Poster Session Il

ASSETS '19, October 28-30, 2019, Pittsburgh, PA, USA

A Multi-Modal Approach for Blind and Visually Impaired
Developers to Edit Webpage Designs

Venkatesh Potluri, Liang He, Christine Chen, Jon E. Froehlich, Jennifer Mankoff
Paul G. Allen School of Computer Science & Engineering, University of Washington
{vpotluri, lianghe, chenc55, jonf, jmankoff} @cs.washington.edu

ABSTRACT

Blind and visually impaired (BVI) individuals are
increasingly creating visual content online; however, there is
a lack of tools that allow these individuals to modify the
visual attributes of the content and verify the validity of those
modifications. In this poster paper, we discuss the design and
preliminary exploration of a multi-modal and accessible
approach for BVI developers to edit visual layouts of
webpages while maintaining visual aesthetics.

Author Keywords
Accessible programming; visual design; web; blind and
visually impaired.

ACM Classification Keywords
* Human-centered computing~Human computer
interaction (HCI)

INTRODUCTION

Content creators who are blind and visually impaired (BVI)
are actively building interfaces that contain visual elements,
such as blogs and personal websites [6]. While these
interfaces are expected to have good visual design, the
necessary tools and information to build visually pleasing
[3,12] layouts are inaccessible to BVI developers [11]. To
address this problem, we propose a multi-modal approach
that allows BVI developers to edit webpages without
breaking visual aesthetics.

Prior research in accessible programming tools for BVI
developers has addressed challenges such as effective code
navigation for BVI developers [2] and proposed new
integrated development environment (IDE) techniques to
make programming more accessible [4,16,18]. These
approaches, however, do not address the accessibility
barriers specific to editing the visual attributes of user
interfaces (Uls). To bridge the gap, Borka [5], an addon for
the NVDA screen reader [14], informs the developer of the
location, height, and width of web UI elements in pixels. Li
et al. [11] built a self-voicing application on a tablet and
tactile graphics to support visual layout editing. While

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.

ASSETS '19, October 28-30, 2019, Pittsburgh, PA, USA
© 2019 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-6676-2/19/10.
https://doi.org/10.1145/3308561.3354626

612

related, our approach is unique in that it allows for web
design edits both through an IDE as well as directly on the
rendered output of a touchscreen—edits made via either
mode are automatically assessed via a design validator.

Specifically, we introduce a multi-modal Ul modification
approach that combines an accessible code editor along with
a touchscreen and controller to directly access, edit, and
validate UI designs (Figure 1.). With our system, BVI
developers edit CSS code from an existing template either
using an accessible IDE or through a touchscreen. On the
touchscreen, the BVI developer can directly explore the
design via touch and use touch gestures to make direct edits.
When an edit is made, it is assessed by the validation engine
for visual design adherence. The screen reader that runs
alongside the IDE announces the outcome of the edit. For
example, if visual design guidelines are violated, the changes
are reverted on both the IDE and the touchscreen, and the
screen reader announces the design guideline violations.

In a preliminary pilot study, we found that, with minimal
training, a BVI developer could effectively make meaningful
visual edits with real-time validation using our system.

MULTI-MODAL SYSTEM

To explore our multi-modal approach, we created a three-
part system (Fig. 1): an accessible canvas that allows BVI
developers to use touch and gestures to modify the visual
properties of web Ul elements, a code editor that supports
direct code modifications, and a controller that processes
proposed updates from either the canvas or code editor and
then checks if the updates violate design guidelines. Please
refer to our supplementary video for a demonstration.

Validator
\ 2 3

: Diff Processor |

proposed Ul
updates

0

|
notification ‘ ')
=

Code Editor

validated
updates

Accessible Canvas

Controller

Figure 1. Multi-modal system overview. See video demo.

Design Guidelines

While visual design is subjective and hard to quantify [3], we
ensure that the edits BVI developers make with our system
adhere to an initial set of design guidelines extending from
web design standards [1,12]:


https://doi.org/10.1145/3308561.3354626

Poster Session Il

® Spacing consistency. The horizontal and vertical spacing
between elements at the same level should be consistent.

® Typeface consistency. Significant variation in fonts can be
distracting and confusing. A maximum of three different
font types on a page is enforced.

e Color consistency. Ul elements of the same type should
share the same color.

Accessible Canvas

To support exploration and manipulation of the web Ul
elements, our system displays a representation of the
webpage (HTML and CSS) on a touchscreen (an iPad Air
running i0OS 12.2). The user can navigate and edit their
design directly using gestures (Table 1), which are
implemented via Apple Ulkit Gestures. Since performing
custom gestures in i0S conflicts with built-in VoiceOver, we
built the accessible canvas to be self-voicing. The canvas
announces the element the user touches and provides audio
feedback on the user edits, which are performed by gestures
(Table 1). Our gestures are based on prior work, such as risk-
free exploration suggested by Kane ef al. [7] and leveraging
the familiarity of edge elements [8].

