
Inexact Online Proximal-gradient Method
for Time-varying Convex Optimization

Amirhossein Ajalloeian, Andrea Simonetto, Emiliano Dall’Anese

Abstract— This paper considers an online proximal-gradient
method to track the minimizers of a composite convex function
that may continuously evolve over time. The online proximal-
gradient method is “inexact,” in the sense that: (i) it relies on an
approximate first-order information of the smooth component
of the cost; and, (ii) the proximal operator (with respect to
the non-smooth term) may be computed only up to a certain
precision. Under suitable assumptions, convergence of the error
iterates is established for strongly convex cost functions. On the
other hand, the dynamic regret is investigated when the cost is
not strongly convex, under the additional assumption that the
problem includes feasibility sets that are compact. Bounds are
expressed in terms of the cumulative error and the path length
of the optimal solutions. This suggests how to allocate resources
to strike a balance between performance and precision in the
gradient computation and in the proximal operator.

I. INTRODUCTION AND PROBLEM FORMULATION

The proximal-gradient method is a powerful framework
for solving optimization problems with objectives that consist
of a differentiable convex function and a nonsmooth convex
function [1]–[3]. By taking advantage of this composite
structure, proximal-gradient methods are known to exhibit
the same convergence rates of the gradient method for
smooth problems [4]. Accordingly, proximal-gradient meth-
ods can be leveraged to efficiently solve a number of prob-
lems that arise in the broad areas of, e.g., statistical learning,
network optimization, and design of optimal controllers for
distributed systems [5]–[8].

This paper investigates the design of online proximal-
gradient methods for composite convex functions that contin-
uously evolves over time. To outline the setting concretely,
discretize the temporal axis as T := {n∆, n ∈ N}, with
∆ a given interval. Let gk : X → R be a closed, convex
and proper function with a Lipschitz-continuous gradient at
each time k ∈ T , with X ⊆ Rn a given set; further, let
hk : X → R ∪ {+∞} be a lower semi-continuous proper
convex function for all k ∈ T . Consider then the following
time-varying optimization problem [9]–[11]:

min
x∈Rn

fk(x) := gk(x) + hk(x) , k ∈ T . (1)

Let x∗k be an optimal solution of (1) at time k (which is
unique if fk is strongly convex). In principle, a proximal

A. Ajalloeian and E. Dall’Anese are with the Department of Elec-
trical, Computer, and Energy Engineering, University of Colorado Boul-
der, Boulder, CO, USA emails: amirhossein.ajalloeian@colorado.edu, emil-
iano.dallanese@colorado.edu. A. Simonetto is with IBM Research Ireland,
Dublin, Ireland; email: andrea.simonetto@ibm.com.

The work of A. Ajalloeian and E. Dall’Anese was supported by NREL
APUP UGA-0-41026-109 and by the National Science Foundation Grant
1941896.

method or an accelerated proximal method can be utilized
to attain x∗k; for example, it is known that when ft is convex
L-smooth, the number of iterations required to obtain an
objective function within an error ξ is O(L‖xk,0 − x∗k‖2/ξ)
and O(

√
L‖xk,0 − x∗k‖2/ξ) for a proximal method and its

accelerated counterpart, respectively, with xk,0 the starting
point for the algorithm [4]1. Results for strongly convex
functions can be found in e.g., [1], [4].

In contrast, this paper targets an online (or “running”, or
“catching-up” [12]) case where only one or a few steps of
the proximal-gradient method can be performed within an
interval ∆ (i.e., before the underlying optimization problem
may change); further, the paper considers the case when the
implementation of the algorithmic steps is inexact. Taking
the case where only one step can be performed within an
interval ∆, an online proximal-gradient algorithm amounts
to the execution of the following steps [11] at each time
k ∈ T :

yk = xk−1 − α∇xgk(xk−1) (2a)

xk = proxλhk
{
yk
}

(2b)

where α > 0 is the step size, and the proximal operator
proxλh : Rn → Rn is defined as [1]:

proxλh
{
y
}

:= arg min
x

Φλh(x) := h(x) +
1

2λ
‖x− y‖2 (3)

with λ > 0 a given parameter. Notice that constraints of
the form x ∈ Xk, with Xk ⊆ X a convex set, can be
handled via indicator functions [1]; i.e., by setting h(x) =
h′(x) + δXk(x), where h′(x) is a lower-semicontinuous
convex function, and δXk(x) = 0 if x ∈ Xk and δXk(x) =
+∞ otherwise.

Inexactness of the steps (2) may emerge because of the
following two aspects: (i) only an approximate first-order
information of gk may be available [5], [13]; and, (ii) the
proximal operator may be computed only up to a certain
precision [8], [14], [15]. Before proceeding, examples of
applications that motivate the proposed setting are briefly
explained.

1Notation: For a given vector x ∈ Rn, ‖x‖ :=
√
xTx, with T denoting

transposition; for x ∈ Rn and y ∈ Rn, 〈x, y〉 denotes the inner product.
For a differentiable function f : Rn → R, ∇xf(x) is the gradient vector
of f(x) with respect to x ∈ Rn. If f is non-differentiable, ∂f(x) denotes
the subdifferential of f at x; in particular, a vector v is a subgradient of
f at x if f(x′) ≥ f(x) + 〈v, x′ − x〉 for all x′ in the domain of f . On
the other hand, ∂εf(x) denotes the ε-subdifferential of f at x; a vector v
is an ε-subgradient of f at x if f(x′) ≥ f(x) + 〈v, x′ − x〉 − ε for all
x′ in the domain of f . A function f : Rn → R is µ-strongly convex if
f(y) ≥ f(x)+ sT

x(y−x)+
µ
2
‖y−x‖2 for all x, y and any sx ∈ ∂f(x).

