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Abstract

We consider the problem of estimating a ranking
on a set of items from noisy pairwise compar-
isons given item features. We address the fact that
pairwise comparison data often reflects irrational
choice, e.g. intransitivity. Our key observation is
that two items compared in isolation from other
items may be compared based on only a salient
subset of features. Formalizing this framework,
we propose the salient feature preference model
and prove a finite sample complexity result for
learning the parameters of our model and the un-
derlying ranking with maximum likelihood esti-
mation. We also provide empirical results that
support our theoretical bounds and illustrate how
our model explains systematic intransitivity. Fi-
nally we demonstrate strong performance of max-
imum likelihood estimation of our model on both
synthetic data and two real data sets: the UT Zap-
posS0K data set and comparison data about the
compactness of legislative districts in the US.

1. Introduction

The problem of estimating a ranking is ubiquitous and has
applications in a wide variety of areas such as recommender
systems, review of scientific articles or proposals, search
results, sports tournaments, and understanding human per-
ception. Collecting full rankings of n items from human
users is infeasible if the number of items n is large. There-
fore, k-wise comparisons, k < n, are typically collected
and aggregated instead. Pairwise comparisons (kK = 2)
are popular since it is believed that humans can easily and
quickly answer these types of comparisons. However, it
has been observed that data from k-wise comparisons for
small & often exhibit what looks like irrational choice, such
as systematic intransitivity among comparisons. Common
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models address this issue with modeling noise, ignoring its
systematic nature. We observe, as others have before us
(Seshadri et al., 2019; Rosenfeld et al., 2020; Pfannschmidt
etal., 2019; Kleinberg et al., 2017; Benson et al., 2016; Chen
and Joachims, 2016b;a), that these systematic irrational be-
haviors can likely be better modeled as rational behaviors
made in context, meaning that the particular k items used in
a k-wise comparison will affect the comparison outcome.

Consider the most common model for learning a single
ranking from pairwise comparisons, the Bradley-Terry-Luce
(BTL) model. In this model, there exists a judgment vector
w* € R? that indicates the favorability of each of the d
features of an item (e.g. for shoes: cost, width, material
quality, etc), and each item has an embedding U; € R?,
i =1,...,n, indicating the value of each feature for that
given item. Subsequently, the outcome of a comparison is
made with probability related to the inner product (U;, w*);
the larger this inner product, the more likely item ¢ will
be ranked above other items to which it is compared. A
key implicit assumption is that the features used to rank all
n items are the same features used to rank just k items in
the absence of the other n — k items. However, we argue
that the context of that particular pairwise comparison is
also relevant; it is likely that when a pairwise comparison is
collected, if there are a small number of features that “stand
out,” a person will use only these features and ignore the rest
when he or she makes a comparison judgment. Otherwise,
if there are no salient features between a pair of items, a
person will take all features into consideration. This theory
has been hypothesized by the social science community to
explain violations of rational choice (Tversky, 1972; Tver-
sky and Simonson, 1993; Rieskamp et al., 2006; Brown and
Peterson, 2009; Shepard, 1964; Torgerson, 1965; Tversky,
1977; Bordalo et al., 2013). For example, (Kaufman et al.,
2017) collected preference data to understand human per-
ception of the compactness of legislative districts. They
hypothesized that the features respondents use in a pairwise
comparison task to judge district compactness vary from
pair to pair, which explains why their data are more reliable
for larger k. To illustrate this point, we highlight a con-
crete example from their experiments. Given two images
of districts, they asked respondents to pick which district
is more compact. When comparing district A with district
B or district C' in Figure 1, one of the most salient features
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is the degree of nonconvexity. However, when comparing
district B and district C, the degree of nonconvexity is no
longer a salient feature. These districts look similar on many
dimensions, forcing a person to really think and consider all
the features before making a judgment. Let P;; be the em-
pirical probability that district ¢ beats district j with respect
to compactness. Then, from the experiments of (Kaufman
et al., 2017), we have P,g = 100%, Pgc = 67%, and
Pac = 70%. These three districts violate strong stochas-
tic transitivity, the requirement that if P45 > 50% and
Ppc > 50%, then Pac > maX{PAB, PBC}-

District A District B District C'

Figure 1. Three districts used in pairwise comparison tasks in
(Kaufman et al., 2017)

