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ABSTRACT | Optimization underpins many of the challenges
that science and technology face on a daily basis. Recent years
have witnessed a major shift from traditional optimization
paradigms grounded on batch algorithms for medium-scale
problems to challenging dynamic, time-varying, and even
huge-size settings. This is driven by technological transforma-
tions that converted infrastructural and social platforms into
complex and dynamic networked systems with even perva-
sive sensing and computing capabilities. This article reviews
a broad class of state-of-the-art algorithms for time-varying
optimization, with an eye to performing both algorithmic devel-
opment and performance analysis. It offers a comprehensive
overview of available tools and methods and unveils open chal-
lenges in application domains of broad range of interest. The
real-world examples presented include smart power systems,
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robotics, machine learning, and data analytics, highlighting
domain-specific issues and solutions. The ultimate goal is to
exemplify wide engineering relevance of analytical tools and
pertinent theoretical foundations.

KEYWORDS | Convergence of numerical methods; optimization
methods.

I.INTRODUCTION

Optimization is prevalent across many engineering and
science domains. Tools and algorithms from convex opti-
mization have been traditionally utilized to support a
gamut of data-processing, monitoring, and control tasks
across areas as diverse as communication systems, power
and transportation networks, medical and aerospace engi-
neering, video surveillance, and robotics, just to name
a few. Recently, some of these areas—and, in particular,
infrastructures such as power, transportation, and com-
munication networks, as well as social and e-commerce
platforms—are undergoing a foundational transformation,
driven by major technological advances across various
sectors, the information explosion propelled by online
social media, and pervasive sensing and computing capa-
bilities. Effectively, these infrastructures and platforms
are revamped into complex systems operating in highly
dynamic environments and with high volumes of het-
erogeneous information. This calls for revisiting several
facets of workhorse optimization tools and methods under
a different lens: the ability to process data streams and
provide decision-making capabilities at time scales that
match the dynamics of the underlying physical, social, and
engineered systems using solutions that are grounded on
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conventional optimization methods can no longer be taken
for granted. Let us consider power grids, as a representa-
tive example: economic optimization at the network level
was performed using batch solvers at the minute or hour
level to optimally dispatch large-scale fossil-fuel genera-
tion based on predictable loads; on the other hand, novel
optimization tools are now desirable to carry network
optimization tasks with solvers capable of coping with
volatile renewable generation while managing the oper-
ation of a massive number of distributed energy resources
(DERs). These considerations have spurred research and
engineering efforts that are centered around time-varying
optimization, a formalism for modeling and solving
optimization tasks in engineering and science under
dynamic environments.

Continuously varying optimization problems represent
a natural extension of time-invariant programs when
the cost function and constraints may change continu-
ously over time [1]-[4]. Recently, time-varying optimiza-
tion formalisms and the accompanying online solvers
have been proposed both in continuous-time [5], [6]
and in discrete-time settings [7], [8]. Their main goal
is to develop algorithms that can track trajectories of
the optimizers of the continuously varying optimization
program (up to asymptotic error bounds). The resul-
tant algorithmic frameworks have demonstrated reliable
performance in terms of convergence rates (CRs) with
error bounds that relate tracking capabilities with com-
putational complexity; these features make time-varying
algorithms an appealing candidate to tackle dynamic opti-
mization tasks at scale, across many engineering and
science domains.

This article overviews key modeling and algorithmic
design concepts, with emphasis on textittime-structured
(structured for short) time-varying algorithms for con-
vex time-varying optimization. The term “structured” here
refers to algorithms that take advantage of the inherent
temporal structure, meaning they leverage prior infor-
mation (such as Lipschitz continuity or smoothness) on
the evolution of the optimal trajectory to enhance con-
vergence and tracking. In contrast, the term “unstruc-
tured” refers to time-varying algorithms that simply rely
on current information of cost and constraints. This also
differentiates the present “time-structured” class from
interactive algorithms (that belong to the unstructured
class), which are tailored to learner-environment or player-
environment settings; for example, the popular online
convex optimization (OCO) setup [9], where online algo-
rithms decide on current iterates (using only information
of past cost functions), and subsequently the environment
reveals partial or full information about the function to be
optimized next.

Fig. 1 depicts a typical time-varying optimization set-
ting. Streaming data are generated from time-varying
systems, as in renewable generation that is intermit-
tent, traffic conditions that change in transportation sys-
tems, or drop-off points for drone delivery that are mobile.

possible feedback

>

am 2 I

data streams decision streams

time-varying

optimizer

structured time-varying
optimization

Fig. 1. Setup of time-varying optimization algorithms. Streaming
data generated by time-varying systems are input to an optimizer.
The optimizer can employ a predictor (that could be an oracle or a
well-defined model), which feeds the optimizer with predictions of
how the optimization problem will change. The optimizer then
delivers a decision stream that is used to take actions that could be
possibly fed back to affect the dynamical system operation.

Such settings inherit time variability in the optimization
problem at hand. The optimizer can leverage a predictor
(an oracle or a well-defined model), which feeds the opti-
mizer with predictions of how the optimization problem
may evolve over time. The optimizer then delivers a deci-
sion stream (i.e., an approximate optimizer) that is used to
take operational actions such as committing a generator,
or, adopting an optimal routing schedule for ridesharing
vehicles. These actions could also affect and are therefore
fed back to the system (e.g., the optimal ridesharing sched-
ule alters traffic and availability of vehicles in the future).
When the input data streams are of large scale and/or the
decisions need to be made at a high frequency, traditional
batch algorithms (that exactly solve the optimization prob-
lem at each time) are not viable because of underlying
computational complexity bottlenecks. Hence, an online
computationally frugal optimization becomes essential to
produce solutions in a timely fashion.

To further motivate structured time-varying methods,
Fig. 2! illustrates the asymptotic tracking error (asymptotic
difference between optimal decisions and decisions deliv-
ered by some algorithms that will be described shortly) for
different sampling periods (h) of discrete-time algorithms,
for a robot-tracking problem (see [10] for the setting).
The value of exploiting the temporal structure of the
problem can be appreciated. Even keeping computational
time fixed, structured algorithms outperform unstructured
ones (here by several orders of magnitude). Exploiting this
structure may lead to a reduction of the computational cost
of the algorithms. This is the case, for instance, when using
model predictive control (MPC) on the Hicks reactor [12]
(see Fig. 3 adapted from [13]).

'"Unstructured algorithms 0, 1, and 2 are, in this case, online versions
of the proximal gradient method, for which we perform 5, 7, and
9 passes of the methods, respectively. Structured algorithms here employ
either a first- or a second-order Taylor model (for structured 1 and 2,
respectively), and 5 and 20 passes of an online version of the proximal
gradient method on a simplified quadratic problem (see [11] for further
details).
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Fig. 2.
even keeping the computational time fixed: here for a robot-tracking

problem. See text and footnote for description of the algorithms and

Structured algorithms can outperform unstructured ones,

[10], [11] for the problem setting. This figure will be referred to mul-
tiple times in this article and the different elements will be clarified.

The main goal of this overview article is threefold:

1) to expose models and algorithms for structured time-
varying optimization settings, from both analytical
and an application-oriented perspectives;

2) to demonstrate applications of structured time-
varying optimization algorithms (and deep
dive into two, namely a robotic and a power
system application);

3) to draw links with the growing landscape of unstruc-
tured algorithms for dynamic optimization problems.

