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Abstract. The ability to detect failures and anomalies are fundamen-
tal requirements for building reliable systems for computer vision appli-
cations, especially safety-critical applications of semantic segmentation,
such as autonomous driving and medical image analysis. In this paper,
we systematically study failure and anomaly detection for semantic seg-
mentation and propose a unified framework, consisting of two modules,
to address these two related problems. The first module is an image syn-
thesis module, which generates a synthesized image from a segmentation
layout map, and the second is a comparison module, which computes
the difference between the synthesized image and the input image. We
validate our framework on three challenging datasets and improve the
state-of-the-arts by large margins, i.e., 6% AUPR-Error on Cityscapes,
7% Pearson correlation on pancreatic tumor segmentation in MSD and
20% AUPR on StreetHazards anomaly segmentation.

Keywords: failure detection, anomaly segmentation, semantic segmen-
tation

1 Introduction

Deep neural networks [15, 19, 31, 45, 47] have achieved great success in various
computer vision tasks. However, when they come to real world applications, such
as autonomous driving [22], medical diagnoses [5] and nuclear power plant mon-
itoring [36], the safety issue [1] raises tremendous concerns particularly in condi-
tions where failure cases have severe consequences. As a result, it is of enormous
value that a machine learning system is capable of detecting the failures, i.e.,
wrong predictions, as well as identifying the anomalies, i.e., out-of-distribution
(OOD) cases, that may cause these failures.

Previous works on failure detection [7, 17, 24] and anomaly (OOD) detec-
tion [9, 18, 33–35] mainly focus on classifying small images. Although failure
detection and anomaly detection for semantic segmentation have received little
attention in the literature so far, they are more closely related to safety-critical
applications, e.g., autonomous driving and medical image analysis. The objective
of failure detection for semantic segmentation is not only to determine whether
there are failures in a segmentation result, but also to locate where the failures
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Fig. 1. We aim at addressing two tasks: (i) failure detection, i.e., image-level per-class
IoU prediction (top left) and pixel-level error map prediction (bottom left) (ii) anomaly
segmentation i.e. segmenting anomalous objects (right middle).

are. Anomaly detection for semantic segmentation, a.k.a anomaly segmentation,
is related to failure detection, and its objective is to segment anomalous objects
or regions in a given image.

In this paper, our goal is to build a reliable alarm system to address fail-
ure detection for semantic segmentation (Fig. 1(i)) and anomaly segmentation
(Fig. 1(ii)). Unlike image classification outputs only a single image label, se-
mantic segmentation outputs a structured semantic layout. Thus, this requires
that the system should be able to provide more detailed analysis than those
for image classification, i.e., pixel-level error/confidence maps. Some previous
works [7,16,26] directly applied the failure/anomaly detection strategies for im-
age classification pixel by pixel to estimate a pixel-level error map, but they lack
the consideration of the structured semantic layout of a segmentation result.

We propose a unified framework to address failure detection and anomaly de-
tection for semantic segmentation. This framework consists of two components:
an image synthesis module, which synthesizes an image from a segmentation
result to reconstruct its input image, i.e., a reverse procedure of semantic seg-
mentation, and a comparison module which computes the difference between the
reconstructed image and the input image. Our framework is motivated by the
fact that the quality of semantic image synthesis [21,43,48] can be evaluated by
the performance of segmentation network. Presumably the converse is also true,
the better is the segmentation result, the closer a synthesized image generated
from the segmentation result is to the input image. If a failure occurs during seg-
mentation, for example, if a person is mis-segmented as a pole, the synthesized
image generated from the segmentation result does not look like a person and an
obvious difference between the synthesized image and the input image should oc-
cur. Similarly, when an anomalous (OOD) object occurs in a test image, it would
be classified as any possible in-distribution objects in a segmentation result, and
then appear as in-distribution objects in the synthesized image generated from
the segmentation result. Consequently, the anomalous object can be identified
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by finding the differences between the test image and the synthesized image. We
refer to our framework as SynthCP, for “synthesize then compare”.

