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Abstract

Sketch-based image retrieval (SBIR) is widely recog-
nized as an important vision problem which implies a wide
range of real-world applications. Recently, research inter-
ests arise in solving this problem under the more realistic
and challenging setting of zero-shot learning. In this paper,
we investigate this problem from the viewpoint of domain
adaptation which we show is critical in improving feature
embedding in the zero-shot scenario. Based on a framework
which starts with a pre-trained model on ImageNet and fine-
tunes it on the training set of SBIR benchmark, we advocate
the importance of preserving previously acquired knowl-
edge, e.g., the rich discriminative features learned from Im-
ageNet, to improve the model’s transfer ability. For this
purpose, we design an approach named Semantic-Aware
Knowledge prEservation (SAKE), which fine-tunes the pre-
trained model in an economical way and leverages seman-
tic information, e.g., inter-class relationship, to achieve the
goal of knowledge preservation. Zero-shot experiments on
two extended SBIR datasets, TU-Berlin and Sketchy, ver-
ify the superior performance of our approach. Extensive
diagnostic experiments validate that knowledge preserved
benefits SBIR in zero-shot settings, as a large fraction of
the performance gain is from the more properly structured
feature embedding for photo images. Code will be released
soon.

1. Introduction

Sketch-based image retrieval (SBIR) is an important,
application-driven problem in computer vision [7, 14, 6,
15]. Given a hand-drawn sketch image as the query and a
large database of photo images as the gallery, the goal is to
find relevant images, i.e., those with similar visual contents
or the same object category, from the gallery. The most im-
portant issue of this task lies in finding a shared feature em-
bedding for cross-modality data, which requires mapping
each sketch and photo image to a high-dimensional vector
in the feature space. In recent years, with the rapid devel-
opment of deep learning, researchers have introduced deep
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Figure 1: An illustration of the ZS-SBIR task and our model.
Catastrophic forgetting is harmful, especially in zero-shot settings.
Our Semantic-Aware Knowledge prEservation (SAKE) preserves
original domain knowledge of rich visual features (e.g., visual de-
tails of different subtypes of cars) which helps distinguishing the
right photo candidates (e.g., SUV) from distractors (e.g., race car)
in the unseen classes.

neural networks into this field [22, 45, 21, 43, 37, 33, 30,
44,42, 39]. In the conventional setting, it is assumed that
training and testing images are from the same set of object
categories, in which scenario existing approaches achieved
satisfying performance [22]. However, in real-world appli-
cations, there is no guarantee that the training set covers all
object categories in the gallery at the application stage.

This paper investigates this more challenging setting
in an extreme case. This setting is named zero-shot
sketch-based image retrieval (ZS-SBIR), which assumes
that classes in the target domain are unseen during the train-
ing stage. The goal of this setting is to test the model’s
ability to adapt learned knowledge to an unknown domain.
Experiments show that existing SBIR models generally pro-
duce low accuracy in this challenging setting [4, 35, 16],
possibly because they over-fitted the source domain and
meanwhile being unaware of the unseen categories. To
tackle this problem, we call for a model to simultane-
ously solve the problems of object recognition, cross-modal
matching, and domain adaptation.



An important observation of ours is that the unsatisfy-
ing performance in zero-shot learning is closely related to
the catastrophic forgetting phenomenon [17, 8] during se-
quential learning, i.e., the task-specific fine-tuning process.
All existing ZS-SBIR models fine-tune an ImageNet pre-
trained model with mixed loss functions, e.g., a softmax-
based term to distinguish different classes and a reconstruc-
tion loss term to learn shared image representations [4].
However, catastrophic forgetting implies that the previously
acquired domain knowledge, e.g., rich discriminative fea-
tures learned from ImageNet, is mostly eliminated from the
model during the fine-tuning process if it is not relevant to
the new task. This results in the features being over-fitted to
the limited data in the source domain and thus less capable
of effectively representing and distinguishing samples in the
target domain which contains unseen categories (an exam-
ple is given in Figure 1). To verify this, we fine-tune an Ima-
geNet pre-trained AlexNet [ 1 9] using data in the new source
domain. We then fix the network and use the £c7 features
to train a linear classifier again on ImageNet, i.e., the orig-
inal domain. Before fine-tuning, the model reports a clas-
sification accuracy of 56.29%, while this number drops to
45.54% afterward. This experiment verifies that the model
forgets part of the knowledge learned from ImageNet dur-
ing the fine-tuning process.