Finally, O refers to the big O notation.

Example 1: Feedback-based network optimization. Online
algorithms are, in this case, utilized to produce decisions to
nodes of a networked system (i.e., a power system, a trans-
portation network, or a communication network); temporal
variability emerge from time-varying problem inputs (i.e.,
non-controllable power injections in a power system) or time-
varying engineering objectives [13], [16]. Measurements of
the network state are utilized to obtain an estimate of the
gradient of gk at each time step. Inexactness of the proximal
operator captures the case where the projection is performed
onto an inner approximation of the actual feasibility region
Xk (i.e., when one has an approximate region for aggre-
gations of energy resources) [17]; or, when the proximal
operator is not easy to compute within an interval ∆.

Example 2: Online zeroth-order methods. Zeroth-order meth-
ods involves an estimate of ∇xgk at x based on functional
evaluations {gk(x+ ui), i = 1, . . . , I}, with ui a given per-
turbation; see, e.g., Gaussian smoothing or Kiefer-Wolfowitz
approaches [18]–[20]. Inexactness of (3) is due to projections
onto a restriction of Xk [20] or when (3) is not solved to
convergence.

Example 3: Learning under information streams. For appli-
cations with continuous streams of data, the interval ∆ may
coincide with the inter-arrival time of data points; because
of an underlying limited computational budget (compared to
∆), one may afford one step of the proximal-gradient method
and a limited number of algorithmic steps to solve (3).
Examples include singular value decomposition (SVD) based
proxies [5] or structured sparsity [21].

For static optimization settings, convergence of inexact
proximal-gradient methods has been investigated in, e.g., [8],
[14], [15], [22] (see also pertinent references therein); in
particular, [8] showed that the inexact proximal-gradient
method can achieve the same rate of convergence of the exact
counterpart if the error sequence decreases at appropriate
rates. In an online setting, [5] investigated the convergence
of the proximal-gradient method with an approximate knowl-
edge of ∇xgk (but with an exact implementation of the
proximal operator); strongly convex cost functions were
considered. In this paper, we analyze the convergence of the
online inexact proximal-gradient method with errors in both
the computation of ∇xgk and (3). In particular:
• The results of [5] are generalized for the case of errors in
the proximal operator, and for the case of costs that are not
strongly-convex.
• The analysis of, e.g., [8], [14], [15] in the context of batch
optimization is extended to a time-varying setting considered,
with the temporal variability of solution paths (1) playing a
key role in the convergence rates.

Under suitable assumptions, convergence of the error
iterates is established for strongly convex cost functions.
On the other hand, convergence claims are established in
terms of dynamic regret when the cost is not strongly
convex, under the additional assumption that the feasibility
sets are compact. Bounds are expressed in terms of the
cumulative error and the path length of the optimal solutions.

The role of the errors is emphasized in the bounds, thus
suggesting how to allocate computational resources to strike
a balance between performance and precision in the gradient
computation and in the proximal operator.

II. ONLINE INEXACT ALGORITHM

The models for the errors in the computation of the gra-
dient of gk and of the proximal operator are described first,
followed by the online inexact proximal-gradient method.
Gradient error. For a given point x ∈ X , the first-order
information of gk is available in the form of ∇̃gk(x) =
∇xgk(x)+ek, with ek denoting the gradient error. The error
sequence {ek, k ∈ T } is assumed to be bounded.
Error in the proximal step. A point x is an approximation
of proxλhk

{
y
}

with a precision ε ≥ 0 if [14]:

0 ∈ ∂ ε2
2λ

Φλhk(x) . (4)

It is useful to notice that equation (4) implies that [8], [14]

ε2

2λ
≥ Φλhk(x)− Φλhk(proxλhk(y)) (5)

where Φλhk(proxλhk(y)) corresponds to the case where the
proximal operator is computed exactly; furthermore, since
Φλhk is a 1

λ -strongly convex function, one has that:

1

2λ
‖x−proxλhk(y)‖2 ≤ Φλhk(x)−Φλhk(proxλhk(y)). (6)

Together, equations (6) and (5) imply that

‖x− proxλhk(y)‖ ≤ ε . (7)

See also Appendix A. More details on (4) will be provided
shortly.

With these definitions in place, the online inexact algo-
rithm is presented next, where the parameter λ is set to λ = α
as in e.g., [1], [4], [8].

Online inexact proximal-gradient algorithm
Initialize x0, α, and set λ = α.
For each k ∈ T :

[S1] Obtain estimate of the gradient ∇̃gk(xk−1)
[S2] Perform the following updates:

yk = xk−1 − α∇̃gk(xk−1) (8a)

xk ≈εk proxλhk
{
yk
}

(8b)

[S3] Go to [S1].

At each time step k, the algorithm is assumed to have
the availability of: i) an estimate of ∇xgk(xk−1), and, ii)
the function hk. This is the case when, e.g., gk depends
on data or its gradient is not available, while hk represents
regularization terms based on a prior on the optimal solution,
or set indicator functions for constraints. It is thus reasonable
to assume that one has access to hk – since it is in general
engineered – while access on ∇xgk depends on data; take
for example, the case ‖x−bk‖22 +‖x‖1, where bk is the data
stream. Conditions on the step size α will be given shortly
in Section III.