Operation Touch and Gestures

Navigating Touch and move

Aligning to one side One-finger double taps and two-finger swipe

Style change mode Two-finger riple taps

Changing width Horizontal edge tap and one-finger moving horizontally
Changing height Vertical edge tap and one-finger moving vertically
Margin/padding Four-finger long press

Changing One-finger swipe to one side and one-finger moving vertically or
margin/padding horizontally

Background Three-finger long press

Changing color One-finger swipe left or right

Foreground Two-finger long press

Changing font color One-finger swipe left or right

Changing font size One-finger swipe up and down

Changing font type Two-finger swipe left or right

Submitting changes Three-finger triple taps

Table 1. The full list of gestures used for navigation, alignment,
and adjustment of element style.

Code Editor

In addition to making touchscreen edits, the developer can
also directly edit the webpage CSS in Microsoft's Visual
Studio Code (VS Code) using a keyboard and a screen
reader. When the developer saves changes to the CSS file in
the editor, a custom VS Code extension notifies the
controller about the new code edits. Additionally, the
extension receives messages from the controller (on the
validity of the edits made in the editor or the accessible
canvas). These messages are announced by the screen reader
running alongside the editor.

Controller

The controller has two parts: a diff processor and validator.
The diff processor receives proposed changes from the
accessible canvas or a notification from the code editor,
updates a working copy of the original CSS file on the
controller, and then evaluates the updates with the validator.
If the proposed change passes validation, the working copy

613

ASSETS '19, October 28-30, 2019, Pittsburgh, PA, USA

is checkpointed, the accessible canvas is updated, and the
code editor receives an accept message (announced by the
screen reader). If the change violates a design guideline, the
processor reverts the CSS to the last checkpoint, leaving the
accessible canvas unchanged. A rejection message, including
the violated design guideline, is then reported in the code
editor (see the video).

To check for adherence to design guidelines, the validator
maintains an internal representation of the visual attributes
of the webpage elements (from the CSS file) and the
hierarchy of elements (from the HTML). For spacing
consistency, we used the margin attributes of adjacent
elements for validation. For example, the margins of
horizontally distributed elements should be the same. We
examined the font and color attributes for typeface
consistency and color consistency, respectively.

PRELIMINARY USER STUDY

We conducted a preliminary user study with a congenitally
blind professional software engineer (age 24; male). The
study had three parts: a semi-structured interview on current
webpage development strategies, an evaluation of our system
through three tasks (i.e., changing the typeface of a
paragraph, increasing the bottom margin for a list of
hyperlinks, and aligning an image and a paragraph), and a
post-study interview regarding usability. The participant
completed all three tasks successfully and agreed that the
gestures are usable, although he had trouble memorizing
gestures for operations. He could understand the outcomes
of the tasks—edits either passed or failed design guideline
violation check. The participant expressed the need to have
more control, for example, he wanted to have access to the
history of changes that lead to a rejection.

CONCLUSION AND DISCUSSION

We presented an initial exploration of enabling BVI
developers to edit webpage design using a multi-modal
approach. Our system allows BVI developers to change
visual aspects of web UI elements either by performing
gestures on a touchscreen or by directly modifying code in
an editor. We plan to enhance our validator by integrating the
design guidelines with VizAssert [15], a framework that
verifies accessibility of webpages. We are also interested in
exploring machine learning techniques both for validation as
well as to suggest alternative designs (e.g., based on design
trends suggested in [10]) [17]. Finally, we will investigate
the discoverability and learnability of our current gesture set
through a formal study. Besides gestures, we will assess
viability of accessible interaction techniques in [9] and
alternative input devices (e.g., touchpads) for modifying
visual attributes of interfaces.

ACKNOWLEDGEMENTS

This work is partly supported by NSF Award IIS-1836813
and the Office of the Assistant Secretary of Defense for
Health Affairs under Award W81XWH-14-1-0617. We
thank Michael Ernst and Pavel Panchekha for their feedback
on the development of our system.



Poster Session Il

REFERENCES

[1] Maneesh Agrawala, Wilmot Li, and Floraine
Berthouzoz. 2011. Design principles for visual
communication. Commun. ACM 54, 4 (April 2011), 60-
69. DOLI: https://doi.org/10.1145/1924421.1924439

Khaled Albusays, Stephanie Ludi, and Matt
Huenerfauth. 2017. Interviews and Observation of
Blind Software Developers at Work to Understand
Code Navigation Challenges. In Proceedings of the
19th International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS '17). ACM,
New York, NY, USA, 91-100. DOI:
https://doi.org/10.1145/3132525.3132550

Ahamed Altaboli and Yingzi Lin. 2011. Objective and
subjective measures of visual aesthetics of website
interface design: the two sides of the coin.