Based on this observation, we propose a novel frame-
work named Semantic-Aware Knowledge prEservation
(SAKE), which aims at maximally preserving previously
acquired knowledge during fine-tuning. SAKE does not re-
quire the access to the original ImageNet data but instead
designs an auxiliary task to approximately map each image
in the training (fine-tuning) set to the ImageNet semantic
space. More specifically, the approximation is made during
a teacher-student optimization process, in which the pre-
trained model on ImageNet, with all parameters fixed, pro-
vides a teacher signal. We also use semantic information to
refine the teacher signal to provide better supervision. An
illustration of our motivation is shown in Figure 1.

Following convention, we perform experiments on two
popular SBIR datasets, namely, the TU-Berlin dataset [5]
and the Sketchy dataset [33]. Results verify the effective-
ness of SAKE in boosting ZS-SBIR compared to state-of-
the-art methods, and these gains also persist after we bina-
rize the image features using iterative quantization (ITQ)
[10]. In addition, SAKE requires moderate extra compu-
tations and little memory during training and uses no extra
resources in the testing stage. This eases its application in
real-world scenarios.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces related works. Section 3 describes
the problem setting and our solution. After experiments are
shown in Section 4, we conclude this work in Section 5.

2. Related Work

SBIR and ZS-SBIR. The fundamental problem of SBIR
task is to learn a shared representation to bridge the modal-
ity gap between the hand-drawn sketches and the real photo
images. Early works employed hand-crafted features to rep-
resent the sketches and matched them with the edge maps
extracted from the photo images using different variants of
the Bag-Of-Words model [32, 13, 7, 14, 6]. In recent years,
the deep neural networks (DNNs) were introduced into this
field [22, 45, 21, 43, 37, 33, 30, 44, 42, 39]. First pro-
posed by [35] and followed by [16, 4], studies of SBIR
in the zero-shot setting arose. To encourage the transfer
of the learned cross-modal representations from the source
domain to the target domain, ZS-SBIR works leveraged
side information in semantic embeddings [4, 35] and em-
ployed deep generative models, such as generative adver-
sarial networks (GANSs) [4] and variational auto-encoders
(VAEs) [35, 16].

Catastrophic Forgetting. When a pre-trained model is
fine-tuned to another domain or a different task, it tends
to lose the ability to do the original task in the original
domain. This phenomenon is called catastrophic forget-
ting [11, 8, 25] and observed in training neural networks.
Incremental learning methods [24, 2, 29, 38, 34] adapted
models to gradually available data and required overcom-
ing catastrophic forgetting. [17] proposed to selectively
slow down learning on the weights that are important for
old tasks. Later, [20, 36] proposed to mimic the original
model’s response for old tasks at the fine-tuning stage to
learn without forgetting, which is similar to our approach.
But our goal is to generalize the model to unknown do-
mains and we add semantic constraints to refine the original
model’s response.

Knowledge Distillation. [12, 31] first proposed to com-
press knowledge from a large teacher network to a small
student network. Later, knowledge distillation was ex-
tended to optimizing deep networks in many generations [9,

] and [ 1] pointed out that knowledge distillation could re-
fine ground truth labels. In ZS-SBIR, to preserve the knowl-
edge learned at the pre-training stage, we propose to gener-
ate pseudo ImageNet labels for the training samples in the
fine-tuning dataset.

3. The Proposed Approach

In this section, we start with describing the problem
of zero-shot sketch-based image retrieval (ZS-SBIR), and
then we elaborate our motivation, which lies in the con-
nections between zero-shot learning and catastrophic for-
getting. Based on this observation, we present our solution
which aims at maximally preserving knowledge from the
pre-trained model, and we assist this process with weak se-
mantic correspondence.
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Figure 2: An overview of our model. We use a CSE-ResNet-50 to embed both sketch and photo images into a shared embedding space.
After obtaining the feature representation x;, we use it in two classification tasks, one is to predict a distribution over the benchmark labels,
the other is to predict a distribution over the Imagenet labels. The former task is supervised by the ground truth in the benchmark. The
latter is trained using teacher signal from an ImageNet pre-trained model and constrained by semantic information.

3.1. Problem Statement

In zero-shot sketch-based image retrieval (ZS-SBIR),
the dataset is composed of two subsets, namely, the ref-
erence set for training the retrieval model, and the test-
ing set for validating its performance. The reference set
represents data in the source domain, and we denote it as
08 = {PS, 5%}, where P° and S® are the subsets of pho-
tos and sketches, respectively, and the superscript S indi-
cates source. Similarly, the testing set contains data in the
target domain and is denoted as OT = {PT, ST} where
the superscript T is for target.

