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Abstract. Tensor decomposition is a well-known tool for multiway data analysis. This work proposes using
stochastic gradients for efficient generalized canonical polyadic (GCP) tensor decomposition of large-
scale tensors. GCP tensor decomposition is a recently proposed version of tensor decomposition that
allows for a variety of loss functions such as Bernoulli loss for binary data or Huber loss for robust
estimation. The stochastic gradient is formed from randomly sampled elements of the tensor and is
efficient because it can be computed using the sparse matricized-tensor-times-Khatri-Rao product
(MTTKRP) tensor kernel. For dense tensors, we simply use uniform sampling. For sparse tensors, we
propose two types of stratified sampling that give precedence to sampling nonzeros. Numerical results
demonstrate the advantages of the proposed approach and its scalability to large-scale problems.
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1. Introduction. Tensor decomposition is the higher-order analogue of matrix decompo-
sition and is becoming an everyday tool for data analysis. It can be used for unsupervised
learning, dimension reduction, tensor completion, feature extraction in supervised machine
learning, data visualization, and more. For a given d-way data tensor X of size n1×n2×· · ·×nd,
the goal is to find a low-rank approximation M, i.e.,

(1.1) X ≈M where M =
r∑
j=1

a1(:, j) ◦ a2(:, j) ◦ · · · ◦ ad(:, j).

The low-rank structure of M reveals patterns within the data, as defined by the factor matri-
ces. The kth factor matrix of size nk× r is denoted Ak. The jth factor (column) in mode k is
denoted ak(:, j). Each component of M is a d-way outer product (denoted by ◦) of d factors,
forming a rank-one tensor. We say rank(M) ≤ r because M can be written as the sum of r
rank-one tensors. We define n ≡ (

∏d
k=1 nk)

1/d and assume r � nd. The storage for X is nd if

it is dense and O(nnz(X)) if it is sparse. The storage for M is O(r
∑d

k=1 nk), which is usually
much smaller than that for X.

The standard canonical polyadic or CANDECOMP/PARAFAC (CP) tensor decomposi-
tion seeks the best low-rank approximation with respect to sum of squared errors [9, 19]. The
generalized CP (GCP) tensor decomposition is a novel approach that allows for an arbitrary
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elementwise loss function that is summed across all tensor entries [22]; i.e., the user provides
a scalar loss function f : R× R→ R resulting in the optimization problem

(1.2) minimize F (X,M) ≡
n1∑
i1=1

· · ·
nd∑
id=1

f(xi1...id ,mi1...id) subject to rank(M) ≤ r.

GCP is useful in situations where non-standard choices of the scalar loss function f may be
appropriate. For instance, if the entries of X are binary values in { 0, 1 }, we may use the
Bernoulli loss, i.e., f(x,m) = log(m+ 1)− x log(m) where m represents the odds of observing
a one. For positive data that has a Gamma distribution, we may use f(x,m) = x/m+log(m).
Standard CP tensor decomposition corresponds to f(x,m) = (x−m)2, and Poisson tensor
decomposition [54, 12] to f(x,m) = m− x logm. See [22] for full details.

In this paper, we consider the problem of fitting GCP for large-scale tensors. The GCP
gradient involves a sequence of d matricized-tensor times Khatri-Rao products (MTTKRPs)
with a dense tensor of size nd that costs O(rnd) operations, even when X is sparse.1 Thus, the
computational and storage costs of computing the gradient may be prohibitive. Our solution
is a flexible framework for stochastic gradient computation for GCP, which can be used with
stochastic gradient descent (SGD) or popular variants such as Adam [25]. Our stochastic
framework replaces the dense tensor with a (stochastic) sparse tensor that equals the dense
tensor in expectation. If the stochastic gradient samples s � nd tensor entries, the resulting
sparse MTTKRP reduces the gradient cost to O(sr) flops and O(s) intermediate storage,
albeit with a potentially significant sacrifice in accuracy due to stochasticity.

A distinguishing feature of our framework is stratified sampling. If X is sparse, uniform
sampling of the indices rarely samples nonzeros even though they are extremely important
to the minimization. Stratified sampling randomly selects nonzeros disproportionately, which
can reduce the variance of the stochastic gradient, accelerating convergence. Since stratified
sampling can itself be expensive, we also introduce a semi-stratified sampling approach to
further improve efficiency. Note that simply ignoring the zero entries, as is done in recom-
mender systems where zeros indicate missing data, yields a fundamentally different problem.
Section 2 surveys related work, section 3 provides notation and background, and section 4
discusses the framework.

We present computational experiments on both artificial and real-world problems in sec-
tion 5, demonstrating the reliability and efficiency of using stochastic gradients. Experimen-
tally, we can set the number of gradient samples to be the sum of the tensor dimensions, i.e.,∑d

k=1 nk. For dense problems, stochastic optimization can be an order of magnitude faster
than non-stochastic optimization. For sparse problems, stochastic optimization enables com-
puting GCP for sparse tensors that would otherwise be intractable. Additionally, stratified
and semi-stratified sampling of zeros and nonzeros have a clear advantage over uniform sam-
pling in this setting. We also compare to CP-APR [12, 18] on real-world Chicago crime data.
In our experiments, the stochastic methods are faster and find equivalent solutions.

1Both standard and Poisson CP have special structure that allows the gradient to be formed implicitly, as
described in Appendix A so that sparsity of X can be exploited.
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2. Related Work. This work is a follow-on to the introduction of GCP by Hong, Kolda,
and Duersch [22]. They only considered small-scale problems that could be treated as dense.
The goal of this work is to tackle larger scale problems via stochastic gradient methods.

A major motivation for the present work was that of Acar et al. [2] which focused on
standard CP factorization for tensors with irretrievably missing data. They considered cases
where the vast majority of the data is missing, i.e., scarce tensors in the terminology of [22],
and observed that a scarce data tensor leads to a sparse MTTKRP in computing the gradient.
That observation proves to be important here because our sampled data tensors are scarce.

In the specific case of third-order (d = 3) and one sample per iteration (s = 1), Beutel
et al. [7] have proposed SGD for standard CP tensor decomposition. Since a single tensor
element only updates one row in each of the three factor matrices, they are able to parallelize
updates that do not operate on the same rows. They do not consider sampling strategies or
the MTTKRP structure in the gradient.

Vervliet and De Lathauwer [51] pursue an alternative form of sampling for standard CP:
rather than sampling elements, they sample indices from each mode of the tensor. The result-
ing random subtensor is used in either one outer iteration of alternating least squares (ALS)
or one iteration of Gauss-Newton, with careful attention to step sizes as is needed in stochas-
tic optimization. The updates only modify the rows of the factor matrices corresponding to
the subsampled indices. This block sampling strategy is not readily amenable to sparse data
tensors, which are a focus of our work.

For alternating least squares (CP-ALS), randomized matrix sketching can be used to solve
the linear least squares problems in the dense [6] and sparse [11] cases; this approach does not
directly apply to GCP because its subproblems are not least squares problems. Also in the
vein of sketching, random projections can be used to build a sketch (or multiple sketches) of
the complete tensor [38, 41, 59], including the special case of symmetric factorizations [53, 45].

In the streaming context, one dimension is typically treated as time with a new slice
arriving at each time step and can be updated via SGD; see, e.g., [34]. Maehara, Hayashi,
and Kawarabayashi [32] factorize tensors that arise as sums of streaming tensor samples.
Similar to our approach, they apply SGD on the samples to update the factorization of the
sum. In contrast to our focus on effective sampling, they primarily consider applications where
a stream of samples is already given. There are also other works on updates for streaming
tensors that are not based on SGD [37, 49, 31, 17].