We model this synthesis procedure by a semantic-to-image conditional GAN
(cGAN) [43], which is capable of modeling the mapping from the segmentation
layout space to the image space. This cGAN is trained on label-image pairs.
Given the segmentation result of an input image obtained by an semantic seg-
mentation model, we apply the trained cGAN to the segmentation result to
generate a reconstructed image. Then, the reconstructed image and the input
image are fed into the comparison module to identify the failures/anomalies. The
comparison module is designed task-specifically: For failure detection, the com-
parison module is modeled by a Siamese network, outputting both image-level
confidences and pixel-level confidences; For anomaly segmentation, the compar-
ison module is realized by computing the distance defined on the intermediate
features extracted by the semantic segmentation model.

We validate SynthCP on the Cityscapes street scene dataset, a pancreatic
tumor segmentation dataset in the Medical Segmentation Decathlon (MSD) chal-
lenge and the StreetHazards dataset, and show its superiority to other failure
detection and anomaly segmentation methods. Specifically, we achieved improve-
ments over the state-of-the-arts by approximately 6% AUPR-Error on Cityscapes
pixel-level error prediction, 7% Pearson correlation on pancreatic tumor DSC
prediction and 20% AUPR on StreetHazards anomaly segmentation.

We summarize our contribution as follows:

– To the best of our knowledge, we are the first to systematically study failure
detection and anomaly detection for semantic segmentation

– We propose a unified framework, SynthCP, which enjoys the benefits of a
semantic-to-image conditional GAN, to address both of the two tasks.

– SynthCP achieves state-of-the-art failure detection and anomaly segmenta-
tion results on three challenging datasets.

2 Related Work

In this section, we first review the topics closely related to failure detection
and anomaly segmentation, such as uncertainty/confidence estimation, quality
assessment and out-of-distribution (OOD) detection. Then, we review generative
adversarial networks (GANs), which serves a key module in our framework.
Uncertainty estimation or confidence estimation has been a hot topic in the
field of machine learning for years, and can be directly applied to the task of fail-
ure detection. Standard baselines was established in [17] for detecting failures
in classification where maximum softmax probability (MSP) provides reasonable
results. However, the main drawback of using MSP for confidence estimation is
that deep networks tend to produce high confidence predictions [7]. Geifman
et al. [12] controled the user specified risk-level by setting up thresholds on a
pre-defined confidence function (e.g. MSP). Jiang et al. [24] measured the agree-
ment between the classifier and a modified nearest-neighbor classifier on the
test examples as a confidence score. A recent approach [7] proposed to direct
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regress “true class probability” which improved over MSP for failure detection.
Additionally, Bayesian approaches have drawn attention in this field of study.
Dropout based approaches [10, 26] used Monte Carlo Dropout (MCDropout)
for Bayesian approximation. Computing statistics such as entropy or variance is
capable of indicating uncertainty. However, all these approaches mainly focus on
small image classification tasks. When applied to semantic segmentation, they
lack the information of semantic structures and contexts.

Segmentation quality assessment aims at estimating the overall quality of
segmentation, without using ground-truth label, which is suitable to make alarms
when model fails. Some approaches [25,32] utilize Bayesian CNNs to predict the
segmentation quality of medical images. [29,44] regressed the segmentation qual-
ity from deep features computed from a pair of an image and its segmentation
result. [20, 23] plugged an extra IoU regression head into object detection or
instance segmentation. [4, 11] used unsupervised learning methods to estimate
the segmentation quality using geometrical features. Recently, Liu et al. [38]
proposed to use VAE [28] to capture a shape prior for segmentation quality
assessment on 3D medical image. However, it is hardly applicable to natural
images considering the complexity and large shape variance in 2D scenes and
objects. Segmentation quality assessment will be referred to as image-level failure
detection in the rest of the paper.

