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A B S T R A C T

Conversational virtual agents are increasingly common and popular, but modeling their
non-verbal behavior is a complex problem that remains unsolved. Gesture is a key
component of speech-accompanying behavior but is difficult to model due to its non-
deterministic and variable nature. We explore the use of a generative adversarial training
paradigm to map speech to 3D gesture motion. We define the gesture generation prob-
lem as a series of smaller sub-problems, including plausible gesture dynamics, realistic
joint configurations, and diverse and smooth motion. Each sub-problem is monitored
by separate adversaries. For the problem of enforcing realistic gesture dynamics in our
output, we train three classifiers with different levels of detail to automatically detect
gesture phases. We hand-annotate and evaluate over 3.8 hours of gesture data for this
purpose, including samples of a second speaker for comparing and validating our re-
sults. We find adversarial training to be superior to the use of a standard regression
loss and discuss the benefit of each of our training objectives. We recorded a dataset of
over 6 hours of natural, unrehearsed speech with high-quality motion capture, as well
as audio and video recording.

c© 2020 Elsevier B.V. All rights reserved.

1. Introduction1

Interactive virtual agents are becoming increasingly common2

and people may enjoy interacting with them more than even3

with realistic video-based characters [1]. However, they often4

still feel stiff and unnatural. Non-verbal behavior plays an im-5

portant role in making these agents more appealing, and co-6

speech gestures specifically are a key component for increas-7

ing user engagement [2]. Automatic generation of such gestur-8

ing behavior for given utterances is appealing due to both cost9

e-mail: yferstl@tcd.ie (Ylva Ferstl), mpneff@ucdavis.edu
(Michael Neff), ramcdonn@scss.tcd.ie (Rachel McDonnell)

factors and time constrained animation needs. Despite much 10

research in the area, automatically generating realistic gestu- 11

ral behavior remains an open problem. One of the difficulties 12

in modelling the speech-to-gesture relation is the asynchronic- 13

ity between the two channels; gesture precedes or co-incides 14

with speech but rarely follows [3], making real-time predic- 15

tion nearly impossible. A second difficulty is the highly non- 16

deterministic mapping of speech to motion. Even the same 17

speaker uttering the same phrase will likely perform different 18

gesture motions on each repetition. Gestures may also com- 19

municate information not provided explicitly through speech, 20

providing complementary, not redundant information [4, 5]. 21
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Fig. 1. Motion distribution over 2 minutes, plotted at 4 fps. For one example clip, a) shows the real data distribution, b) the distribution with our method,
c-e) examples of excluding specific training objectives, and f) the distribution for a model trained with a standard regression loss.

The non-deterministic mapping of speech to motion means1

for one utterance, multiple variations of a gesture (or no ges-2

ture at all) may be perceived as plausible by an observer. This3

presents a difficulty in training a speech-to-gesture model; even4

a plausible produced gesture may be penalized when it is nu-5

merically far from the exact gesture found in the dataset for this6

utterance. A standard regression loss in training a speech-to-7

gesture model is therefore not ideal.8

In this work, we apply two novel techniques for training a re-9

current neural network (RNN) producing gesture motion based10

on input speech. Firstly, we train a speech-input-motion-output11

RNN with a generative adversarial paradigm instead of a stan-12

dard regression loss, and we specifically use multiple adver-13

saries instead of a single one.14

Secondly, we study the phase structure of a gesture dataset15

and train a classifier to automatically detect these phases. The16

phase structure of natural gesture describes the dynamics and17

functions of motion segments within it, and can be divided into18

distinct parts: preparation, stroke, holds, and retraction. The19

expression of these phases and their sequencing may vary from20

speaker to speaker, making their labelling a difficult and at times21

ambiguous task.22

In this work, we extend Ferstl et al. [6], with additional con-23

tent regarding gesture phasing, including new results on our au-24

tomatic phase classification, with a more speaker-flexible re-25

duced phase model focusing on the stroke phase, the essential26

core of a gesture. We furthermore annotate gesture samples of27

a second speaker exhibiting a distinctly different gesture style28

in order to evaluate our automatic phase classification.29

In an adversarial training paradigm, we use the automatic30

phase labelling to extract the phase structure of real and gen-31

erated motion. Producing realistic phase structures becomes a 32

training objective of the generator, enforced by a discriminator 33

specifically designed for distinguishing phase sequences. 34

The set of training objectives further includes humanoid 35

skeleton constraints, and utterance match and diversification 36

objectives, each represented by separate discriminators. 37

Our multi-discriminator design allows the gesture generation 38

problem to be defined with multiple smaller sub-problems. We 39

discuss how each of our discriminator objectives improves the 40

final result. 41

We will first introduce the phase classifier in Section 4, be- 42

fore discussing the speech-to-gesture model in Section 5 and its 43

adversarial training in Section 7. 44

2. Related work 45

2.1. Gesture generation 46

Various methods have been proposed for generating gesture 47

from speech. Some approaches employ rule-based systems that 48

rely on explicitly defined text-to-gesture rules [7, 8, 9]. Other 49

works have used statistical modelling estimating conditional 50

probabilities for speech features co-occurring with motion fea- 51

tures [10, 11, 12]. Many animation systems have been devel- 52

oped to produce gesture motion, such as SmartBody [13, 14]; 53

while it is beyond the scope of this work to cover this area in 54

detail, recent surveys provide an overview (e.g. [15]). 55

Machine learning approaches have both been used in a fully 56

automatic manner without any need for hand annotating data 57

[16, 17, 18, 19, 20], as well as in conjunction with hand- 58

labelled, higher-level features such as gestural signs [21]. 59

Recent work has explored recurrent networks for speech- 60

to-gesture generation for English [22] and Japanese speech 61
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[23, 24]. Such a network uses recurrent connections between1