During the training stage of ZS-SBIR, the photos and
sketches in the reference set are used for two purposes:
(i) providing semantic categories for the model to learn;
and more importantly, (ii) guiding the model to realize the
cross-modal similarity between photos and sketches. Math-
ematically, let P5 = {(p;,y:)ly; € C3}2, and S5 =
{(sj,2)|z; € CS %21 (yi and 2; can also be written into
vector formy; = 1,, € R'CS|, z; =1, € R‘CS‘), where
CS is the reference class set. Most existing approaches
trained a mapping function on these two datasets, being
aware of whether the input is a photo or a sketch'. During
testing, a sketch query s;- € ST is given at each time, and
the goal is to search for the images with the same semantic
label in PT, ie., all p, € P so that y, = z; where both
y; and 2/ fall within the testing class set CT. The zero-shot
setting indicates that no testing class appears in the training
stage, i.e., cSncet =g,

I'This is important to improve feature extraction in the testing set. Typ-
ically there are two types of methods, i.e., either training two networks
with individual weights [4, 16] or designing internal structures in the same
network for discrimination [22].

3.2. Motivation: the Connection between Zero-shot
Learning and Catastrophic Forgetting

We aim at learning two models, denoted by f(-; @p) and
g(+; 0s), for feature extraction from photo and sketch im-
ages, respectively. We assume both f(-;0p) and g(+; 0g)
are deep networks which output vectors of the same dimen-
sionality, M. This is to say, each learned feature vector,
either x; = f(p;;0p) or x; = g(s;;0s), is an element in
RM

We note that during testing, the distance between these
features is computed to measure the similarity between the
sketch query and each photo candidate. This is to say, the
goal of SBIR is to train the feature extractors so that fea-
tures of the same class are projected close to each other in
RM . With a reference set available, training a classifica-
tion model is a straightforward solution. However, due to
the limited amount of training data in the source set, re-
searchers often borrow a pre-trained model from ImageNet
[3], a large-scale image database, and fine-tune the model
to the source domain. Consequently, after training, we ob-
tain a model capable of feature representation in the source
domain, but this does not necessarily imply satisfying per-
formance in the target domain, particularly in the zero-shot
setting that these two domains rarely overlap.

From the analysis above, it is clear that our goal is to
bridge the gap between the seen source domain and the
unseen target domain. As the latter remains invisible, we
turn to observe the behavior of domain adaptation in an-
other visible domain. The natural choice lies in the original
domain of ImageNet. We ask that after being fine-tuned on
the source domain, how good the model is at representing
the original domain. However, the fine-tuned model reports



unsatisfying performance in the original domain, even pro-
vided that the pre-trained model was trained by the same
data. This phenomenon was named catastrophic forget-
ting [17, 8], which claims that previously acquired knowl-
edge is mostly eliminated after the model is tuned to an-
other domain. To verify this, as stated in the Introduction,
we train an AlexNet [19] on ImageNet and then fine-tune
it on the TU-Berlin [5] reference set. Then, we extract the
fc7 features and train a linear classifier for ImageNet on
top of these fixed features. The dramatic drop of classifica-
tion accuracy (from 56.29% to 45.54%) verifies that a part
of knowledge learned from ImageNet is forgotten (i.e., not
preserved).

This motivates us to conjecture that zero-shot learning is
closely related to catastrophic forgetting. In other words, by
alleviating catastrophic forgetting, the ability to adapt back
to the original domain becomes stronger, thus we can also
expect the ability to transfer to the target domain becomes
stronger. Note, to honor the zero-shot setting, the category
set in the original domain and the category set in the target
domain are also required to be exclusive, i.e., C oncT = g,
where the superscript O stands for original. We implement
this idea using a simple yet effective algorithm, which is
detailed in the next subsection.

3.3. Semantic-Aware Knowledge Preservation

We first describe the network architecture we use for fea-
ture extraction. Most previous works in SBIR [44, 33, 21,

, 35] use independent networks or semi-heterogeneous
networks (networks that have independent lower levels and
aggregate at top levels) to process the photos and sketches
separately. Here, we adopt the Conditional SE (CSE) mod-
ule proposed in [22] and integrate it into ResNet blocks
to get a simple CSE-ResNet-50 network, which is used to
process the photos and sketches jointly. CSE utilizes two
fully connected layers, followed by a sigmoid activation
to re-weight the importance of channels after each block.
During the forward pass, a binary code is appended to the
output of the first layer to indicate the domain of the in-
put data, i.e., whether it is a photo or a sketch. Thus,
instead of having two independent networks f(-;0p) and
g(+; Os), what we have is a unified network h(-, -; 8) by let-
ting f(-;0p) = h(-,input_domain = 0;0) and g(-;05) =
h(., input_domain = 1;6). This conditional auto-encoder
structure helps the network to learn different characteris-
tics in input data coming from different modalities. Experi-
ments in [22] verified the effectiveness of CSE.