The characteristics of error sequence {ek, k ∈ T } depends
on the particular application. For example, in measurements-
based online network optimization algorithms, ek captures
measurement noise (see Example 1) [13], [16]; therefore, a
bound on ‖ek‖ [13] (or on the expected value of ‖ek‖ [5])
is utilized to assess the tracking performance of the algo-
rithm, but it may not be under the control of the designer
of the algorithm. On the other hand, the error ek may
be controllable by the designer of the algorithm in, e.g.,
zeroth-order methods (Example 2) and applications such as
subspace tracking and online sparse regression (Example 3);
see e.g., [5], [18]–[21] and pertinent references therein.

Regarding the error sequence {εk}, there are two common
themes in the examples considered in Section I: i) if a
set indicator function δXk(x) is considered, points may be
projected in the interior of Xk; and, ii) for a given lower
semi-continuous convex function, (3) may not be solved to
convergence. In both cases, the error sequence {εk, k ∈ T }
can be controlled, based on given computational budgets or
other design specifications. Examples are provided next.
Example: inexact projection [14]. Suppose that hk = δXk ,
for a given closed and convex set Xk; let d(y,X) denote the
distance of the point y from the convex set X . Then, the
definition (4) implies that x ≈ε proxλh(y) if and only if

x ∈ Xk and ‖x− y‖2 ≤ d(y,X)2 + ε2 . (9)

That is, if y /∈ Xk, then x may not lie in the boundary of Xk;
rather, x may lie in the interior of Xk. It is worth noticing
that the point x is always feasible as explained in [14].
Example: structured sparsity. Take, for example, the case
where hk(x) =

∑
i ‖[xi1 , . . . , xiI]T‖2 with [xi1 , . . . , xiI]

T

a given sub-block of the vector x. In this case, a block
coordinate method can be utilized to solve (2) [8], [21]; the
block coordinate method can be run up a given error εk.
Example: SVD-based proxies. Proximal operators that in-
volve an SVD computation (e.g., nuclear norm minimization)
may be computed inexactly, especially for large matrices.
Example: distributed computation analyzed as an inexact
centralized method. An additional motivation for considering
inexact steps in the algorithm emerges from [23]; in partic-
ular, [23] considers a distributed proximal-gradient method
for minimizing the sum of the cost functions of individual
agents in a network. At each iteration of the algorithm, each
agent updates its estimate along the negative gradient of the
differentiable part of its cost function; then, a consensus step
is performed, followed by a local proximal step with respect
to the nondifferentiable part of the local cost functions.
Indeed, as discussed in [23], this setup can be seen as an
inexact centralized proximal gradient algorithm where the
error sequences in the gradient and the proximal operator
depend on the accuracy of the consensus step.

Finally, it is also worth mentioning that the two errors
could be analyzed in a unified way if one interprets ek
as a perturbation in the computation of the (exact) opera-
tor proxλhk(xk−1 − α∇xgk(xk−1)) (see, e.g., Definition 3
in [14]); however, similarly to [8], the current models of

the errors allows one to better appreciate the role of the
“exactness” of the first-order information and the proximal
operator in the performance of the algorithm as shown in the
next section.

III. PERFORMANCE ANALYSIS

This section will analyze the performance of the online
inexact algorithm (8); two metrics will be considered:
i) convergence of the sequence {‖xk − x∗k‖, k ∈ T }; and,
ii) the dynamic regret, defined as (see, e.g., [24]–[26] and
references therein):

Regk :=

k∑
i=1

fi(xi)− fi(x∗i) . (10)

The error sequence {‖xk − x∗k‖, k ∈ T } will be analyzed
when the cost function is strongly convex; in particular,
bounds on the cumulative error

∑k
i=1 ‖xi−x∗i ‖ and Q-linear

convergence results will be offered. When the cost function
is not strongly convex and pertinent relaxed conditions for
linear convergence (see, e.g., [27] for a quadratic functional
growth condition) are not satisfied, Q-linear convergence
may not be available. In that case, the dynamic regret can
be used as a performance metric.

The following standard assumptions are presumed
throughout this section.

Assumption 1: The function gk : X → R is closed,
convex and proper. Assume that gk has a Lk-Lipschitz
continuous gradient at each time k ∈ T , and there exists
L such that Lk < L for all k ∈ T .

Assumption 2: The function hk : X → R ∪ {+∞} is a
lower semi-continuous proper convex function for all k ∈ T .

Assumption 3: For all k ∈ T , fk = gk + hk attains its
minimum at a certain x∗k ∈ Xk.

To characterize bounds on the error sequence and the
dynamic regret, it is necessary to introduce a “measure” of
the temporal variability of (1) as well as of the “exactness”
of the first-order information of {gk, k ∈ T } and the
computation of the proximal operator. For the former, define

σk := ‖x∗k − x∗k−1‖ (11)

along with the following quantities [5], [13], [25]:

Σk :=

k∑
i=1

σi, Σ̄k :=

k∑
i=1

σ2
i (12)

with Σk typically referred to as the “path length” or “cumu-
lative drifting.” When fk is strongly convex, σk is uniquely
defined; on the other hand, σk is associated with a solution
path when fk is not strongly convex. Consider further the
following definitions for the cumulative errors [8]:

Ek :=

k∑
i=1

‖ei‖, Pk :=

k∑
i=1

εi, P̄k :=

k∑
i=1

ε2i . (13)

With these definitions in place, the convergence results are
established first for the case where the function fk in (1) is
µk-strongly convex for all k ∈ T .