Setting and notation: We deal with convex optimization
problems [14], [15], as well as first-order algorithms [16].
Vectors are represented with & € R", and the Euclidean
norm is denoted as || - ||. We mainly deal with strongly
convex and smooth functions. A function f : R" — R is
m-strongly convex for a constant m > 0, that is, f(z) —
m/2||z||? is convex, and L-smooth for a constant L. > 0
iff its gradient is L-Lipschitz continuous or equivalently
iff f(x) — L/2||z|]* is concave. Sometimes, we deal with
extended real-valued functions ¢ : R® — R U {+oo}
(which can explicitly admit infinite values, e.g., the indi-
cator function). We define the subdifferential of ¢ as the
setx — {z€R" |[VyeR": (y—z,2)+¢x) <p(y)}.
Given a convex set X, proj,{x} denotes a closest point to
x in X, namely proj,{z} € argminyex ||z — y|. We also
use O(-) to represent the big-O notation.

II. TIME-VARYING OPTIMIZATION

Let f : R® x Ry — R be a convex function parametrized
over time, that is, f(x;t), where x € R" is the decision
variable and ¢ > 0 is time. Let X (¢) C R™ be a convex set,
which may also change over time. We are interested here
in solving

min f(a;t),

for all t > 0. (hH
zeX(t)

To simplify exposition, we assume that the cost function
f is m-strongly convex for all ¢ (this is nevertheless

a standard assumption in most prior works) and that
the constraint set is never empty. With these assump-
tions in place, at any time ¢, Problem (1) has a unique
global optimizer. This translates to finding the optimal
solution trajectory

x*(t) := argmin f(x;t), forallt> 0. 2)

xeX(t)

As an example, for the robot-tracking problem for which
the results have been shown in Fig. 2, f(x;t) is a time-
varying performance metric for the tracking performance
of a robot formation that is following a robot leader, for
example, f(xz;t) = ||z — b(t)|*> + R(x), where R(x) is
some pertinent regularization function and b(¢) encodes
the tracking signal. On the other hand, X (¢) represents
some physical or hardware constraints for the robots.
At each t/, the information available is {f(z;t),t < t'}
and {X(¢),t < t'}; on the basis of a possibly limited
computational complexity, and without any information
regarding future costs and constraints, the next decision
z(t') has to be made; the objective is to produce a decision
x(t') that is as close as possible to z*(¢').

If Problem (2) changes slowly and sufficient compu-
tational power is available, existing batch optimization
methods may identify the optimal trajectory x*(¢); for
example, if the parameter b(¢) mentioned above exhibits
step changes every 10 s, and a distributed batch algorithm
converges in 5 s, then x*(¢) can be identified (within a
given accuracy). On the other hand, in highly dynamic
settings, computational and communication bottlenecks
may prevent batch methods to produce solutions in a
timely manner [e.g., b(t) changes every 0.5 s, and a
distributed batch algorithm converges in 5 s]; the problem
then becomes related to the synthesis of computation-
ally affordable algorithms that can produce an approx-
imate optimizer trajectory &(¢) on the fly; accordingly,
a key performance of these algorithms is the “distance”
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Fig. 3. Histograms with the total number of Hessian inversions
required to control the Hicks reactor [12] for structured and
unstructured MPC solvers. Exploiting the temporal structure reduces
the computational complexity, measured by the number of
inversions of the Hessian, in solving the MPC.
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between the approximate solution trajectory Z(¢) and the
optimal one x*(¢).

A. Time-Structured and Time-Unstructured
Algorithms

The term “structured” refers to algorithms that, at time ¢,
exploit a (learned) model to predict how the optimizer
trajectory % (t) evolves, say from ¢ to ', and then correct
the prediction by approximately solving the optimization
problem obtained at ¢'. Unstructured algorithms instead
have no evolution model and use only the optimization
problems that are revealed at each time. A useful par-
allelism is the Kalman filter versus the recursive least-
squares (RLSs) estimator. Although the Kalman filter is
endowed with a model to predict how the state evolves
in time and then corrects the prediction with new up-to-
date observations, RLS relies solely on the observations.
Structured time-varying algorithms leverage an evolution
model to predict and observe new problems to correct their
predictions. Unstructured ones rely only on observations.

B. Performance Metrics

Different performance metrics can be considered for
online algorithms that generate approximate trajectories
for Problem (2). They all capture the fact that the com-
putation of z(t) is time-limited, computationally limited,
or both, and therefore &(¢) is an approximate optimizer
at time t. Here, it is more fruitful to look at the compu-
tation of #(t) as limited by time: to compute &(¢), one
has at most At.

An immediate performance metric is the asymptotical
tracking error (ATE), defined as

ATE := lim sup ||&(t) — z*(¢) | )

t—oo

which captures how the algorithm performs in an asymp-
totic sense. In general, one seeks asymptotic consistency of
the algorithm, that is, if *(¢) is asymptotically stationary,
then the ATE should be zero. However, if x*(¢) is time-
varying, the ATE cannot be zero for unstructured algo-
rithms, while it could be zero for structured algorithms.>
A second metric that is relevant for time-varying opti-
mization problems is the time rate (TR), defined as

__ time required for the computation of &(t)
~ time allowed for the computation of & ()

“

Here, we define “time required,” as the time needed for
the computation of an approximate &(¢), which delivers
a predefined ATE. TR is a key differentiator for time-
varying optimization: online algorithms need to be able
to deliver an approximate &(t¢) in the allocated time.

2 A dynamic regret notion based on the cost function is also available,
but we do not discuss this here. The interested reader is referred to [17]
and [18].

Data streams generate decision streams with the same
frequency, and the online optimization algorithm needs to
have a TR less than 1 to be implementable. The TR also sets
an important tradeoff between ATE and implementabil-
ity. One typically cannot expect a very low ATE and
implementable solutions.

The third metric is the CR, which can be informally
defined as

CR := “how fast” an algorithm converges to the ATE. (5)

CR will be formalized for discrete-time algorithms and
continuous-time algorithms shortly. For discrete-time algo-
rithms, under current modeling assumptions, it will be
possible to derive Q-linear convergence results (definition
given later on); on the other hand, for continuous-time
algorithms, the CR will be exponential and related to the
exponent of a carefully constructed Lyapunov function.

Typically, the algorithmic design will involve a tradeoff
between the ATE and CR; for instance, lower levels of ATE
may be achievable at the expense of a higher CR. CR is
then important, not only at the start, but also when abrupt
changes happen (and then the CR captures how fast the
algorithm responds to those changes and disturbances).

An additional metric is a measure that distinguishes
between the structured and unstructured algorithms, here
referred to as structure gain (SG). It could be defined
as the ratio between the ATE obtained with a structured
method divided by the ATE obtained with a competing
unstructured method, that is,

_ ATE for selected structured method
~ ATE for competing unstructured method "

SG: (6)

Of course, both algorithms are constrained to use the same
computational time for #(¢). This metric assists in the
decision as to whether to use the selected structured or the
competing unstructured algorithm for a given time-varying
optimization task. We have already seen in Fig. 2 that the
value of structure can lead to an SG greater than 1, further
motivating the use of structured methods.

In Fig. 4, a general overview of the algorithms that will
be presented in this article is given together with their
connections.