In recommender systems and tensor completion, it is typically assumed that most data
is missing, resulting in scarce tensors (sometimes incorrectly conflated with sparse tensors).
Smith, Park, and Karypis [43] consider SGD for scarce tensors and only sample nonzeros as
they correspond to observed entries. For symmetric tensors with missing data, Ge et al. [14]
prove that SGD finds a local minimizer rather than a saddle point.

We close by highlighting that SGD has already had broad success in matrix factorization,
primarily for recommender systems where zeros are treated as missing data (scarce matrices);
see, e.g., [28] and references therein. However, we omit a full discussion of stochastic gradients
in the matrix setting because the field is vast. To the best of our knowledge, nothing like the
stratified and semi-stratified sampling proposed in this work has been proposed in the matrix
regime. Gemulla et al. [15] propose a stratified version of SGD as a technique to partition the
data into independent segments that can be processed in parallel, but their use of stratification
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is different than our proposal.

3. Notation and background. We provide some context for the remainder of the paper.

3.1. Probability notation and sampling background. In this paper, we use a tilde to
indicate random variables and instances thereof, e.g., x̃. The expected value is denoted E[x̃].
If x̃ ∈ { v1, v2, . . . vm } is a discrete random variable that samples vi with probability pi, then

E[x̃] ≡
m∑
i=1

pi vi.

The random sample is uniform if each element has equal probability; i.e., pi = 1/m for
i = 1, 2, . . . ,m. Sampling with replacement means that the same vi can be sampled more than
once, i.e., that subsequent samples are independent identically distributed (i.i.d.) draws. If
we let s̃i denote the number of times that vi is sampled from a uniform distribution over s
draws with replacement, then E[s̃i] = s/m since there are s independent draws and each draw
selects sample vi with probability 1/m.

3.2. Tensor notation. For a d-way data tensor X of size n1 × n2 × · · · × nd, we define

n = d

√√√√ d∏
k=1

nk and n̄ =
1

d

d∑
k=1

nk.

These quantities provide convenient measures of how large the tensor is. We treat d as constant
for big-O notation. Throughout, we let i = (i1, i2, . . . , id) where ik ∈ { 1, 2, . . . , nk } and refer
to this as a multi-index or simply an index. Every multi-index has a corresponding linear
index between 1 and nd [26]. We let Ω denote the set of all tensor indices, so necessarily
|Ω| = nd. Excepting the discussion of missing data in subsection 4.4, we assume all tensor
entries are known. We let nnz(X) denote the number of nonzeros in X and say that X is
sparse if nnz(X)� nd.

If X is dense, then the storage is nd. If X is sparse, then only the nonzeros and their
indices are stored, so the storage is (d + 1) nnz(X) using a coordinate format [3]. The total
storage for a rank-r approximation M as in (1.1) is the storage for the factor matrices, i.e.,
n̄dr, and is usually significantly less than the storage for X

3.3. MTTKRP background. Given a tensor Y of size n1×n2×· · ·×nd and factor matrices
Ak (from a low-rank M) of size nk × r for k = 1, . . . , d, the MTTKRP in mode k is

(3.1) Y(k) (Ad � · · · �Ak+1 �Ak−1 � · · · �A1)︸ ︷︷ ︸
Zk

.

The matrix Zk is of size nd/nk × r and is the Khatri-Rao product (denoted by �) of all the
factor matrices except Ak, and the matrix Y(k) is of size nk × nd/nk and denotes the mode-k
unfolding of Y.

Much work has gone into efficient computation of MTTKRP. Bader and Kolda [3] consider
both dense and sparse Y tensors, showing that the cost is O(rnd) for dense Y and O(r nnz(Y))
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for sparse Y. Phan, Tichavsky, and Cichocki [39] propose methods to reuse partial compu-
tations when computing the MTTKRP for all d modes in sequence. Much recent work has
focused on more efficient representations of sparse tensors and parallel MTTKRP compu-
tations [44, 24, 29, 40]. There is also continued work on improving the efficiency of dense
MTTKRP calculations [20, 5].

4. Stochastic GCP Gradient. GCP tensor decomposition generalizes CP tensor decom-
position, minimizing the GCP loss function in (1.2). From [22, Theorem 3], the GCP gradient
is calculated via a sequence of MTTKRP computations. Key to this calculation is the ele-
mentwise partial gradient tensor Y that is the same size as X and is defined as

(4.1) yi =
∂f

∂m
(xi,mi).

That is, Y is the tensor of first derivatives of f evaluated elementwise w.r.t. X and M. Whether
the data tensor X is dense or sparse, the elementwise partial gradient tensor Y is dense almost
everywhere. The partial derivative, denoted Gk, of the objective F in (1.2) w.r.t. Ak is

(4.2) Gk = Y(k)Zk,

where Zk is the Khatri-Rao product defined in (3.1). Because Y is dense (even when X

is sparse), Y requires nd storage and the cost of computing MTTKRP for gradients Gk is
O(rnd). Such costs may be prohibitive. For instance, if n = 1000 and d = 4, then Y would
require 8 TB of storage. There are a couple of special cases (see Appendix A) where dense
computation can be avoided because Y is formed implicitly, notably for standard CP [3], but
this is not the case for general loss functions and so motivates stochastic approaches.

The stochastic approach is based on the following observation: Y becomes sparse when
the data tensor X is scarce (i.e., most of the elements are missing). This is because, by [22,
Theorem 3], the gradient in this case is the same as in (4.2) except that Y is defined as

yi =

{
∂f
∂m(xi,mi) if xi known,

0 if xi missing.

If Y is sparse, then the MTTKRP in (4.2) can be computed in time O(r nnz(Y)).
We develop a stochastic gradient whose general form is

(4.3) G̃k = Ỹ(k)Zk where E[Ỹ] = Y and nnz(Ỹ) ≤ s� nd.

By linearity of expectation, E[Ỹ] = Y implies E[G̃k] = Gk. Making Ỹ sparse unlocks efficient
sparse computation of the MTTKRP. Consequently, storage for Ỹ is O(s) and the cost to
compute the gradients is O(rs), a reduction of roughly nd/s compared to computing the full
gradient, albeit at the cost of lower accuracy.

In the remainder of this section, we discuss the pros and cons of several different choices
for Ỹ based on uniform sampling, stratified sampling, and semi-stratified sampling.
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4.1. Uniform Sampling. To create a random instance of Ỹ, we sample s indices uniformly
with replacement. The number of times that i is sampled is denoted as s̃i, so

∑
i∈Ω s̃i = s.

Using this sampling strategy, in expectation we have

E[s̃i] =
s

nd
for all i ∈ Ω.

Note that the s̃i values are not stored as a dense object but rather as just a list of the samples
or in some other sparse data structure. We then define the stochastic tensor Ỹ to be

ỹi = s̃i
nd

s
yi for all i ∈ Ω.

The stochastic Ỹ is sparse because at most s entries are nonzero (since at most s values of s̃i
are nonzero). Clearly E[Ỹ] = Y since E[ỹi] = E[s̃i]

nd

s yi = yi for all i ∈ Ω. A similar argument
applies for sampling without replacement, but there is no practical difference when s� nd.

The simplest way to generate a random index i is to generate d random mode indices ik:

ik = randi(nk) for k ∈ { 1, 2, . . . , d } .

Here, randi(m) indicates selecting a random integer between 1 and m. This requires d random
numbers per index i. Alternatively, we can generate a random linear index via randi(nd) and
then convert it to a tensor multi-index.2 Either way is O(1) work (we treat d as a constant).