The following lemma will be utilized to derive conver-
gence results when the function fk in (1) is µk-strongly
convex.

Lemma 1: Let Assumptions 1–3 hold, and assume that
gk is µk-strongly convex for all k ∈ T . Then, the following
holds for the algorithm (8):

‖xk − x∗k‖ ≤ ρk‖xk−1− x∗k−1‖+ ρkσk +α‖ek‖+ εk (14)

where in (14), ρk := max{|1− αµk|, |1− αLk|}. Applying
(14) recursively, it holds that:

‖xk−x∗k‖ ≤ βk‖x0−x∗0‖+

k∑
i=1

ηk,iσi+

k∑
i=1

νk,i(α‖ei‖+εi)

(15)
where in (15), βk := Πk

i=1ρi, ηk,i :=
∏k
`=i ρ` and

νk,i :=

{∏k
`=i+1 ρ`, if i = 1, . . . , k − 1

1, if i = k,
(16)

for all i ∈ T .
Proof. See Appendix B.

Based on Lemma 1, the following theorems characterize
the behavior of the error sequence {‖xi − x∗i ‖, k ∈ T }.

Theorem 1: Suppose that Assumptions 1–3 hold. Assume
that gk is µk-strongly convex for all k ∈ T , and that µ < µk
for all k, for a given µ > 0. If α < 2/L, then
k∑
i=1

‖xi − x∗i ‖ ≤
1

1− ρ
(ρ‖x0 − x∗0‖+ ρΣk + Pk + αEk)

(17)

where ρ := supk{ρk} < 1.
Proof. See Appendix C.

Theorem 2: Suppose that there exists finite constants σ,
γe and γε such that σk ≤ σ, ‖ek‖ ≤ γe, and εk ≤ γε for all
k ∈ T . Then, under the same assumptions of Theorem 1, it
hols that

lim
k→∞

sup‖xk − x∗k‖ ≤
αγe + γε + ρσ

1− ρ
. (18)

Proof. See Appendix D.

From Theorem 1, it can be seen that if Σk, Pk, and Ek
grow as O(k), then the averaged tracking error behaves as
(1/k)

∑k
i=1‖xi − x∗i ‖ = O(1). The same limiting behavior

can be obtained even if the error sequences {ek} and {εk}
decrease over time, if Σk = O(k). As expected, the error in
the gradient computation is down-weighted by the step size;
on the other hand, the error in the proximal operator directly
affects the tracking performance. The result of Theorem 2
may suggest how to allocate computational resources to
minimize the maximum tracking error, for a given α and
ρ; since σ is multiplied by ρ, one may want to increase the
interval ∆ (thus increasing σ) and allocate more resources
in the proximity operator (thus decreasing γε).

The next result pertains to the dynamic regret, and it
extends the existing results of [5] to the case of inexact
proximal operators.

Theorem 3: Suppose that Assumptions 1–3 hold and as-
sume that there exists Dk < +∞ such that ‖∂fk‖ ≤ Dk

over X . Then, if fk is strongly convex for all k ∈ T , the
dynamic regret has the following limiting behavior

Regk = O (1 + Σk + Pk + Ek) . (19)

Proof. See Appendix E.

Finally, the next result pertains to the dynamic regret in
case of functions fk that are convex but not strongly-convex.
We impose the additional assumption that the cost function
includes a time-varying set indicator function for a compact
set. The derivation of bounds on the dynamic regret for the
case of sets that are not compact is left as a future research.

Theorem 4: Suppose that Assumptions 1–3 hold, and sup-
pose that fk is convex and h(x) = h′(x) + δXk(x), where
h′(x) is a lower-semicontinuous convex function and Xk ⊆
X is compact for all k ∈ T . Suppose that α ≤ 1/ sup{Lk}.
Then, the dynamic regret has the following limiting behavior

Regk = O
(
1 + k + Σk + Σ̄k + Pk + P̄k + Ek

)
. (20)

Proof. See Appendix F.

If Σk, Σ̄k, Pk, P̄k, and Ek grow as O(k), then
(1/k)Regk = O(1); that is, the dynamic regret settles to
a constant value.

IV. ILLUSTRATIVE NUMERICAL RESULTS

As an example of application of the proposed methods,
we consider a network flow problem based on the network
in Fig. 1. the network graph (N , E) the network has |N | = 6
nodes and |E| = 8 (directed) links, and the routing matrix T
is based on the directed edges. Let zk(i, s) denote the rate
generated at node i for traffic s at time k ∈ T , and xk(ij, s)
the flow between noted i and j for traffic s. For brevity, let
zk(s) and xk(s) stacks the node traffic {zk(i, s), i ∈ N} and
link rates {xk(ij, s), (i, j ∈ E)} for the s-th flow. One has
that zk(s) and xk(s) are related by the flow conservation
constraint zk(s) = Txk(s); if a node i does not generate
or receive traffic, then z(i, s) = 0 or 0 = Tix(s) with Ti
the i-th row of T . Consider then the following time-varying
problem (where we recall that k is the time index):

min
{z,x}

∑
i,s

−κk(i, s) log(1 + z(i, s)) +
ν

2
(‖z‖22 + ‖x‖22)

+
∑
i,s

δ{0≤
∑
s x(ij,s)+wk(ij)≤ck(ij)} + δ{0≤z≤zmax}

+
∑
s

δ{z(s)=Tx(s)} (21)

where z and x stack the traffic rates and link rates for brevity;
zmax is a maximum traffic rate; and ν > 0 is a regularization
function that makes the cost strongly convex. The per-link
capacity constraints is 0 ≤

∑
(i,j)∈E x(ij, s) + wk(ij) ≤

ck(ij), where ck(i, j) is the time-varying link capacity and
wk(ij) is a time-varying link traffic that is non-controllable.
Notice that problem (21) can be equivalently rewritten in
terms of only the vector variable x (and the term ‖z‖22 in

1 2 3

4 5 6

Fig. 1. Network utilized in the numerical results. Two data traffic flows
are generated at nodes 1 and 4, with destination 3 and 6, respectively.