C. Discrete-Time Algorithms

This section surveys discrete-time algorithms. Consider
sampling Problem (2) at defined sampling times {t, =
kh,k € N}, with h being the sampling period; thus, one
arrives at a sequence of time-invariant problems

z*(ty) := argmin f(x;tg), txr = kh,k € N. (7)

reX

For simplicity of exposition, we drop the time dependence
of the constraints and consider static sets. As long as one
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Discrete-time time-varying algorithm template
depend on: T R ying alg P
predictors . ime tg, guess X
e Time ty,
[ — Predict &4 41| via a suitable predictor that uses informa-
tion up to time ¢, and X
depend on: o Time tiiy
solution of an ODE — Acquire a new function f(-;tr41)
— Find the new approximate X, via a suitable algorithms that

better ATE and CR than unstructured with TR < 1

Fig. 4. Algorithms presented in this article.

uses information up to time ¢y 1 and X1k

can solve each (time-invariant) Problem (7) within an
interval h using existing algorithms, then a “batch solu-
tion mode” is sufficient to identify the optimal trajectory
{z*(tx),k € N}. This batch approach is, however, hardly
viable, except for low-dimensional problems that can be
sampled with sufficiently long sampling periods (i.e., when
the problem changes sufficiently slowly). We focus here on
the case where one can afford only one or a few steps of
a given algorithm within an interval h, that is, an online
approach. This setting can then be cast as the problem
of synthesizing online algorithms that can track {x*(¢x),
k € N}, within a given ATE.

A key assumption for any online approach is that
the difference between solutions at two consecutive
times is bounded.

Assumption 1: The distance between optimizers at sub-
sequent times is uniformly upper bounded as

lz* (tr) — " (ts—1)|| < K, Vk>0, K < oo.

The constant K will play a key role in the ATE, as shown
shortly. Assumption 1 is general, inasmuch it does not
forbid the underlying trajectory =*(t) to have finite jumps.’

A stronger assumption, often required in time-structured
optimization, is that the time derivative of the gradient of
the cost function,* that is, Vs f (z;1), is bounded.

Assumption 2: For all ¢ and all x: ||V f(z;t)|| <
Ap < oo.

Assumption 2, along with m-strong convexity of the cost
function, guarantees that the trajectory x*(¢) is globally
Lipschitz in time [19], [20], and in particular

* gl * A /
™ (¢) = 2" (B)]] < =t ~ 1. ®)

This is key for structured time-varying algorithms and
typically not required in unstructured algorithms or in
OCO [9]. Note further that Assumption 2 implies Assump-
tion 1 with the choice K = Ag h/m.

In this discrete-time setting, an online algorithm will
generate a sequence of approximate optimizers. Hereafter,
we will denote the output of the algorithm at time ¢
for simplicity as &, while we denote the sequence as

3Meaning that «* () can be discontinuous in time, but the discon-
tinuity has to be bounded, so that Assumption 1 holds for the choice of
sampling period.

4This can be generalized for a nonsmooth cost function of the form
fa;t) + g(x), as long as f(x;t) is differentiable, e.g., ||z — t]|% +
| [11).

(x)ren, . Different algorithms will be distinguished based
on which predictor they use and how they generate &y.

1) No-Predictor Algorithms: In this case, online algo-
rithms do not have a “prediction” step; rather, they
only perform “corrective” steps once the cost function
is acquired. These algorithms are called in different
ways (among which catching up, running, correction-
only, and unstructured) and probably firstly appeared with
Moreau [1]. For example, a running projected gradient to
approximately solve (7) is given by the recursion

li:o = 07 Ci:k = pI‘OjX{Ci:kfl — anf(:i:k,l;tk)L ke N

C)]

where proj,{-} denotes the projection operator and « is
a carefully chosen step size (that could be time-varying
as well). In (9), the projected gradient is applied once
per time step k, but one could also apply multiple gra-
dient steps, say C, per time step. Notwithstanding this,
in general, these unstructured discrete-time algorithms
achieve a high ATE. To formalize this result, we focus on
a class of algorithms that exhibit a Q-linear convergence.
In particular, let M be an algorithm that when applied to
&y at time tx4q for function f(x;tk11) produces an &1
for which

[#k41 — 2" (trra)l S ol — " (trs1)ll, 0 € (0,1)  (10)

then algorithm M is called Q-linear convergent. This class
is common in time-varying optimization (e.g., projected
gradient (9) is Q-linear on a m-strongly convex and
L-smooth cost function [16]). When the algorithm M
is then applied C times [as e.g., in (30)], we obtain
Hli:k+1 — w*(tk+1)|‘ < QC”Ci:k — w*(tk+1)|‘. The fOHOWiIlg
general result is in place.

Theorem 1 (Informal): Let M be an optimization algo-
rithm that converges Q-linearly as in (10). Then, under
Assumption 1, the same algorithm M applied C' times for
each time ¢, converges Q-linearly to the optimizer trajec-
tory of a time-varying problem up to an error bound as

&kt — 2" (tegr) || < o |2k — 2" () || + K)
and limsup,_  ||&x — =*(tx)] = 0°OK) =

(Ao/m)e“O(h) where the last equality is valid under
Assumption 2.
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Proof (Sketch): At time t, if algorithm M is applied
C times, starting on &, and ending at &1, by Q-linear
convergence of M, we can write

[#k+1 — 2" (trra) |
Cria
o (&r — 2" (trra)ll)

0% (Il — @ (ti)ll + llz* (trs1) — 2" (t)])

IN A

and by using Assumption 1 the first claim is established.
The second claim is proven by recursively applying the first
claim, and by geometric series summation. [ |

The results of the theorem are general and assert that
the sequence (&) tracks the solution trajectory up to a ball
of size o°O(K). If C — oo, the time-invariant problem
is solved exactly and we are back to the batch mode
(and the error is 0), that is, the time-varying algorithm is
asymptotically consistent. If Assumption 2 holds true, then
the asymptotic error is proportional to the sampling period
h (see Fig. 2). In addition, for fixed o € (0,1), C < oo,
and if the path-length 3/, |lz*(tx) — @* (tx—1)|| grows at
least linearly in T, no unstructured method of this type can
reach a zero ATE [21], [22].

2) Predictors: We now focus on discrete-time algorithms
that are endowed with a prediction. Various predictors are
considered, and we will call as &1, the predicted deci-
sion variable for time ¢51 with information up to time ¢y.

3) Clairvoyant Oracles and Expert Oracles: Clairvoyant
oracles offer an exact prediction, that is, they provide a
@1k for which & — a* (b = ll&wsape — @ (sl
as if they knew the function f(-;tx41) and its gradient
at time ¢,. In this context, clairvoyant oracles completely
remove the time effect in the optimizer and the optimizer
can proceed as if the cost function were not varying in
time. Clairvoyant oracles are impractical (they need to
have a perfect knowledge of the future), but they offer
good performance lower bounds (since one cannot do
better than them). A noteworthy example of when one can
use a clairvoyant oracle is when the cost function has a
time drift, that is, f(x;¢) = f(x + ot), and the oracle can
estimate the drift vector « exactly based on historical data.