network activations at consecutive time-steps to model data2

with temporal dependencies. Recurrent networks can, for ex-3

ample, capture the dynamics of a motion pattern well and have4

been successfully employed for human motion modelling tasks5

[25, 26]. However, recurrent networks trained with a stan-6

dard error function tend to suffer from mean pose convergence,7

where longer term motion sequences quickly regress to the av-8

erage pose (such as in Martinez et al. [27] and Jain et al. [28]).9

This may be due to error accumulation when feeding generated10

output back into the network [29], resulting in damped motion11

that may look constrained and unrealistic. Generative adver-12

sarial networks (GANs) have been proposed as one alternative13

training paradigm. Here, instead of minimizing a standard error14

function such as the mean squared error (MSE) of joint posi-15

tions or angles, the model’s objective is to produce output that16

is qualitatively similar to real data, as judged by another model,17

the discriminator, that is trained simultaneously in conjunction18

with the generator. GANs have been successful in human mo-19

tion modelling tasks [30, 31], as well as in a head motion from20

speech generation task [32].21

Recent work proposed a convolutional network combining a22

standard L1 regression loss with an adversarial discriminator23

for predicting 2D gesture motion from speech [33]. The au-24

thors represent audio visually as a spectrogram, which is then25

encoded by an audio encoder and subsequently processed by a26

UNet translation architecture [34]. The authors created a large27

dataset of over 140 hours of 2D pose keypoints extracted from28

YouTube videos of 10 speakers. (This work and dataset was not29

yet available at the time of our work). The speakers are profes-30

sional performers, such as John Oliver (Last Week Tonight) and31

Seth Meyers (Late Night with Seth Meyers), producing largely32

rehearsed speech and generally producing a relatively small set33

of clear gesture motions. Their speaker-specific models gen-34

erate sequences rated equally good as mismatched real gesture35

samples, as measured by the rate it fooled human participants.36

The failure to surpass random real motion is an indication of the37

difficulty of the speech-to-gesture task. In our work, we focus38

on a different type of gesture motion, namely spontaneous, con- 39

versational speech gestures that appear more diverse and quali- 40

tatively different from the distinct gestures usually seen for pro- 41

fessional performers (refer e.g. to John Oliver’s performances 42

in Last Week Tonight). 43

2.2. Gesture phase 44

Natural gesture behavior consists of phases with qualitatively 45

different dynamic characteristics [35] and these phases occur in 46

specific patterns [36]. In the preparation phase, the hands are 47

moved into position for the gesture. The stroke is the expres- 48

sive phase of a gesture and has the most focused energy; it is an 49

“accented movement” with Effort in the sense of Laban [36], 50

conveying a sense of intention and meaning of the motion. It is 51

the main meaning-carrying movement of the gesture, often de- 52

scribing a specific shape that relates to the accompanying verbal 53

phrase [3]. The retraction moves the limbs back into a restful 54

position (an incomplete retraction is noted as a partial retrac- 55

tion). Holds are segments with zero velocity and may occur 56

before or after the stroke [37]. All phases are optional except 57

the stroke. 58

We aim to capture these specific dynamic phases in our ges- 59

ture generation system. While these phases are present in any 60

natural gesture data, capturing the phase structure implicitly 61

would arguably require a large dataset. Instead, we explicitly 62

segment the phase structure of gesture motion. 63

Segmenting gesture motion into its phases is non-trivial and 64

in many cases requires subjective judgment. Hence the la- 65

belling process cannot be seen as deterministic and 100% ac- 66

curacy is unlikely, or even impossible. Often, gesture phases 67

can be straightforward to identify, but in other cases, it may be 68

more difficult. This tends to occur when one stroke goes di- 69

rectly into another or if a stroke starts from a retract position. 70

Consider for example the ambiguous example of a gesture se- 71

quence in Figure 2, where both step (1) and (3) are considered 72

a stroke phase: One could consider the motion to the middle 73

transition frame (2) either a partial-retract of the first stroke in 74

(1) or a preparation for the second stroke in (3). 75

Different, automatic gesture phase annotation methods have 76
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Fig. 2. Ambiguity in gesture sequence labelling. If steps (1) and (3) are each
considered a gesture stroke, the motion to the transition step (2) may be
labelled as either a partial-retract of the preceding stroke or a preparation
phase for the following stroke.

been proposed, including the use of support vector machines1

[38] and hidden Markov models [39, 40]. One limiting factor2

in training phase models is obtaining labelled data; segmenting3

just one minute of video into gesture phases may take one hour4

or more of work (e.g. [10]). Previous work has therefore often5

focused on simpler sub-problems of detecting whether one spe-6

cific phase is occurring (e.g. detection only of gesture strokes),7

or whether a gesture is being performed at all [40, 41, 42].8

Another difficulty in automatic phase detection is the differ-9

ence in phase structure as well as phase expression between10

speakers and even within speaker. Phase structure differences11

can include overall gesture rate as well as differences in the12

distribution of phases; for example, one speaker may regularly13

produce two or more gesture strokes before returning to a rest14

position, while another speaker may average just one stroke be-15

fore returning to rest [43]. Phase expression such as the stroke16

velocity profile can vary not only from speaker to speaker, but17

also between recordings of the same speaker [38]. This vari-18

ability makes the task of automatic classification challenging,19

and, for a new, unseen speaker, particularly error-prone. Never-20

theless, we consider even imperfect phase labelling a useful and21

reasonable way to explicitly describe different motion profiles22

present within a gesture, separating effortful, accented gesture23

strokes from less accentuated preparation and retraction as well24

as still hold phases. In this work, we focus on modelling just25

one speaker and his gesture dynamics to maximise training con-26

sistency of gesture dynamics in the training set.27

3. Dataset28

We recorded a high-quality dataset of natural speech and 3D29

motion specifically for the purpose of this work. We used a30

single male actor for the complete recording. The actor is a31

native English speaker producing spontaneous conversational 32

speech without interruptions, i.e., without verbal cues from a 33

conversation partner. The actor was free to choose any topic 34

in his speech but mostly covered personal stories and sports. 35

We chose an actor with naturally frequent gesturing behavior, 36

but he was unaware of the purpose of the recording. The actor 37

addressed a person situated behind the camera in order to give 38

him the visual feedback of a conversation partner. We recorded 39

25 takes, ranging between 10 and 20 minutes each, totalling 40

over 370 minutes (more than 6 hours) of data. The actor’s mo- 41

tion was captured with a 59 marker setup and 20 Vicon cameras 42

at 120 fps (frames per second). Audio was recorded at 44 kHz. 43

Video was captured with two cameras, one capturing a full body 44

shot and the second camera capturing a higher-quality close-up 45

shot of the face and parts of the upper body. 46

Fig. 3. Capture setup and location of joints. The 16 red markings indicate
the joints used for the gesture phase classification. The five green markings
indicate the spinal joints added to the joint set for gesture motion predic-
tion.

3.1. Data pre-pocessing 47

We process the recorded speech with openSMILE [44] to ex- 48

tract 26 Mel Frequency Cepstral Coefficients (MFCCs), as well 49

as the F0 (pitch) value. MFCCs are commonly used in speech 50

recognition tasks and the F0 value as a prosodic feature carries 51

information about emphasis. Speech features are extracted with 52

a window size of 20 ms at steps of 10 ms, resulting in data of 53

100 fps. 54

We down-sample the motion capture data from 120 to 100 55

fps to match the speech features. We center and lock the root 56

node of the motion clips to the origin position with zero rotation 57

and then extract the absolute positional values of the captured 58

joints. Our actor remains fairly static in his lower body and 59
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we are therefore able to capture most of his dynamics from the1