0 50 100 150 200 250 300

Time index

0

0.5

1.0

1.5
Online proximal gradient

Online inexact proximal gradient

Fig. 2. Evolution of (1/k)
∑k
i=1‖xi − x∗i ‖ for the case of exact online

proximal gradient method and inexact proximal gradient method.

0 50 100 150 200 250 300

Time index

0

0.5

1

1.5

2

Optimal traffic 1

Online solution traffic 1

Optimal traffic 2

Online solution traffic 2

Fig. 3. Example of traffic achieved for the case of batch solution (red)
and online solution (black).

the cost can be dropped); simulations will be based on the
reformulated problem.

For the numerical results, assume that two traffic flows
are generated by nodes 1 and 4, and they are received at
nodes 3 and 6, respectively. In terms of dynamics of the
optimal solutions, at each time step the channel gain of links
are generated by using a complex Gaussian random variable
with mean 1 + 1 and a given variance 10−2 for both real
and imaginary parts; the transmit power for each node is a
Gaussian random variable with mean 1 and a variance 10−3;
the exogenous traffic follows a random walk, where the
increment has zero mean and a variance 10−2; and, the cost
is perturbed by modifying κk(i, s). Different values for σt
and σ are obtained by varying the variance of these random
variables.

The algorithm (8) was implemented, with the following
settings:
• Gradient errors: the cost function κk(i, s) log(1 + z(i, s))
was assumed unknown; therefore, at each step of the algo-
rithm, the gradient is estimated using a multi-point bandit
feedback [18], [20]. Briefly, to estimate the gradient of a

function gk around a point xk−1, consider drawing M − 1
points {ui}M−1i=1 from the unit sphere; then, an estimate can
be found as ∇̃gk(xk−1) = (n/s(M−1))

∑M−1
i=1 (gk(xk−1 +

sui) − gk(xk−1))ui, where s > 0 is given parameter [20].
Notice that this requires M functional evaluations at each
step of the algorithm.
• Error in the proximal operator: since the estimate of the
gradient requires functional evaluations around the current
point, we consider a restriction of the feasible set; in par-
ticular, consider the constraint ρ ≤

∑
s x(ij, s) + wk(ij) ≤

ck(ij) − ρ, where ρ > 0 is a pre-selected constant (that is
related to s [20]). This will allow for functional evaluations
gk(xk−1 +sui) at points {xk−1 +sui}M−1i=1 that are feasible.
In the numerical tests, σ amounts to 0.7, whereas the
maximum errors due to the gradient estimate and the inexact
projection add up to 0.5.

Figure 2 shows the evolution of the cumulative tracking
error (1/k)

∑k
i=1‖xi − x∗i ‖ at each time step k (with x∗k

unique, since the cost function is by design strongly convex).
Based on Theorem 1, in the current setting the limiting
behavior of (1/k)

∑k
i=1‖xi−x∗i ‖ is O(1). Indeed, a plateau

can be seen, with an asymptotic error that is larger for the
inexact proximal gradient method. Figure 3 illustrates the
traffic rates achieved with a batch algorithm and with the
inexact proximal gradient method. It can be seen that the
optimal traffic rates are tracked. Slightly lower traffic rates
are obtained in the online case because of the projection onto
a restriction of the feasible set.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for the feedback provided on the paper.

APPENDIX

A. Results for the inexact proximal operator
Technical details for the error in the proximal operator

are derived. These technical details are then utilized in
Section III to derive pertinent convergence results. We start
from the following lemma.

Lemma 2: Take the function f(x) = f1(x) + f2(x). Then
∂εf(x) ⊂ ∂εf1(x) + ∂εf2(x).

Proof. The proof can be derived as a special case of
Theorem 3.1.1 in [28].

Based on Lemma 2, we obtain:

0 ∈ ∂ ε2
k

2λ

Φλhk(xk) ⊂ ∂ ε2
k

2λ

{ 1

2λ
‖xk − yk‖2

}
+ ∂ ε2

k
2λ

hk(xk)

=⇒ −ζ ∈ ∂ ε2
k

2λ

hk(xk), ζ ∈ ∂ ε2
k

2λ

{ 1

2λ
‖xk − yk‖2

}
. (22)

Since ζ is an ε2k
2λ subgradient:

1

2λ
‖xk−yk‖2−

1

2λ
‖t−yk‖2+ζT(t−xk) ≤ ε2

2λ
∀ t. (23)

Since (23) is true for every t, it is also specifically true for
t = yk + λζ. Then we can write (23) as:

1

2λ

(
‖xk − yk‖2 + λ2‖ζ‖2 − 2λζT(xk − yk)