Expert oracles, hints, or predictable sequences are con-
sidered, for example, in [23]-[25]. In [24], one has access
to a sequence (my)ren, of gradient approximators. When
my = 0, that is, meaning no knowledge or predic-
tion about the future, we recover an unstructured algo-
rithm. When m;, = V.f(x;t;) at time ¢, then one
recovers the online algorithm of [26]. Finally, when m; =
Vo f(x;tr+1), one recovers a clairvoyant oracle. Based
on the error |[m; — Va f(x;tr41)||, one can then derive
dynamic ATE results.

4) Model-Based Predictors: These predictors are built on
a model of the variations of the cost function, or of its
parameters.

a) Prediction based on first-order optimality condi-
tions [4], [7], [8], [27]-[29]: A large class of predictors
comes from deriving models based on first-order optimality
conditions. We could call these predictors environment-
agnostic, since they are not interested in modeling how
the environment changes, but only how the optimiza-
tion problem is affected. To introduce these predictors,
let us consider an unconstrained problem [easier than
Problem (7)] as

an

z*(t)) = argmin f(x;tx).
zER™

To derive a model for how the problem is changing from ¢
to tx+1, we look at the first-order optimality conditions at
time ¢, which can be framed as

Vaf(@;tr) = 0. (12)

To predict, how this first-order optimality condition
changes in time, with information available up to ¢y,
we use a Taylor expansion around (Zx;tx) as

0=Vaf(z;itht1) = or(x) = Vo f(Zr; tr)
where it is assumed that the Hessian V.. f(&x;tx) exists,

as well as the time derivative of the gradient Vs f(&x; tx),
leading to the prediction model®

Ok (Zpy1)p) = 0 =
Eriap = &k — Vs f (@1 tr)
X [Va f(@;tx) + b Vi f(@r; tr)]. (14)

The prediction (14) represents a nonlinear discrete-time
model to compute xq),. Note that ¢ (x) can be inter-
preted as a specific choice for the gradient approximator
my, in [24] (see the discussion in the oracles paragraph).
Let us now consider a slightly more general setting than
Problem (7) as

@* (t4) = argmin f(z; ) + g() (15)

xR

where g : R" — R U {400} is a convex closed and proper
function (e.g., g(x) = ||z||1). Problem (7) is a special case
of (15), when g(«) is the indicator function of the set X.
Once again, we look at the first-order optimality condi-
tions at time ¢, which can be framed as the generalized
equation [19]

Ve f(z;ti) + dg(x) 2 0. (16)

SThe time derivative Vg f(2;t) can be obtained via first-order
backward finite difference, if not available otherwise (see [20] and [27]).
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To predict how this first-order optimality condition
changes in time (with information up to tx), one can
use a Taylor expansion around (&y;tx), leading to the
prediction model

ok (®p4116) + 09(Zpt1)6) 3 0. (17)

Thus, the prediction step requires the solution of this
approximated generalized equation with initial condition
Zx, which can be obtained, or approximated, cheaply
with, for example, a few passes of a proximal gra-
dient method [30] (cheaply since ¢, is a quadratic
function). The formulation (17) represents the predic-
tion model for the presented class of optimization prob-
lems (15), for a first-order Taylor expansion. Other
prediction models exist for other classes of optimiza-
tion problems [27], [28], for higher-order Taylor expan-
sions [4], and for more complex numerical integration
methods [29], [31]-[34].

b) Prediction based on parameter estimation [35]:
When the time dependence hides a parameter dependence,
then models obtained via filtering are a viable alterna-
tive. Let b(t) € R' be a parameter, and let the function
f(z;t) = f(x;b(t)): for example, the cost depends on the
data stream b(t) representing, for example, the position of
a robot to track. Then b(¢) at time ¢,4+1 can be estimated
via, for example, a Kalman filter based on the linear time-
invariant model

b(tr+1) = Tb(tx) + wy,

Y = ‘IZ'b(tk) + nyg (18)

for the given matrices I' € R'*!, & € R?*!, observations
¥, € RY, and noise terms w, € R’ n, € RY. Then the
prediction model requires the (approximate) solution of
the problem

(19)

Zpy 1)k ~ argmin f(x; bir1)
rxeX

with by, being the forecast b(tyy1) based on the
model (18) via, for example, a Kalman filter. Other models
can be thought of based on nonlinear models, more com-
plicated forecasters, and even neural networks.

5) Prediction—Correction Algorithms: We have presented
a few predictors for discrete-time time-varying optimiza-
tion algorithms. No general result exists to encompass all
the predictors. However, for a particular class of predictors
(the one that employs first-order optimality conditions as
the prediction model), some general results can be derived.
These methods are known as prediction—correction meth-
ods (since they predict how the optimization problem
changes and then they correct for the errors in predictions
based on the newly acquired cost [8], [27]) and have roots
in nonstationary optimization [2], [36], parametric pro-
gramming [4], [7], [19], [37], and continuation methods
in numerical mathematics [38].

Consider Problem (15) for simplicity (although argu-
ments are generalizable). Let P be a predictor method
that approximates &1, based on (17), in a Q-linear
convergent fashion: one application of P acting on &y
delivers a &}, , |, for which
o1 € (0,1).

Z%s1ik — Zrgrell < o1ll@e — gl (20)

For example, P could be a proximal gradient algorithm,
in which case

@n

Thpayk = ProX o {2k — aVaipr(@r)}

where prox,, {-} is the proximal operator for function g
and step-size «, which could be applied one or multiple,
say P, times for time step. Let now M, belonging to the
same algorithm class of (10), be applied to the update
(correction) step after function acquisition at tj41, for
which one application on &} |, delivers

02 € (07 1)
(22)

|Zer1 — 2" (terr) || < 02l|@ps1pe — @ (trgr) |,

for example, another proximal gradient step as

Ep1 = ProX,  {&h 1k — OVa f (Zhgrer ter1) ). (23)

Then the following result is in place.

Theorem 2 (Informal): Consider the time-varying Prob-
lem (15) and two methods P and M for which (20)-(22)
hold. Let the predictor P be applied P times during the
prediction step, and the corrector M be applied C times.
Consider Assumption 2 to hold and additionally, let f(x;t)
be L-smooth (in addition to be m-strongly convex), with
a well-defined Hessian Vg f(x;t). Then, there exists a
minimal number of prediction and correction steps P,C
for which globally (i.e., starting from any initial condition)

. A * A
limsup || &x — 2™ (tr)|| = gt O(h).

k—oo

In addition, if we consider the assumption that higher-
order derivatives of the cost function are bounded® as

max{||Vaze f(2; )|, |Viwa f(@; D), Ve f(2; 1)} < Aa

uniformly in time and for all € R", then locally (and for
small h), there exists a minimal number of prediction and
correction steps P, C so that

limsup || — 2" (t)|| = O(A10f h*) + O(Aoof 03 h).
k—oco -~ N -~ s

prediction gain approximation error

SWhere induced Euclidean norms are considered for tensors.
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Proof (Sketch): The proof here proceeds as follows:
we first bound the error arising from the prediction
[see (21)], and second bound the one from the cor-
rection [see (23)], and then finally combine them. For
the error arising from the prediction, two errors must
be considered, one arising from the model (due to the
Taylor expansion error), whereas the other arising from
the P prediction steps. When considering exact predic-
tion (P — o0), the leading error is the Taylor expan-
sion error [namely the error in (13)], which is O(h),
in general, and O(h?) when higher-order derivatives are
bounded. ]

The results of Theorem 2 are fairly general and apply to
different problem classes [27], [28]. Theorem 2 indicates
that tracking is not worse than correction-only methods in
the worst case. If the function has some higher degree of
smoothness, and we are interested in a local result, then
a better ATE can be achieved, provided some (stricter)
conditions on the number of prediction and correction
steps are verified. The ATE is composed of two terms:
one which is labeled as approximation error, which is
due to the early termination of the prediction step (if
P — oo and prediction is exact, this term goes to 0). The
other, called the prediction gain, is the gain resulting from
using a prediction step, which brings the error down to a
O(h?) dependence on h. This depends on the first-order
Taylor expansion employed; other methods can further
reduce this to O(h4) or less [4], [29], [31]-[34] (look
again at Fig. 2, where we have also employed a Taylor
model up to degree 2 for (13) to obtain an O(h®) error
bound).