joints upward of the locked root.2

We normalize all speech and joint position features to zero3

mean and unit variance. We train all models on 20 fps; in order4

not to lose data, we take 20 fps data from 5 subsequent starting5

positions, resulting in 5 sets of 20 fps data.6

3.2. Gesture phase annotation7

We annotated the phase structure of a subset of 226 minutes8

of the complete dataset using the ANVIL annotation tool [45].9

The 226 minutes were selected at random from the dataset. We10

aimed to annotate as much of our dataset as possible while en-11

suring annotation quality. For this purpose, we trained six an-12

notators whose work was then repeatedly cross-checked at the13

start, before each annotator was assigned separate data clips.14

We annotated nine different gesture phases; (1) preparation, (2)15

stroke, (3) pre-hold, (4) hold, (5) independent hold, (6) rest16

hold, (7) partial retract, (8) retract, and (9) ‘none’. Table 117

shows the frequency of each phase within the annotated data18

subset. Pre-hold and hold occur before and after the gesture,19

respectively. Independent hold occurs when a gesture has no20

stroke, but is defined by a held pose. Rest hold occurs when the21

hands are held in a relaxed position after a partial retract, with-22

out being fully retracted to the sides of the body. None occurs23

when no gesture is being performed; the arms are either fully24

retracted to the sides of the body or a no-gesture movement such25

as a self-adaptor is occurring.26

Our speaker performs on average 38.1 gesture strokes per27

minute, or one gesture every 1.6 seconds. Assuming roughly28

the same gesture frequency in the remaining un-annotated 14029

minutes of data, we estimate that our dataset contains approxi-30

mately 14,000 gestures.31

We computed pairwise coder agreement with ANVIL [45]32

by double-annotating five samples totalling 50 minutes of33

data, each with a different annotator combination. We found34

high segmentation agreement, averaging 98.5% (min=95.5%,35

max=99.9%), indicating high consistency in detecting phase36

boundaries. For the overall coding agreement that includes37

segment (or phase) labels, we achieved moderate agreement38

as defined by Krippendorff’s alpha value [46], with a mean of 39

ᾱ = 0.46 (αmin = 0.39, αmax = 0.5). As we pool all hold cat- 40

egories for the phase classifier in Section 4, we compare Krip- 41

pendorff’s alpha value for the case of treating post-stroke holds, 42

pre-holds, rest-holds and independent holds all as a uniform 43

hold category: ᾱ = 0.47, αmin = 0.43, αmax = 0.53. 44

In order to evaluate the robustness of our automatic phase 45

classification in Section 4, we annotated a short sample of ges- 46

turing of a second speaker. For this, we took samples of just un- 47

der 5 minutes of data from the Trinity Speech-Gesture dataset 48

[22]. This sample was not included in the training set and only 49

used for evaluation. The speaker in the Trinity Speech-Gesture 50

dataset exhibits a qualitatively very different gesturing style to 51

that of the speaker in this work, visualized in the supplemen- 52

tal video. This speaker often incorporates the whole body in a 53

gesture and rarely stands still. This means that extracting the 54

motion of the upper body joints does not fully describe the per- 55

formed gesture, some information will be lost. Hold phases 56

mark another observable difference between our speaker and 57

the Trinity Speech-Gesture dataset; whereas holds tend to be 58

associated with minimal movement in our speaker, the Trinity 59

Speech-Gesture speaker’s holds appear overall less still, with 60

the speaker in seemingly constant motion. 61

Our annotated sample of the Trinity Speech-Gesture dataset 62

suggest a similar gesture stroke frequency as in our database; 63

we calculate 33.6 gesture strokes per minute. We annotated 64

160 strokes in this sample. All annotated phase frequencies are 65

reported and compared to our speaker in Table 1. 66

An example of an annotated gesture sequence is given in Fig- 67

ure 4. 68

4. Phase classifier 69

Modelling gesture motion from speech directly is a hard 70

problem. As described in Section 1, the same phrase may 71

be plausibly accompanied by many different gesture shapes. 72

Speech features may be more easily associated with the dy- 73

namics of gesture motion; the kinematics of gestures (e.g., 74

speed and acceleration) have been shown to correlate with the 75
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Fig. 4. Sample of an annotated gesture sequence. For each annotated gesture phase, the speaker’s accompanying phrase is given. (1) The hands start in
a resting position. (2) The preparation phase brings the hands into position for the gesture. (3) The stroke phase carries the meaning of the gesture (the
act of giving). (4) The hands stay in position, the speaker pauses for a moment. (5) The hands are retracted partially towards a restful position. (6) A new
preparation phase immediately initializes the next gesture. (7) Another gesture stroke is performed, describing “more”.

Table 1. Frequency of the 9 annotated phases in the total annotation set of 226 minutes.

Gesture phase Number of occurrences Percent of annotated time
Our speaker TSG speaker Our speaker TSG speaker

Preparation 5775 130 19.1% 14.9%
Pre-hold 979 17 3.2% 1.6%
Stroke 8655 160 39.6% 28.5%
Hold 5100 110 24.8% 26.1%
Independent hold 94 3 0.8% 0.7 %
Rest hold 474 27 3.1% 10.3%
Partial retract 1077 48 3.8% 6.5%
Retract 409 13 1.3% 2.1%
‘None’ 475 14 4.2% 9.3%
Total 23038 522 100% 100%

prosodic features of speech [47]. However, implicitly inferring1

gesture dynamics from raw positional data may be difficult and2

require a large amount of data. We therefore model these dy-3

namics explicitly. Namely, we extract gesture phases as higher-4

level representation of the characteristic dynamics of gesture5

motion. This representation is sufficiently low-dimensional6

(small set of different labels) to model its structure from a rela-7

tively small dataset. We hand-annotated the phase structure of8

3.75 hours of data (as described in Section 3.2) and trained a9

classifier to detect gesture phases of a motion sequence. Our10

objective is to use this phase classification to enforce a realistic11

phase structure in the gesture generator’s output. A classifier12

is necessary so that any new (un-annotated) motion can be seg-13

mented into phases and judged for its structural realism. After14

training the classifier on the annotated data subset, we never15

use the true hand-annotated phase labels, we always use the 16

phase labels determined by the classifier and the full dataset. 17

An overview of the phase classifier’s role in the final architec- 18

ture is shown in Figure 5, and will be discussed in more detail 19

in Section 7.1. 20

Fig. 5. Overview of the system architecture. The generator receives speech
features and produces gesture motion. The multi-discriminator GAN re-
ceives three different types of input: (1) the speech features belonging to a
motion segment, (2) a motion segment (real or generated), and (3) the phase
structure of the motion segment (determined by the phase classifier).

We furthermore train a robust 1-phase classifier for gesture 21
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stroke detection as a useful tool for future gesture analysis. The1