We propose a novel probabilistic model called the salient
feature preference model for pairwise comparisons such that
the features used to compare two items are dependent on
the context in which two items are being compared. The
salient feature preference model is a variation of the stan-
dard Bradley-Terry-Luce model. At a high level, given
a pair of items in R, we posit that humans perform the
pairwise comparison in a coordinate subspace of R?. The
particular subspace depends on the salience of each fea-
ture of the pairs being compared. Crucially, if any human
were able to rank all the items at once, he or she would
compare the items in the ambient space without projection
onto a smaller subspace. This single ranking in the ambient
space is the ranking that we would like to estimate. Our
contributions are threefold. First, we precisely formulate
this model and derive the associated maximum likelihood
estimator (MLE) where the log-likelihood is convex. Our
model can result in intransitive preferences, despite the fact
that comparisons are based off a single universal ranking. In
addition, our model generalizes to unseen items and unseen
pairs. Second, we then prove a necessary and sufficient
identifiability condition for our model and finite sample
complexity bounds for the MLE. Our result specializes to
the sample complexity of the MLE for the BTL model with
features, which to the best of our knowledge has not been
provided in the literature. Third, we provide synthetic exper-
iments that support our theoretical results and also illustrate
scenarios where our salient feature preference model results
in systematic intransitives. We also demonstrate the efficacy
of our model and maximum likelihood estimation on real
preference data about legislative district compactness and
the UT Zappos50K data set.

1.1. Related Work

The Bradley-Terry-Luce Model One popular probabilis-
tic model for pairwise comparisons is the Bradley-Terry-
Luce (BTL) model (Bradley and Terry, 1952; Luce, 1959).
In this model, there are n items each with an unknown util-
ity u; for ¢ € [n], and the items are ranked by sorting the
utilities. The BTL model defines

et

P(item ¢ beats item j) = sl (1)

Although the BTL model makes strong parametric assump-
tions, it has been analyzed extensively by both the machine
learning and social science community and has been applied
in practice. For instance, the World Chess Federation has
used a variation of the BTL model in the past for ranking
chess players (Menke and Martinez, 2008). The sample
complexity of learning the utilities or the ranking of the
items with maximum likelihood estimation (MLE) has been
studied recently in (Rajkumar and Agarwal, 2014; Negah-
ban et al., 2016). Moreover, there is a recent line of work
that analyzes the sample complexity of learning the utilities
with MLE and other algorithms under several variations
of the BTL model, including when the items have features
that may or may not be known (Li et al., 2018; Oh et al.,
2015; Lu and Negahban, 2015; Park et al., 2015; Saha and
Rajkumar, 2018; Niranjan and Rajkumar, 2017). Our model
is also a variation of the BTL model where the utility of
each item is dependent on the items it is being compared to.

Violations of Rational Choice The social science com-
munity has long recognized and hypothesized about irra-
tional choice (Shepard, 1964; Torgerson, 1965; Tversky,
1977; 1972; Bordalo et al., 2013). See (Rieskamp et al.,
2006) for an excellent survey of this area including refer-
ences to social science experiments that demonstrate scenar-
ios where humans make choices that can violate a variety of
rational choice axioms such as transitivity. There has been
recent progress in modeling and providing evidence for vi-
olations of rational choice axioms in the machine learning
community (Seshadri et al., 2019; Rosenfeld et al., 2020;
Heckel et al., 2019; Pfannschmidt et al., 2019; Kleinberg
et al., 2017; Shah and Wainwright, 2017; Ragain and Ugan-
der, 2016; Niranjan and Rajkumar, 2017; Benson et al.,
2016; Chen and Joachims, 2016b;a; Rajkumar et al., 2015;
Yang and B. Wakin, 2015; Agresti, 2012). In contrast to our
work, none of these works model preference data that both
violates rational choice and admits a universal ranking of
the items with the exception of (Shah and Wainwright, 2017;
Heckel et al., 2019). Assuming there is a true ranking of the
items, our model makes a direct connection between pair-
wise comparison data that violates rational choice and the
underlying ranking. Violations of rational choice, including
intransitivty, occur in our model because of contextual ef-
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fects due to which pairs of items are being compared. These
contextual effects distort the true ranking, whereas in the
work of (Shah and Wainwright, 2017; Heckel et al., 2019)
the intransitive choices define the ranking. Specifically, the
items are ranked by sorting the items by the probability that
an item beats any other item.

We now focus on the works most similar to ours. The work
in (Seshadri et al., 2019), which generalizes (Chen and
Joachims, 2016b;a) from pairwise comparisons to k-wise
comparisons, considers a model for context dependent com-
parisons. However, because they do not assume access to
features, their model cannot predict choices based on new
items, which is a key task for very large modern data sets.
In contrast, our model can predict pairwise outcomes and
rankings of new items. Both (Rosenfeld et al., 2020) and
(Pfannschmidt et al., 2019) assume access to features of
items and propose learning contextual utilities with neural
networks. In contrast, we propose a linear approach with
typically far fewer parameters to estimate. Furthermore, the
latter work does not contain any theory, whereas we prove a
sample complexity result on estimating the parameters of
our model. In all of the aforementioned works in this para-
graph, the resulting optimization problems are non-convex
with the exception of a special case in (Seshadri et al., 2019)
that requires sampling every pairwise comparison. In con-
trast, the negative log likelihood of our model is convex.
Interestingly, the work in (Makhijani and Ugander, 2019)
shows that for a class of parametric models for pairwise
preference probabilities, if intransitives exist, then the nega-
tive log likelihood cannot be convex. Our model does not
belong to the class of parametric models they consider.