OOD detection aims at detecting out-of-distribution examples in testing data.
Since the baseline MSP method [17] was brought up, many approaches have im-
proved OOD detection from various aspects [9,18,33–35]. While these approaches
mainly focus on image level OOD detection, i.e., to determine whether an image
is an OOD example, e.g., [3, 30] targeted at detecting hazardous scenes in the
Wilddash dataset [49]. On the contrary, we focus on anomaly segmentation,
i.e., a pixel-level OOD detection task that aims at segmenting anomalous regions
from an image. Pixel-wise reconstruction loss [2,14] with auto-encoders(AE) are
the main stream approaches for anomaly segmentation. However, they can hardly
model the complex street scenes in natural images and AEs can not guarantee
to generate an in-distribution image from OOD regions. Recently, it was found
that MSP surprisingly outperform AE and Bayesian network based approaches
on a newly built larger scale street scene dataset StreetHazards [16] - with 250
types of anomalous objects and more than 6k high resolution images. Lis et
al. [37] proposed to re-synthesize an image from the predicted semantic map to
detect OOD objects in street scenes, which is the pioneer work for synthesis-
based anomaly detection for semantic segmentation. SynthCP also follows this
spirit, but we use a simple yet effective feature distance measure rather than a
discrepancy network to find anomalies. In addition, we extend this idea to do a
systematic study of failure detection.

Generative adversarial networks [13] generate realistic images by playing
a “min-max” game between a generator and a discriminator. GANs effectively
minimize a Jensen-Shannon divergence, thus generating in-distribution images.
SynthCP utilizes conditional GANs [42] (cGANs) for image translation [21],
a.k.a pixel-to-pixel translation. Approaches designed for semantic image syn-
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Fig. 2. We first train the synthesis module Gy→x on label-image pairs and then use
this module to synthesize the image conditioning on the predicted segmentation mask
ŷ. By comparing x and x̂ with a comparison module F (·), we can detect failures as
well as segment anomalous objects. F (·) is instantiated in Sec 3.2 and Sec 3.3.

thesis [40, 43, 48] improves pixel-to-pixel translation in synthesizing real images
from semantic masks, which is the reverse procedure of semantic segmentation.
Since semantic image synthesis is commonly evaluated by the performance of
a segmentation model, reversely, we are motivated to use a semantic-to-image
generator for failure detection for semantic segmentation.

3 Methodology

In this section, we introduce our framework, SynthCP, for failure detection and
anomaly detection for semantic segmentation. SynthCP consists of two modules,
an image synthesis module and a comparison module. We first introduce the
general framework (shown in Fig. 2), then describe the details of the modules
for failure detection and anomaly detection in Sec 3.2 and Sec 3.3, respectively.
Unless otherwise specified, the notations in this paper follow this criterion: We
use a lowercase letter, e.g., x, to represent a tensor variable, such as a 1D array
or a 2D map, and denote its i-th element as x(i); We use a capital letter, e.g.,
F , to represent a function.

3.1 General Framework

Let x be an image with size of w × h and L = {1, 2, . . . , L} be a set of integers
representing the semantic labels. By feeding image x to a segmentation model
M , we obtain its segmentation result, i.e., a pixel-wise semantic label map ŷ =
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M(x) ∈ Lw×h. Our goal is to identify and locate the failures in ŷ or detect
anomalies in x based on ŷ.

Image Synthesis Module We model this image synthesize module by a pixel-
to-pixel translation conditional GAN (cGAN) [42], which is known for its excel-
lent ability for semantic-to-image mapping. It consists of a generator G and a
discriminator D.