After obtaining the feature representation x; =
h(p;, 0;0) (or h(s;, 1;8) for sketch input) using the CSE-
ResNet-50, the network forks into two classifiers: one is to
predict the benchmark label y; (or z;) € C S for the photo p;
(or sketch s;); the other is to predict the ImageNet label, i.e.,
how likely the data belongs to each of the 1000 ImageNet

classes C©. Both branches are constructed by adding one
fully connected layer on top of x;, followed by a softmax
function. More specifically, the first classifier W8 com-
putes y; = softmax(a'x; + B3), y; € RIC°l, and aims
to adapt the network to the SBIR benchmarks, especially
the reference set, achieving the goal of bridging the gap be-
tween sketch and photo images and learning good similar-
ity measure for cross-modality data. The second classifier
W! works on y; = softmax(CTxi +m),¥: € RIC°I, which
helps to preserve the network’s capability of recognizing the
rich visual features learned from previous ImageNet train-
ing, benefiting the network’s adaptation to ZS-SBIR target
domain. «, 3, (,n are weights and bias terms in the two
linear classifiers, respectively.

Without access to the original ImageNet data, we argue
the training of the second classifier is non-trivial. To solve
the problem of having no ground truth ImageNet label for
images in the benchmark dataset, SAKE inquires an Ima-
geNet pre-trained model, i.e., the model SAKE is initialized
from, to provide teacher signal, which, after refined by se-
mantic constraints, is used to supervise the learning of y.
Next, we explain the training objective in detail.

3.4. Objective of Optimization

The two classification tasks are trained end-to-end si-
multaneously, and the learning objective of our model can
be written as £ = Lpenchmark + ASAKELSAKE, Where
Lbenchmark Models the classification loss in y based on the
ground-truth. We compute it using the cross-entropy loss
function:

exp (a;xi + By,)
ZkECS exp (a;rxz + Bk) ’

1
Ebenchmark = N ; - IOg

where N is the total training sample number, o, and S, are
the weight and bias terms in the benchmark label classifier
W? for category k. 1; can be replaced by z; if the input
data is a sketch.

Lsake computes the classification loss in y. Since no
ground truth label is available for this loss term, we combine
a teacher signal and semantic constraints into it. In what
follows, we elaborate these two components in details.

Learning from a Teacher Signal. Given a photo im-
age with unknown object label among the 1000 ImageNet
classes CO, it is intuitive to use an ImageNet trained clas-
sifier to estimate its identity. Inspired by the recent work
in knowledge distillation [9, 12] and incremental learn-
ing [20, 36], we propose to achieve this goal by using the
ImageNet pre-trained network as a teacher, i.e., teach our
model to remember the rich visual features and make rea-
sonable ImageNet label predictions. During the training
process, the teacher network is fixed and takes the same
photo input as the model does. According to the prediction



q! = Softmax(t;) € RI€°l made by the teacher network,
i.e., the probability of sample p; belongs to each category
in C©, we encourage our model to make the same predic-
tion. Unlike ground truth labels which are one-hot vectors,
what we get from the teacher network is a discrete probabil-
ity distribution over C©. Therefore, the cross-entropy loss
with soft labels is used to compute the teacher loss:

Eteacher = %Z Z _q;m log

i meco

exp (¢ Xi + 1m)
ZleCO €xp (CITXZ' +m)

where ¢, and 7, are the weight and bias terms in the Im-
ageNet label classifier W! for category m. Since random
transformation is added to each input sample for data aug-
mentation purpose, the teacher network makes predictions
online. During the test step, no teacher network is needed.

Semantic Constraints of the Teacher Signal. Although
the teacher network has been trained on the sophisticated
ImageNet dataset, there is a knowledge gap between the
original domain and the source domain, so it may make
mistakes on the SBIR reference set. The supervision given
by the wrong predictions made by the teacher will hurt the
goal of preserving useful original domain knowledge in our
SAKE model. Therefore, we propose to use additional se-
mantic information to guide the teacher-student optimiza-
tion process. More specifically, we use WordNet [27, 26] to
construct a semantic similarity matrix A; each entry ay ,,
represents the similarity between class k& € C° and class
m € CO. Given a benchmark sample p; with ground truth
label y; = k, we encourage the prediction of y;,, to be large
if class m is semantically similar to k, i.e., a,», is large.

ay, is defined for each class and can be combined with
t; to form the semantic-aware teacher signal where the
logits is a weighted sum of the two components, q;, =
Softmax(A; - t; + A2 - ay, ). Therefore, the SAKE loss can
be written down as:

L3AKE = %Z Z —@i,m 1o

i meC®

¢ eXp (C;Xz + M)
Sieco exp (¢ xi +m)

where ¢, and 7, are the same as defined in the teacher
loss, are the weight and bias terms in the ImageNet label
classifier for category m. Note Lieacher 1S a special setting
of Lsakg With Ay = 1 and Ay = 0. We argue this loss
term helps to refine the supervision signal from the teacher
network and makes the knowledge preservation process se-
mantic aware.