The procedure is presented in Algorithm 4.1. The function MTTKRP corresponds to (3.1),
and this can be computed efficiently because specialized sparse implementations exist as dis-
cussed in subsection 3.3. The model entries mi and elementwise partial gradient tensor entries
yi are only computed for the s randomly selected indices. The most expensive operations are
computing the model entries mi and the corresponding MTTKRP calculations. In the imple-
mentation, we are able to share some intermediate computations across these two steps.

Algorithm 4.1 Stochastic Gradient with Uniform Sampling

1: function StocGrad(X, {Ak } , s)
2: ω ←

∏
k nk // ω = # entries in X

3: Ỹ← 0 // initialize Ỹ to all-zero sparse tensor
4: for c = 1, 2, . . . , s do // loop to sample s� ω indices for Ỹ

5: for k = 1, 2, . . . , d, do ik ← randi(nk), end // sample random index i ≡ (i1, i2, . . . , id)
6: mi ←

∑r
j=1

∏d
k=1 ak(ik, j) // compute mi at sampled index

7: ỹi ← ỹi + (ω/s) g(xi,mi) // compute ỹi at sampled index, g ≡ ∂f/∂m
8: end for
9: for k = 1, 2, . . . , d, do G̃k ← MTTKRP(Ỹ,Ak, k), end // use stochastic sparse Ỹ to compute G̃k

10: return { G̃k }
11: end function

2Generating d separate entries helps prevent overflow if nd > 264, i.e., the total number of entries in the
tensor is more than the size of the largest unsigned 64-bit integer (uint64 in MATLAB). Larger integers can
be generated by instead using extended-precision arithmetic (e.g., int in Python).
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4.2. Stratified Sampling. Uniform sampling may not be appropriate for sparse tensors
since nonzeros will rarely be sampled (each draw gets a nonzero with probability nnz(X)/nd).
Intuitively, however, we expect nonzeros in a sparse tensor to be important to the factorization.

Non-uniform sampling has been used in other stochastic gradient contexts. Needell et
al. [36] analyze SGD and argue that biased sampling toward functionals with larger Lipschitz
constants can improve performance. Gopal [16] similarly biases sampling toward functionals
with larger gradients to reduce the variance of the stochastic gradients, and similar ideas
appear in [58, 57]. This idea has many potential applications in machine learning, and roughly
translates in our case to up-sampling a tensor entry if the corresponding elementwise loss
function fi ≡ f(xi,mi) has a higher Lipschitz constant for fixed xi. Consider GCP with
the Bernoulli odds loss [22]: f(x,m) = log(m + 1) − x logm where x ∈ { 0, 1 } and m > 0
corresponds to the odds of x = 1. For x = 0, | ∂f∂m(0,m)| = 1/(m + 1) ≤ 1; for x = 1,

| ∂f∂m(1,m)| = 1/(m2 + m) is unbounded as m ↓ 0. Thus, the elementwise loss functions for
nonzeros are not Lipschitz, their gradients can be very large, and sampling them more often
by sampling zeros and nonzeros separately can reduce the variance of the stochastic gradients.

Consider a generic partition of Ω into p partitions Ω1,Ω2, . . . ,Ωp. If we partition into zeros
and nonzeros, then p = 2. Let s` > 0 be the number of samples from partition Ω` so that
the total number of samples is s =

∑
` s`. Within each partition, we sample uniformly with

replacement. Thus, the expected number of times index i is sampled depends on its partition:

E[s̃i] =
s`
|Ω`|

where i ∈ Ω` for all i ∈ Ω.

We then define the stochastic tensor Ỹ to be

ỹi = s̃i
|Ω`|
s`

yi where i ∈ Ω` for all i ∈ Ω.

Once again, at most s entries of Ỹ are nonzero, and E[Ỹ] = Y since E[ỹi] = E[s̃i]
|Ω`|
s`
yi = yi

for all i ∈ Ω. Interestingly, the weight (|Ω`|/s`) for index i is completely independent of
the overall sample or tensor size — it depends only on the partition size and the number of
samples for that partition.

Algorithm 4.2 presents the stratified sampling procedure for sparse tensors, where we
sample p nonzeros and q zeros. Sampling nonzeros is straightforward because they are stored
as a list in coordinate format. However, sampling zeros requires sampling a random index as
was done for uniform sampling and then rejecting the sample if it is actually a nonzero.

We can estimate how many random multi-indices are needed to obtain q valid zero samples.
Let η = nnz(X) and ζ = nd − η. We expect a very small proportion (η/nd) of indices to be
rejected. The number of samples needed to produce an average of q zero indices is

(4.4)
q

1− η/nd
=
nd

ζ
q ≈ q.

This is only on average, so we oversample to get sufficiently many zeros with high probability.
Namely, we sample ρ (nd/ζ) q indices where ρ > 1 is the oversample rate. A default of ρ = 1.1
is justified in Appendix B.
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Algorithm 4.2 Stochastic Gradient with Stratified Sampling for Sparse Tensor

1: function StocGrad(X, {Ak } , p, q)
2: η ← nnz(X) // η = # of nonzeros in X

3: ζ ←
∏

k nk − nnz(X) // ζ = # of zeros in X

4: Ỹ← 0
5: for c = 1, 2, . . . , p do // loop to sample p� (η + ζ) nonzero indices for Ỹ

6: ξ ← randi(η) // sample random nonzero index in { 1, . . . , η }
7: i← index of ξth nonzero // extract corresponding tensor index
8: mi ←

∑r
j=1

∏d
k=1 ak(ik, j) // compute mi at sampled index

9: ỹi ← ỹi + (η/p) g(xi,mi) // compute ỹi at sampled index, g ≡ ∂f/∂m
10: end for
11: c← 0
12: while c < q do // loop to sample q � (η + ζ) zero indices for Ỹ

13: for k = 1, 2, . . . , d, do ik ← randi(nk), end // sample random index i ≡ (i1, i2, . . . , id)
14: if xi 6= 0 then // check against list of nonzeros
15: reject sample
16: else
17: c← c+ 1 // increment count of accepted zero samples
18: mi ←

∑r
j=1

∏d
k=1 ak(ik, j) // compute mi at sampled index

19: ỹi ← ỹi + (ζ/q) g(xi,mi) // compute ỹi at sampled index, g ≡ ∂f/∂m
20: end if
21: end while
22: for k = 1, 2, . . . , d, do G̃k ← MTTKRP(Ỹ,Ak, k), end // use stochastic sparse Ỹ to compute G̃k

23: return { G̃k }
24: end function

Since we have to check against the entire list of nonzeros for each sample, the cost of the
rejection sampling for zeros can be significant. To achieve a speed that does not dominate
the other costs, our MATLAB implementation uses various efficiencies such as conversion
from multi-indices to linear indices, presorting the list of nonzero linear indices, and using the
hidden builtin function ismemberhelper. If nd ≥ 264, conversion to linear indices so that
we can use these efficiencies is not possible. Beyond MATLAB, efficiency can be achieved
using extended precision, hash tables, etc. As an alternative to specialized implementations
for efficient rejection sampling (that are potentially language and architecture dependent), we
propose a specialized algorithm that entirely avoids rejection sampling in the next subsection.

4.3. Semi-Stratified Sampling. To avoid rejection sampling entirely, we propose a variant
that we call semi-stratified sampling. We sample zeros incorrectly but then correct for it when
sampling nonzeros. Specifically, we sample without rejection to obtain “zeros”, knowing that
a small proportion may actually be nonzeros. We still sample nonzeros explicitly but now add
a correction to account for the possibility that they were also wrongly sampled as “zeros.”