stroke phase represents the core, meaning-carrying part of a2

gesture, and hence its segmentation is essential for gesture form3

analysis.4

We validate all phase classification models on a second5

speaker with different gesture style.6

4.1. Method7

The classifier assigns one phase label to each time-step of an8

input sequence. For training the classifier, we reduce the anno-9

tated gesture phase label set from nine to six classes that capture10

the main phase types by combining all types of holds into one11

class. This reduces the problem of unbalanced class frequen-12

cies (e.g. only 94 independent holds out of 23,038 phases), as13

well as removing some redundant information (e.g. a hold oc-14

curring between preparation and stroke can be assumed to be15

a pre-hold; a hold after a partial-retract is a rest-hold). Hence,16

we combine the labels ‘pre-hold’, ‘hold’, ‘independent hold’17

and ‘rest hold’ into a super-class ‘hold’. In effect, this simpli-18

fies the classification task by labelling all still frame sequences19

(sections with close-to-zero joint velocities) as one class, with20

the exception of the completely retracted ‘none’ position where21

the arms are relaxed by the side of the body. As discussed later,22

the partial-retract phase proved difficult to classify, so for train-23

ing our generative network, we decided to combine it with the24

retract class, and due to its rarity we furthermore combine the25

fully retracted ‘none’ class into the retract group. For our ad-26

versarial training we therefore have four phase classes: Prepa-27

ration, holds (including pre-holds, independent holds, and rest-28

holds), strokes, and ‘other’. The ‘other’ class combines retracts,29

partial retracts, and ‘none’ annotations. We believe this sub-30

set captures the most essential dynamics of gesture motion; we31

consider holds and strokes the most important representatives of32

gesture dynamics and their separation tends to get lost in stan-33

dard training of recurrent networks (mean pose convergence34

leading to smoothed, damped motion). Second, we separate35

the preparation phase due to its high frequency and relevance36

in the gesture structure. Retracts are relatively infrequent for37

our speaker, as is the ‘none’ phase (completely retracted po-38

sition); we decided to pool these classes together to make for 39

a higher confidence model and a more achievable task for the 40

gesture generator. The phase labels produced by the classifier 41

are used as pseudo ground-truth during adversarial training, and 42

we therefore need the classifier to be as confident as possible in 43

its decisions. 44

4.2. Network architecture and training 45

The classifier processes sequences of 100 time steps (5 sec- 46

onds at 20 fps), and assigns a phase label to each step. The 47

input of the classifier are the x, y and z directional velocities 48

of 16 joints (total of 48 values), corresponding to the shoulder, 49

elbow, wrist, and each fingertip, as well as the corresponding 50

pitch value. The pitch value captures information about speech 51

emphasis and using a single speech feature ensures we are not 52

increasing the input space significantly and hence minimize the 53

network’s ability to overfit. Including pitch improves our classi- 54

fication scores (see Table 2), in line with the finding that speech 55

is associated with gesture phase [48]. 56

The network is visualized in more detail in Figure 6, but gen- 57

erally consists of a two-layer recurrent network with an addi- 58

tional densely connected NN (neural network) layer for input 59

processing. The recurrent layers are Long Short Term Memory 60

(LSTM) cells; specifically, a unidirectional LSTM in the first 61

recurrent layer, and a bidirectional LSTM in the second recur- 62

rent layer. LSTM cells can handle sequential data, such as time 63

series data, and bidirectional LSTMs specifically take both past 64

and future data into account for predicting a time step. We reg- 65

ularize the network by applying dropout after each layer and 66

batch normalization before the final output. Dropout rates are 67

empirically determined to provide good performance without 68

overfitting. 69

Of our total of 226 minutes of annotated data, we separate 70

6.5 minutes of validation data by randomly selecting 13 start 71

indices from which to take 30 seconds of data without over- 72

lap. Composing the validation data of snippets from multiple 73

takes this way ensures that the validation performance is not 74

annotator- or take-specific. The remaining annotations serve as 75

training data. 76
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We trained three classification models for segmenting ges-1

ture. Firstly, we train a 6-class model distinguishing all an-2

notated phases (pooling all hold categories), second, a 4-class3

classifier pooling rare phases into an ‘other’ class, and third, a4

1-class model for detecting only the core stroke phase with in-5

creased confidence. For the two multi-phase models, we train a6

version each with and without speech pitch input; the network7

details are visualized in Figure 6. For the stroke classifier, we8

predict a single class, the stroke phase, which is the essential9

phase in gesture. This allows for more confident classification10

when dealing with different speaker styles, extending the ap-11

plicability of this work. The stroke classifier is visualized in12

Figure 7. The output layer applies a softmax activation in the13

case of the 4- and 6-class model, and a sigmoid activation in14

the single-class stroke classifier. The differences in network15

architecture between the 3 classifiers results from empirically16

finding the best performing configuration for each number of17

classes. The number and size of recurrent layers was chosen18

based on the best found trade-off between modelling capacity19

and generalizability, i.e. reaching good performance without20

overfitting.21

Fig. 6. The two detailed network configurations for our 4-phase classifier
and our 6-phase classifier. ‘Dense’ denotes a standard densely connected
NN layer. In brackets are denoted the layer size or the dropout ratio. The
48 joint values refer to the x, y, and z offsets of the 16 joints shown in Figure
3.

Fig. 7. The network configurations for our 1-phase (stroke) classifier.

4.3. Results 22

4.3.1. Multi-phase classifiers 23

The multi-phase classifiers reach an overall weighted F-score 24

of 0.76 for both the 4-class and the 6-class model. The detailed 25

results can be seen in Table 2. The stroke and hold phases reach 26

the highest scores; this is likely due to both their distinct dy- 27

namics as well as their high frequency in the training set (see 28

Table 1). Lower frequency phases with less distinct dynam- 29

ics, such as partial retracts, are more difficult to detect. Fur- 30

thermore, partial-retracts and preparation phases both average 31

a length of less than 500 ms, making them potentially harder 32

to catch as well as align; at our training sample rate of 20 fps, 33

a prediction with just one frame of erroneous shift would only 34

yield an 80% score. Notably, the annotated phase labels are 35

only pseudo ground truth, as determined by an annotator, re- 36

sulting in some inconsistencies and errors. Inter-rater category 37

agreement for our evaluation samples averages 64.4%, capping 38

the realistically achievable score for the phase classifier. 39

Since the input is always a sequence of 5 seconds from a ran- 40

domly drawn starting point, the classifier has limited context 41

information for predicting the phase label of a time step. Pro- 42

viding the label of the phase preceding a sequence or increasing 43

sequence length may improve classification results. 44

Validating our classifiers on the annotated sample of the Trin- 45

ity Speech-Gesture dataset (denoted as ‘TSG speaker’), the 4- 46

class model proves more robust with an F-score of 0.69. The 6- 47

class model reaches a score of 0.65, with the weakness lying in 48

the less common classes, particularly partial-retract. The most 49

confidently predicted class throughout all model versions and 50

across both speakers is the ‘hold’ class; this may be the easiest 51

class to extract as it contains almost all sections of zero veloc- 52

ity. Possible exceptions are the no-gesture sections annotated 53

as ‘none’, though our speaker tends to swing his arms during 54

these and indeed not stay still. 55

We compare results for the two multi-phase classification 56

models (4-class and 6-class), with and without speech pitch in- 57

put (Table 2). The benefit of including pitch in the input to 58

the classifier is more pronounced for the 6-class model, where 59

all individual scores except ‘partial retract’ are improved by in- 60
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cluding pitch, as well as showing an improvement of 0.03 in the1