Notation For an integer d > 0, [d] := {1,...,d}. For
2,y € RY, (z,y) := 2% | @y, Forz € R and Q C [d],
let 2% € RY where (2%}); = z; if i €  and 0 otherwise.
Fori,j € [n], “i >p j” means “item 7 beats item j.” Let
P(X) be the power set of a set X. Given a set of vectors
S ={z; e RY}L,,span(S) = {30, auz; : oy € R}

2. Model and Algorithm

Salient Feature Preference Model Suppose there are n
items, and each item j € [n] has a known feature vector
Uj S Re, LetU := [UlUQUn] S RIx™ Let w* S
R? be the unknown judgment weights, which signify the
importance of each feature when comparing items. Let
7 : [n] x [n] — P([d]) be the known selection function
that determines which features are used in each pairwise
comparison. Let P := {(¢,j) € [n] X [n] : @ < j} be
the set of all pairs of items. Let S,, = {(i¢, je, ye)} 72y
be a set of m independent pairwise comparison samples
where (i¢, j¢) € P are chosen uniformly at random from
P with replacement, and y, € {0, 1} indicates the outcome

of the pairwise comparison where 1 indicates item 7, beat
item j, and O indicates item j, beat item i,. We model
ye ~ Bern(P(iy >p jg)) where

Je
1+ exp (<Ui7;(iz7jz) _ U;;(i’“]’j[),wﬂ) '
(2

exp <<Ui‘;(iz,j£) _ U"(ied'z)7 w*>>

P(i¢ >B je) =

To understand the probability model given by Equation (2),
note that <UZ-T(”)7 w*) is the inner product of U; and w*
after U, is projected to the coordinate subspace given by
7(4, j). Therefore, Equation (2) is simply the utility model
of Equation (1) where the utilities are inner products com-
puted in the subspace defined by the selection function
7. If the selection function returns all the coordinates, i.e.
7(4,j) = [d], then Equation (2) becomes the standard BTL
model where the utility of item 7 is (U;, w*) and fixed re-
gardless of context, i.e., regardless of which pair is being
compared. This model is typically called “BTL with fea-
tures,” and we will refer to it as FBTL. See Section 6 in
the Supplement for a natural extension of Equation (2) to k-
wise comparisons for k£ > 2. Furthermore, we assume that
the true ranking of all the items depends on all the features
and is given by sorting the items by (U;, w*) for i € [n].

Selection Function We propose a selection function 7
inspired by the social science literature, which posits that
violations of rational choice axioms arise in certain scenarios
because people make comparison judgments on a set of
items based on the features that differentiate them the most
(Rieskamp et al., 2006; Brown and Peterson, 2009; Bordalo
et al., 2013).

For two variables w, z € R, let u := (w + z)/2 be their
mean and 5 := ((w — p)? + (2 — p)?)/2 be their sample
variance. Given ¢ € [d] and items 4, € [n], the top-t
selection function selects the ¢ coordinates with the ¢ largest
sample variances in the entries of the feature vectors U;, U;.

Algorithm: Maximum Likelihood Estimation Given
observations S, = {(i¢, je,ye)}y~,. item features U €
R¥"  and a selection function 7, the negative log-
likelihood of w € R? is

m

Em(“’? U, Sm, T) = Zlog (1 + exp (uiz,jz)) — YeUiy,ges

(=1
3)

where u;, j, = <w, U;(W’je) _ U;‘g(ie,je)> '
Equation 3 is equivalent to logistic regression with features

zp = U030 _y7(030) gee Section 7 of the Supplement
Je

g
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for the derivation. We estimate w* with the maximum like-
lihood estimator w, which requires minimizing a convex
function:  := argmin,, L,,, (w; U, Sy, 7).

3. Theory

In this section, we analyze the sample complexity of esti-
mating the judgment weights with the MLE given by min-
imizing £,,, of Equation (3). We first consider the sample
complexity under an arbitrary selection function, and then
specialize to two concrete selection functions: one that se-
lects all features per pair and another that selects just one
feature per pair. Throughout this section, we assume the
set-up and notation presented in the beginning of Section 2.

First, the following proposition completely characterizes the
identifiability of w*. Identifiability means that with infinite
samples, it is possible to learn w*. Precisely, the salient
feature preference model is identifiable if for all (¢, j) € P
and for wy,wy € R, if P(i >p jwy) = P(i >p j;ws),
then wy = wy where P(i >p j;w) refers to Equation (2)
where w is the judgement vector. The proof is in Section 8
of the Supplement.