Namely, we sample p nonzeros and q “zeros” from Ω (the entire set of indices). Let p̃i be
the number of times that index i was sampled as a nonzero where

∑
i p̃i = p. Clearly, p̃i = 0

if xi = 0. Let q̃i be the number of times that index i is sampled as a “zero” from the full set
of possible indices where

∑
i q̃i = q. It is possible that some nonzeros are sampled, i.e., we
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can have q̃i > 0 when xi 6= 0. Using these counts and recalling η = nnz(X), we define Ỹ as

ỹi = p̃i
η

p
(yi − ci) + q̃i

nd

q
ci where ci ≡

∂f

∂m
(0,mi).

This still satisfies E[ỹi] = yi. For i such that xi = 0, we have p̃i = 0 and ci = yi, so

E[ỹi] = E[q̃i]
nd

q
ci =

q

nd
nd

q
yi = yi.

For i such that xi 6= 0, we have

E[ỹi] = E[p̃i]
η

p
(yi − ci) + E[q̃i]

nd

q
ci =

p

η

η

p
(yi − ci) +

q

nd
nd

q
ci = (yi − ci) + ci = yi.

The procedure is implemented in Algorithm 4.3. The procedure for the nonzero samples
is identical to that in Algorithm 4.2 except for the adjustment term −g(0,mi) to ensure that
the expectations are correct. The procedure for the “zeros” differs because it samples over
the entire index space and does not reject nonzeros; it assumes that xi = 0 in computing yi.

Algorithm 4.3 Stochastic Gradient with Semi-Stratified Sampling for Sparse Tensor

1: function StocGrad(X, {Ak } , p, q)
2: η ← nnz(X) // # of nonzeros in X

3: ω ←
∏

k nk // # entries in X

4: Ỹ← 0
5: for c = 1, 2, . . . , p do // loop to sample p� ω indices for Ỹ

6: ξ ← randi(η) // sample random nonzero index in { 1, . . . , η }
7: i← index of ξth nonzero // extract corresponding tensor index
8: mi ←

∑r
j=1

∏d
k=1 ak(ik, j) // compute mi at sampled index

9: ỹi ← ỹi + (η/p) [g(xi,mi)− g(0,mi)] // compute ỹi at sampled index with correction term
10: end for
11: for c = 1, 2, . . . , q do // loop to sample q � ω “zero” indices for Ỹ

12: for k = 1, 2, . . . , d, do ik ← randi(nk), end // sample index i ≡ (i1, i2, . . . , id)
13: mi ←

∑r
j=1

∏d
k=1 ak(ik, j) // compute mi at sampled index

14: ỹi ← ỹi + (ω/q) g(0,mi) // compute ỹi at sampled index, assuming xi = 0
15: end for
16: for k = 1, 2, . . . , d, do G̃k ← MTTKRP(Ỹ,Ak, k), end // use sparse Ỹ to compute G̃k

17: return { G̃k }
18: end function

4.4. Adapting to Weighted Formulations. Any of the above sampling methods can be
easily adapted to the weighted version of GCP with the weighted loss function

(4.5) minimize F (X,M) ≡
∑
i

wi f(xi,mi) subject to rank(M) ≤ r.

In estimating the gradient, the only change in the methods is to replace yi in (4.1) with

yi = wi
∂f

∂m
(xi,mi).

We do not explicitly study the weighted formulation in this work, but we briefly mention two
scenarios where such methods may be useful.
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Adapting to Weighted Formulations. In the context of recommender systems, zeros are gen-
erally treated as missing data. The data is assumed to be missing at random (MAR), meaning
that the probability of a data item being present does not depend on its value. However, it
has been argued in the matrix case that this may be a flawed assumption [35]. Instead, we
may consider including the zero terms but down-weighting them by using a weighted scheme,
e.g., wi = 1 for xi 6= 0 and wi = 0.1 for xi = 0. Many large-scale tensor applications have
a recommender system flavor, where down-weighting of the zero entries may be appropriate.
More generally, down-weighting can be appropriate for entries that are less reliable or noisier,
as has been done in various matrix factorization applications [13, 23, 47, 56]. See also [46, 48]
for work on computing weighted matrix factorizations and [21] for a recent analysis of matrix
factorization weights when columns have heterogeneous noise levels.

Weighted Formulations for Missing Data. Conversely, if some portion of data is missing,
there are various strategies that can be used to avoid sampling missing elements. However,
this can also be handled easily by setting the weights of missing entries to be zero. Ideally,
elements with a weight of zero should be avoided during sampling.

5. Experimental Results. All experiments were run using MATLAB (Version 2018a) on
a Dual Socket Intel E5-2683v3 2.00GHz CPU with 256 GB memory. The methods are imple-
mented in gcp opt in the Tensor Toolbox for MATLAB [4].

5.1. Stochastic optimization algorithm. The stochastic gradients can be used with any
number of stochastic optimization methods. We use the popular Adam [25] method because
it is less sensitive to the learning rate than standard SGD. The method is detailed in Al-
gorithm 5.1. Based on the empirical results that follow, we recommend setting s = dn̄. If
the total number of gradient samples is s, then we use s samples for uniform sampling in
Algorithm 4.1 and p = bs/2c and q = ds/2e for the stratified sampling in Algorithm 4.2 and
semi-stratified sampling in Algorithm 4.3. The parameter α is the learning rate and defaults
to 0.01. The Adam parameters are set to the values recommended in the original paper:
β1 = 0.9, β2 = 0.999, and ε = 10−8. We employ a few standard modifications. We group the
iterates into epochs, and the number of iterations per epoch defaults to τ = 1000. To track
progress, we estimate the function value F (X,M) once per epoch. Whenever the function
value fails to decrease, we either decay the learning rate by ν = 0.1 (as motivated by [30]) or
quit (after more than κ = 1 failures). We enforce any lower bounds ` given for the parameters
by simple projection. In all of our examples, we use ` = 0 (nonnegativity constraint).

We estimate F (X,M) (via the function EstObj) in a way that is analogous to the stochas-
tic gradient computation. There are two key differences. First, we use a much larger number
of samples to ensure reasonable accuracy, which is less important for the gradient computa-
tion. Second, the set of samples used for function estimation are fixed across all iterations for
consistent evaluation across epochs. For uniform sampling, let s̃i be the number of times that
index i is selected and then estimate

(5.1) F̂ ≡
∑
i∈Ω

s̃i
nd

s
f(xi,mi).

For stratified sampling, let p̃i denote the number of times that nonzero i is selected and q̃i be
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Algorithm 5.1 GCP with Adam (GCP-Adam)

1: function GcpAdam(X, r, s, α, β1, β2, ε, τ , κ, ν, `)
2: for k = 1, 2, . . . , d do
3: Ak ← random matrix of size nk × r
4: Bk,Ck ← all-zero matrices of size nk × r // temporary variables used for Adam
5: end for
6: F̂ ← EstObj(X, {Ak }) // estimate loss with fixed set of samples
7: c← 0 // c = # of bad epochs (i.e., without improvement)
8: t← 0 // t = # of Adam iterations
9: while c ≤ κ do // κ = max # of bad epochs

10: Save copies of {Ak }, {Bk }, {Ck } // save in case of failed epoch
11: F̂old ← F̂ // save to check for failed epoch
12: for τ iterations do // τ = # iterations per epoch
13: { G̃k } ← StocGrad(X, {Ak } , s) // s = # samples per stochastic gradient
14: for k = 1, . . . , d do
15: Bk ← β1Bk + (1− β1)G̃k

16: Ck ← β2Ck + (1− β2)G̃
2

k

17: B̂k ← Bk/(1− βt
1)

18: Ĉk ← Ck/(1− βt
2)

19: Ak ← Ak − α (B̂k �
√

Ĉk + ε)
20: Ak ← max{Ak, `} // ` = lower bound
21: end for
22: t← t+ 1
23: end for
24: F̂ ← EstObj(X, {Ak }) // estimate loss with fixed set of samples
25: if F̂ > F̂old then // check for failure to decrease loss
26: Restore saved copied of {Ak }, {Bk }, {Ck } // revert to last epoch’s variables
27: F̂ ← F̂old // revert to prior function value
28: t← t− τ // wind back the iteration counter
29: α← αν // reduce the learning rate
30: c← c+ 1 // increment # of bad epochs
31: end if
32: end while
33: return {Ak }
34: end function

// Adam update depends on
β1, β2, ε; α = learning rate

the same for zero i and then estimate

(5.2) F̂ ≡
∑
xi 6=0

p̃i
η

p
f(xi,mi) +

∑
xi=0

q̃i
ζ

q
f(xi,mi).