overall weighted F-score. For the 4-class model, the individ-2

ual class scores improve (all except stroke) or remain the same3

(stroke), but the weighted overall F remains the same when in-4

cluding pitch as input. We also report the performance of the5

no-pitch models on the second speaker. No benefit is apparent6

for including pitch of the second speaker; this may be due to7

the articulation differences between the training and the valida-8

tion speaker and using the pitch derivative instead could address9

this.10

We compare our results with the work of Madeo et al. [38]11

(Figure 2), who employ a hierarchical strategy of single-class12

classifiers, where e.g. a hold classifier first detects all holds,13

subsequently a stroke classifier detects all strokes in the re-14

maining data, etc. Their results represent the best scores across15

multiple models rather than a single model encompassing all16

gesture classes. That is, they trained combinations of single-17

class classifiers and the here reported results represent the high-18

est scores for each class across combinations. For example,19

the model achieving the score of 0.79 for detecting a prepa-20

ration phase is not the same model that achieves the score of21

0.79 for stroke detection. Another significant difference to our22

work lies in the dataset composition; Madeo et al. [38] restrict23

the two captured participants to describing one of three comic24

strips. Their results indicate high dependence of performance25

on the comic story the classifiers were trained on (significantly26

reduced performance when training and test data were taken27

from different comic strip retelllings), as well as on which par-28

ticipant a classifier was trained on. As our dataset was captured29

across multiple days, with a large variety of spontaneous, un-30

cued gestures, the performance of the classifiers presented in31

Madeo et al. [38] would likely not be adequate for this work.32

4.3.2. Stroke classifier33

The stroke classifier reaches a weighted average F-score of34

0.83 on the speaker it has been trained on (our speaker), and35

a score of 0.82 on the validation speaker. Inter-coder category36

agreement for the case of stroke/ no stroke is naturally higher37

than for the full set of gesture phases, averaging 74.3%. In-38

terestingly, it can be seen that the stroke classification score 39

(first line in Table 3) is the same as in the 4-class model, reach- 40

ing 0.79 for the training set speaker, and 0.72 for the valida- 41

tion speaker (the 6-class model coming very close with 0.78 42

and 0.71, respectively), suggesting that we may be reaching the 43

maximum score possible with an imperfect training set. The 44

higher phase label consistency of the stroke training set may 45

therefore be the main reason for the more robust classification. 46

4.4. Discussion 47

Looking at the relationship between the achieved F-scores 48

and the inter-rater category agreement, we hypothesize that im- 49

proving coder agreement would much improve classification re- 50

sults. We believe future improvements on the phase classifica- 51

tion should focus on improving the training data consistency 52

rather than the classification model. 53

The robust classification score of the stroke classifier for both 54

our speaker as well as the validation speaker makes it a good 55

tool for future gesture analysis. As the stroke phase represents 56

the essential, meaning-carrying part of a gesture, stroke seg- 57

mentation is useful for additional information extraction such 58

as gesture form detection. 59

It is less straightforward to train a classifier for other single 60

phase types, as was done with the stroke present/ not present 61

classifier. Since other phases occur less often across the training 62

set, splitting our dataset into e.g. preparation/ no preparation 63

would result in about a 1:5 ratio. Such unbalanced classifiers 64

are more difficult to train, requiring a weighted loss function or 65

an adapted (balanced) dataset (the latter resulting in a smaller 66

training dataset). 67

‘Hold’ predictions may be more easily segmented by sim- 68

ply computing sections of close to zero velocity, and this could 69

aid additional segmentation by an annotator as well as increase 70

inter-coder consistency. 71

5. Gesture generator 72

The gesture generator is the core of our system and mod- 73

els the speech-to-gesture translation. The generator receives 74
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Table 2. F-scores of phase classifier. Results without pitch input are reported in brackets behind the results with pitch input. Our ‘other’ class combines the
labels retract, partial retract, and none. The results denoted as TSG correspond to our validation speaker taken from the Trinity Speech-Gesture dataset.

Gesture phase 4 classes 4 classes
TSG speaker

6 classes 6 classes
TSG speaker

F-score
Madeo et al. [38]

Preparation 0.64 (0.63) 0.56 (0.55) 0.65 (0.64) 0.56 (0.51) 0.79
Stroke 0.79 (0.79) 0.72 (0.7) 0.79 (0.78) 0.71 (0.71) 0.79
Hold 0.83 (0.82) 0.76 (0.76) 0.81 (0.78) 0.74 (0.77) 0.58
Partial retract - - 0.47 (0.49) 0.39 (0.35) -
Retract - - 0.73 (0.70) 0.54 (0.52) 0.5
‘None’ - - 0.75 (0.56) 0.51 (0.59) -
‘Other’ 0.64 (0.6) 0.58 (0.54) - - -
Overall 0.76 (0.76) 0.69 (0.67) 0.76 (0.73) 0.65 (0.66)

Table 3. F-scores of the stroke classifier.

Gesture phase Our speaker TSG speaker
Stroke 0.79 0.72
No stroke 0.85 0.86
Overall 0.83 0.82

speech features as input and produces the positions of the 211

joints shown in Figure 3.2

5.1. Generator architecture3

The generator receives 27 speech features as input, composed4

of 26 MFCC values and the speech pitch (F0) value. The gen-5

erator then infers the x, y, and z positions of 21 joints: the hand,6

arm, and spine joints depicted in Figure 3.7

The generator architecture is visualized in Figure 8. The8

speech input is processed by a densely connected NN layer (size9

256, relu activation), followed by a dropout layer (30% during10

pre-training, 20% during adversarial training) and batch nor-11

malization. The network core is a Gated Recurrent Unit (GRU,12

size 256, dropout of 50% during pre-training and 20% during13

adversarial training). A GRU is a variant of a recurrent network14

cell with fewer parameters than an LSTM, allowing faster train-15

ing. The output layer (densely connected NN layer with linear16

activation) of the generator produces the x, y and z position of17

21 joints.18

During pre-training (described in the below Section 5.2), the19

dropout rate is larger due to the MSE function used in pre-20

training posing a high probability of overfitting. The MSE gives21

the generator direct feedback on how far each predicted pose is22

from the ground truth. During later multi-adversarial training, 23

the generator receives less direct output feedback and is there- 24

fore less likely to be able to overfit on the dataset. The adver- 25

sarial loss merely tells the generator the likelihood of the dis- 26

criminator(s) finding its output to be real data, without per-pose 27

numerical error feedback.

Fig. 8. The generator network. The generator receives 27 prosodic speech
features (26 MFCCs + F0) and produces the xyz position of 21 joints. In
brackets are denoted the layer size or the dropout ratio; the larger dropout
ratios apply to pre-training with MSE.

28

5.2. Generator pre-training 29

During later adversarial training (Section 7.1), the generator 30

will receive feedback based on the phase structure of its mo- 31

tion output. This phase structure will be determined by the 32

phase classifier previously described in Section 4. The auto- 33

matic phase classification means that no matter what input, a 34

phase label will be assigned to each time-step. Data points di- 35

verging from a skeleton structure and not resembling human 36

motion may get assigned an indeterminable phase label. We do 37

not want very unrealistic data to be assigned a potentially realis- 38

tic phase labelling. This could allow for the following scenario: 39

the generator generates effectively noise, the classifier produces 40

a realistic phase structure based on this, the generator receives 41
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positive feedback for having produced motion with a realistic1

phase structure. We therefore first ensure a quality baseline of2

generator output that can reasonably be assigned phase labels3

by the phase classifier. Hence, before adversarial training, we4

initialize the generator to a baseline output resembling a skele-5

ton structure.6

We pre-train the generator with a standard mean squared er-7

ror (MSE) loss of generated versus real motion:8

MS E(mg,mr) =
1
T

T∑
t=1

(mg − mr)2 (1)

MSE training allows for fast convergence towards a skeleton9

structure, but as expected, this training suffers from mean pose10

convergence and produces only very damped motions around11

the average joint positions. This is visualized in Figure 1f, as12

well as in the supplemental video. We use this model as the13

starting point for the adversarial training, and utilize the training14

history for pre-training the phase discriminator as described in15

Section 6.1.16

Fig. 9. Network architecture of the adversaries. Left: Phase, motion, and
displacement discriminators. Right: Minibatch discriminator. All discrim-
inators apply input transformation via a standard densely connected NN
layer. (The minibatch layer applies Equation 2 before the input transfor-
mation.) Dropout is applied subsequently, followed by a recurrent unit
(left) or another densely connected NN layer (right). The output layer ap-
plies a sigmoid activation.

6. Adversaries17

A training objective with a standard regression loss can be18

problematic for gesture generation due to the variability of19

speech gesture. The same or a similar utterance may reason-20

ably be associated with various different gestures; the generator21

may produce a subjectively valid gesture that is nonetheless ob-22

jectively far from the ground-truth pose sequence, resulting in a23

high training error. A common result is mean pose convergence, 24

where the generator produces damped motion around the mean, 25

minimizing error across all possibilities. Our adversarial train- 26

ing paradigm removes the tight constraint of predicting exact 27

poses while still enforcing higher-level descriptors of natural 28

gesture, as well as lower-level humanoid skeleton configuration 29

constraints. 30

Specifically, in an adversarial training paradigm, the genera- 31

tor receives as feedback only a single value per generated ges- 32

ture sequence, representing the decision of the discriminator 33

whether the presented sequence looks real or not. Therefore, 34

rather than receiving a numerical error for every pose in a se- 35

quence as is the case in a standard regression loss, the generator 36

receives a single, more qualitative judgement about the entire 37

pose sequence. 38

Our chosen descriptors of natural gesture can be summarized 39

as three basic objectives: (1) The generator should produce se- 40

quences of joint positions that represent valid human skeleton 41

configurations. (2) The produced pose sequences should de- 42

scribe realistic gesture dynamics, including distinct phases of 43

e.g. acceleration as well as stillness. (3) The output pose se- 44

quences should be appropriate with respect to the speech they 45

accompany. With this selection of objectives, we aim to ensure 46

that our output can both be considered speech gesture (valid 47

human skeleton moving according to speech), as well as ad- 48

dressing the problems in previous works of overly smooth or 49

lethargic motion, by explicitly enforcing some characteristics 50

of gesture motion dynamics. 51

In this Section, we will discuss how we represent the above 52

output objectives with a set of training adversaries, called dis- 53

criminators, each enforcing a different part of the objectives. 54

Each discriminator is a separate neural network, with its own 55

training loss feedback. Their architectures are detailed in Fig- 56

ure 9; we will describe each discriminator one-by-one below. 57

6.1. Phase structure discriminator 58

The phase discriminator’s job is to determine whether the 59

generator’s output follows a realistic gesture phase structure. 60

This discriminator therefore only receives phase labels as input 61
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rather than joint positions. We additionally provide the phase1