Proposition 1 (Identifiability). Given item features U &€
R"™*4 the salient feature preference model with selection
function T is identifiable if and only if span{U; @3) _
Ul (i,5) € P} =R%
Now we present our main theorem on the sample complexity
of estimating w*. Let

b* -— max ’U}* UT(ZJ) _ UT('LJ)

(nax [(w”, Uy ;0

which is the maximum absolute difference between two
items’ utilities when comparing them in context, i.e. based
on the features given by the selection function 7. Let

W) == {w e R? (w, U7 —UT D) < b4,

max
(i,j)epP
We constrain the MLE to W(b*) so that we can bound the
entries of the Hessian of £, in our theoretical analysis. We
do not enforce this constraint in our synthetic experiments.

Theorem 1 (Sample complexity of learning w*). Let U €
R w* € RY 7, and S be defined as in the beginning
of Section 2. Let W be the maximum likelihood estimator,
i.e. the minimum of L., in Equation (3), restricted to the set
W(b*). The following expectations are taken with respect
to a uniformly chosen random pair of items from P. For
(i,7) € P, let

Zag) = U7 U707 T
A= Amin(EZ ),
0= omax(B((Z.5) = EZ.5)%)),
¢:= max Amax(BZ(i5) = Zk,p),

(k,)eP

where for a positive semidefinite matrix X, A\min(X) and
Amax (X)) are the smallest/largest eigenvalues of X, and
where for any matrix X, omax(X) is the largest singular
value of X. Let

Bi= max U7 = U7 o )
1,])€

Letd > 0. If \ > 0 and

m > max {Cl(ﬁzcl + BVd)log(4d/s) ,

ol + 20 E

then with probability at least 1 — 6,

o — 0 [£20) \/ (32 -+ 5/d)log(14/5)
A

m

where Cy, Cs are constants given in the proof and the ran-
domness is from the randomly chosen pairs and the out-
comes of the pairwise comparisons.

We utilize the proof technique of Theorem 4 in (Negahban
et al., 2016), which proves a similar result for the standard
BTL model of Equation (1), i.e. when U = I, ,,, the n X n
identity matrix, d = n, and 7 (¢, j) = [d] for all (¢, j) € P.
We modify the proofs for arbitrary U and d. See Section 10
in the Supplement for the proof.

We now discuss the terms that appear in Theorem 1. First,
the dlog(d/d) terms are natural since we are estimating
d parameters. Second, estimating w* well essentially re-
quires inverting the logistic function. When b* is large, we
need to invert the logistic function for pairwise probabilities
that are close to 0 and 1. This is precisely the challenging
regime, since a small change in probabilities results in a
large change in the estimate of w*, and thus we expect to
require many samples to estimate w* when b* is large. The
exponential dependence on b* is standard for this type of
analysis and arises from the Hessian of £,,. Third, n and
(¢ arise from a matrix concentration bound applied to the
Hessian of £,,,. Fourth, A arises from the minimum eigen-
value of the Hessian of £,,, in a neighborhood of w*, which
controls the convexity of £,,. This type of dependence also
appears in other state of the art finite sample complexity
analyses (Negahban et al., 2012). In addition, to better un-
derstand the role of A, we present the following proposition
whose proof is in Section 9 in the Supplement. Proposition
2 shows that the requirement A > 0 in Theorem 1 is fun-
damental, because we would otherwise be unable to bound
the estimation error for the non-identifiable part of w*, i.e.,
the projection of w* onto the orthogonal complement of

span{U:(i’j) — UjT(i’j) :(i,5) € P} =R4,
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Proposition 2. A > 0 if and only if the salient feature
preference model is identifiable.

Finally, if one assumes A\, 7, (, 8, exp(b*) are O(1), then
Q(dlog(d/d)) samples are enough to guarantee the error is
O(1). However, as we will show in the corollaries, these
parameters are not always O(1), increasing the complexity.
We point out that the combination of the features U and
the selection function 7 is what dictates the parameters of
Theorem 1. For the top-t selection function in particular,
we plot A, {,n,b*, 3, the number of samples required by
Theorem 1, and the bound on the estimation error as a
function of intransitivity rates in the Supplement in Section
13.1, to provide further insight into these parameters. Since
we envision practical selection functions will be dependent
on the features themselves, further analysis is a challenging
but exciting subject of future work.

For deterministic U, we now specialize our results to FBTL
as well as to the case where a single feature is used in each
comparison. The following corollaries provide insight into
how a particular selection function 7 impacts A, 7, and ¢
and thus the sample complexity.