4. Experiments
4.1. Datasets and Settings

Datasets. We evaluated SAKE on two large-scale sketch-
photo datasets: TU-Berlin [5] and Sketchy [33] with ex-
tended images obtained from [44, 21]. The TU-Berlin

)

dataset contains 20,000 sketches uniformly distributed over
250 categories. The additional 204,489 photo images pro-
vided in [44] are also used in our work. The Sketchy dataset
consists of 75,471 hand-drawn sketches and 12,500 corre-
sponding photo images from 125 categories. Additional
60,502 photo images were collected by [21], yielding a to-
tal of 73,002 samples. For comparison, we follow [35] and
randomly pick 30/25 classes as the testing set from TU-
Berlin/Sketchy, and use the rest 220/100 classes as the ref-
erence set for training. During the testing step, the sketches
from the testing set are used as the retrieval queries, and
photo images from the same set of classes are used as the
retrieval gallery. As [35] suggested, each class in the testing
set is required to have at least 400 photo images.

It comes to our attention that some categories in the TU-
Berlin/Sketchy are also present in the ImageNet dataset, and
if we select them as our testing set, it will violate the zero-
shot assumption (the same for the existing works that use
an ImageNet pre-trained model for initialization). Thus, we
follow the work of [16] and test our model using their care-
ful split in Sketchy, which includes 21 testing classes that
are not present in the 1000 classes of ImageNet. The per-
formance of SAKE on this careful split of Sketchy is shown
in the result section. For the TU-Berlin dataset, we also
carefully evaluate the performance of our model when ap-
plied to a testing set that is composed of ImageNet and non-
ImageNet classes. The results can be found in Section 4.3.

Implementation Details. We implemented our model us-
ing PyTorch [28] with two TITAN X GPUs. We use a
SE-ResNet-50 network pretrained on ImageNet to initial-
ize our model, and it is also used as the teacher network
in SAKE during the training stage. To provide the seman-
tic constraints, WordNet python interface from nl1tk cor-
pus reader is used to measure the similarity between ob-
ject category labels. We map each category to a node
in WordNet and use the path_similarity to set aj . To
train our model, Adam optimizer is applied with parame-
ters f1 = 0.9, B2 = 0.999, A = 0.0005. The learning rate
starts at 0.0001 and exponentially decayed to 1le — 7 during
training. We use batch size equals 40 and train networks for
20 epochs. In our experiments, AgaAkE is set to 1, A; is set
to 1, Ao is set to 0.3, unless stated otherwise.

To achieve ZS-SBIR, nearest neighbor search is con-
ducted based on distance calculated by x;. For real-valued
feature vectors, cosine distance is used to avoid variations
introduced by the vector norm. To accelerate the retrieval
speed, binary hashing is widely used to encode the input
data. To make fair comparisons to existing zero-shot hash-
ing methods [35, 41], we apply the iterative quantization
ITQ) [10] algorithm on the feature vectors learned by our
model to obtain the binary codes. Following [4], we use the
final representations of sketches and photo from the train-
ing set to learn an optimized rotation, which is then used on



TU-Berlin Ext.

Sketchy Ext. Sketchy Ext. ([16] Split)

Method SBIR Zero-Shot Dimension — 45 i prec@100 mAP@all Prec@i00 mAP@200 Prec@200
GN-Triplet [23] Yes  No 1024 0.189  0.241 0211 0310 0.083 0.169
DSH[21] Yes  No 64t 0122  0.198 0164  0.227 0.059 0.153
SAE[18] No  Yes 300 0161 0210 0210  0.302 0.136 0.238
ZSH [41] No  Yes 64t 0.139 0174 0165  0.217 . -
ZSIH [35] Yes  Yes 64t 0220 0201 0254  0.340 - -
512 0259  0.369 - - - -
EMS [22] Yes  Yes 641 0.165  0.252 - - - -
CAAE [16] Yes  Yes 4096 - - 0.196  0.284 0.156 0.260
CVAE [16] Yes  Yes 4096 - - . . 0.225 0.333
64 0.297 0426 0349  0.463 - -
SEM-PCYCIA] Yes  Yes 64+ 0.293 0.392 0.344 0.399 - -
512 0475 0599 0547  0.692 0497 0.598
SAKE Yes  Yes 641 0.359 0481 0364 0487  0.356 0.477

Table 1: ZS-SBIR performance comparison of SAKE and existing methods. “{” denotes experiments using binary hashing codes. The rest

use real-valued features. “-

the feature vectors of testing samples to obtain the binary
codes. After that, hamming distance is calculated for the
retrieval task. We will release our models and codes upon
acceptance.