)
≤ ε2k

2λ
(24)

and therefore ‖xk − yk − λζ‖2/2λ ≤ ε2k/2λ. Now defining
rk := xk − yk − λζ and putting (23) and (24) together, we
get

yk − xk + rk
λ

∈ ∂ ε2
k

2λ

hk(xk) with ‖rk‖ ≤ εk. (25)

Since λ is chosen equal to α in (8), then applying the ε-
subdifferential definition for hk(xk), (25) can be written as
the following inequality:

hk(xk) ≤ hk(x∗k)− 1
α 〈xk−1 − xk + rk, x

∗
k − xk〉

+〈∇gk(xk−1) + ek, x
∗
k − xk〉+

ε2k
2α

(26)

where ‖rk‖ ≤ εk. If there is no inexactness, yk + αζ is
the exact proximal at yk, i.e., proxαhk(yk). Therefore, the
inexact proximal at yk, i.e., xk ≈ε proxαhk(yk) can be
written as:

xk = proxαhk(yk) + rk (27)

with ‖rk‖ ≤ εk.

B. Proof of Lemma 1

Based on (27), we can write

‖xk − x∗k‖ =
∥∥proxαhk [xk−1 − α∇̃gk(xk−1)]

+ rk − proxαhk [x∗k − α∇gk(x∗k)]
∥∥ (28a)

≤
∥∥proxαhk [xk−1 − α∇̃gk(xk−1)]

− proxαhk [x∗k − α∇gk(x∗k)]
∥∥+ εk . (28b)

Now, the prox operator is non-expansive, therefore:

‖xk − x∗k‖ ≤∥∥[xk−1 − α∇̃gk(xk−1)]− [x∗k − α∇gk(x∗k)]
∥∥+ εk, (29)

which leads to

‖xk − x∗k‖ ≤ α‖ek‖+ εk+∥∥[xk−1 − α∇gk(xk−1)]− [x∗k − α∇gk(x∗k)]
∥∥. (30)

Consider the function ξ(x) := x − α∇gk(x). The norm of
the gradient ∇ξ(x) is bounded as

‖∇ξ(x)‖ ≤ max{|1− αµk|, |1− αLk|} =: ρk, (31)

and therefore ξ(x) is Lipschitz (and a contraction for α <
2/Lk) [29]. Hence, we can bound (30) as

‖xk − x∗k‖ ≤ α‖ek‖+ εk + ρk‖xk−1 − x∗k‖. (32)

Adding and subtracting x∗k−1 to the first term in the right
hand side of (32) we can rewrite (32) as

‖xk − x∗k‖ ≤ ρk‖xk−1 − x∗k−1 + x∗k−1 − x∗k‖+ α‖ek‖+ εk
(33a)

≤ ρk‖xk−1 − x∗k−1‖+ ρk‖x∗k−1 − x∗k‖+ α‖ek‖+ εk
(33b)

≤ ρk‖xk−1 − x∗k−1‖+ ρkσk + α‖ek‖+ εk. (33c)

Applying (33c) recursively we get (15).

C. Proof of Theorem 1

Since α < 2/L for all k ∈ T , one has that ρk < 1 for all
k ∈ T . Also, one can define ρ := supk{ρk} < 1. It is always
possible to define such a ρ, because Lk < L and µk > µ for
all k, and therefore both αLk and αµk are upper bounded
by αL and lower bounded by αµ. As αL and αµ are strictly
positive, therefore we can always define ρ := supk{ρk} < 1.
Summing both sides of (14) in Lemma 1 over k and upper
bounding ρk with ρ < 1 we get:

k∑
i=1

‖xi − x∗i ‖ ≤
k∑
i=1

ρ‖xi−1 − x∗i ‖+

k∑
i=1

α‖ei‖+

k∑
i=1

εi

(34a)

≤ ρ
k∑
i=1

‖xi−1 − x∗i ‖+ αEk + Pk (34b)

≤ ρ
k∑
i=1

‖xi−1 − x∗i−1‖+ ρ

k∑
i=1

‖x∗i−1 − x∗i ‖+ αEk + Pk

(34c)

≤ ρ
k∑
i=1

‖xi − x∗i ‖+ ρ‖x0 − x∗0‖+ ρΣk + αEk + Pk.

(34d)

Next, moving the first term on the right hand side of (34d)
to the left, we get (17).

D. Proof of Theorem 2

Assume there exist finite constants σ, γe, γε and ρ such
that σk ≤ σ, ‖ek‖ ≤ γe, εk ≤ γε and ρ := supk{ρk} < 1 for
all k ∈ T . Then we can write (15) in Lemma 1 as follows:

‖xk −x∗k‖ ≤ ρk‖x0−x∗0‖+
1− ρk

1− ρ
(ρσ+αγe + γε) . (35)

Since ρ < 1, as k →∞ we get (18).

E. Proof of Theorem 3

Suppose that Assumptions 1–3 hold and assume that there
exists Dk < +∞ such that ‖∂fk‖ ≤ Dk over the set Xk.
Also define D := supk{Dk}. Then the dynamic regret can
be written as:

k∑
i=1

fi(xi)− fi(x∗i) ≤
k∑
i=1

〈∂fi(xi), xi − x∗i 〉 (36a)

≤
k∑
i=1

‖∂fi(xi)‖‖xi − x∗i ‖ (36b)

≤ D

1− ρ
(ρ‖x0 − x∗0‖+ ρΣk + Pk + αEk) (36c)

where we have used Cauchy-Schwartz inequality and (17) in
Theorem 1 to go from (36a) to (36c). Therefore, the result
follows.