First, we consider FBTL. In this case, the selection function
selects all the features in each pairwise comparison, so there
cannot be intransitivities in the preference data. The follow-
ing Corollary of Theorem 1 gives a simplified form for A
and upper bounds ¢ and 7. The terms involving the condi-
tioning of U UT are natural; since we make no assumption
on w*, if the feature vectors are concentrated in a lower di-
mensional subspace, estimation of w* will be more difficult.
See Section 11 of the Supplement for the proof.

Corollary 1.1 (Sample complexity for FBTL). For the se-
lection function T, suppose |7(i, j)| = d for any (i,j) € P.
In other words, all the features are used in each pairwise
comparison. Let v := max{max; jep ||[U;—U;||3,1}. As-
sume n > d. Without loss of generality, assume the columns
of U sum to zero: >, U; = 0. Let § > 0. Then,

\ = M (UUT)
()
(<v+ n)\ma,((%]UT)’ and
0 < Vn/\maX(UQUT) N2 Amax (UUT)?
-0 (5)°
Hence, if

m > max {Cl(BQd + BV/d) log(4d/5),
Cjlog(2d/8)vnA}

where

S Anax (UUT) + Amax (UUT)2 + Mpin (UUT)
- Amin (UUT)2

then with probability at least 1 — 6,

[w*—dlls = O

exp(b*)n \/ (B2d + BV/d) log(42)
/\min(UUT) m

where C and C'5 are constants given in the proof.

To the best of our knowledge, this is the first analysis of the
sample complexity for the MLE of FBTL parameters. There
are related results in (Saha and Rajkumar, 2018; Negahban
etal.,2012; Heckel et al., 2019; Shah and Wainwright, 2017)
to which our bound compares favorably, and we discuss this
in Section 11.2 of the Supplement.

Second, suppose the selection function is very aggres-
sive and selects only one coordinate for each pair, i.e.
|7(¢,7)| = 1 for all (¢,j) € P. For instance, the top-1
selection function has this property. This type of selection
function can cause intransitivities in the preference data as
we show in the synthetic experiments of Section 4.1.

Corollary 1.2. Assume that for any (i,j) € P, |7(i,5)| =
L. Partition P = U¢_, Py into d sets where (i, j) € Py if
7(i,7) = {k} for k € [d]. Let 8 be defined as in Theorem 1
and

€:= min HUzT(i’j) - U;(i"j)Hoo.
(i,j)eP

Let 6 > 0. Then

Hence, if

m > max {C’l(,BQd + BV d)log(4d/8), C4(Q1 + Q2)} ;

where

_ ﬁ4 (g) maxXge[d] |Pk‘ + maXge[d] |Pk‘2
Qi=|—7 . FEAE
€ minge(q) | Pl

9

)

Q2 = (52> (3) + maxke(a [Pyl
2

€ minke[d] |Pk|
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then with probability at least 1 — 0,

[w* —lls = O
m

exp(t*) (3) \/ (82d + Bv/d) log(44)

€2 min | Py|
keld]

where C and Cy are constants given in the proof.

There are two main implications of Corollary 1.2 if we con-
sider /3 and e constant. First, suppose there is a coordinate
k € [d] such that |Py| := |{(¢,5) € P : 7(i,j) = k}| is
small. Intuitively it will take many samples to estimate
w* well, since the chance of sampling a pairwise com-
parison that uses the k-th coordinate of w* is |Pg|/(5).
Corollary 1.2 formalizes this intuition. In particular, A =
O(|Py|/ (%)), and since A comes into the bounds of The-
orem 1 in the denominator of both the lower bound on
samples and the upper bound on error, a small A makes
estimation more difficult.

Second, on the other hand, if ¢ is fixed, the maximum lower
bound on A given by Corollary 1.2 is max min,¢[q) | P;| =
(g) /d where the maximum is with respect to any partition
of P. In this case, |P;| ~ |P;| for all i,j € [d], so the
chance of sampling a pairwise comparison that uses any
coordinate is approximately equal. Therefore, A,n,( =
O(1/d), and by tightening a bound used in the proof of
Theorem 1, Q(d?log(d/J)) samples ensures the estimation
error is O(1). See Section 11.4 in the Supplement for an
explanation.

Ultimately, we seek to estimate the underlying ranking of
the items. The following corollary of Theorem 1 says that
by controlling the estimation error of w*, the underlying
ranking can be estimated approximately. The sample com-
plexity depends inversely on the square of the differences of
full feature item utilities. Intuitively, if the absolute differ-
ence between the utilities of two items is small, then many
samples are required in order to rank these items correctly
relative to each other. See Section 12 in the Supplement for
the proof.