4.2. Comparison with Existing Methods

We compare our model with three prior works on ZS-
SBIR: ZSIH [35], CAAE and CVAE [16], and SEM-
PCYC [4], which all use generative models and complicated
frameworks, e.g., graph conv layers, adversarial training,
etc., to encourage the learning of good shared embedding
space. EMS proposed by [22] is the current state-of-the-art
model in SBIR and is claimed to be able to address zero-
shot problems directly, so we include their ZS-SBIR results
for comparison. We also compare our model with two SBIR
methods, GN-Triplet [33] and DSH [21], and two zero-shot
methods, SAE [18] and ZSH [41]. All models use ImageNet
pre-trained network for weights initialization. Mean aver-
age precision (mAP@all) and precision considering top 100
retrievals (Precision@ 100) are computed for performance
evaluation and comparison.

As results shown in Table 1, despite the simple design
of our framework, in all datasets/dataset splits, our pro-
posed method consistently outperforms the state-of-the-art
ZS-SBIR methods by a large margin, e.g., 20.9% relative
improvement of mAP@all for the challenging TU-Berlin
Extension dataset using 64-bit binary hashing codes. To ad-
dress the concern that most works use their own random
reference/testing split without publishing the experimental
details, we repeat our experiment on TU-Berlin Extension
three times using different random splits, and get mAP@all
equals 0.352, 0.369, 0.359, in the 64-bit binary case, which
all outperform the previous models. This confirms the large
performance gain of our SAKE model is not by chance or
by split bias.

” indicates the results are not presented by the authors on that metric.

TU-Berlin Ext. Sketchy Ext.

32 64 128 32 64 128
0.132 0.139 0.153 0.146 0.165 0.168
ZSIH [35] 0.201 0.220 0.234 0.232 0.254 0.259
SAKE 0.269 0.359 0.392 0.289 0.364 0.410

Table 2: ZS-SBIR mAP@all comparison of SAKE and existing
zero-shot hashing methods. 32, 64, and 128 represent the length
of the generated hashing codes.

ZSH [41]

A1 A2
0 0.1 0.3 1 3
ZS-SBIR 0 0.362 0.364 0.370 0.369 0.362
ZS-SBIR 1 0.426 0.431 0.434 0.416 0.412

Table 3: ZS-SBIR mAP@all on TU-Berlin Extension dataset with
different A1 and A2. A\saxe = 1 for all tests.

Since the categories in both TU-Berlin and Sketchy over-
lap with ImageNet, it is important to test the model using
non-ImageNet categories as testing to honor the zero-shot
assumption, especially for our SAKE model which largely
relies on knowledge from the original domain, i.e., rich
visual features learned previously from ImageNet. Thus,
in Table 1, we reported our model’s performance on this
careful split proposed by [16], which only use classes that
are not present in the 1000 classes of ImageNet as testing.
The result shows SAKE still outperforms the baselines by
a large margin. This result demonstrates that the original
domain knowledge preserved by SAKE is not only main-
taining its ability to be adapted back to the original domain
but also helping the model to be more generalizable to the
unseen target domain.

In Table 2, we further compare our model with the two
zero-shot hashing methods, ZSH[4 1] and ZSIH [35], using
binary codes of different lengths. As expected, longer hash-



BackBone 7ZS-SBIR ZS-PBIR

pretrained Lp L+ Lr L+ Lsakg | pretrained Ly L+ Lt L+ LsakE
AlexNet 0.074 0.267 0.275 0.275 0.386 0.393 0.427 0.432
ResNet-50 0.081 0.352 0.395 0.413 0.640 0.542 0.666 0.670
CSE-ResNet-50  0.068 0.353 0.426 0.434 0.635 0.558 0.673 0.683

Table 4: ZS-SBIR and ZS-PBIR mAP@all on TU-Berlin Extension for different backbone models with different loss terms. All models
are pre-trained using ImageNet, and represent each image by a 64-d feature vector. Lg stands for Lhenchmark. £1 stands for Licacher-

ASAKE
0 0.1 0.3 1 3

ZS-SBIR 0.353 0.378 0.395 0.434 0.429
ZS-PBIR (non-IN) 0.558 0.587 0.612 0.654 0.668
ZS-PBIR (IN) 0.545 0.543 0.615 0.707 0.758

Table 5: mAP@all on TU-Berlin Extension with different AsakEe.

ing code leads to better retrieval performance, and our pro-
posed model beats both methods in all cases. This again
proves the effectiveness of the proposed SAKE model. Di-
agnostic experiments are given in the following subsections
to show the superior performance of SAKE is indeed from
the knowledge preserved with semantic constraints.