In International Conference on Human-Computer
Interaction, pp. 35-44. Springer, Berlin, Heidelberg

Catherine M. Baker, Lauren R. Milne, and Richard E.
Ladner. 2015. StructJumper: A Tool to Help Blind
Programmers Navigate and Understand the Structure of
Code. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems
(CHI'15). ACM, New York, NY, USA, 3043-3052.
DOI: https://doi.org/10.1145/2702123.2702589

Andy Borka. 2019. NVDA Community Addons /
Addons / Developer Toolkit. Retrieved July 8, 2019
from https://addons.nvda-
project.org/addons/developerToolkit.uk.html

(2]

(3]

(4]

(5]

[6] Dolphin. 2016. Blogging when you’re blind or visually
impaired. Retrieved July 9, 2019 from

https://yourdolphin.com/news?id=223

Shaun K. Kane, Jeffrey P. Bigham, and Jacob O.
Wobbrock. 2008. Slide rule: making mobile touch
screens accessible to blind people using multi-touch
interaction techniques. In Proceedings of the 10th
international ACM SIGACCESS conference on
Computers and accessibility (Assets '08). ACM, New
York, NY, USA, 73-80. DOLI:
https://doi.org/10.1145/1414471.1414487

Shaun K. Kane, Jacob O. Wobbrock, and Richard E.
Ladner. 2011. Usable gestures for blind people:
understanding preference and performance. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '11). ACM, New
York, NY, USA, 413-422. DOLI:
https://doi.org/10.1145/1978942.1979001

Rushil Khurana, Duncan Mclsaac, Elliot Lockerman,
and Jennifer Mankoff. 2018. Nonvisual Interaction
Techniques at the Keyboard Surface. In Proceedings of
the 2018 CHI Conference on Human Factors in
Computing Systems (CHI '18). ACM, New York, NY,
USA, Paper 11, 12 pages. DOLI:
https://doi.org/10.1145/3173574.3173585

(7]

(8]

(9]

614

ASSETS '19, October 28-30, 2019, Pittsburgh, PA, USA

[10]Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres,
Maxine Lim, Salman Ahmad, Scott R. Klemmer, and
Jerry O. Talton. 2013. Webzeitgeist: design mining the
web. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI '13).
ACM, New York, NY, USA, 3083-3092. DOI:
https://doi.org/10.1145/2470654.2466420

[11]Jingyi Li, Son Kim, Joshua A. Miele, Maneesh
Agrawala, and Sean Follmer. 2019. Editing Spatial
Layouts through Tactile Templates for People with
Visual Impairments. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems
(CHI'19). ACM, New York, NY, USA, Paper 206, 11
pages. DOI: https://doi.org/10.1145/3290605.3300436

[12]Laura Martin. 2017. Typography Elements Everyone
Needs to Understand. Retrieved July 8, 2019 from
https://medium.com/gravitdesigner/typography-
elements-everyone-needs-to-understand-5fdea82470d

[13]Microsoft. Visual Studio Code. Retrieved July 9, 2019
from https://code.visualstudio.com/

[14]NV Access. Non Visual Desktop Access. Retrieved
July 9, 2019 from https://www.nvaccess.org/about-nv-
access/

[15] Pavel Panchekha, Adam T. Geller, Michael D. Ernst,
Zachary Tatlock, and Shoaib Kamil. 2018. Verifying
that web pages have accessible layout. In Proceedings
of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI 2018). ACM, New York, NY, USA, 1-14. DOIL:
https://doi.org/10.1145/3192366.3192407

[16] Venkatesh Potluri, Priyan Vaithilingam, Suresh
Iyengar, Y. Vidya, Manohar Swaminathan, and Gopal
Srinivasa. 2018. CodeTalk: Improving Programming
Environment Accessibility for Visually Impaired
Developers. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems
(CHI'18). ACM, New York, NY, USA, Paper 618, 11
pages. DOI: https://doi.org/10.1145/3173574.3174192

[17] Venkatesh Potluri, Tadashi Grindeland, Jon E.
Froehlich, Jennifer Mankoff (2019). Al-Assisted Ul
Design for Blind and Low-Vision Creators. In the
ASSETS'19 Workshop: Al Fairness for People with
Disabilities.

[18] Emmanuel Schanzer, Sina Bahram, and Shriram
Krishnamurthi. 2019. Accessible AST-Based
Programming for Visually-Impaired Programmers. In
Proceedings of the 50th ACM Technical Symposium on
Computer Science Education (SIGCSE '19). ACM,
New York, NY, USA, 773-779. DOIL:
https://doi.org/10.1145/3287324.3287499


https://doi.org/10.1145/3132525.3132550
https://addons.nvda-project.org/addons/developerToolkit.uk.html
https://addons.nvda-project.org/addons/developerToolkit.uk.html
https://medium.com/gravitdesigner/typography-elements-everyone-needs-to-understand-5fdea82f470d
https://medium.com/gravitdesigner/typography-elements-everyone-needs-to-understand-5fdea82f470d
https://code.visualstudio.com/
https://www.nvaccess.org/about-nv-access/
https://www.nvaccess.org/about-nv-access/
https://doi.org/10.1145/3173574.3174192

	A Multi-Modal Approach for Blind and Visually Impaired Developers to Edit Webpage Designs
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	Multi-modal system
	Design Guidelines
	Accessible Canvas
	Code Editor
	Controller

	PRELIMINARY user study
	Conclusion and DISCUSSION
	ACKNOWLEDGEMENTS
	REFERENCES