In either case, it is easy to show that E[F̂ ] = F . When we perform multiple runs of the
same problem, we use the same set of samples for the function estimation across all runs so
that they can be easily compared. The only exception is the non-stochastic method, which
computes the full objective function.

5.2. Sample Size and Comparison to Full Method for Dense Tensors. We study the
effect of sample size (also known as minibatch size) to understand the relevant trade-offs:
larger sample sizes yield lower variance stochastic gradients but higher costs per iteration. We
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compute the GCP decomposition on an artificial four-way tensor of size 200× 150× 100× 50
and rank r = 5 using the gamma loss function: f(x,m) = x/m− logm with a nonnegativity
constraint on the factor matrices. Appendix C provides the details of the data generation.

Figure 5.1 shows the results of GCP-Adam with various sample sizes ranging from s = 125
to s = 2000. For comparison, we also include non-stochastic results based on the bound-
constrained limited-memory BFGS method [8] using full gradients; this optimization approach
is standard in MATLAB toolboxes such as Tensor Toolbox [1, 4] and TensorLab [52]. The
same set of 25 initial guesses is used for every instance. The initial guesses comprise factor
matrices with entries drawn uniformly from (0, 1). For GCP-Adam, we estimate the loss F̂
using 100,000 uniformly sampled entries that are fixed across all epochs and trials. For the
stochastic gradient, we use uniform sampling.

In the top two subfigures, we plot the function value versus time. In Figure 5.1a, we
consider just the stochastic methods and see the variation between them. There are dn̄r =
2500 free parameters and maxk nk = 200. Common wisdom is to make one pass through the
data per epoch, which would require s = nd/τ = 150, 000 samples per iteration. However, we
see that two orders of magnitude fewer samples are needed in practice, arguably due to the
low-rank structure in the data. Another option is to set s large enough so that we get at least
one sample per row of Ỹ(k) and thus every row of Ak is updated. At a minimum, therefore,
we may want s ≥ maxk nk = 200.3 Fewer samples generally corresponds to less progress per
epoch; however, sometimes fewer samples is advantageous because it takes a different path to
the solution. For instance, we see that s = 2000 initially makes better progress, but s = 500
and s = 1000 find the minimum more quickly. At the other extreme, s = 125 is the lowest cost
per epoch, but its progress in reducing the loss is hindered by too few samples. In Figure 5.1b
we show a longer time range on the x-axis so that the non-stochastic method is visible. The
non-stochastic method is approximately an order of magnitude slower.

The final function value may not tell the whole story, so we provide another measure of
success. Each instance is run with 25 random starts. Figure 5.1c shows the number of times
that each instance recovers the true solution, meaning that the cosine similarity score between
the true solution and the recovered solution is at least 0.9. (See Appendix E for details of
the cosine similarity score.) The only time the true solution is not recovered is one run for
s = 125 samples per gradient.

Figure 5.1d shows box plots of the cost per epoch, which is 1000 stochastic gradient
evaluations (with s specified on the x-axis) plus one function value estimation with 100,000
samples. In each box plot, the middle line indicates the median, and the bottom and top edges
of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the
most extreme data points not considered outliers, and the outliers are plotted individually as
red ’+’ symbols. Clearly, the cost per epoch grows linearly with the number of samples, but
there are fixed costs that dominate the per iteration cost. Notably, s = 2000 uses 16 times as
many samples as s = 125 but is generally only around twice as slow.

3This does not guarantee that every row is updated every time. To do so with high probability, one might
use roughly 10 maxk nk samples. From [27, Appendix A]: To sample ρt distinct “types” (i.e., row indices)
from a set of t types where ρ ∈ (0, 1), the expected number of draws is t log(1/(1− ρ)) +O(1). Therefore, the
expected number of samples needed to collect 99.99% of the members of a set with t types is less than 10t.
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(a) Individual runs with x-axis zoomed in to show the differences in the stochastic runs.
Each dashed line represents a single run, and the markers signify epochs. The marker
is an asterisk if the true solution was recovered and a dot otherwise. Solid lines rep-
resent the median. Dashed black line is the function value estimate for the true solu-
tion. The same set of samples is used to estimate the loss across every individual run.

(b) Individual runs with x-axis zoomed out to show the non-stochastic method. For the
non-stochastic method, each marker is a single iteration and the true loss is plotted.

(c) Number of times the true solution was
recovered, i.e., cosine similarity ≥ 0.9.

(d) Boxplot of time per epoch. Each
epoch is 1000 stochastic gradients plus
one estimation of the function value.

Figure 5.1: GCP with Gamma loss f(x,m) = x/m + logm on artificial dense data tensor
of size 200 × 150 × 100 × 50 and rank r = 5, comparing various numbers of samples for the
stochastic gradient in GCP-Adam and the non-stochastic GCP. For each instance, we do 25
runs with different initial guesses. (The same 25 initial guesses are used for each instance.)
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Figure 5.2: Factorization with the lowest overall score. GCP with β-divergence loss f(x,m) =
2mβ + 2xm−β with β = 1/2, rank r = 4, and s = 1000 on real-world dense gas data tensor of
size 71×1250×5×140. Sensor components are scaled proportional to component magnitude;
the rest are normalized to length one. Trial symbols are color coded by gas.

5.3. Application to Dense Gas Measurements Tensor. This section illustrates the ben-
efits of using stochastic gradients and the effect of sample size on GCP decomposition for
dense real data. We consider a tensor based on chemo-sensing data collected by Vergara et
al. [50].4 The dataset consists of measurements as a gas is blown over an array of conduc-
tometric metal-oxide sensors in a wind tunnel. The tensor modes correspond to 71 sensors,
1250 time points, 5 temperatures, and 140 trials (7 gases with 20 repeats each). This is a
dense, relatively small 0.5 GB tensor. We note that Vervliet and De Lathauwer [51] and
Battaglino, Ballard and Kolda [6] considered a similar 2 GB tensor derived from the same
original dataset with more time points but only three gases; however, we do not compare
directly to their approach because they focus on standard CP tensor decomposition. For the
loss, we use β-divergence with β = 1/2 yielding the loss function f(x,m) = 2m1/2 + 2xm−1/2

with nonnegativity constraints. This loss function is not necessarily optimal, but it seemed
to work well for this data in our experiments. Furthermore, it is an attractive choice since
the tensor is nonnegative and may have some outliers. We use rank r = 4 because this is the
smallest rank that sufficiently distinguished the different gases in our experiments.

We run GCP-Adam using uniform sampling and the non-stochastic GCP under the same
experimental conditions as in the previous subsection; initial guesses are scaled to match the
magnitude of the data tensor. Figure 5.2 shows the results of the best overall run in terms
of the final objective value. The components are ordered by magnitude, the sensor mode
is normalized to the magnitude of the component, and the other modes are normalized to
unit length. The trial mode is color coded by gas. The first two components focus largely
on sensor variations due to temperature. The final two components capture some temporal
patterns for each gas that impact sensors near the middle of the array, where the gas is likely
most concentrated. The factorization identifies generally smooth temporal profiles and tends
to group the same gas (indicated by color) in the trial mode.