Training. We train this translation conditional GAN on label-image pairs: (y, x),
where y is a grouth-truth pixel-wise semantic label map and x is its correspond-
ing image. The objective of the generator G is to translate semantic label maps
to realistic-looking images, while the discriminator D aims to distinguish real
images from the synthesized ones. This cGAN minimizes the conditional distri-
bution of real images via the following min-max game:

min
G

max
D
LGAN (G,D), (1)

where the objective function LGAN (G,D) is defined as:

E(y,x)[logD(y, x)] + Ey[log(1−D(y,G(y))]. (2)

Testing. After training, we fix the generator G. Given an image x and a segmen-
tation model M , we feed the predicted segmentation mask ŷ = M(x) into G,
and obtain a synthesized (i.e., reconstructed) image x̂:

x̂ = G(ŷ). (3)

x̂ and x are then served as the input for the comparison module.

Comparison Module We detect failures and anomalies in ŷ by comparing
x̂ with x. Our assumption is that, if x̂ is more similar to x, then ŷ is more
similar to y. However, since the optimization of G does not guarantee that the
synthesized image x̂ has the same style as the original image x, simple similarity
measurements such as `1 distance between x and x̂ is not accurate. In order to
address this issue, we model the comparison module by a task-specific function
F which estimates a trustworthy task-specific confidence measure ĉ between x
and x̂:

ĉ = F (x, x̂) = F (x,G(ŷ)). (4)

For the task of failure detection, the confidence measure ĉ = (ĉiu, ĉm) includes
an image-level per-class intersection over union (IoU) array ĉiu ∈ [0, 1]|L| and a
pixel-level error map ĉm ∈ [0, 1]w×h; For the task of anomaly segmentation, the
confidence measure ĉ is a pixel-level confidence map ĉn ∈ [0, 1]w×h for anomalous
objects.
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Fig. 3. We instantiate F (·) as a light-weighted siamese network F (x, x̂, ŷ; θ) for joint
image-level per-class IoU prediction and pixel-level error map prediction.

3.2 Failure Detection

Problem Definition Our failure detection contains two tasks: 1) a per-class
IoU prediction ĉiu ∈ [0, 1]|L|, which is useful to indicate whether there are failures
in the segmentation result ŷ, and 2) to locate the failures in ŷ, which needs to
compute a pixel-level error map ĉm ∈ [0, 1]w×h.

Instantiation of Comparison Module We instantiate the comparison mod-
ule F (·) as a light-weighted deep network. In practice, we use ResNet-18 [15] as
the base network and follow a siamese-style design for learning the relationship
between x and x̂. As illustrated in Fig. 3, x and x̂ are first concatenated with
ŷ and then separately encoded by a shared-weight siamese encoder. Then two
heads are built upon the siamese encoder and output the image-level per-class
IoU array ĉiu ∈ [0, 1]|L| and pixel-level error map ĉm ∈ [0, 1]

w×h
, respectively.

We rewrite the function F for failure detection as below:

ĉiu, ĉm = F (x, x̂, ŷ; θ) (5)

where θ represents the network parameters.

In the training stage, the supervision of network training is obtained by
computing the ground-truth confidence measure c from y and ŷ. For the ground-
truth image-level per-class IoU array ciu, we compute it by

c
(l)
iu =

|{i|ŷ(i) = l} ∩ {i|y(i) = l}|
|{i|ŷ(i) = l} ∪ {i|y(i) = l}|

, (6)

where l is the l-th semantic class in label set L. The `1 loss function L`1(c
(l)
iu , ĉ

(l)
iu )

is applied to learning this image-level per-class IoU prediction head. For the
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ground-truth pixel-level error map, we compute it by

c(i)m =

{
1 if y(i) 6= ŷ(i)

0 if y(i) = ŷ(i)
. (7)

The binary cross-entropy loss Lce(c
(i)
m , ĉ

(i)
m ) is applied to learning this pixel-level

error map prediction head. The overall loss function of failure detection L is the
sum of the above two:

L =
1

|L|

|L|∑
l

L`1(c
(l)
iu , ĉ

(l)
iu ) +

1

wh

wh∑
i

Lce(c
(i)
m , ĉ(i)m ). (8)

3.3 Anomaly Segmentation

Problem Definition The goal of anomaly segmentation is segmenting anoma-
lous objects in a test image which are unseen in the training images. Formally,
given a test image x, an anomaly segmentation method should output a confi-
dence score map ĉn ∈ [0, 1]w×h for the regions of the anomalous objects in the

image, i.e., ĉ
(i)
n = 1 and ĉ

(i)
n = 0 indicate the ith pixel belongs to an anomalous

object and an in-distribution object (the object is seen in the training images),
respectively.