discriminator with the pitch value at each time-step as an in-2

dicator of speech emphasis. The network architecture of the3

phase discriminator is detailed in Figure 9a.4

Phase labels are always determined by the phase classifier;5

that is, we never use the ground truth annotation during adver-6

sarial training. This ensures that any differences in the phase7

structure of real and generated data is not due to potentially8

noisy automatic classification. As the phase labels are auto-9

matically determined by the phase classifier, we want to ensure10

somewhat sensible input to the classifier, i.e. input resembling11

human motion. We utilize the training history of the generator’s12

pre-training to prepare the phase discriminator. The training13

history of the generator are the generator weights saved peri-14

odically during its pre-training described in Section 5.2. The15

phase discriminator’s pre-training utilizes this as follows: The16

phase discriminator receives the classified phase labelling of17

an untrained generator (i.e. noise input). When the phase dis-18

criminator achieves an accuracy score of at least 70% for three19

batches in a row, the generator gets ‘upgraded’ with the next20

set of weights from the training history. This is repeated un-21

til the phase discriminator has reached the weights level of the22

fully pre-trained generator. This step-by-step upgrading of the23

generator’s weights serves to not overwhelm the discriminator24

during pre-training.25

6.2. Motion realism discriminator26

Adversarial training between the generator and the phase dis-27

criminator alone will quickly lead to divergence from the skele-28

ton structure due to the phase discriminator only judging the au-29

tomatically classified phase labels. As described in Section 5.2,30

the phase classifier may assign a realistic phase structure to un-31

realistic input; when the generator is judged solely on this phase32

structure, it may receive positive discriminator feedback for en-33

tirely unrealistic output and we found this to lead to increas-34

ing divergence from skeleton-like joint positions. To address35

this problem, we employ a second discriminator that judges the36

output of the generator directly by receiving the raw generated37

joint positions, as well as the corresponding audio features. The38

63 joint values (x, y, z of 21 joints) and 27 speech features are 39

passed into the network architecture detailed in Figure 9a. 40

The motion realism discriminator is pre-trained in a classic 41

adversarial training setting with a new generator in order to 42

learn to detect unrealistic point clouds not resembling a skele- 43

ton. This is necessary in order to not allow the already pre- 44

trained generator to regress to non-humanoid point clouds. 45

6.3. Minibatch discriminator 46

Adversarial training is prone to suffering from mode col- 47

lapse, where the generator produces repetitive patterns of out- 48

put. While the discriminator can immediately learn that this 49

specific pattern comes from the generator, the generator only 50

needs to shift its repetitive output slightly to fool the discrimi- 51

nator. This may be repeated in an infinite cat and mouse game. 52

One reason for this mode collapse is that a standard discrim- 53

inator only judges one output sequence at a time, rather than 54

in the context of a whole batch of data. A minibatch layer can 55

be added to allow the discriminator to see this context and en- 56

sure that the generator cannot get away with even novel patterns 57

when they are repetitive throughout the data batch [49]. 58

Instead of integrating minibatch discrimination into the mo-

tion realism discriminator, we achieved better performance

when outsourcing the task to a separate discriminator. This dis-

criminator receives 63 joint values (x,y,z of 21 joints) generated

by the generator or taken from the ground truth and calculates

a minibatch similarity measure:

sim(X) = L1(W · X), (2)

where L1 denotes the L1 norm and W is a 300-dimensional 59

(trainable) weight tensor. The detailed architecture of the mini- 60

batch discriminator is shown in Figure 9b. 61

6.4. Displacement discriminator 62

The generator’s output at the beginning of adversarial train- 63

ing is the damped motion learned from the MSE pre-training. 64

To encourage the generator towards less damped motion, we 65

introduce a displacement discriminator that receives the same 66

motion input as the phase classifier, namely the per-frame x, 67

y, and z offset of the 16 arm joints (48 values). That is, the 68
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displacement discriminator explicitly sees how much each joint1

has moved at each time-step; it can penalize a generator that2

produces very slow (or very fast) motion. In effect, the dis-3

placement discriminator judges the directional velocity of the4

generated joint positions. The displacement discriminator also5

serves to reduce jitter in the motion (offset in one direction al-6

ways followed by some offset to opposite direction).7

The error from this discriminator receives a lesser weight and8

serves as a minor side objective of the generator training, help-9

ing to stabilize and speed up convergence and smooth output10

motion. The architecture of the displacement discriminator fol-11

lows that of the motion realism discriminator and is visualized12

in Figure 9a.13

7. Training process14

During adversarial training, the generator’s output is judged15

by all discriminators and an averaged error is computed, as de-16

tailed in Section 7.1 below. This is followed by a training step of17

objective numerical errors. The objective error functions speed18

up convergence and enable continuous prediction, as described19

in Section 7.2.20

7.1. Adversarial training21

The adversarial training is visualized in Figure 10 and sum-22

marized below:23

• The generator receives 27 prosodic speech features as in-24

put and generates corresponding 3D positions of 21 joints.25

• The phase classifier first converts the joint positions to26

frame offsets and subsequently predicts a sequence of ges-27

ture phase labels. The phase classifier also receives as in-28

put the F0 (pitch) value of each frame. The classifier’s29

weights are fixed during adversarial training.30

• The produced phase label sequence of the classifier, plus31

the F0 value, serve as input for the phase structure dis-32

criminator.33

• The motion realism discriminator receives the joint po-34

sitions directly, as well as all corresponding 27 speech fea-35

tures.36

• The displacement discriminator receives the same mo- 37

tion input as the phase classifier, the per-frame joint offsets 38

of the 16 arm and hand joints. 39

• The minibatch discriminator only receives the joint po- 40

sitions as input. 41

All three discriminators are trained with a binary cross-entropy 42

loss to determine whether a motion sequence is real or gener- 43

ated. The discriminators learn independently from each other, 44

sharing no weights and receiving individual training loss feed- 45

back. The loss of the generator with respect to the three dis- 46

criminators is weighted and combined into a single value for 47

the generator’s training step. All models work with input se- 48

quences of 5 seconds, at 20 fps, resulting in 100 time-steps. 49

During adversarial training steps, the generator optimizes the 50

binary cross-entropy of the discriminators’ output. The gener- 51

ator’s training error with respect to the four discriminators is 52

averaged for each optimization step in the following manner: 53

LGAN(G) = 54

wpL(G,Dp) + wrL(G,Dr) + wmL(G,Dm) + wdL(G,Dd)
wp + wr + wm + wd

,

(3)

with wp = 2,wr = 4,wm = 4, and wd = 1, 55

where wp is the weight assigned to the phase discriminator’s 56

loss, wr the weight for the motion realism discriminator, wm the 57

weight for the minibatch discriminator, and wd the weight for 58

the displacement discriminator. L(G,D) represents the genera- 59

tor’s objective with respect to one discriminator. The weighting 60

of 2:4:4:1 was chosen by empirically finding values that led 61

to stable training with respect to all discriminator objectives, 62

without the generator collapsing with respect to one or more 63

objectives. The adversarial training of the generator is visual- 64

ized in Figure 10, representing a more detailed version of the 65

previously presented Figure 5. We use the RMSprop optimizer 66

during adversarial training. 67

7.2. Objective loss penalties 68

In addition to the adversarial updates of the generator, one 69

MSE correction is performed per two adversarial steps. The 70
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Fig. 10. Adversarial training. The generator produces joint positions based
on input speech features. Its output is judged by four discriminators with
separate objectives, and a weighted error is computed with respect to all
four evaluations. Each discriminator optimizes the binary cross-entropy
objective, deciding if a given data sample is real or generated.