Corollary 1.3 (Sample complexity of estimating the rank-
ing). Assume the set-up of Theorem 1. Pick k € [(})].
Let «uy, be the k-th smallest number in {|(w*,U; — U;)| :
(i,4) € P}. Let M := max;cy,) |Uil|2. Let v* : [n] — [n]
be the ranking obtained from w* by sorting the items by
their full-feature utilities (w*, U;) where ~* (i) is the posi-
tion of item 1 in the ranking. Define % similarly but for the
estimated ranking obtained from the MLE estimate w. Let

0>0.If

m > max {01 (8%d + BVd) log(4d/5),

Caly + ) B2,

CsM2e2" (B2d + Bv/d) log(4d/5) }

232
ap

then with probability 1 — ¢,
K(7*7’AY) < k — ]-7

where K(v*,%) = [{(i,j) € P : (v*(i) =" (7)) (3(2) —
4(4)) < 0}] is the Kendall tau distance between two rank-
ings and C1, Cs, and C5 are constants given in the proof.

4. Experiments

See Sections 14.1, 14.2, and 14.8 of the Supplement for
additional details about the algorithm implementation, data,
preprocessing, hyperparameter selection, and training and
validation error for both synthetic and real data experiments.

4.1. Synthetic Data

We investigate violations of rational choice arising from
the salient feature preference model and illustrate Theo-
rem 1 while highlighting the differences between the salient
feature preference model and the FBTL model throughout.
Given the very reasonable simulation setup we use, these ex-
periments suggest that the salient feature preference model
may sometimes be better suited to real data than FBTL.

For these experiments, the ambient dimension d = 10, the
number of items n = 100, and comparisons are sampled
from the salient feature preference model with top-¢ selec-
tion function. The coordinates of U, respectively w*, are
drawn from N (0, 1/+/d), respectively N'(0,4/+/d), so that
P(i >p j) is bounded away from 0 and 1 for 4,5 € [n].
This set-up ensures b* does not become too large.

First, the salient feature preference model can produce pref-
erences that systematically violate rational choice. In con-
trast, the FBTL model cannot. Let P;; = P(i >p j)
and T' = {(’i,j, k‘) S [’I’L]3 : P” > .9, ij > 5}
Then (i, j,k) € T satisfies strong stochastic transitivity
if P, > max{P;;, Pj;}, moderate stochastic transitivity
if P, > min{P;;, Pj;}, and weak stochastic transitivity if
P, > .5 (Cattelan, 2012). We sample U and w* 10 times
as described in the beginning of the section and allow ¢ to
vary in [d]. Figure 2 shows the average ratio of the number
of weak, moderate, and strong stochastic transitivity vio-
lations to |T'| as a function of ¢ € [d]. There is very little
deviation from the average. The standard error bars over the
10 experiments were plotted but they are so small that the
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Violations of rational choice

70% A -~ moderate violations
T i e
50% - - pairwise inconsistencies
40%
30% A
20% A
10% 1

0% 1

2 4 6 8 10

top-t selection function

Figure 2. The salient feature preference model with the top-¢ se-
lection function produces systematic intransitives and pairwise
comparisons that are inconsistent with the underlying ranking.
When ¢ = 10, the salient feature preference model with the top-
t selection function is the FBTL model, and hence there are no
intransitives or pairwise inconsistencies.

markers covered them. All (g) probabilities given by Equa-
tion (2) are used to calculate the intransitivity rates. In the
same figure we also show the percentage of pairwise com-
parisons that are inconsistent with the true ranking under the
same experimental set-up. These are the pairs ¢, j such that
(U; — Uj,w*) < 0, meaning item ¢ is ranked lower than
item j in the true ranking, but (U77* (") — Ujﬂ(”)7 w*) >0
meaning item ¢ beats item j by at least 50% when com-
pared in isolation from the other items. Notice that when
t = 10, the salient feature preference model is the FBTL
model, so there are no pairwise inconsistencies or intransi-
tives. Although this example is synthetic, real data exhibits
intransitivity and even inconsistent pairs with the underlying
ranking as discussed in the real data experiments in Section
4.2.

Second, we illustrate Theorem 1 with the top-1 selection
function, and where U and w are sampled once as described
in the beginning of this section. We sample m pairwise
comparisons for m € {(100)2°~! : i € [10]}, fit the MLEs
of both the salient preference model with the top-1 selection
function and FBTL, and repeat 10 times. Figure 3 shows
the average estimation error of w* on a logarithmic scale as
a function of the number of pairwise comparison samples
also on a logarithmic scale. Figure 3 also shows the exact
theoretical upper bound where § = % = % of Theorem 1
without constants C and Cs as stated in Section 10 of the
Supplement. Again, there is very little deviation from the
average. The standard error bars over the 10 experiments
were plotted but they are so small that the markers covered
them. There is a gap between the observed error and the
theoretical bound, though the error decreases at the same
rate. The error of the MLE of FBTL does not improve with

more samples, since the pairwise comparisons are generated

Estimation error on log-log scale

- theoretical bound
—@- salient feature MLE
FBTL MLE

|2

logio W™ — W] 2
=

8 10 12 14 16
number of pairwise comparisons
on log; scale

Figure 3. Tllustration of Theorem 1 with the exact theoretical up-
per bound for the salient feature preference model with the top-1
selection function. Although there is a gap between the bound
and the observed estimation error, they decrease at the same rate
eventually. Excluding the first two points, the salient feature MLE
error’s slope on the log-log scale is -0.154, whereas the theoretical
bound’s slope is -0.151.