F. Proof of Theorem 4

Since gk has a Lk-Lipschitz continuous gradient:

gk(xk) ≤ gk(xk−1) + 〈∇gk(xk−1), xk − xk−1〉
+Lk

2 ‖xk − xk−1‖
2 .

(37)

Using the convexity of gk we also get

gk(xk−1) ≤ gk(x∗k) + 〈∇gk(xk−1), xk−1 − x∗k〉. (38)

Therefore, putting (37) and (38) together:

gk(xk) ≤ gk(x∗k) + 〈∇gk(xk−1), xk − x∗k〉
+Lk

2 ‖xk − xk−1‖
2.

(39)
On the other hand, rewrite equation (26) as

hk(xk) ≤ hk(x∗k)− 1
α 〈xk−1 − xk + rk, x

∗
k − xk〉

+〈∇gk(xk−1) + ek, x
∗
k − xk〉+

ε2k
2α

(40)

with ‖rk‖ ≤ εk. Adding the inequalities (39) and (40):

gk(xk) + hk(xk) ≤ gk(x∗k) + hk(x∗k) + Lk
2 ‖xk − xk−1‖

2

+
ε2k
2α −

1
α 〈xk−1 − xk + rk, x

∗
k − xk〉+ 〈ek, x∗k − xk〉

+〈∇gk(xk−1), xk − x∗k〉 − 〈∇gk(xk−1), xk − x∗k〉.
(41)

Adding and subtracting x∗k in the last term in the first line,
and also in the second term in the second line of (41)
followed by using Cauchy-Schwartz inequality we get:

fk(xk) ≤ fk(x∗k) + (Lk2 −
1
α)‖xk − x∗k‖2 + Lk

2 ‖xk−1 − x
∗
k‖2

+| 1α − Lk|‖xk − x
∗
k‖‖xk−1 − x∗k‖+

ε2k
2α

−〈 1αrk − ek, x
∗
k − xk〉 .

(42)
Set α ≤ 1/ sup{Lk}, say α = 1/ sup{Lk} − c2; then:

Lk
2
− 1

α
≤ sup{Lk}

2
− 1

α
≤ α sup{Lk} − 2

2α
≤

− 1

2α
− c2 sup{Lk}

2α
. (43)

Also notice that (1
α −Lk)‖xk −x∗k‖‖xk−1−x∗k‖ ≤ (1

α −
Lk)‖xk−x∗k‖(‖xk−1−x∗k−1‖+σk). Let Rk be the diameter
of Xk, and let R be an upper bound on {Rk}. Therefore

(
1

α
− Lk)‖xk − x∗k‖(‖xk−1 − x∗k−1‖+ σk) ≤ βR(R+ σk),

(44)
where β := 1

α − inf{Lk} for brevity. Then, based on (43)
and (44), and neglecting constant negative terms, one can
write (42) as:

fk(xk) ≤ fk(x∗k)− 1
2α‖xk − x

∗
k‖2 + 1

2α‖xk−1 − x
∗
k‖2

+
ε2k
2α − 〈

1
αrk − ek, x

∗
k − xk〉+ βR(R+ σk).

(45)
Since ‖rk‖ ≤ εk, we can write (45) as follows:

fk(xk)− fk(x∗k) ≤ − 1
2α‖xk − x

∗
k‖2 + 1

2α‖xk−1 − x
∗
k‖2

+
ε2k
2α + (εkα + ‖ek‖)‖x∗k − xk‖+ βR(R+ σk).

(46)

Adding and subtracting x∗k−1 in the second term on the right
hand side of (46), and summing it from i = 1 to k, we can
write the first two terms on the right hand side of (46) as:

k∑
i=1

{
−1
2α ‖xi − x

∗
i ‖2 + 1

2α‖xi−1 − x
∗
i−1 + x∗i−1 − x∗i ‖2

}
.

(47)
Then, we can upper bound (47) as follows:

k∑
i=1

{
−1
2α ‖xi − x

∗
i ‖2 + 1

2α‖xi−1 − x
∗
i−1‖2

+ 1
2α‖x

∗
i−1 − x∗i ‖2 + 1

α‖xi−1 − x
∗
i−1‖‖x∗i−1 − x∗i ‖

}
.

(48)
The first two terms in (48) form a telescoping cancellation;
therefore, based on (48), and by considering other terms in
(46), we can upper bound (46) as follows:

k∑
i=1

[
fi(xi)− fi(x∗i)

]
≤ − 1

2α
‖xk − x∗k‖2 (49a)

+
1

2α
‖x0 − x∗0‖2 +

1

2α

k∑
i=1

σ2
i +

1

2α

k∑
i=1

ε2i (49b)

+

k∑
i=1

σi(
1

α
‖xi−1 − x∗i−1‖+ βR) + kβR2 (49c)

+
1

α

k∑
i=1

[
(εi + α‖ei‖)‖x∗i − xi‖

]
. (49d)

Since Xk ⊆ X is compact for all k ∈ T , we can upper bound
‖xk − x∗k‖ by R and the result follows.

REFERENCES

[1] A. Beck, First-Order Methods in Optimization. Philadelphia, PA:
Society for Industrial and Applied Mathematics, 2017.

[2] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and
Trends R© in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[3] R. T. Rockafellar, “Monotone operators and the proximal point algo-
rithm,” SIAM journal on control and optimization, vol. 14, no. 5, pp.
877–898, 1976.