Instantiation of Comparison Module As the same as failure detection, we
first train a cGAN generator G on the training images, which maps the in-
distribution object labels to realistic images. Given a semantic segmentation
model M , we feed its prediction ŷ = M(x) into G and obtain x̂ = G(ŷ). Since
ŷ only contains in-distribution object labels, x̂ also only contain in-distribution
objects. Thus, we can compare x with x̂ to find the anomalies. The pixel-wise
semantic difference of x and x̂ is a strong indicator of anomalous objects. Here,
we simply instantiate the comparison function F (·) as the cosine distance defined
on the intermediate features extracted by the segmentation model M :

ĉ(i)n = F (x, x̂;M) = 1− 〈 f iM (x)

‖f iM (x)‖2
,

f iM (x̂)

‖f iM (x̂)‖2
〉 (9)

where f iM is the feature vector at the ith pixel position outputted by the last
layer of segmentation model M and 〈·, ·〉 is the inner product of the two vectors.
Post-processing with MSP. Due to the artifacts and generalized errors of GANs,
our approach may mis-classify an in-distribution object into an anomalous object
(false positives). We use a simple post-processing to address this issue. We refine
the result by maximum softmax probability (MSP) [17], which is known as an

effective uncertainty estimation strategy: ĉ
(i)
n ← ĉ

(i)
n · 1{p(i) ≤ t} + (1 − p(i)) ·

1{p(i) > t}, where p(i) is the maximum soft-max probability at the i-th pixel
outputted by the segmentation model M , t ∈ [0, 1] is a threshold and 1{·} is the
indicator function.
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3.4 Conceptual Explanation

We give conceptual explanations of SynthCP in Fig. 4, where X and Y corre-
spond to image space and label space. Mx→y is the segmentation model and
Gy→x is a semantic-to-image generator. The left image shows when Mx→y cor-
rectly maps an image to its corresponding segmentation mask, the synthesized
image generated from Gy→x is close to the original image. However, when Mx→y

makes a failure (middle) or encounters an OOD case (right), the synthesized im-
age should be far away from the original image. As a result, the synthesized
image serves as a strong indicator for either failure detection or OOD detection.

4 Experiments

4.1 Failure Detection

Evaluation Metrics Following [38], we evaluate the performance of image-level
failure detection, i.e., per-class IoU prediction, by four metrics: MAE, STD,
P.C and S.C. MAE (mean absolute error) and its STD measure the average
error between predicted IoUs and ground-truth IoUs. P.C (Pearson correlation)
and S.C.(Spearman correlation) measures their correlation coefficients. For pixel-
level failure detection, i.e., pixel-level error map prediction, we use the metrics
in literature [7,17]: AUPR-Error, AUPR-Success, FPR at 95% TPR and
AUROC. Following [7], AUPR-Error is our main metric, which computes the
area under the Precision-Recall curve using errors as the positive class.

The Cityscapes Dataset We validate SynthCP on the Cityscapes dataset [8],
which contains 2975 high-resolution training images and 500 validation images.
As far as we know, it is the largest one for failure detection for semantic seg-
mentation.