The higher degree of smoothness required for the local
results imposes boundedness of the tensor Vize f(x;t),
which is a typical assumption for second-order algorithms
(notice that the predictor requires second-order infor-
mation, see (14)-(17) and its solution is comparable
to solving a Newton step, which is locally quadratically
converging). Moreover, it bounds the variability of the
Hessian of f over time, which guarantees the possibility
of performing more accurate predictions of the optimal
trajectory. Theorem 2 depicts a key result in prediction—
correction methods: the prediction value is fully exploited
with higher smoothness.

D. Continuous-Time Algorithms

We consider now continuous-time prediction—correction
algorithms which, in general, are appropriate in control
and robotics applications.” The main component of these
algorithms is the ability to track the minimizer by taking
into account its evolution with time. In continuous-time,
this scheme has been used in distributed time-varying

TFor these algorithms, time metrics like TR make less sense than in
discrete-time setting. However, continuous-time algorithms are still inter-
esting to investigate, both in theory—as continuous limits to discrete-
time algorithms—and in practice, as good approximation of cases in
which the sampling time is much smaller than other system characteristic
times.

convex optimization (see [5] and [39]-[41]). Since the
objective function is m-strongly convex, the solution of the
problem can be computed by solving the first-order opti-
mality condition (12): for the implicit function theorem,
the time derivative of x* () is

T*(t) = —Vie f(2;1) ' Via f(23t). (24)

In cases where the problem of interest is static, gradient
descent and Newton’s method can be used, for instance,
to find trajectories such that lim; .. x(t) = x*. Moreover,
this convergence is exponential, meaning that there exist
positive constants C; and «; such that ||z(t) — x| <
C1 e (see [42, Definition 4.5]—note that exponential
convergence is the continuous counterpart of the discrete-
time Q-linear convergence). To provide the same guaran-
tees in the case of time-varying optimization, we include
the prediction term (24), which incorporates changes in
the optimizer

&(t) = —Viaf(xit) " (kVaf(@;t) + Via f(z31))  (25)

where x > 0 is referred to as “gain of the controller” in
the literature, and (25) is referred to as “the controller,”
since it controls how the decision trajectory must
change to reach the optimal solution trajectory.
This differential equation defines a nonautonomous
dynamical system which converges exponentially
to z*(t) [43], [6, Prop. 1].

Theorem 3: Under the hypothesis of Theorem 2,

x(t)—the solution of the dynamical system
(25)—converges exponentially to x*(¢), solution
to (1).

Proof (Sketch): The proof uses a Lyapunov argument.
Define the error e(t) := z(t) — *(¢) and the function
V(e;t) = ||V f(e 4+ z*(t);t)||> /2. Then the proof relies on
establishing that V'(e;t) < 0 for all e # 0 and V(0;t) = 0
(see [42, Th. 4.10]), and in particular

V(e;t) = = || Ve fle+ 2" ()it)]* < 0.

|

This result indicates that the convergence is exponen-
tial to the optimal trajectory (ATE is zero). The latter is
achieved by including the prediction in the controller, that
is, the time variation of the optimal solution. Without
such a predictor, tracking would be possible only up to
an asymptotic error that depends on the variation of the
gradient with the time and the gain of the controller. This
is a clear benefit of structured algorithms. Note that these
results are the continuous-time counterpart of the results
presented in Theorem 2. However, one of the advantages
of working with continuous-time flows is that it is also pos-
sible to establish asymptotic convergence to the solution
of constrained optimization problems using interior point

Vol. 108, No. 11, November 2020 | PROCEEDINGS OF THE IEEE 2039

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on December 09,2020 at 17:20:02 UTC from IEEE Xplore. Restrictions apply.



Simonetto et al.: Time-Varying Convex Optimization: Time-Structured Algorithms and Applications

methods (see [14, Chapter 11]). Formally, let us define the
following optimization problem:

x*(t) := argmin  f(x;t) (26a)
xzER
st.ohi(z;t) <0 Yi=1,....p. (26b)

In [6], inspired by interior point methods, the follow-
ing barrier function is proposed:

P

@@t) = f(@it) = 5 Dolo(s(t) ~ hi@it) @)

=1

where ¢(t) is an increasing function such that
lim;—ooc(t) = oo and s(t) = s(0)e " for some
~ > 0. The intuition behind the barrier is that it
approximates the indicator function as ¢ increases. This
means that it takes the value O when the constraint is
satisfled and +oco in the opposite case. In that sense,
when minimizing the unconstrained objective ®(x;t)
constraint satisfaction is promoted. Note that for the
logarithm to be well defined we need s(t) > hi(x;t)
and thus the slack s(¢) is introduced just to guarantee
that this is the case at all times ¢ > 0. In particular,
it suffices to choose s(0) > max;=1,... p{hi(2(0),0)} for
this to be the case [6, Th. 1]. The previous intuition
on how minimizing the function ®(x;¢) defined in (27)
resembles to solve (26) can be formally established. Let
z(t) be the minimizer of ®(x;¢). Then it follows that
limioo || f(2(8);t) — f(x*(t);t)]] = O [6, Lemma 1].
This result, along with the idea that the barrier function
promotes constraint satisfaction, suggests that to solve
(26), it suffices to compute the minimizer of the
unconstrained barrier function ®(x;t) defined in (27).
This result is formalized in the following theorem.

Theorem 4 (Theorem 1 [6]): Consider the constrained
optimization problem defined in (26) with f(xz;t) m-
strongly convex, h;(x;t) for all « = 1,...,p are convex
functions and Slater’s constraint qualifications hold: that
is, there exists 2'(¢) such that for all + > 0 and for all
i =1,...,p, it holds that h;(x'(t),t) < 0. Let ®(x;t) be
the barrier defined in (27) and let x(t) be the solution of
the dynamical system

&(t) = —Vaa®(x;t) ' (kVa®(x;t) + Vie ®(z;1)) .

Then it follows that lim;—. ||z (t) — 2™ (¢)]| = 0.
Proof: The proof follows that of Theorem 3 with

e = x — z*(t) and Lyapunov function V(e;t) =
IVa(e +a* (1); )] /2. m

Working in continuous time allows us to solve con-
strained problems using interior point methods, thus guar-
anteeing feasibility for all time if the initial solution is
feasible. This is especially appropriate for control sys-
tems where the constraints might represent physical con-
straints that need to be satisfied for the system to operate
without failure.

III. APPLICATIONS

We highlight now application domains where structured
and unstructured time-varying optimization methods have
been or could be applied to. We proceed with a high-level
(and by no means exhaustive) list of areas, presented in
alphabetical order. Note that, given the increasingly cross-
disciplinary nature of the research efforts, clear boundaries
are difficult to delineate.