MSE avoids major deviations of the generator’s output from1

a realistic skeleton structure that would produce nonsensical2

phase label output and slow down the training overall. An alter-3

native, similar approach would be to restrict joint positions to4

realistic ranges.5

The generator is trained to predict gesture motion for 5 sec-

onds of speech input at a time rather than for continuous input.

Gesture motion is therefore continuous within 5 second predic-

tion intervals, but can be visibly discontinuous between inter-

vals. To avoid having to compute smooth transitions in post-

processing, we introduce a penalty for the generator for discon-

tinuous sequences within a training batch. The discontinuation

penalty is computed as the mean squared distance between the

start position of a sequence and the end position of the preced-

ing sequence. The penalty for first sequence within a batch is

always set to zero and otherwise:

Lcont(G) =
1
T

T∑
t=1

(G(x)(t) −G(x)(t − 1)))2 . (4)

We observed during adversarial training that the predicted

finger positions often move far from the hand. To speed up

the training process, we added a simple finger distance penalty

restricting the predictions to realistic ranges. We compute the

distance of each finger marker to the respective hand marker

and calculate the MSE with respect to the real distances:

L f ingers(G) =
1
n

n∑
i=1

(D f ingers(G(x)) −D f ingers(Y(x)))2 (5)

with Y(x) denoting the ground truth for sample x, and D f ingers 6

computed as the concatenation of each finger marker’s x, y, and 7

z distance from the respective hand. 8

8. Results 9

We conducted a series of qualitative evaluations to clarify 10

the roles of each discriminator and their benefits for generator 11

training, and quantitative evaluations of the resulting generator 12

output. 13

8.1. Qualitative evaluation 14

In this section, we discuss how each discriminator as well as 15

the objective loss penalties affects the output of the generator 16

qualitatively. 17

8.1.1. Phase structure discriminator 18

The phase structure discriminator allows us to capture impor- 19

tant gesture dynamics without having to rely on implicit learn- 20

ing from a larger dataset (such as in Ginosar et al. [33]). During 21

the pre-training described in Section 6.1, this discriminator eas- 22

ily learns to distinguish the (noisy) classified phase structures 23

of real motion and motion produced by the pre-trained gen- 24

erator. During adversarial training, the phase discriminator’s 25

accuracy remains balanced with the generator’s while the gen- 26

erator’s output is improving in quality. We visualize the ben- 27

efits of the phase discriminator for encouraging better gesture 28

motion dynamics in the supplemental video; without the phase 29

discriminator, the motion shows no clear holds or accelerations 30

characteristic of the stroke phase. The motion appears to corre- 31

spond less with the speech prosody. 32

8.1.2. Motion realism discriminator 33

The phase discriminator’s judgment alone is not a sufficient 34

constraint for the generator’s output. As described in Section 35

6.2, the automatic phase label classification of the generator’s 36



Preprint Submitted for review / Computers & Graphics (2020) 15

output and the phase classifier’s naivety with respect to non-1

human point clouds provides too much room for the generator2

to produce unrealistic data. The motion discriminator presents3

a better constraint for maintaining a skeleton structure as it sees4

the generator’s output directly and successfully constrains the5

generator to data points resembling a skeleton structure. Fig-6

ure 1e visualizes the output distribution produced by a genera-7

tor unconstrained by a motion discriminator. The supplemen-8

tal video also shows a sample of the motion produced without9

a motion realism discriminator; the joint positions move away10

from the skeleton structure, producing output not resembling11

human motion.12

8.1.3. Minibatch discriminator13

As a vanilla discriminator only judges output sequences in14

isolation, without taking the context of the data batch into con-15

sideration, the generator can suffer from mode collapse, as de-16

scribed in 6.3, and visualized by the plotted data distribution in17

Figure 1c. Our minibatch discriminator successfully forces the18

generator to produce more diverse output. The supplemental19

video shows the repetitive motion generated under mode col-20

lapse, as well as the improved, more diverse output with mini-21

batch discrimination. We considered two alternative integra-22

tions of minibatch discrimination into our model, namely as23

part of the motion realism discriminator and as part of a separate24

discriminator. In practice, we find the adversarial training to be25

more stable when outsourcing the minibatch discrimination to a26

separate discriminator only receiving motion input. Generator27

training was less likely to collapse with respect to one discrimi-28

nator when the adversarial objective was more distributed. The29

benefit of employing multiple discriminators has also been dis-30

cussed in previous works [50, 51].31

8.1.4. Displacement discriminator32

Learning from the phase discriminator’s feedback is poten-33

tially difficult for the generator due to the hidden layers between34

the generator and phase discriminator (i.e., the phase classifier’s35

computations that are inaccessible to the generator). The gen-36

erator’s motion output is first converted to per-frame offsets of37

the joints and then passed to the classifier for higher level fea-38

ture extraction. Introducing a discriminator receiving the same 39

processed motion as the classifier can provide more direct feed- 40

back. In practice, we found that the addition of such a dis- 41

placement discriminator sped up learning and moved predic- 42

tions away faster from the damped baseline motion produced by 43

the pre-trained generator. We visualize this by plotting an ex- 44

ample data distribution in Figure 1d. The slow departure from 45

the mean pose when training the model without the displace- 46

ment discriminator is also shown in the supplemental video. We 47

also illustrate the smoothing benefit of the displacement dis- 48

criminator in the video: When training the generator without 49

any discriminator receiving the joint offsets (i.e. with neither 50

the displacement discriminator nor the phase classifier and dis- 51

criminator), the motion output displays a great amount of jitter. 52

We show that adding the displacement discriminator reduces 53

jitter to a large degree. This discriminator receives the smallest 54

weighting in the generator’s objective. 55

8.1.5. Adversarial error weighting 56

We find a weighting of 2:4:4:1 for the error of the phase dis- 57

criminator, motion realism discriminator, minibatch discrim- 58

inator, and the displacement discriminator, respectively, to 59

achieve the most stable training, measured by the accuracy of 60

the binary cross-entropy objective for each discriminator. This 61

weighting allows us to see stable accuracy improvements for 62

the generator across all adversarial objectives without collapse 63

with regard to one or more objectives. 64

8.1.6. Objective losses 65

The discontinuation penalty is largely successful in reduc- 66

ing the positional jumps between predicted motion sequences, 67

making the model more applicable for continuous gesture gen- 68

eration for long sequences of speech input. The finger distance 69

penalty proved a simple measure to avoid unrealistic finger po- 70

sitions without strongly constraining the generator in its predic- 71

tions. 72

8.2. Quantitative evaluation 73

We provide a quantitative evaluation of our generation results 74

based on the wrist motion in Figure 11. We present these results 75
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Fig. 11. Quantitative gesture generation evaluation. Top: Wrist velocity for each predicted time step, median across 150 sequences (see Equations 6 and 7).
Bottom: Maximum distance of the wrists from mean pose for 50 randomly selected sequences.