𝒳 𝒴 𝑀𝑥→𝑦

𝐺𝑦→𝑥

Correct Failure OOD

correct mappings

correct dist.

failure or
OOD dist.
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Fig. 4. An analysis of SynthCP. Left: Mx→y correctly maps x to ŷ, resulting in small
distance between x and the synthesized x̂. However, when there are failures in ŷ (mid-
dle) or there are OOD examples in x (right), the distance between x and x̂ is larger,
given a reliable reverse mapping Gy→x.
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Baselines. We compare SynthCP to MCDropout [10], VAE alarm [38], MSP [17],
TCP [7] and “Direct Prediction”. MCDropout, MSP and TCP output pixel-level
confidence maps, serving as standard baselines for pixel-level failure prediction.
VAE alarm [38] is the state-of-the-art in image-level failure prediction method.
Following [38], we also use MCDropout to predict image-level failures. Direct
Prediction is a method that directly uses a network to predict both image-level
and pixel-level failures, by taking an image and its segmentation result as input.
Note that, Direct Prediction shares the same experimental settings (backbone
and training strategies) with SynthCP, which can be seen as an ablation study
on the effectiveness of the synthesized image x̂.

Implementation details. We use the state-of-the-art semantic-to-image cGAN -
SPADE [43] in SynthCP. We re-trained SPADE from scratch following the same
hyper-parameters as in [43] with only semantic segmentation maps as the input
(without the instance maps). The backbone of our comparison module is ResNet-
18 [15] pretrained from Image-Net. We use ImageNet pre-trained model and train
the network for 20k iterations using Adam optimizer [27] with initial learning
0.01 and β = (0.9, 0.999), which takes about 6 hours on one single Nvidia Titan
Xp GPU. Since we use a network to predict failures, we need to generate training
data for this network. A straightforward strategy is to divide the original training
set into a training subset and a validation subset, then train the segmentation
model on the training subset and test it on the validation subset. The testing
results on the validation subset can be used to train the failure predictor. We
extend this strategy by doing 4-fold cross validation on the training set. Since
the cross-validated results cover all samples in the original training set, we are
able to generate sufficient training data to train our failure prediction network.

Table 1. Experiments on the Cityscapes dataset. We detect failures in the segmen-
tation results of FCN-8 and Deeplab-v2. “SynthCP-separate” and “SynthCP-joint”
mean training the image-level and pixel-level failure detection heads in our network
separately and jointly, respectively.

FCN-8 Deeplab-v2
image-level MAE↓ STD↓ P.C.↑ S.C.↑ MAE↓ STD↓ P.C.↑ S.C.↑
MCDropout [10] 17.28 13.33 3.62 5.97 19.31 12.86 4.55 1.37
VAE alarm [38] 16.28 11.88 21.82 18.26 16.78 12.21 17.92 19.63
Direct Prediction 13.25 11.96 58.34 59.74 14.45 12.20 60.94 62.01

SynthCP-separate 11.58 11.50 64.63 65.63 13.60 12.32 62.51 63.41
SynthCP-joint 12.69 11.29 62.52 61.23 13.68 11.60 64.05 65.42

FCN-8 Deeplab-v2
pixel-level AP-Err↑ AP-Suc↑ AUC↑ FPR95↓ AP-Err↑ AP-Suc↑ AUC↑ FPR95↓
MSP [17] 50.31 99.02 91.54 25.34 48.46 99.24 92.26 24.41
MCDropout [10] 49.23 99.02 91.47 25.16 47.85 99.23 92.19 24.68
TCP [7] 48.54 98.82 90.29 32.21 45.57 98.84 89.14 36.98
Direct Prediction 52.17 99.15 92.55 22.34 48.76 99.34 92.94 21.56

SynthCP-separate 54.14 99.15 92.70 22.47 48.79 99.31 92.74 22.15
SynthCP-joint 55.53 99.18 92.92 22.47 49.99 99.34 92.98 21.69
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Image Label Segmentation Synthesis Error map Our Prediction

Fig. 5. Visualization on the Cityscapes dataset for pixel-level error map prediction
(top) and image-level per-class IoU prediction (bottom). For each example from left
to right (top), we show the original image, ground-truth label map, segmentation pre-
diction, synthesized image conditioned on the segmentation prediction, (ground-truth)
errors in the segmentation prediction and our pixel-level error prediction. The plots
(bottom) show significant correlations between the ground-truth IoU and our predicted
IoU on most of the classes.