A. Communications

Problems such as congestion control, resource allo-
cation, and power control have been of paramount
importance in communication networks [44], [45].
Indeed, important questions arise when channel capacities
and noncontrollable traffic flows are time-varying, with
changes that are faster than the solution time of under-
lying optimization tasks, and even more so in the 5G
era [46] (e.g., HD video streaming). This setting can be
tackled with time-varying optimization tools. For example,
in [47], a continuous-time structured algorithm with a
first-order Taylor predictor model is proposed. The recent
work [20] explored structured algorithms for intermittent
time-varying service, a feature important in today’s cloud
computing. Finally, time variations are important when the
communication graph is itself time-varying (see [48] and
references therein).

B. Control Systems

One popular tool in control systems is MPC [49]. MPC
is grounded on a strategy where an optimization prob-
lem is formulated to compute optimal states and com-
mands for a dynamical system over a given temporal
window; once a solution is identified, the command for
the first time instant is implemented and the window
is then shifted. The optimization problem changes over
time, since it is parametrized over the state of a certain
system, and it has to be resolved every time. Recently,
time-varying (and/or parameter-varying) algorithms for
MPC have appeared for large-scale and embedded systems
(see [13] and [50]-[52]), which are a mix of continuous-
time and discrete-time unstructured and structured algo-
rithms. For example, in [51], an unstructured algorithm
(specifically a homotopy-based continuation method) is
used to enhance the tracking performance of the nonlinear
MPC. In [13], a predictor of the form (14) is used to solve
the optimization problem that arises from the receding
horizon problem. Since the solution varies smoothly with
the state of the system, these methods are appropriate to
achieve good tracking accuracy with low computational
cost. In [53], these ideas are extended to problems with
constraints by using a semismooth barrier function.

Other applications in control systems are the sequential
training of neural networks for online system identifica-
tion [43], [54], [55], where predictors of the form (25)
were proposed, as well as recent work at the intersec-
tion of online optimization and feedback control, where
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the output regulation problem is revisited by posing the
problem of driving the output of a dynamical system
to the optimal solution of a time-varying optimization
problem [56], [57].

C. Cyber-Physical Systems

Cyber—physical systems (CPSs) [58] are engineered sys-
tems with tightly integrated computing, communication,
and control technologies. Because of major technological
advances, existing CPSs (power systems, transportation
networks, and smart cities just to mention a few) are
evolving toward societal-scale systems operating in highly
dynamic environments, and with a massive number of
interacting entities. It is then imperative to revisit informa-
tion processing and optimization tools to enable optimal
and reliable decision-making on time scales that match
the dynamics of the underlying physical systems. Due to
space limitations, we focus here on power systems and
transportation systems.

A time-varying problem for power systems can capture
variations at a second level in noncontrollable loads and
available power from renewables [59]; it can also accom-
modate dynamic pricing schemes. Time-varying problem
formulations (and related online algorithms) can be uti-
lized for tasks such as demand response, optimal power
flow (OPF), and state estimation. Adopting a time-varying
optimization strategy, the power outputs of DERs can be
controlled at the second level to regulate voltages and
currents within limits in the face of volatility of renewables
and noncontrollable loads and to continually steer the
network operation toward points that are optimal based
on the formulated time-varying problem. Examples of
works include real-time algorithms for voltage control,
OPE as well as DER management for aggregators (see,
for example, [60]-[65] and pertinent references therein).
For some applications, such as the demand response and
the OPE online algorithms have been designed to leverage
measurements of constraints (e.g., voltages violations) in
the algorithmic updates [18], [61], [66] to relax the
sensing requirements. Real-time measurements were used
in a state estimation framework in [67]. We develop these
ideas with an example in Section IV-A.

In the context of transportation systems, fast time vari-
ations may arise from different factors (and at appropriate
time scales), such as variations in the traffic, pedestri-
ans crossing the roads, car accidents, sport events; these
factors may lead to time-dependent routing and traffic
light control algorithms [68]. Motivated by the recent
widespread use of ridesharing and mobility-on-demand
services [69], spatio-temporal variations naturally emerge
from customer pick-up and drop-off requests as well as
fleet locations. As representative works in context, Alonso-
Mora et al. [69] and Simonetto et al. [70] discussed
unstructured algorithms to achieve long-term (“asymptoti-
cal”) good tracking, while sacrificing short-term optimal-
ity. In [71], an online algorithm based on a structured

problem formulation is presented, where the prediction is
based on historical data and machine learning forecasting.
An unstructured algorithm is also presented in [72], to find
optimal meeting points.

D. Machine Learning and Signal Processing

As a representative problem spanning the broad fields
of machine learning and signal processing, we focus on
the reconstruction of sparse signals via /;-regularization
where we are interested in recovering a sparse signal given
some observations, for example, extract “sparse” features
in images [73]. The time-varying nature of this problem
arises when we want, for instance, to extract features in
videos. Works that explore dynamic ¢; reconstruction are,
for example, [74]-[76]. In [35] and [77], two algorithms
are presented, one unstructured using homotopy and one
structured building a model based on methods akin to
Kalman filters. In [78], unstructured methods for the elas-
tic net are discussed.

Other applications in machine learning and signal
processing, where a number of (mainly) unstructured
algorithms have been proposed, include contemporary
approaches for sparse, kernel-based, robust, linear regres-
sion, zeroth-order methods, and learning problems over
networks. Additional lines of work include dynamic clas-
sification under concept drift [79], dynamic beamform-
ing [80], and other dynamic signal processing tasks, such
as maximum a posteriori estimation [81], [82].

E. Medical Engineering

Medical engineering is a growing research field in many
contexts. Here, we focus on the new possibilities offered
by new and fast imaging modalities under magnetic res-
onance (see [83] and [84] for a broader context). Once
confined to static images (due to the high computational
load), magnetic resonance imaging (MRI) is now transi-
tioning to fast imaging and possibly high-definition video
streaming, which could be of invaluable help to clinicians
and researchers alike, not to mention patients, especially
children. In the series of work [85] and [86], the authors
describe an unstructured algorithm to solve a time-varying
subsampled nonlinear regularized inverse problem. The
algorithm allows the clinicians to visualize blood flow, car-
diac features, and swallowing, among many other things.

E Optimization and Mathematical Programming

Time-varying optimization has been studied for appli-
cations within mathematical programming, for example,
in the context of parametric programming [3], [4], [7],
[37]1, [87] where a wealth of structured and unstructured
algorithms are presented. Time-varying optimization has
its roots in continuation methods in numerical mathemat-
ics [38] and it resembles path-following methods [88],
so advances in either fields are intertwined.

Another application in mathematical programming
where time-varying optimization could be (and has been)
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applied is the field of evolutionary variational inequalities.
Variational inequalities [89] can be framed as optimiza-
tion problems, while evolutionary ones can be framed
as time-varying optimization problems. In [90]-[92],
the authors discuss plenty of interesting applications in
socio-economical sciences (human migration studies, eco-
nomics, time-dependent equilibria in games, etc.), propos-
ing mainly unstructured approaches.

