinate de-
scent, holding the components of Ū fixed while optimiz-
ing over the weights w̄ and vice versa. With Ū we solve
w̄ = argminā∈Crn3

1
2‖FΩt

(v̄ − Ū ā)‖22. with conjugate gra-
dient descent (CGD) using FFTs.

Next we perform incremental projected gradient descent
on the complex Grassmannian in each slice with w̄ fixed. We
compute the gradient of Lt (written in the Fourier domain)
projected onto the set K, and then take a geodesic step [13].

Given the partial derivatives ofLt with respect to the com-
ponents of Ū [15]:

∂Lt
∂Ū

= −F ′Ωt
FΩt

(v̄ − Ū w̄)w̄′ = −F ′Ωt
FΩt

r̄w̄′ ; (4)

the projected gradient on the Grassmannian in Fourier space
is given by [16] ∇Lt = PK

(
(I − Ū Ū ′)∂Lt

∂Ū

)
where PK(·)

projects the gradient onto the closest point in the set K which
sets the non-block-diagonal entries of the gradient to zero.
The gradient of the objective on the Grassmannian then has
the form

∇Lt =

−ρ̄
(1)w̄(1)′ 0

. . .
0 −ρ̄(n3)w̄(n3)′

 ∈ Cn1n3×rn3

Here, ρ̄(i) =
(
I − Ū (i)Ū (i)′) r̄(i)

Ωt
, r̄Ωt

= F ′Ωt
FΩt

r̄ =

unfold(fft(∆Ωt
(
−→
RRR), [], 3)),

−→
RRR =

−→
VVV −UUU ∗

−→
WWW and ∆Ωt

(·)
imputes zeros on the unobserved tensor entries.

A gradient step along the geodesic with tangent vec-
tor −∇Lt is given by Equation (2.65) in [16] and is a
function of the singular values and vectors of ∇Lt [13].
We can express the SVD of ∇Lt as a product of block-
diagonal matrices where each element on the diagonal of
∇Lt is itself a rank-one matrix with nonzero singular value
σ̄(i) := 2‖ρ̄(i)‖‖w̄(i)′‖.

From [16], we now find that for η > 0, a step of length η
in the direction −∇Lt is given by Ū̄ŪU t+1 = Ū̄ŪU t +H̄HH where, for
p̄(i) = Ū (i)w̄(i),

H̄(i) =


(

sin(σ̄(i)η) ρ̄(i)

‖ρ̄(i)‖ + (cos(σ̄(i)η)− 1) p̄(i)

‖p̄(i)‖

)
w̄(i)′

‖w̄(i)‖ ,

i = 1, . . . , dn3+1
2 e

conj(H̄(i)), i = dn3+1
2 e+ 1, . . . , n3

(5)

Following from [17], we use a greedy step size η above for
each slice H̄(i), η = arctan(‖ρ̄(i)‖/‖w̄(i)‖). Using conjugate
symmetry of the Fourier transform, we can save significant
time by only computing the matrix-vector multiplications on
half of the frontal slices in the Fourier domain [10].

The preceding updates give an efficient algorithm for
computing each variable in the Fourier domain with simple,
efficient linear algebra operations and fast Fourier transforms.
TOUCAN is numerically stable by maintaining orthonormal-
ity on the tensor Grassmannian and is constant in memory
use, scaling linearly with the number of observed data sam-
ples instead of in polynomial-time like batch t-SVD methods.
TOUCAN is summarized in Algorithm 1. For the problem
of missing tubes of data, the optimization problem is entirely
block-diagonal and, as the work in [18] showed, is separable
in each frontal slice in the Fourier domain. The algorithm is
similar to, but more efficient than, Alg. 1;

−→
WWWt can be solved

exactly in closed form using psuedo-inverses in the Fourier
domain, and ρ̄(i) in Alg. 1 becomes r̄(i).
Algorithm 1 Tensor rank-One Update on the Complex grass-
manniAN (TOUCAN): Arbitrary Missing Tensor Entries

Require: A series of lateral slices
−→
VVV t ∈ Rn1×1×n3 , ∀i =

1, . . . , T observed on the indices in Ωt; rank parameter r,
randomly-initialized Ū̄ŪU0 ∈ Cn1×r×n3 .

1: for t = 1 to T do
2: Compute V̄VVt = ifft(VVVt, [], 3)
3: Estimate weights W̄t with CGD.
4: Compute: P̄ = ŪtW̄t,

−→
PPP = ifft(P̄̄P̄P, [], 3)

5: Compute residual:
−→
RRR =

−→
VVV t −

−→
PPP

6: Update subspace: Ū̄ŪU t+1 = Ū̄ŪU t + H̄HH by Eq. (5)
7: Transform: UUU t+1 = ifft(ŪUU t+1, [], 3)

8: Transform:
−→
WWWt = ifft(W̄WWt, [], 3)