4Available at http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings.
The dataset contains data for 11 gases; we used 7 that have more distinctive behaviors. It also has 6 sen-
sor positions; we used position 3 (middle of the wind tunnel) where some of the interesting behaviors occur.
The data is recorded at ∼100 Hz. We downsampled to 5 Hz, using the nearest measurement when needed, and
skipped the first 9 seconds. We also removed sensor 33, which seemed to have erratic measurements.

http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings
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(a) Boxplots of
total runtimes.

(b) Boxplots of fi-
nal model losses.

(c) Clustering performance of each
run. We apply k-means to the

fourth factor matrix and measure
what percentage of the 140 trials

are clustered correctly by gas.

Figure 5.3: Comparison of GCP-Adam with uniform sampling and sample sizes from s = 125
to s = 2000 as well as non-stochastic GCP (“full”), for fitting a dense gas tensor of size
71 × 1250 × 5 × 140 with β-divergence loss using β = 1/2, i.e., f(x,m) = 2m1/2 + 2xm−1/2.
Each box plot is based on 25 runs with different initial guesses. (The same 25 initial guesses
are used for each box plot.)

Figure 5.3 shows performance results. Figure 5.3a shows boxplots of the runtimes for the
varying sample sizes and the non-stochastic GCP (“full”). The smaller sample sizes take longer
because they converge more slowly even though each epoch is cheaper. The non-stochastic
instance is overall slowest. Figure 5.3b shows the range of objective function values for each
instance, which is very small. For the stochastic instances, larger sample sizes tend to achieve a
marginally better loss, as indicated by improved median and percentile losses. The stochastic
instances with s ≥ 500 samples per gradient perform at least as well as the non-stochastic
instance, while being much faster. Figure 5.3c shows performance on a clustering task. For
each run (i.e., a given random start and instance), the rows of the fourth factor matrix are
clustered via k-means5 and we measure what percentage of the 140 trials (7 gases with 20 trials
each) get clustered correctly. Larger sample sizes have generally better clustering performance
here. Non-stochastic GCP performs similarly to s = 2000 samples per gradient.

5.4. Sample Size for Sparse Tensors. We consider a four-way sparse binary tensor of
size 200 × 150 × 100 × 50 and rank r = 5 generated according to an odds model tensor, i.e.,
where mi gives the odds that xi = 1. The procedure to generate the data is described in
detail in Appendix D. The factor matrices in the solution M have (r − 1) sparse columns
and one constant column. The result is a tensor that has 150,452 ‘structural’ nonzeros (from
the sparse columns) and 374,435 ‘noise’ nonzeros (from the dense column), with an overall
density of 0.35%. We use the loss corresponding to Bernoulli data with an odds link, i.e.,
f(x,m) = log(m+ 1)− x logm and a nonnegativity constraint on the factor matrices.

5We used 500 replicates with MATLAB’s built-in kmeans command to avoid local minima.



16 TAMARA G. KOLDA AND DAVID HONG

(a) Individual runs. Each dashed line represents a single run, and the markers signify epochs.
The marker is an asterisk if the true solution was recovered and a dot otherwise. Solid

lines represent the median. Dashed black line is the function value estimate for the true so-
lution. The same set of samples is used to estimate the loss across every individual run.

(b) Number of times the true solution was
recovered, i.e., cosine similarity ≥ 0.9.

(c) Boxplot of time per epoch. Each
epoch is 1000 stochastic gradients plus
one estimation of the function value.

Figure 5.4: GCP with Bernoulli loss f(x,m) = log(m + 1)− x logm on artificial sparse data
tensor of size 200× 150× 100× 50 and rank r = 5 with 524,468 (0.35%) nonzeros. Comparing
various numbers of samples for the stochastic gradient in GCP-Adam with stratified sampling.
For each instance, we do 25 runs with different initial guesses. (The same 25 initial guesses
are used for each instance.)

The results of GCP-Adam with various sample sizes ranging from s = 125 to s = 2000 are
shown in Figure 5.4. We use stratified sampling to compute the stochastic gradient, and the
gradient samples are evenly divided between zeros and nonzeros. The same set of 25 initial
guesses is used for every instance. The initial guesses comprise factor matrices with entries
drawn uniformly from (0, 1) and then scaled to match the magnitude of the true solution
tensor. For GCP-Adam, we estimate the loss F̂ using 200,000 stratified sampled entries
(evenly divided between zeros and nonzeros) that are fixed across all epochs and trials.

Figure 5.4a plots the individual runs. For the stochastic method, the overall run time is
about four times more than for the (easier) Gamma case. We omit the non-stochastic method
since it is again significantly slower. This is arguably a difficult test problem in terms of
recovering the true factors, especially compared to the Gamma problem in subsection 5.2.
From Figure 5.4b, observe that s = 125 fails to find the true solution more often than it
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succeeds. For s ≥ 250, the true solution is recovered in the majority of cases, and the recovery
rate improves as the number of samples increases; all 25 runs in this experiment succeeded for
s = 2000. Figure 5.4c shows boxplots of the time per epoch. As was the case with uniform
sampling of a same-sized dense tensor in subsection 5.2, the time per epoch mainly consists of
costs that grow linearly with the number of samples and fixed costs that, at this scale, remain
significant. As before, s = 2000 uses 16 times as many samples as s = 125 but is generally
only around twice as slow.

5.5. Comparison of Sampling Strategies for Sparse Tensors. This section shows the
benefit of using stratified and semi-stratified sampling over uniform. We use the same proce-
dure as subsection 5.4 to create a sparse binary tensor (detailed in Appendix D). We generate
a tensor of size 400× 300× 200× 100 that is 0.38% dense. This example has 4,402,374 ‘struc-
tural’ nonzeros and 4,788,052 ‘noise’ nonzeros, with a total of 9,181,549 nonzeros (less than
the sum due to overlap). Storing it takes 0.37 GB as a sparse tensor, but would take 19 GB
as a dense tensor.

The results of uniform, stratified, and semi-stratified sampling are shown in Figure 5.5.
We calculate the estimated loss F̂ once per epoch using 200,000 stratified sampled entries,
evenly divided between zeros and nonzeros. We use s = 1000 samples per stochastic gradient
evaluation (s = dn̄), evenly divided between nonzeros and zeros (or “zeros”) for the stratified
samplers. We use 25 initial guesses with random positive values, scaled so that the norm of
the initial guess is the same as the norm of the tensor. Note that uniform sampling on a
sparse tensor is not as fast as it is on a dense tensor since only nonzeros are stored explicitly
and every sampled index has to be checked against the list of nonzeros to determine its value.

The proportion of nonzeros is arguably higher than what is observed in many real-world
datasets, which is a favorable condition for uniform sampling since every sample will more
likely include nonzeros. Nevertheless, stratified and semi-stratified approaches clearly outper-
form uniform sampling. They converge faster and more often find the true solution, all at less
cost per epoch. This result is expected because stratified sampling should reduce the variance.
The time advantage of the semi-stratified approach is minimal for this small example. How-
ever, the speed of the MATLAB implementation of stratified sampling depends on the ability
to use linearized indices, which means that the total size of the tensor must be less than 264.
For larger tensors where we cannot use this approach, the sampling efficiency can degrade by
more than an order of magnitude. The semi-stratified approach has no such limitation.