G. Process Engineering

In chemical and process engineering, the body of
work [93]-[95] focuses on real-time optimization for
chemical and industrial processes. The optimization prob-
lem is not time-varying per se, but it becomes time-varying
because the constraints (i.e., the industrial process) are
learned online and adapted. Several real-time optimization
algorithms are proposed, mainly unstructured.

H. Robotics

Time-varying optimization problems—or problems that
depend on a time-varying parameter—appear often in
the context of robotic systems. In the context of safe
navigation, Arslan and Koditschek [96], [97] considered
the problem of using power diagrams to define a local
safe space, which depends on the position of the agent
itself. The control law used to navigate is such that it
aims to track the projection of the goal on the local safe
space. Even in cases where the goal is static, a time-
varying optimization problem needs to be solved due to the
modification of the local free space. In [6], the approach
described in Section II-D is used to compute said solutions.
We develop these ideas more in Section IV-B.

For networks of mobile robots [98], the “communica-
tion integrity” is guaranteed by solving a time-varying
optimization problem. Specifically, since an unstructured
algorithm is used, an asymptotic tracking error that results
in small constraint violation and suboptimality is achieved.

Another interesting application is that of robotic manip-
ulators [32], [99], [100], obtained via zeroing neural
dynamics (ZND) [101]-[103], based on a prediction step
similar to (25).

IV. TWO APPLICATIONS: DEEP DIVE
A. Example in Power Grids

Consider a power distribution grid serving residential
houses or commercial facilities, featuring N controllable
DERs. The vector z; € X; C R? collects the active and
reactive power outputs of the :th DER, and X; models
hardware constraints. A prototypical time-varying opti-
mization problem for real-time management of DERs is

N
argmin Zfi(ﬂ?i;tk) + fypa(z;ty)

{zieXi 3N, =1

o () = (28)

where f;(x;;t)) is a cost function associated with the ith
DER and fn+1(x;ty) is a time-varying cost associated with

the power network operator. Elaborating on the latter,
suppose, for example, that a linearized model for the
power flow equations is utilized to capture the variations
on some electrical quantities y € R™ (e.g., voltages and
power flows on lines) induced by z, that is, y(tx) =
Azx + Ay,w(ty), where w(ty) is a vector collecting the
powers of noncontrollable devices and A,, A,, are sensi-
tivity matrices that are built based on the network topology
and the line impedances [61], [65]. A possible choice for
the function fn1(z;tx) for the network operator can then
be fnyi(z;te) = 2|y (tk) — Az + Aww(ti)||?, where
y™(t) is a time-varying reference point for the electrical
quantities included in y, and v > 0 is a design parameter
that influences the ability to track the time-varying refer-
ence signal y"**(t;). Various models for f;(z;;tx) can be
adopted, based on specific problem settings, for example,
filxs;ty) = ||xs — 2 (tx)]|? can minimize the deviation
from a desirable setpoint for the ith DER (that can be
computed based on a slower time-scale dispatch problem);
in the case of photovoltaic systems, :* (¢ ) could be set to
x5 (t) = [P (tx), 0]7, with P* (¢;) the maximum power
available, to minimize the power curtailed. Alternatively,
set fi(xi;ty) to a time-varying incentive —mry (tx)x; to
maximize the profit of the ith DER in providing services
to the grid.

With reference to Fig. 1, in this application, data
streams include the parameters of the time-varying func-
tion f;(x:;tx) (e.g., the power setpoints {a:°f(¢;)} or the
incentive signals {m;(tx)}), the function fni1(x;tx)
(where set points y™f(t;) can rapidly change to pro-
vide various services to the grid), as well as the pow-
ers w(ty) consumed by the noncontrollable devices.
The algorithm produces decisions on setpoints for the
active and reactive power outputs x;(¢x) of the DERs,
which are commanded to the devices. Finally, “feedback”
can come in the form of measurements of the actual
power outputs x;(¢x) [60], as well as other electrical
quantities [61], [66].

As an illustrative example, we consider the case where
N = 500 DERs are controlled in a distribution feeder; the
set X; is built so that the ranges of active and reactive
powers are [—50, 50] kW and [—50, 50] kVAr, and f;(z;; k)
is set to fi(wi;tr) = %|l@s||* for all DERs. This setting is
representative of a case where energy storage resources are
utilized to provide services. We consider the case where
y is a scalar and represents the net power consumed by
a distribution network; in this case, y™(¢;) can model
automatic generation control (AGC) signals or flexible
ramping signals. The matrices A, and A, are built as
in [61]. We use the real data provided in [61] to generate
the vectors w (¢ ) with a granularity of 1 s. The parameters
arem =1, L = 21, and v = 2; the step sizeisa = 1/(10 L).
We keep the computational time fixed in our comparison
between the unstructured running projected gradient and
the structured prediction—correction algorithm; in particu-
lar, we consider the cases P =0,C =3,and P =3,C =1
(see Theorem 2).
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Fig. 5. Mean cumulative tracking error (1/T)2;’(':1 |z (ty) — x> (E )|l
versus time of the day for a choice of structured (P =3, C = 1) and
unstructured (C = 3) algorithms, having the same computational
time. In green, we report the hypothetical gain in terms of less
utilized power at the average cost of 12 USD cent per kWh.

To outline the steps of the prediction—correction algo-
rithm, recall that z; denotes the iterate of the algorithm at
time ¢ [see Th. 1], and let f(x;tx) = Z@N:1 fi(msste) +
fy+i(z;te) and X = Xq X X2 X --- X Xn for brevity.
A prediction &, is obtained by running P prediction
stepsp=20,...,P—1:

= projx {@” — a (Ve f(@; ) (@7 — #5-1)
+hVia f(Zr-15te) + Vo f(Zr-1:t1))}  (29)
and by setting @yx-1 = &°. Starting now from

z° = 2y k1, the correction phase involves the following
C steps:

2 = projy (&7 —a (Ve f(2501)}  (0)

for c = 0,1,...,C — 1. The iterate &) is then &, =
z°. Note that if P = 0, one recovers the unstruc-
tured running projected gradient method [see also (9)].
In the simulations, the time derivative Vig f(&x;tx) in
(29) is substituted by an approximate version (see,
e.g., [27] and [104]).

To assess the performance of the prediction—correction
algorithm, Fig. 5 depicts the mean cumulative tracking
error (1/7T) Zf:l |lz(tx) — «*(tx)||. It can be seen that
by leveraging the temporal structure of the problem,
the prediction—correction algorithm offers improved per-
formance. We can now evaluate the performance metrics
presented in Section II. We compute the ATE as the mean
error in the last 20 s of the simulation, yielding an ATE of
~50 W for the unstructured method, and an ATE of ~80 W
for the structured method. Since the computational time of
both methods is the same, it follows that SG = 1.6. The CR
can be empirically evaluated by the time it takes to enter
the ATE ball as approximately 1 min for both methods.
On the other hand, the TR is hardware-dependent, since
the denominator of the TR depends on the computational

capabilities of the microcontrollers embedded in the DERs,
where algorithms are implemented.