according to the salient feature preference model with the
top-1 selection function. See Section 13.2 in the Supplement
for investigating model misspecification, i.e. fitting the
MLE of the top-t selection function for ¢ # 1 with the same
experimental set-up.

By estimating w* well, we can estimate the underlying rank-
ing well by Corollary 1.3. Under the same experimental
set up, Figure 4 shows the Kendall tau correlation (defini-
tion given in Supplement 13.2) between the true ranking
(obtained by ranking the items according to (U;, w*)) and
the estimated ranking (according to (U;, w)) but on a new
set of 100 items drawn from the same distribution. The
maximum Kendall tau correlation between two rankings is 1
and occurs when both rankings are equal. Also, estimating
w* well allows us to predict the outcome of unseen pairwise
comparisons well, as shown in the Supplement in Section
13.2.

4.2. Real Data

For the following experiments, we use the top-t selection
function for the salient feature preference model, where ¢
is treated as a hyperparameter and tuned on a validation set.
We compare to FBTL, RankNet (Burges et al., 2005) with
one hidden layer, and Ranking SVM (Joachims, 2002). We
append an {5 penalty to £, for the salient feature preference
model and the FBTL model, that is, for regularization param-
eter y1, we solve min,,cge L (w) + pf|wl|3. For RankNet,
we add to the objective function an ¢ penalty on the weights.
As explained in more detail in subsections 14.6 and 14.11 in
the Supplement, the hyperparameters for the salient feature
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Figure 4. Kendall tau correlation between the true ranking and
the estimated ranking where pairwise comparisons are sampled
from the salient feature preference model with the top-1 selection
function. Estimating w™ well implies being able to estimate the
underlying ranking well as stated in Corollary 1.3.

preference model are ¢ for the top-¢ selection function and
1, the hyperparameter for FBTL is pu, the hyperparameter
for Ranking SVM is the coefficient corresponding to the
norm of the learned hyperplane, and the hyperparameters for
RankNet are the number of nodes in the single hidden layer
and the coefficient for the /5 regularization of the weights.

District Compactness (Kaufman et al., 2017) collected
preference data to understand human perception of com-
pactness of legislative districts in the United States. Their
data include both pairwise comparisons and k-wise ranking
data for k£ > 2 as well as 27 continuous features for each
district, including geometric features and compactness met-
rics. Although difficult to define precisely, the United States
law suggests compactness is universally understood (Kauf-
man et al., 2017). In fact, the authors provide evidence that
most people agree on a universal ranking, but they found
the pairwise comparison data was extremely noisy. They
hypothesize that pairwise comparisons may not directly cap-
ture the full ranking, since all features may not be used
when comparing two districts in isolation from the other
districts. Hence, this problem is applicable to our salient
feature preference model and its motivation.

The goal as set forth by (Kaufman et al., 2017) is to learn a
ranking of districts. We train on 5,150 pairwise comparisons
collected from 94 unique pairs of districts to learn w, an
estimate of the judgment vector w*, then estimate a ranking
by sorting the districts by (w0, U;). The k-wise ranking data
sets are used for validation and testing. Since there is no
ground truth for the universal ranking, we measure how
close the estimated ranking is to each individual ranking.
In this scenario, we care about the accuracy of the full
ranking, and so we consider Kendall tau correlation. Given
a k-wise comparison data set, Table 1 shows the average

Kendall tau correlation between the estimated ranking and
each individual ranking where the number in parenthesis is
the standard deviation. The standard deviation on shinyl
and shiny?2 is relatively high because the Kendall tau
correlation between pairs of rankings in these data sets has
high variability, shown in Figure 10 in the Supplement.

The MLE of the salient feature preference model under the
top-t selection function outperforms both the MLE of FBTL
and Ranking SVM by a significant amount on 6 out 7 test
sets, suggesting that pairwise comparison decisions may be
better modeled by incorporating context. The MLE of the
salient feature preference model, which is linear, is compet-
itive with RankNet, which models pairwise comparisons as
in Equation (1) except where the utility of each item uses a
function f defined by a neural network, i.e. u; = f(U;).

