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Conversational virtual agents are increasingly common and popular, but modeling their
non-verbal behavior is a complex problem that remains unsolved. Gesture is a key
component of speech-accompanying behavior but is difficult to model due to its non-
deterministic and variable nature. We explore the use of a generative adversarial training
paradigm to map speech to 3D gesture motion. We define the gesture generation prob-
lem as a series of smaller sub-problems, including plausible gesture dynamics, realistic
joint configurations, and diverse and smooth motion. Each sub-problem is monitored
by separate adversaries. For the problem of enforcing realistic gesture dynamics in our
output, we train three classifiers with different levels of detail to automatically detect
gesture phases. We hand-annotate and evaluate over 3.8 hours of gesture data for this
purpose, including samples of a second speaker for comparing and validating our re-
sults. We find adversarial training to be superior to the use of a standard regression
loss and discuss the benefit of each of our training objectives. We recorded a dataset of
over 6 hours of natural, unrehearsed speech with high-quality motion capture, as well
as audio and video recording.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

factors and time constrained animation needs. Despite much

research in the area, automatically generating realistic gestu-

Interactive virtual agents are becoming increasingly common
and people may enjoy interacting with them more than even
with realistic video-based characters [1]. However, they often
still feel stiff and unnatural. Non-verbal behavior plays an im-
portant role in making these agents more appealing, and co-
speech gestures specifically are a key component for increas-
ing user engagement [2]. Automatic generation of such gestur-

ing behavior for given utterances is appealing due to both cost

e-mail: yferstl@tcd.ie (Ylva Ferstl), mpneff@ucdavis.edu
(Michael Neff), ramcdonn@scss.tcd.ie (Rachel McDonnell)
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ral behavior remains an open problem. One of the difficulties
in modelling the speech-to-gesture relation is the asynchronic-
ity between the two channels; gesture precedes or co-incides
with speech but rarely follows [3], making real-time predic-
tion nearly impossible. A second difficulty is the highly non-
deterministic mapping of speech to motion. Even the same
speaker uttering the same phrase will likely perform different
gesture motions on each repetition. Gestures may also com-
municate information not provided explicitly through speech,

providing complementary, not redundant information [4, 5].
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(a) Real

{b) Ours

(¢} No Minibatch discriminator

{d) No displacement discriminator (e) No motion realism discriminator {f) Only MSE

Fig. 1. Motion distribution over 2 minutes, plotted at 4 fps. For one example clip, a) shows the real data distribution, b) the distribution with our method,
c-e) examples of excluding specific training objectives, and f) the distribution for a model trained with a standard regression loss.

The non-deterministic mapping of speech to motion means
for one utterance, multiple variations of a gesture (or no ges-
ture at all) may be perceived as plausible by an observer. This
presents a difficulty in training a speech-to-gesture model; even
a plausible produced gesture may be penalized when it is nu-
merically far from the exact gesture found in the dataset for this
utterance. A standard regression loss in training a speech-to-
gesture model is therefore not ideal.

In this work, we apply two novel techniques for training a re-
current neural network (RNN) producing gesture motion based
on input speech. Firstly, we train a speech-input-motion-output
RNN with a generative adversarial paradigm instead of a stan-
dard regression loss, and we specifically use multiple adver-
saries instead of a single one.

Secondly, we study the phase structure of a gesture dataset
and train a classifier to automatically detect these phases. The
phase structure of natural gesture describes the dynamics and
functions of motion segments within it, and can be divided into
distinct parts: preparation, stroke, holds, and retraction. The
expression of these phases and their sequencing may vary from
speaker to speaker, making their labelling a difficult and at times
ambiguous task.

In this work, we extend Ferstl et al. [6], with additional con-
tent regarding gesture phasing, including new results on our au-
tomatic phase classification, with a more speaker-flexible re-
duced phase model focusing on the stroke phase, the essential
core of a gesture. We furthermore annotate gesture samples of
a second speaker exhibiting a distinctly different gesture style
in order to evaluate our automatic phase classification.

In an adversarial training paradigm, we use the automatic

phase labelling to extract the phase structure of real and gen-

erated motion. Producing realistic phase structures becomes a
training objective of the generator, enforced by a discriminator
specifically designed for distinguishing phase sequences.

The set of training objectives further includes humanoid
skeleton constraints, and utterance match and diversification
objectives, each represented by separate discriminators.

Our multi-discriminator design allows the gesture generation
problem to be defined with multiple smaller sub-problems. We
discuss how each of our discriminator objectives improves the
final result.

We will first introduce the phase classifier in Section 4, be-
fore discussing the speech-to-gesture model in Section 5 and its

adversarial training in Section 7.

2. Related work
2.1. Gesture generation

Various methods have been proposed for generating gesture
from speech. Some approaches employ rule-based systems that
rely on explicitly defined text-to-gesture rules [7, 8, 9]. Other
works have used statistical modelling estimating conditional
probabilities for speech features co-occurring with motion fea-
tures [10, 11, 12]. Many animation systems have been devel-
oped to produce gesture motion, such as SmartBody [13, 14];
while it is beyond the scope of this work to cover this area in
detail, recent surveys provide an overview (e.g. [15]).