4.3. Quantitative Analysis

Knowledge Preservation Using SAKE. We first run a
simple experiment to show the phenomenon of catastrophic
forgetting during the model fine-tuning process and how
SAKE helps to alleviate it. We train a linear classifier for
ImageNet 1000 classes using features extracted from the
last fully connected layer of the DNNs and use the top
1 prediction accuracy to measure the effectiveness of the
features to represent the data. An ImageNet pre-trained
AlexNet achieves a top-1 accuracy of 56.29%, while a fine-
tuned model (trained to classify the 220 object categories
in TU-Berlin Extension reference set) only reports 45.54%.
Lastly, we fine-tune the AlexNet by SAKE, and the top-
1 accuracy is improved to 51.39%. By changing AlexNet
to the deeper model SE-ResNet-50, we observe similar re-
sults: pre-trained model achieves 77.43%, fine-tuned model
drops to 59.56%, and training by SAKE improves it to
67.44%. The result suggests benchmark training does lead
to knowledge elimination for the previously learned task(s),
and SAKE is able to alleviate it effectively.

Ablation Study. In Table 3, we analyze the effect of
hyper-parameter A\; and Ay. When A is set to 0, applying
the semantic constraint without a teacher signal barely af-
fects the results. When \; = 1, the semantic constraint pro-
vides a mild boost with peak value at Ay = 0.3. In Table 4,
we show zero-shot image retrieval mAP@all for networks
with different backbones and loss terms. All networks are
trained and tested in the same setting, i.e., using the same
dataset split on TU-Berlin Extension and 64-d feature rep-
resentation. We first observe that ResNet-50 reaches bet-

ter performances than AlexNet, suggesting networks with
deeper architectures perform better due to their larger mod-
eling capacities. The results we reported here for SAKE
using CSE-ResNet-50 network can probably be further im-
proved if we choose to use deeper backbones. Secondly, we
find that the CSE module is effective in enhancing cross-
modal mapping. It provides additional information about
the data type and allows the model to learn more flexible
functions to process data in each modality, so it is an im-
portant component in our SAKE design. Lastly, the results
show knowledge preservation with simple unconstrained
teacher signal can effectively improve the performance of
all backbones, especially the one with larger capacity and
higher flexibility. On top of this, semantic awareness brings
in an extra boost and finally builds up our full SAKE model
that reaches the best retrieval results.

Why SAKE? To further investigate how the model ben-
efits from the original domain knowledge preserved by
SAKE, we look into zero-shot photo-based image retrieval
(ZS-PBIR) and use it to evaluate the representations of
photo images learned by SAKE. In the ideal case, if the
model is capable of recognizing the rich visual features in
images over a large collection of object categories, i.e., the
ImageNet dataset, it will apply them to the unseen photo im-
ages and project the ones with similar visual contents into
a clustered region in the embedding space. This will help
the model reach good ZS-PBIR result. Indeed, as shown in
Table 4, pre-trained models have reasonable mAP@all (¢
and weight for x; layer are initialized by decomposing the
original weight matrix in the output layer), which is vulner-
able to simple benchmark training. After adding the knowl-
edge preservation term, either L1 or Lsakg, ZS-PBIR is
improved by a large number. This implies the improve-
ment of ZS-SBIR achieved by SAKE is mainly from the
model’s capability of generating more structured and tightly
distributed feature representations for the photo images in
the testing set.

In Table 5, we gradually increase Agakg, the coeffi-
cient of Lgakg in the total loss, and test how mAP@all
for ZS-SBIR and ZS-PBIR changes. For ZS-SBIR, the
performance increases and then reaches the peak value at
Asake = 1. If we further increase A, the performance
starts to drop, probably because the model is too much af-
fected by the teacher signal and becomes less focused on
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Figure 3: Top-10 ZS-SBIR results obtained by SAKE on TU-
Berlin Extension dataset. Retrieval is conducted by nearest neigh-
bors search using cosine distance on 64-d feature vectors. Green
ticks denote correctly retrieved candidates, and the red crosses in-
dicate wrong retrievals. Two negative cases are visualized here to
help diagnose the model. See Section 4.4 for more details.

learning the new dataset. In the case of ZS-PBIR, for com-
parison, we specifically pick categories that are not present
in ImageNet, i.e., the target domain, and categories that are
present in ImageNet, i.e., the original domain, to show how
they are differently affected by Agaxe. As we expected,
the performance on ImageNet photos keeps rising as we
increase Agakg, While the performance on non-ImageNet
photos is gently boosted and then saturates faster. This re-
sult proves again that using SAKE helps to preserve the
model’s capability of recognizing the rich visual features
in ImageNet, which is crucial for generating good repre-
sentations for photo images in the unseen retrieval gallery,
resulting to largely boosted ZS-SBIR performance.