The salient feature preference model may be outperforming
FBTL and Ranking SVM since this data exhibits significant
violations of rational choice. First, on the training set of pair-
wise comparisons, there are 48 triplets of districts (4, j, k)
where both (1) all three distinct pairwise comparisons were
collected and (2) P;; > .5 and P, > .5. Seventeen violate
strong transitivity, 3 violate moderate transitivity, but none
violate weak transitivity. Second, given a set of k-wise rank-
ing data, let Pij be the proportion of rankings in which item
1 is ranked higher than item j. There are 20 pairs of districts
that appear in both the k-wise ranking data and the pairwise
comparison training data. Four of these pairs of items i, j
have the property that (.5 — P;;)(.5 — P;;) < 0, meaning
item ¢ is typically ranked higher than item j in the ranking
data, but j typically beats ¢ in the pairwise comparisons.

UT Zappos50k The UT Zappos50K data set con-
sists of pairwise comparisons on images of shoes and 960
extracted vision features for each shoe (Yu and Grauman,
2014; 2017). Given images of two shoes and an attribute
from {“open,” “pointy,” “sporty,” “‘comfort”}, respondents
picked which shoe exhibited the attribute more. The data
consists of easier, coarse questions, i.e. based on comfort,
pick between a slipper or high-heel, and harder, fine grained
questions i.e. based on comfort, pick between two slippers.

99 < 99 <

We now consider predicting pairwise comparisons instead of
estimating a ranking since there is no ranking data available.
We train four models, one for each attribute. See Table
2 for the average pairwise comparison accuracy over ten
train (70%), validation (15%), and test splits (15%) of the
data. The pairwise comparison accuracy is defined as the
percentage of items (¢, ) where ¢ beats j a majority of the
time and the model estimates the probability that ¢ beats j
exceeds 50%.

In this case, the MLE of the FBTL model and the salient
feature preference model under the top ¢ selection function
perform similarly. Nevertheless, while the FBTL model
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Table 1. Average Kendall tau correlation over individual rankings on test sets for district compactness. The number in parenthesis is the

standard deviation.

Model: Shinyl Shiny2 UGl-j1 UGl-3j2 UGl-3j3 UGl-j4 UGL-35
Salient features  0.14 (26) 026 (2) 0.48(21) 0.41(.09) 0.6(1)  0.14(.14) 0.42(.09)
FBTL 0.09(.22) 0.18(17) 02(12) 026(07) 045(15) 02(I13) 0.06(.14)
Ranking SVM  0.09(22) 0.18 (.17) 0.22(.12) 026(.07) 045(15) 02(13) 0.06(.14)
RankNet 0.12(24) 024(.18) 028(.14) 037(.08) 0.53(11) 0.28(.08) 0.15(.15)

Table 2. Average pairwise prediction accuracy over 10 train/validation/test splits on the test sets by attribute for UT Zappos50k. C
stands for coarse and F' stands for fine grained. The number in parenthesis is the standard deviation.

Model: open-C pointy-C'  sporty-C'  comfort-C' open-F pointy-F'  sporty-F comfort-F
Salient features  0.73 (.02) 0.78 (.02) 0.78 (.03) 0.77 (.03) 0.6 (.04) 0.59 (.04) 0.59(.03) 0.56 (.03)
FBTL 0.73(.02) 0.77(.03) 0.8(03) 0.78(.03) 0.6(03) 0.6(.03) 0.59(.03) 0.58(.05)
Ranking SVM  0.74 (.02) 0.78 (.03) 0.79(.03) 0.78(.03) 0.6(03) 06(04) 0.6(04) 0.58(.03)
RankNet 0.73 (.01) 0.79 (.01) 0.78 (.03) 0.8 (.02) 0.61 (.02) 0.59(.02) 0.59(.04) 0.59 (.05)

utilizes all 990 features, the best ¢’s on each validation set
and split of the data do not use all features, so our model is
different from yet competitive to FBTL. See Table 3 in the
Supplement. This suggests that the salient feature prefer-
ence model under the top-t¢ selection function for relatively
small ¢ is still a reasonable model for real data.

5. Conclusion

We focused on the problem of learning a ranking from pair-
wise comparison data with irrational choice behaviors, and
we formulated the salient feature preference model where
one uses projections onto salient coordinates in order to
perform comparisons. We proved sample complexity results
for MLE on this model and demonstrated the efficacy of our
model on both synthetic and real data. Going forward, we
would like to develop techniques to learn both the selection
function 7 and feature embeddings simultaneously. Finally,
it will be useful to consider how to incorporate context into
models more sophisticated than BTL, and also consider con-
textual effects in other tasks that use human judgements
such as ordinal embedding (Terada and Luxburg, 2014).
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