Table 5.1 provides empirical validation that the variances of the stratified and semi-
stratified sampling are lower than for uniform. We consider the variances with respect to
the vectorized gradient, i.e., g = [vec(G1); vec(G2); . . . ; vec(Gd)] ∈ Rdn̄r. Let g̃ denote
the random variable representing the vectorized stochastic gradient, and recall that E[g̃] = g
because the sampling methods lead to unbiased estimators. Letting g̃ξ denote the ξ-th of N
realizations of the random variable, the quantities of interest are

empirical bias = ‖ĝ − g‖2 where ĝ =
1

N

N∑
ξ=1

g̃ξ, and
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(a) Individual runs. Each dashed line represents a single run, and the markers signify
epochs. The marker is an asterisk if the true solution was recovered and a dot otherwise.
Solid lines represent the median. The dashed black line is the function value estimate for
the true solution. Across all runs, the same set of samples is used to estimate the loss.

(b) Number of times the true solution
was recovered, i.e., cosine similarity ≥

0.9, for each number of gradient samples.

(c) Box plot of time per epoch for the
different sampling methods, with the
midline representing the median time.

Figure 5.5: GCP with Bernoulli loss f(x,m) = log(m + 1)− x logm on artificial sparse data
tensor of size 400 × 300 × 200 × 100 with rank r = 5 and 9,181,549 nonzeros (0.38% dense).
Comparing different sampling strategies in GCP-Adam with s = 1000 samples per stochastic
gradient, evenly divided between nonzeros and zeros (or “zeros”) for the stratified samplers.
For each strategy, we do 25 runs with different initial guesses. (The same 25 initial guesses
are used for each instance.)

empirical variance = trace

 1

N

N∑
ξ=1

(g̃ξ − ĝ)(g̃ξ − ĝ)ᵀ

 =
1

N

N∑
ξ=1

‖g̃ξ − ĝ‖22.

Table 5.1 considers two distinct cases: an initial guess (far from the solution with a larger gra-
dient) and the overall best final solution (close to the solution with a smaller gradient). In both
cases, stratified and semi-stratified sampling had lower variances than uniform. Consequently,
these have lower empirical biases as well. This helps to explain the superior convergence of
the stratified and semi-stratified approaches.

5.6. Application to Sparse Count Crime Data and Comparison to CP-APR. We con-
sider a real-world crime statistics dataset comprising more than 15 years of crime data from
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Table 5.1: Empirical bias and variance of stochastic gradients at an initial guess and a final
model for GCP with Bernoulli loss using the artificial sparse tensor and sampling methods of
Figure 5.5. For each method and model, we use N = 1000 stochastic gradient realizations.

sampling Initial guess: ‖g‖2 = 2.00e+07 Final model: ‖g‖2 = 3.10e+06
method emp. bias emp. var. emp. bias emp. var.

uniform 1.08e+06 1.26e+15 3.90e+07 1.52e+18
stratified 7.48e+05 5.64e+14 3.17e+06 9.84e+15
semi-stratified 7.68e+05 5.70e+14 3.14e+06 9.93e+15

the city of Chicago. The data is available at www.cityofchicago.org, and we downloaded a
4-way tensor version from FROSTT [42]. The tensor modes correspond to 6,186 days from
2001 to 2017, 24 hours per day, 77 communities, and 32 types of crimes. Each X(i, j, k, `) is
the number of times that crime ` happened in neighborhood k during hour j on day i. The
tensor has 5,330,673 nonzeros. Stored as a sparse tensor, it requires 0.21 GB of storage.

Since this is count data, we use GCP with a Poisson loss function, i.e., f(x,m) = m −
x logm and nonnegativity constraints. We run GCP-Adam with both stratified and semi-
stratified sampling using s = dn̄ = 6319 samples for the stochastic gradient. We compare to
the state-of-the-art for CP alternating Poisson Regression (CP-APR) [12], using the Quasi-
Newton method described in [18]. We run each method with 20 different starting points. We
compute rank r = 10 factorizations.

Timing results are shown in Figure 5.6. The CP-APR method has to do extensive pre-
processing, which is why the first iteration does not complete until approximately 140 seconds.
The GCP-Adam methods descend much more quickly but do not reduce the loss quite as
much, though this failure to achieve the same final minima is likely an artifact of the function
estimation and/or nuance of the Adam parameters.

Although the final loss functions values are slightly different, the factorizations computed
by the three methods are similar. We show the results from the first random starting point in
Figure 5.7. Each rank-1 component corresponds to a row in the figure. The first column is the
day, shown as a line graph. Components in this column are scaled to capture the magnitude
of the overall component, while all the other components are normalized. The second column
is hour of the day, shown as a bar graph. The third column is the neighborhood, shown
as a bar graph. (The third column is somewhat difficult to interpret visualized this way
but we show it on a map in Appendix F.) The fourth column is the crime type, sorted
by overall frequency, and only showing the 13 most prevalent crimes. When working with
real-world data, we generally have to experiment. Nevertheless, certain trends emerge over
and over again for different starting points, ranks, and methods. In this case, we see strong
commonalities among the three methods, as follows. Component 1 for CP-APR is similar to
component 2 for the GCP-Adam methods, with “theft” being the most prevalent crime and
a similar pattern in time. Component 2 for CP-APR is similar to component 1 for the GCP-
Adam methods. Component 3 for the semi-stratified GCP-Adam has a very strong seasonal
signature, becoming most active in summer months. Component 4 for stratified GCP-Adam
is similar, as is component 6 for CP-APR. Component 8 in CP-APR and component 6 in

www.cityofchicago.org


20 TAMARA G. KOLDA AND DAVID HONG

Figure 5.6: GCP with Poisson loss f(x,m) = m − x logm, rank r = 10, and s = 6319
(sum of the dimensions) on real-world Chicago crime data tensor of size 6186 × 24× 77× 32
with 5,330,673 nonzeros. Comparing GCP-Adam using both stratified and semi-stratified
sampling with CP-APR (using quasi-Newton). We run each method from 20 different initial
guesses. Each dashed line represents a single run, and the markers signify epochs for GCP and
iterations for CP-APR. Solid lines represent the median. Across all GCP runs, the same set
of samples is used to estimate the loss. CP-APR computes the exact loss, and the differences
between the final losses seem to be in part an artifact of the estimation.

both GCP-Adam methods has a special pattern of a spike on the first of each year and again
on the first of each month. There is also a spike at midnight in the hour mode. This is
likely a feature of how the associated crimes were recorded in the dataset. To help further
with interpretation of the rank-1 components, we zoom in on the components from the semi-
stratified GCP-Adam solution in Appendix F, where we show each individual component,
including drawing a heatmap of the neighborhoods on a map.

6. Conclusions. We propose a stochastic gradient for GCP tensor decomposition with
general loss functions. The structure of the GCP gradient means that there is no general way
to maintain sparsity in its computation even when the input tensor is sparse. Our investigation
was prompted by the sparse case, but the stochastic approach applies equally well to dense
tensors. A unique feature of our approach is the use of stratified and semi-stratified sampling
in the gradient computation for sparse tensors.

We tested the stochastic gradient using Adam [25] for GCP tensor decomposition and made
several findings. Stochastic gradient methods are effective in practice in terms of driving down
the objective function and recovering the true solutions. Empirically, we find that the number
of samples should be roughly equal to the sum of the dimensions, i.e., s =

∑d
k=1 nk = dn̄.