4.4. Qualitative Analysis

Example of Retrievals. In Figure 3, we show the top 10
retrieval results obtained by SAKE in the TU-Berlin Exten-
sion dataset. In most cases, SAKE retrieves photo images
with the right object label, i.e., the same label as the sketch
image has. In the selected negative cases, SAKE fails to
find photo images that match the sketch category but instead
returns photos from another category, which share some vi-
sual similarities with the sketch query. This implies that the
feature vectors of the photos candidates are properly clus-
tered, which benefits ZS-SBIR if sketches from the same
class are also projected to the same region.

Visualization of the Learned Embeddings. In Figure 4,
we show the t-SNE [23] results of our SAKE model com-
pared with the baseline model using 64-d feature represen-
tations on the testing set of TU-Berlin Extension, where
a more clearly clustered map on the object classes can be
found in SAKE. We also observe margins between photo

% SAKE : : SAKE
(Photo) (Sketch)

Baseline
(Sketch)

Figure 4: t-SNE results using 64-d feature representations on the
testing set of TU-Berlin Extension. First row: features learned
by SAKE. Second row: features learned by the baseline model
without Lsake. In the “Sketch” plots, the “Photo” data points are
retained and lightened. This figure is best viewed in color.

and sketch data, implying SAKE could be further improved
by learning more aligned features for sketches and photos.

5. Conclusions

This paper studies the problem of zero-shot sketch-based
image retrieval from a new perspective, namely, incremen-
tal learning to alleviate catastrophic forgetting. The key ob-
servation lies in the fact that both zero-shot learning and in-
cremental learning focus on transferring the trained model
to another domain, so we conjecture and empirically verify
that improving the performance of the latter task benefits
the former one. The proposed SAKE algorithm preserves
knowledge from the original domain by making full use
of semantics, so that it works without access to the origi-
nal training images. Experiments on both TU-Berlin and
Sketchy datasets demonstrate state-of-the-art performance.
We will investigate SAKE on a wider range of tasks involv-
ing catastrophic forgetting in our future work.

One of the most important take-aways of this work is
that different machine learning tasks, though look different,
may reflect the same essential reason, and the reason often
points to over-fitting, a long-lasting battle in learning. We
shed light on a new idea, which works by dealing with one
task to assist another one. We emphasize further research
efforts should be devoted to this direction.
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Appendix A.

This supplementary material contains extra evidences to support our claim that knowledge preservation benefits domain
adaptation. It is shown in the main paper that knowledge preservation helps the fine-tuned model to maintain good per-
formance in the original domain. Here, under the zero-shot setting, we measure the similarity between a target zero-shot
category and the original ImageNet categories, and demonstrate how this similarity correlates to the performance improve-
ments brought by SAKE.

A.1. Setting

We investigate similarities under the zero-shot setting. Different from the main paper as well as all previous work, we
create a new held-out set of TU-Berlin, containing 30 categories which are not present in ImageNet. This is to make a
fair comparison between different target categories. Experiments are performed three times, i.e., we randomly choose three
held-out sets, all of which have no category overlap with ImageNet.

We take a vanilla SE-ResNet-50 model, which was pre-trained on ImageNet and fine-tuned on the TU-Berlin reference
set with only Lpenchmark- Then, we sort these 30 target categories by their mAP@all improvement achieved by SAKE,
and equally divide them into 3 groups, “low”, “medium” and “high”, with each of them containing 10 categories of low,
medium and high improvements brought by SAKE, respectively. Similarities between the target categories and the ImageNet
categories are investigated separately in these 3 groups.
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Figure 5: How the ZS-SBIR mAP@all improvement brought by SAKE on different categories correlates to the category-level similarity
to the original ImageNet categories. Error bars and mean values are summarized from three repeated experiments with different held-out
category sets, all of which have no overlap with ImageNet.

A.2. Similarity by Classification Confidence

In Figure 5a, we can see that the improvement of SAKE becomes more significant when the category gets a higher
classification confidence in an ImageNet-based classifier. This is to say, knowledge preservation, as expected, helps better
to those categories that are closer to ImageNet — in other words, these categories are often heavier impacted by catastrophic
forgetting, and knowledge preservation brings more improvement.

We shall point out that this phenomenon does not mean that knowledge preservation is not useful to those categories which
are not contained in the original domain. Indeed, in each of these 3 groups, we observe accuracy gain under the zero-shot
setting — this is also shown in our main experiments, in which both ImageNet and non-ImageNet categories largely benefit
from knowledge preservation.

A.3. Similarity by Semantic-space Distance

To provide another perspective, we perform the same experiment using the similarity defined by the Leacock-Chodorow
Similarity on the WordNet synset, i.e., the semantic tree used to build up ImageNet. In Figure 5b, we once again obtain the
same conclusion, i.e., SAKE is more effective on the categories that are better represented to the ImageNet semantic space.