9: end for
10: return UUU t+1,

−→
WWWt, ∀t = 1, . . . , T

4. EXPERIMENTAL RESULTS
[Numerical results] We first verify the validity and efficiency
of TOUCAN in recovering large-scale missing tensor data
synthetically generated from isotropic Gaussian distributions.
We compute the t-product of two low-tubal rank tensors to
yield a tensor of sizes n1 = 200, n2 = 500, n3 = 20 and
tubal-rank r = 3. We sample 50% of tensor entries/tubes
randomly according to a Bernoulli distribution. TOUCAN
observes one lateral slice at each time instance, solves the in-
ner CGD step to within a set tolerance (1e − 9), and is al-
lowed to process over the entire batch more than once until
the desired termination tolerance. We compare against batch
tensor completion algorithms in [4, 6] (with improved compu-
tational efficiency using conjugate symmetry) and to standard
matrix PCA algorithms by matricizing the tensor and com-
puting batch matrix completion [19] and GROUSE [13] on
each column of the matricized tensor. We plot the normalized
root-mean-squared error (NRMSE) of the recovered tensor to
the true tensor by elapsed wall clock time in seconds in Fig.
1(a), terminating each algorithm if its NRMSE is less than
1e − 9. TOUCAN is competitive with state-of-the-art batch
method Tensor Factorization (TCTF) [6] in the case of ran-
dom entry sampling, and TOUCAN’s efficient tubal-sampling
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(a) Tensor completion of synthetic t-product generated data. Solid
lines are experiments with uniformly random samples, and dashed
lines are experiments with uniformly sampled tubes.

(b) Tracking dynamic FSMs of different tubal ranks under random
sampling. Here, n1 = 50 and n3 = 10.

Fig. 1: Synthetic numerical experiments.

implementation vastly outperforms each other algorithms.
[Dynamic FSM Tracking] We demonstrate TOUCAN’s

ability to track a dynamically changing FSM from streaming
multiway data with missing entries. We generate a random or-
thonormal basisUUU for various tubal ranks from an i.i.d. Gaus-
sian distribution and draw 2-D lateral slices by t-product with
i.i.d Gaussian weights. We sample 70% of the entries/tubes
at random. At each iteration, for TOUCAN’s estimate ÛUU , we
measure ‖ÛUU ∗ÛUU

∗
−UUU ∗UUU∗‖F /‖UUU ∗UUU∗‖F . We simulate abrupt

FSM changes by randomly reinitializing the underlying FSM
every 500 slices. The simulation results in Fig. 1(b) show
TOUCAN’s ability to reliably re-estimate each new FSM.

[Streaming dynamic MRI reconstruction] Magnetic
resonance imaging (MRI) collects a high-dimensional tensor
that is often undersampled due to computational limitations
exacerbated by large volumetric and dynamic acquisitions.
One successful solution to image reconstruction from limited
sampling is low-rank tensor completion [20, 21]. A t-SVD
factorization of the spatial frequency-by-time (or k-t space)
tensor shows low-tubal-rank structure in the real and complex
components [20], and t-SVD algorithms have been shown
to be proficient at completing the k-t space tensor for image
reconstruction. MRI data can also contain significant mo-
tion content and time-varying dynamics such as breathing
motion. We employ TOUCAN’s ability to track streaming
time-dynamic multiway day to recover the k-t space tensor.

We test TOUCAN against the batch t-SVD algorithms and
an online tensor completion algorithm in [22] that estimates
a low-dimensional Grassmannian in each mode of a tensor
unfolding model, called Sequential Tensor Completion algo-
rithm (STC), to recover undersampled MRI data. We use the
invivo myocardial perfusion dataset data from [23] whose ten-
sor is in Ckx×kt×ky where kx = 190, ky = 90 and kt, the
number of time samples, is 70. We allow the online methods

Fig. 2: Reconstructed images of invivo myocardial perfusion
dataset from 40% of k-t space samples.

NRMSE SSIM Comp. Time (s)
Random Tube Random Tube Random Tube

Original 0 0 1 1 – –
Zero-filled 0.5755 0.5354 0.4735 0.6364 – –
TOUCAN 0.2148 0.2108 0.8637 0.8878 3.193 0.8425
TNN-ADMM 0.1144 0.1132 0.9518 0.9580 17.081 16.493
TCTF 0.2096 0.2018 0.8625 0.8941 15.837 14.240
STC 0.4300 – 0.6593 – 15.388 –

Table 1: Invivo myocardial perfusion experiment statistics.

one pass over the data in a streaming way; TOUCAN learns a
tubal-rank 5 FSM, and we set the ranks r1 = r2 = 90, r3 = 5
for STC. TCTF learns a tubal-rank 5 factorization. STC can-
not handle tube-sampled data, so we only test it in the case
where arbitrarily random entries are missing. We compute
the NRMSE and mean structural similarity index measures
(SSIM) of the reconstructed images (shown in Fig. 2, along
with the total computation times for each algorithm, which are
shown in Table 1). We show TOUCAN can achieve compet-
itive reconstruction measures against the batch algorithms in
far-less memory and computation time, and completely out-
performs STC.

5. CONCLUSION
In this paper we presented a novel algorithm for online
low-tubal-rank tensor completion under the t-SVD algebraic
framework. Our method avoids computing SVDs, and only
needs to update and store a smaller orthonormal tensor and
the lateral slice of weights per iteration, leading to a pow-
erful and efficient online algorithm that scales linearly in
computation with the number of samples.

A robust version of TOUCAN for tensor RPCA is of in-
terest for problems like multispectral foreground/background
separation. We plan to investigate choices for the number of
CGD iterations to balance accuracy with running time. Lastly,
our method merits comparison to the work in [12] and other
tensor algebraic frameworks like CP and Tucker.
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