[4] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for
big data: Scalable, randomized, and parallel algorithms for big data
analytics,” IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 32–
43, 2014.

[5] R. Dixit, A. S. Bedi, R. Tripathi, and K. Rajawat, “Online learning
with inexact proximal online gradient descent algorithms,” IEEE
Transactions on Signal Processing, vol. 67, no. 5, pp. 1338–1352,
2019.

[6] N. K. Dhingra, S. Z. Khong, and M. R. Jovanovic, “The proximal
augmented lagrangian method for nonsmooth composite optimization,”
IEEE Transactions on Automatic Control, vol. 64, no. 7, pp. 2861–
2868, July 2019.

[7] M. Fardad, F. Lin, and M. R. Jovanović, “Sparsity-promoting optimal
control for a class of distributed systems,” in Proceedings of the 2011
American Control Conference. IEEE, 2011, pp. 2050–2055.

[8] M. Schmidt, N. L. Roux, and F. R. Bach, “Convergence rates of inexact
proximal-gradient methods for convex optimization,” in Advances in
neural information processing systems, 2011, pp. 1458–1466.

[9] A. Y. Popkov, “Gradient methods for nonstationary unconstrained
optimization problems,” Automation and Remote Control, vol. 66,
no. 6, pp. 883–891, 2005.

[10] A. Simonetto and G. Leus, “Double smoothing for time-varying
distributed multiuser optimization,” in IEEE Global Conf. on Signal
and Information Processing, Dec. 2014.

[11] A. Simonetto, “Time-varying convex optimization via time-
varying averaged operators,” 2017, [Online] Available
at:https://arxiv.org/abs/1704.07338.

[12] J. J. Moreau, “Evolution Problem Associated with a Moving Convex
Set in a Hilbert Space,” Journal of Differential Equations, vol. 26, pp.
347 – 374, 1977.

[13] A. Bernstein, E. Dall’Anese, and A. Simonetto, “Online primal-
dual methods with measurement feedback for time-varying convex
optimization,” IEEE Trans. on Signal Processing, vol. 67, no. 8, pp.
1978–1991, April 2019.

[14] S. Salzo and S. Villa, “Inexact and accelerated proximal point algo-
rithms,” Journal of Convex analysis, vol. 19, no. 4, pp. 1167–1192,
2012.

[15] S. Villa, S. Salzo, L. Baldassarre, and A. Verri, “Accelerated and
inexact forward-backward algorithms,” SIAM Journal on Optimization,
vol. 23, no. 3, pp. 1607–1633, 2013.

[16] M. Vaquero and J. Cortés, “Distributed augmentation-regularization
for robust online convex optimization,” IFAC-PapersOnLine, vol. 51,
no. 23, pp. 230–235, 2018.

[17] M. S. Nazir, I. A. Hiskens, A. Bernstein, and E. Dall’Anese, “Inner
approximation of minkowski sums: A union-based approach and
applications to aggregated energy resources,” in IEEE Conference on
Decision and Control, 2018, pp. 5708–5715.

[18] D. Hajinezhad, M. Hong, and A. Garcia, “ZONE: Zeroth order non-
convex multi-agent optimization over networks,” IEEE Transactions
on Automatic Control, 2019, early access.

[19] A. K. Sahu, D. Jakovetic, D. Bajovic, and S. Kar, “Distributed
zeroth order optimization over random networks: A kiefer-wolfowitz
stochastic approximation approach,” in 2018 IEEE Conference on
Decision and Control (CDC). IEEE, 2018, pp. 4951–4958.

[20] T. Chen and G. B. Giannakis, “Bandit convex optimization for scalable
and dynamic IoT management,” IEEE Internet of Things Journal,
vol. 6, no. 1, pp. 1276–1286, 2018.

[21] R. Jenatton, J. Mairal, G. Obozinski, and F. R. Bach, “Proximal
methods for sparse hierarchical dictionary learning.” in ICML, vol. 1,
2010, p. 2.

[22] P. Machart, S. Anthoine, and L. Baldassarre, “Optimal compu-
tational trade-off of inexact proximal methods,” arXiv preprint
arXiv:1210.5034, 2012.

[23] A. Chen and A. Ozdaglar, “A fast distributed proximal-gradient
method,” 10 2012, pp. 601–608.

[24] E. C. Hall and R. M. Willett, “Online convex optimization in dynamic
environments,” IEEE Journal of Selected Topics in Signal Processing,
vol. 9, no. 4, pp. 647–662, 2015.

[25] T. Yang, L. Zhang, R. Jin, and J. Yi, “Tracking slowly moving
clairvoyant: Optimal dynamic regret of online learning with true and
noisy gradient,” in International Conference on Machine Learning,
2016.

[26] A. Jadbabaie, A. Rakhlin, S. Shahrampour, and K. Sridharan, “Online
Optimization: Competing with Dynamic Comparators,” in PMLR,
no. 38, 2015, pp. 398 – 406.

[27] I. Necoara, Y. Nesterov, and F. Glineur, “Linear convergence of first
order methods for non-strongly convex optimization,” Mathematical
Programming, vol. 175, no. 1-2, pp. 69–107, 2019.

[28] J. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Mini-
mization Algorithms II: Advanced Theory and Bundle Methods, ser.
Grundlehren der mathematischen Wissenschaften. Springer Berlin
Heidelberg, 1996.

[29] E. K. Ryu and S. Boyd, “Primer on monotone operator methods,”
Appl. Comput. Math, vol. 15, no. 1, pp. 3–43, 2016.