This is much lower than would be required to cycle through the entire dataset each epoch, i.e.,
nd divided by the number of iterations per epoch. For dense problems, stochastic gradient
methods can be much faster than the non-stochastic prior approach using L-BFGS-B [22]. For
sparse problems, stochastic gradients enable us to circumvent formation of the dense tensor
needed by the gradient, making it possible to solve much larger problems. Additionally,
we propose stratified and semi-stratified sampling, which are typically superior to uniform
sampling. We have not discussed how to determine the rank since that is a difficult problem
even for standard CP.
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(a) CP-APR (non-stochastic)

(b) GCP-Adam with stratified sampler

(c) GCP-Adam with semi-stratified sampler

Figure 5.7: Visualization of factorizations of the Chicago crime tensor as produced by three
different methods.
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Overall, stochastic methods have proved to be a promising approach for GCP tensor de-
composition, especially for large-scale sparse tensors which have no viable alternative. How-
ever, many open questions remain. We can likely further improve the results by using more
sophisticated stochastic optimization methods, e.g., weight decay strategies in Adam [30].
Likewise, more sophisticated sampling strategies such as leverage score sampling from matrix
sketching [33, 55, 10] may further improve performance by reducing the variance. Another
important line of investigation is developing appropriate theory to describe the improvement
gains of the stratified approaches.

In terms of implementations, an interesting consequence of sampling in the context of
parallel tensor decomposition [44, 24, 29, 40] is that we can reduce the computation and/or
communication by sampling only a subset of the entries. Moreover, we may be able to stratify
the samples in such a way that is amenable to more structured communications.

Appendix A. Special Cases where Gradient Does Not Require Dense Calculations.
Computing the gradient is not a major issue for standard CP due to its special structure.
Specifically, the computation of Gk can be simplified so that the primary work is computing
X(k)Zk, which is a sparse MTTKRP whenever X is sparse [22, Appendix A]. For Poisson
CP [12], the primary work is computing V(k)Zk where V is the sparse tensor defined as

vi =

{
xi/mi if xi 6= 0,

0 otherwise.

In these cases, the gradient can be computed in O(nnz(X) rd) flops with O(nnz(X)) additional
storage. Generally, however, we may not have such structure and we have to compute with a
dense Y tensor at a cost of O(rnd) flops and O(nnz(X)) extra storage.

Appendix B. Determining the Oversampling Rate. Subsection 4.2 mentions that we
oversample to get sufficiently many zeros with high probability. Namely, we sample

ρ
nd

nd − nnz(X)
szero = ρ

1

1− nnz(X)/nd
szero = ρ

szero
pzero

indices to get the desired szero zeros, where pzero = 1− nnz(X)/nd is the proportion of zeros in
the tensor. Here we discuss the oversampling rate ρ.

We can use the inverse cumulative distribution function (CDF) of a negative binomial
distribution to determine an appropriate ρ. The negative binomial distribution models the
number of failures before a given number of successes with a specified success rate. In our
case, we want szero successes and the success rate is pzero. We can use the inverse CDF to
determine the number of rejections at the 99.9999% percentile. For instance, in MATLAB:

sreject = icdf(‘Negative Binomial’, 0.999999, szero, pzero).

This means that with probability 0.999999, no more than sreject nonzeros will be drawn before
szero zeros are obtained. So we want to choose the oversampling rate ρ so that

ρ ≥ (szero + sreject)
pzero
szero

=
szero + sreject

szero
pzero.
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Figure B.1: Required oversampling rate for 99.9999% probability of generating at least s
(non-rejected) samples.

In Figure B.1, we plot the oversample rate that would be needed in different scenarios.
The x-axis is the proportion of nonzeros. The y-axis is the oversample rate. We plot four
lines corresponding to different values for szero. We observe two trends:

1. For fixed pzero, ρ decreases as szero increases, and
2. For fixed szero, ρ decreases as pzero increases.

For most real-world examples of sampling zeros from a sparse tensor, pzero ≥ 0.99 because the
tensors are extremely sparse. Additionally, we usually use a sample size of at least szero = 1000.
Thus, oversampling by ρ = 1.1 should be adequate for most scenarios we expect to encounter.

We could also determine the oversampling rate for any individual problem using this
procedure, but the inverse CDF calculation can be expensive.

Appendix C. Creating Gamma-Distributed Test Problems. To create the Gamma-
distributed test problem used in subsection 5.2, we generate factor matrices whose entries
are drawn from the uniform distribution on (0, 1):

Ak(ik, j) ∼ uniform(0, 1) for all ik = 1, . . . , nk, j = 1, . . . , r, and k = 1, . . . , d.

Using these factor matrices, we create Mtrue. The data tensor X is generated as

xi ∼ gamma(k,mi) with k = 1.

Appendix D. Details of Creating Binary Test Problems. We assume an odds link with
the data, so the factor matrices must be nonnegative. The probability of a one is given by
m/(1 + m) where m corresponds to the odds. For simplicity in the model and in generating
the data tensor, we assume that factors 1 through (r − 1) are relatively sparse (i.e., sparsity
specified by δ ∈ (0, 1/2) and factor r is dense. The idea here is the last dense component
corresponds to noise in the model, i.e., random but infrequent observations of ones. Otherwise,
the ones have a pattern as dictated by the sparse components.

We specify a density of factor matrix nonzeros and a probability of a one for nonzero
values in the resulting model, denoted ρhigh. To obtain that probability, the nonzero factor
matrix entries should be d

√
ρhigh/(1− ρhigh). We modify that slightly by setting the nonzero
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Figure F.1: Component 1 for Chicago crime tensor using semi-stratified sampling.

factor matrix entries to be drawn from a normal distribution with the mean as the target
value and a standard deviation of 0.5. Since only a few entries are nonzero, we can identify
all the possible nonzeros corresponding to the first four factors and then compute the exact
probability computed by the model and then generate an observation.

For the final dense component, we want the probability of a one, denoted ρlow, to be
relatively low. This means that approximately ρlow of the data tensor entries will correspond
to this last “noise” column. The entries of the factor matrix are set to d

√
ρlow/(1− ρlow). We

use this value exactly so that we can generate nonzero “noise” observations in bulk.
For the test problems in subsection 5.2, we use δ = 0.15, ρhigh = 0.9, and ρlow = 0.0025.

For the test problems in subsection 5.5, we use δ = 0.15, ρhigh = 0.9, and ρlow = 0.002.

Appendix E. Cosine Similarity Score. If the true factor matrices are known, we can
compute a cosine similarity score between the true and recovered solutions. If the true solution
is denoted by Ak and the estimated solution is Âk, then the cosine similarity score is

1

r

r∑
j=1

d∏
k=1

cos(ak(:, j), âk(:, π(j)))

where π is a permutation that should yield the highest possible similarity. Recall that the
cosine of two vectors a and b is aᵀb/(‖a‖2‖b‖2). We say that the true solution is recovered if
the similarity score is at least 0.9. Assume that M holds Âk and Mtrue holds Ak, the cosine
similarity is computed using the Tensor Toolbox for MATLAB [4] via the following command:

score(M,Mtrue,'lambda_penalty',false)

Appendix F. Individual components of Chicago crime tensor factorization. In this
appendix, we show the remaining 10 components for the factorization of the Chicago crime
tensor discussed in subsection 5.6 in Figures F.1 to F.10. Here we have scaled the date to
show the overall weight of the component, and the other components are normalized.
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Figure F.2: Component 2 for Chicago crime tensor using semi-stratified sampling.

Figure F.3: Component 3 for Chicago crime tensor using semi-stratified sampling.

Figure F.4: Component 4 for Chicago crime tensor using semi-stratified sampling.

Figure F.5: Component 5 for Chicago crime tensor using semi-stratified sampling.
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Figure F.6: Component 6 for Chicago crime tensor using semi-stratified sampling.

Figure F.7: Component 7 for Chicago crime tensor using semi-stratified sampling.

Figure F.8: Component 8 for Chicago crime tensor using semi-stratified sampling.

Figure F.9: Component 9 for Chicago crime tensor using semi-stratified sampling.
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Figure F.10: Component 10 for Chicago crime tensor using semi-stratified sampling.
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