in an ablation manner, as in Figure 1, evaluating how removal of1

a specific discriminator in training affects the generation result.2

The top graph plots the wrist velocity per predicted time step,3

each representing the median over 150 predicted gesture se-4

quences. This 1-dimensional velocity of the 3-dimensional x,5

y, z joint coordinates of a time step t and a sequence i is more6

specifically calculated as follows:7

velocity(ti) = |xti − xti−1 | + |yti − yti−1 | − |zti − zti−1 | (6)

velocity(t) = median(t0, t1, ...ti, ...tn) (7)

We can see that one of the closest matches of real motion8

(red) are achieved by our model (purple) and the system config-9

uration removing the motion discriminator (green). However,10

the latter configuration generates joint positions that heavily vi-11

olate human skeleton constraints. Removing the minibatch dis- 12

criminator (brown) produces faster than real motion, as well 13

as resulting in highly repetitive output. The output under re- 14

moval of the displacement discriminator (blue) as well as the 15

output the generator trained solely with a mean squared error 16

loss (yellow) exhibits very slow motion, much below realistic 17

levels. 18

The bottom graph in Figure 11 plots the maximum distance 19

travelled away from the mean pose, for 50 example sequences. 20

The closest match to real wrist position ranges is achieved by 21

our model, though it does not reach the wide ranges of real 22

motion. The MSE-trained generator and the no-displacement- 23

discriminator condition show a comparable level of variation 24

to real motion, but the gestures are overall closer to the body 25
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both than real motion and than for our model. The no-motion-1

discriminator condition similarly produces lower ranges than2

real motion. The no-minibatch-discriminator condition pro-3

duces very stable ranges, indicative of the repetitive gesture se-4

quences generated.5

9. Discussion6

We explored generative adversarial networks for speech-to-7

gesture translation with higher level feature extraction. For this8

purpose, we first recorded a dataset of over six hours of nat-9

ural, conversational speech with high-quality 3D motion cap-10

ture. Gesture motion is marked by distinct dynamics, including11

phases of acceleration and effort, of pause, and of relaxation.12

These higher-level dynamics can be difficult to capture implic-13

itly. To enforce these dynamics more explicitly in a top-down14

manner, we train a classifier to detect gesture phases automat-15

ically, and then train a phase structure discriminator to detect16

realistic versus non-realistic phase sequences.17

To train the phase classifier, we hand-annotated the phases18

of an over 3.7 hour long subset of our dataset using 9 differ-19

ent phase labels. We validate our results on a second speaker,20

for whom we annotate an additional small sample of gesture21

sequences. We compare three models of phase classification22

with different levels of detail (1-, 4-, and 6-class classification).23

We achieve good results, and we conclude that our error rate24

may to a relatively large extend be due to inter-coder incon-25

sistencies. This leads to the dilemma of weighing data quan-26

tity against data quality; the large time requirement of hand-27

annotation (1 hour or more work for 1 minute of data) tempts28

distributing the work load across a number of people, but this29

may lead to increased problems with annotation consistency.30

When motion capture is available, we suggest that automati-31

cally pre-annotating all sections with close to zero velocity as32

‘hold’ could speed up the annotation process as well as increase33

inter-coder agreement in future work.34

Our 1-class stroke classifier performs similarly well on both35

our speaker and the validation speaker. 4- and 6-class classi-36

fication reaches equal scores for our speaker; for the valida-37

tion speaker, the 4-class model achieves a significantly higher38

score. One reason for the drop in performance on the valida- 39

tion speaker for the multi-phase models may be differences in 40

speaker style, leading to different expressions of gesture phase. 41

The higher the level of detail, the larger are the expected inter- 42

speaker differences. Ideal phase classification may therefore 43

always be speaker-specific. 44

For training our gesture generator, instead of using a stan- 45

dard regression loss, we construct a generative adversarial set- 46

ting with multiple discriminators. We observe a clear advantage 47

of adversarial training over using a standard regression loss; the 48

produced motion has a larger positional range, more realistic 49

velocity, and appears much less damped. 50

By using multiple discriminators, we can phrase the speech- 51

to-gesture generation problem as a series of sub-problems. We 52

use our automatic phase labelling to enforce a more realistic 53

gesture phase structure in our output; this is the task of the phase 54

structure discriminator. The phase structure discriminator en- 55

ables the enforcement of higher level dynamic characteristics 56

in the output without having to rely on implicit learning from a 57

large amount of data. 58

Because an automatic phase classifier will always assign 59

some phase label to even random point clouds, we constrain the 60

motion output with a second discriminator judging the gener- 61

ated joint positions as real or fake; this is the task of the motion 62

realism discriminator. Because the motion realism discrimina- 63

tor’s task is to judge one generated motion sequence at a time, it 64

can allow for the same sequence to be generated repeatedly. A 65

minibatch discriminator detects such repetitive patterns, ensur- 66

ing diversity in the output. Lastly, generated motion can often 67

look jittery; we address this by including a the training objec- 68

tive of realistic joint displacement per frame, monitored by the 69

displacement discriminator. 70

To our knowledge, this is the first work using adversarial 71

training for generating 3D gesture motion from natural speech, 72

and the first work exploring the use of multiple discriminators 73

for the purpose. We observe a benefit of using multiple dis- 74

criminators to stabilize adversarial training, and we report how 75

each discriminator addresses a distinct sub-problem in the ges- 76
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ture generation task. We employ explicit modelling of the dy-1

namics of gesture motion to allow learning of these higher level2

features from a smaller dataset. We see our work as a further3

step towards enabling automatic animation of realistic conver-4

sational agents.5

Our results are limited to gesture generation for the single6

speaker we recorded and more data of various speakers would7

be necessary to make generalizations. Due to the high vari-8

ance of gesture behavior across speakers, this is a very difficult9

task. Because we generate gesture motion from prosodic speech10

features, semantically meaningful gestures can hardly be in-11

ferred without explicitly employing speech recognition meth-12

ods. Speech recognition, however, would likely only yield a13

benefit when using a much larger dataset, ensuring a number of14

examples of the same phrases.15

10. Future work16

While generated motion improved greatly with respect to17

standard regression loss training, the produced motion still18

lacks desirable levels of realism. Looking forward, we will ex-19

plore other measures of realism that may complement adversar-20

ial training.21

We are interested in working towards explicit enforcement22

of gesture phase by using the gesture phase as a conditional23

input for the generator, comparable to the approach proposed24

by Holden et al. [29], who use locomotion phase as input in a25

character control system. This may require gesture phase ex-26

traction solely from input speech, rather than motion data. In27

this regard, Yunus et al. [48] report interesting initial results in28

predicting gesture phase from prosodic speech features.29

Using our gesture phase extraction, we want to analyze30

speech gesture further to understand better the relationship of31

gesture characteristic and accompanying speech. Considering32

the suggested differences in phase expression, as well previ-33

ously found differences in gesture style (e.g. Ginosar et al.34

[33]), we want to investigate how gesture meaning can, or can-35

not, be compared across speakers.36

We are also looking to explore the use of convolutional net-37

works within a generative adversarial paradigm, such as in Gi-38

nosar et al. [33], exploring visual data representations of speech 39

as well as motion. 40
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