Results. Experimental results are shown in Table 1 and visualizations are shown
in Fig. 5. We use the well-known FCN8 [41] and Deeplab-v2 [6] as the seg-
mentation models. For image-level failure detection, our approach consistently
outperforms other methods on all metrics. Results are averaged over 19 classes
for all four metrics (detailed results in supplementary). We find that VAE alarm
does not perform well 2D images of street scenes, since small objects are easily
missed in the VAE reconstruction. Without the synthesized images from the seg-
mentation results, Direct Prediction performs worse than ours despite achieving
better performance than the others.

For pixel-level failure detection, our approach achieves the state-of-the-art
performance as well, especially for AP-Error metric where our approach out-
performs other methods by a considerable margin. The comparison to Direct
Prediction demonstrates that the improvements come from the image synthesis
module in our framework. We hypothesis that TCP performs not as well because
it is mainly designed for classification and it might be hard to fit the true class
probability for dense predictions on large images in our settings. We find that
our method produces slightly more false positives than “Direct Prediction” base-
line (FPR95 is lower). We think the reason might be some correctly segmented
regions are not synthesized well by the generative model.
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We conducted another experiment to validate the generalizability on un-
seen segmentation models. We directly test our failure detection model, which
is trained on Deeplab-v2 masks, on the segmentation masks produced by FCN8.
We achieve an AUPR-Error of 53.12 for pixel-level error detection and MAE of
12.91 for image-level failure prediction. Full results are available in the supple-
mentary material. The results are comparable to those obtained by our model
trained on FCN8 segmentation model, as shown in table 1.

The Pancreatic Tumor Segmentation Dataset We also validate SynthCP
on medical images. Following VAE alarm [38], we applied SynthCP to the chal-
lenging pancreatic tumor segmentation task of Medical Segmentation Decathlon [46],
where we randomly split the 281 cases into 200 training and 81 testing. The VAE
alarm system [38] is the main competitor on this dataset. Since their approach
explored shape prior for accurate quality assessment and tumor shapes have
large variance, we expect SynthCP can outperform shape-based models or be
complementary to the VAE-based alarm model. We only compare image-level
failure detection in this dataset, because the VAE alarm system [38] is targeted
to this task and sets up standard baselines.

We use the state-of-the-art network 3D AH-Net [39] as the segmentation
model. Instead of IoU, the segmentation performance is measured by Dice coef-
ficient (DSC), a standard evaluation metric used for medical image segmentation.
Moving into 3D is challenging for SynthCP, since training 3D GANs is extremely
hard, considering the limited GPU memory and high computational costs. In
practice, we modify SPADE into 3D. Results and visualizations are shown in
Table 2 and Fig. 6 respectively. In terms of baselines, we re-implement the VAE
alarm system for a fair comparison in our settings, while the results of other
methods are quoted from [38]. SynthCP achieved comparable performances as
VAE alarm system. When combined with VAE alarm (a simple ensemble of the
predicted DSC), all of the four metric improves significantly (P.C. and S.C cor-
relation coefficient both improves by approximately 7% and 10% respectively),
illustrating SynthCP which captures label-to-image information is complemen-
tary to the shape-based VAE approach.