B. Example in Robotics

Consider a navigation setup of driving a disk-shaped
robot of radius » > 0, whose position is denoted by x(t),
to a desired configuration x4(t), while avoiding collisions
with obstacles in the environment. Here, we deal with
a closed and convex workspace W C R" of possible
configurations that the robot can take. Assume that the
workspace is populated with m nonintersecting spherical
obstacles, where the center and radius of the ith obstacle
are denoted by ; € W and r; > 0, respectively. In general,
this navigation problem is nonconvex due to the presence
of obstacles; however, one can convexify it by looking
at the collision-free convex local workspace around xr,
defined as [96]

LF(xr) = {w EW: (ki —xr) —bi(2r) <0, i = 1.‘.m}

where b;(xr) are pertinent scalars computed depending
on robot and obstacles positions (see [96]). The collision-
free local workspace describes a local neighborhood of
the robot that is guaranteed to be free of obstacles. Each
obstacle introduces a linear bound and thus the local free
space is convex and yields a polygon as the blue colored
one in Fig. 6 (see [96, Eq. (6)]). The position of the target
x4(t), the location of the robot x((¢), and the local free
space LF(xr) correspond to the data stream of Fig. 1.
Supposing that the robot follows the integrator dynamics
@r = u(xr), the controller proposed in [96] is given by
&r(t) = —Ge(xr — x*(t)), where G > 0 and z*(t) are
the orthogonal projections of the desired configuration
x4(t) onto the collision-free local workspace L£LF (). Since
the local workspace is collision-free, so is the direction
xr — x*(t), and thus the control law is guaranteed to
avoid the obstacles. This controller also guarantees that
the robot converges to xq4(t) [96]. It requires computing
the projection of x4(t) onto LF(x) by solving the time-
varying convex problem

. 1
argmin = |jx — xq(t)|]*.
€ LF (z) CR™

¥ (t) := (3D

By using the barrier function defined in (27) and the
dynamics in Theorem 4, one can compute &(t), an estimate
of «*(t) and apply the control law &((t) = —Gc(xr — Z(t)).
The barrier function in (27) for this application takes the
form

@@, zrit) = 5 om0 - 75 D los(bi(ar) ~au(an) @)

with a;, = x; — xr. Then estimate &(¢) is the solution
of the following dynamical system with initial condition
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Fig. 6.
and blue lines represent, respectively, the trajectories of the

Left: The red circle represents the desired = 4(t). The green

estimates of the projected goal z(t) and the trajectories of the robot
xr(t) for the structured algorithm. Right: Tracking error

||z (ty) — = (ty)| versus time for a choice of structured and
unstructured algorithm.

()= —Vae®(x, @r; 1) " (Ve ®(x, @r; 1)+ Vi (x, @r; 1))

where ¢(t) = 1 ¢"'? and x = 0.1. To evaluate the
performance of the proposed controller and optimizer,
we consider a workspace W = [—20,20] x [—20,25] con-

taining eight circular obstacles (black circles in Fig. 6-left).
Fig. 6(left) also depicts the trajectories followed by a disk-
shaped robot of radius equal to 1 (blue circle) where
G = 2. The red line represents the trajectory of x4(¢) and
the green and blue lines represent, respectively, the trajec-
tories of the estimates Z(¢) of the projected goal onto the
collision-free local workspace, and the trajectories of the
center of mass of the robot z(t).

In Fig. 6(right), we plot the metric defined in (3) for the
algorithm with and without prediction, that is, structured
and unstructured, respectively. Evidently, there is signifi-
cant benefit using the structured algorithm.

V. RESEARCH OUTLOOK AND FUTURE
CHALLENGES

Time-varying optimization is rapidly arising as an
attractive algorithmic framework for today’s fast-changing
complex systems and world-size networks that entail
heterogeneous and spatially distributed data streams.
This article delineated the framework and underlined
that structured algorithms can offer improved solu-
tions to time-varying problems. In this section, a brief
and certainly nonexhaustive list of the current chal-
lenges for structured and unstructured methods is out-
lined, with due implications in a number of potential
applications.

A. Wider Classes of Problems

It has already been argued that unstructured meth-
ods generally require less functional assumptions than
structured ones. For example, unstructured methods have

been proposed for various nonstrongly convex prob-
lems, as well nonconvex cost functions, where notions
of dynamic regret can be used as performance indicators
(see [17], [18], [65], and [105]-[107]). An attractive
feature of time-varying nonconvex optimization algorithms
is that they can be free of locally optimal trajectories. For
structured methods, these classes of problems are largely
unexplored, since, for example, underlying evolution mod-
els will have to be set-valued for nonstrictly convex time-
varying problems (because the solution trajectory is not
unique). Interesting questions regarding bifurcations and
merging of locally optimal trajectories, as well as the
possibility of escaping isolated locally optimal trajectories
naturally arise in this setting. A few efforts in this direction
are included in [3], [4], and [38], but a comprehensive
framework is lacking. A possible venue in this area could
rely on piecewise linear continuation methods [38].

B. Data-Driven Models

Dynamic means of capturing the underlying opti-
mization trajectory are now largely based on models,
while in the current data streaming era, problems are
often constructed in a data-driven fashion (e.g., via
zero-order/bandit methods [108] or in a Bayesian set-
ting [109]). Constructing and learning dynamic models
for the optimization trajectory (e.g., via historical data)
is a largely unexplored territory, especially for structured
methods, where high-order smoothness is required for
enhanced performance, in contrast with what typically
(noisy) zero-order methods can provide. Unstructured
methods can be found in [110]-[112].

C. Distributed Architectures

Distributed methods to solve time-varying optimization
problems (possibly involving large-scale networks) are key
in many contemporary cyber-physical applications. Both
structured and unstructured methods have been investi-
gated [5], [17], [39]-[41], [48], [80]-[82], [98], [104],
[113], but many challenges remain. As discussed in [114],
most distributed methods rely on diminishing step-size
rules, which might not be an appropriate choice in time-
varying settings when the algorithm runs indefinitely (as
in, for example, video surveillance and monitoring of
critical infrastructure). Another insight from [113], [114],
and [115] is that the convergence behavior of distributed
algorithms in the online setting is different relative to the
batch case: traditional hierarchies in terms of convergence
may be “flipped,” with the slowest algorithm in the static
case being the fastest algorithm in the time-varying one.
In addition, the notion of asynchronous updates assumes
a more prominent position, inasmuch the network of
computing nodes may have access to different evolution
models, sample the optimization problem at different time
steps, at different time scales, or deliver solutions with
different accuracy. All of this hinders standard analysis and
it remains largely unexplored.
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D. Feedback Loop

As we have seen in the analytical results presented
here, under the assumptions provided, the time-varying
algorithms converge to an error bound. Two key aspects
are that: 1) the error bound can be arbitrarily big, if the
algorithm converges arbitrarily slow, that is, if o is arbi-
trarily close to 1 and 2) the time-varying algorithms are
considered separately, meaning the decision stream &(t)
does not influence the optimization problem at future
times. Ensuring “close-loop” stability and performance,
when the decision stream is fed back to the system is a
mostly open challenge, and one can expect that arbitrarily
slow algorithms cause lack of convergence. In this case,
the very notion of ATE may be ill-defined or too hard
to achieve, since typically the cost will be parametrized
also on the approximated optimizer trajectory, and system-
oriented notions of stability and robustness may be more
appropriate. Some initial work can be found in [13], [51],
and [53] in the context of MPC, yet this area remains
largely open.

Another emerging research topic is the development of
online structured and unstructured online algorithms that
effectively act as feedback controlled dynamical systems.
The main goal is to drive the output of a dynamical
system to solutions of time-varying optimization prob-
lems. Initial efforts toward unstructured online algorithms
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