Table 2. Failure detection results on the pancreatic tumor segmentation dataset in
MSD [46]

tumor DSC prediction
Method MAE ↓ STD ↓ P.C. ↑ S.C. ↑
Direct Prediction 23.20 29.81 45.50 45.36
Jungo et al. [25] 26.57 29.78 -23.87 -20.23
Kwon et al. [32] 26.14 29.24 14.61 14.70
VAE alarm [38] 20.21 23.60 60.24 63.30
VAE (our imple.) 18.60 13.73 63.42 58.47

SynthCP 18.13 13.77 61.11 62.66
SynthCP + VAE 15.19 13.37 67.97 71.35
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Fig. 6. Left two: an example of pancreatic tumor segmentation (in red). Right three:
plots for tumor segmentation DSC score prediction by VAE alarm [38], SynthCP and
the ensemble of SynthCP and VAE alarm.

4.2 Anomaly Segmentation

Evaluation metrics. We use the standard metrics for OOD detection and
anomaly segmentation: area under the ROC curve (AUROC), false positive rate
at 95% recall (FPR95), and area under the precision recall curve (AUPR).

The StreetHazards Dataset We validate SynthCP on the StreetHazards
dataset of CAOS Benchmark [16]. This dataset contains 5125 training images,
1000 validation images and 1500 test images. 250 types of anomaly objects ap-
pears only in the testing images.
Baselines. Baseline approaches include MSP [17], MSP+CRF [16], Dropout [10]
and an auto-encoder (AE) based approach [2]. Except for AE, all the other three
approaches require a segmentation model to provide either softmax probability
or uncertainty estimation. AE is the only approach that requires extra training
of an auto-encoder for the images and computes pixel-wise �1 loss for anomaly
segmentation.
Implementation details. Following [16], we use two network backbones as the
segmentation models: ResNet-101 [15] and PSPNet [50]. The cGAN is also
SPADE [43] trained with the same training strategy as in Sec 3.2. The post-
processing threshold t = 0.999 is chosen for better AUPR and is discussed in
detail in the following paragraph.
Results Experimental results are shown in Table 3. SynthCP improves the previ-
ous state-of-the-art approach MSP+CRF from 6.5% to 9.3% in terms of AUPR.
Fig. 7 shows some anomaly segmentation examples.

Table 3. Anomaly segmentation results on StreetHazards dataset [16]

Method FPR95↓ AUROC↑ AUPR↑
AE [2] 91.7 66.1 2.2
Dropout [10] 79.4 69.9 7.5
MSP [17] 33.7 87.7 6.6
MSP + CRF [16] 29.9 88.1 6.5

SynthCP 28.4 88.5 9.3
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image synthesislabel segmentation 1-MSP SynthCP

Fig. 7. Visualizations on the StreetHazards dataset. For each example, from left to
right, we show the original image, ground-truth label map, segmentation prediction,
synthesized image conditioned on segmentation prediction, MSP anomaly segmentation
prediction and our anomaly segmentation prediction.

To study how much MSP post-processing contributes to SynthCP, we conduct
experiments on different thresholds of t for post-processing. As shown in Table 4,
without post-processing (t = 1.0), SynthCP achieves higher AUPR, but also
produces more false positives, resulting in degrading FPR95 and AUROC. After
pruning out false positives at high MSP positions (p(i) > 0.999), we achieved
the state-of-the-art performances under all three metrics.

Table 4. Performance change by varying post-processing threshold t

t 0.8 0.9 0.99 0.999 1.0

FPR95 ↓ 28.6 28.5 28.2 28.4 46.0
AUROC ↑ 88.3 88.4 88.6 88.5 81.9
AUPR ↑ 7.4 7.7 8.8 9.3 8.1

5 Conclusions

We present a unified framework, SynthCP, to detect failures and anomalies for
semantic segmentation, which consists of an image synthesize module and a
comparison module. We model the image synthesize module with a semantic-
to-image conditional GAN (cGAN) and train it on label-image pairs. We then
use it to reconstruct the image based on the predicted segmentation mask. The
synthesized image and the original image are fed forward to the comparison
module and output either failure detection (both image-level and pixel-level)
or the mask of anomalous objects, depending on the specific task. SynthCP
achieved the state-of-the-art performances on three challenging datasets.
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