Machine learning approaches have both been used in a fully
automatic manner without any need for hand annotating data
[16, 17, 18, 19, 20], as well as in conjunction with hand-
labelled, higher-level features such as gestural signs [21].

Recent work has explored recurrent networks for speech-

to-gesture generation for English [22] and Japanese speech
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[23, 24]. Such a network uses recurrent connections between
network activations at consecutive time-steps to model data
with temporal dependencies. Recurrent networks can, for ex-
ample, capture the dynamics of a motion pattern well and have
been successfully employed for human motion modelling tasks
[25, 26]. However, recurrent networks trained with a stan-
dard error function tend to suffer from mean pose convergence,
where longer term motion sequences quickly regress to the av-
erage pose (such as in Martinez et al. [27] and Jain et al. [28]).
This may be due to error accumulation when feeding generated
output back into the network [29], resulting in damped motion
that may look constrained and unrealistic. Generative adver-
sarial networks (GANs) have been proposed as one alternative
training paradigm. Here, instead of minimizing a standard error
function such as the mean squared error (MSE) of joint posi-
tions or angles, the model’s objective is to produce output that
is qualitatively similar to real data, as judged by another model,
the discriminator, that is trained simultaneously in conjunction
with the generator. GANs have been successful in human mo-
tion modelling tasks [30, 31], as well as in a head motion from

speech generation task [32].

Recent work proposed a convolutional network combining a
standard L1 regression loss with an adversarial discriminator
for predicting 2D gesture motion from speech [33]. The au-
thors represent audio visually as a spectrogram, which is then
encoded by an audio encoder and subsequently processed by a
UNet translation architecture [34]. The authors created a large
dataset of over 140 hours of 2D pose keypoints extracted from
YouTube videos of 10 speakers. (This work and dataset was not
yet available at the time of our work). The speakers are profes-
sional performers, such as John Oliver (Last Week Tonight) and
Seth Meyers (Late Night with Seth Meyers), producing largely
rehearsed speech and generally producing a relatively small set
of clear gesture motions. Their speaker-specific models gen-
erate sequences rated equally good as mismatched real gesture
samples, as measured by the rate it fooled human participants.
The failure to surpass random real motion is an indication of the

difficulty of the speech-to-gesture task. In our work, we focus

on a different type of gesture motion, namely spontaneous, con-
versational speech gestures that appear more diverse and quali-
tatively different from the distinct gestures usually seen for pro-
fessional performers (refer e.g. to John Oliver’s performances

in Last Week Tonight).

2.2. Gesture phase

Natural gesture behavior consists of phases with qualitatively
different dynamic characteristics [35] and these phases occur in
specific patterns [36]. In the preparation phase, the hands are
moved into position for the gesture. The stroke is the expres-
sive phase of a gesture and has the most focused energy; it is an
“accented movement” with Effort in the sense of Laban [36],
conveying a sense of intention and meaning of the motion. It is
the main meaning-carrying movement of the gesture, often de-
scribing a specific shape that relates to the accompanying verbal
phrase [3]. The retraction moves the limbs back into a restful
position (an incomplete retraction is noted as a partial retrac-
tion). Holds are segments with zero velocity and may occur
before or after the stroke [37]. All phases are optional except
the stroke.

We aim to capture these specific dynamic phases in our ges-
ture generation system. While these phases are present in any
natural gesture data, capturing the phase structure implicitly
would arguably require a large dataset. Instead, we explicitly
segment the phase structure of gesture motion.

Segmenting gesture motion into its phases is non-trivial and
in many cases requires subjective judgment. Hence the la-
belling process cannot be seen as deterministic and 100% ac-
curacy is unlikely, or even impossible. Often, gesture phases
can be straightforward to identify, but in other cases, it may be
more difficult. This tends to occur when one stroke goes di-
rectly into another or if a stroke starts from a retract position.
Consider for example the ambiguous example of a gesture se-
quence in Figure 2, where both step (1) and (3) are considered
a stroke phase: One could consider the motion to the middle
transition frame (2) either a partial-retract of the first stroke in
(1) or a preparation for the second stroke in (3).

Different, automatic gesture phase annotation methods have
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(1) (2) (3)
r‘(— —\ﬂ
r =)

Fig. 2. Ambiguity in gesture sequence labelling. If steps (1) and (3) are each
considered a gesture stroke, the motion to the transition step (2) may be
labelled as either a partial-retract of the preceding stroke or a preparation
phase for the following stroke.

been proposed, including the use of support vector machines
[38] and hidden Markov models [39, 40]. One limiting factor
in training phase models is obtaining labelled data; segmenting
just one minute of video into gesture phases may take one hour
or more of work (e.g. [10]). Previous work has therefore often
focused on simpler sub-problems of detecting whether one spe-
cific phase is occurring (e.g. detection only of gesture strokes),
or whether a gesture is being performed at all [40, 41, 42].
Another difficulty in automatic phase detection is the differ-
ence in phase structure as well as phase expression between
speakers and even within speaker. Phase structure differences
can include overall gesture rate as well as differences in the
distribution of phases; for example, one speaker may regularly
produce two or more gesture strokes before returning to a rest
position, while another speaker may average just one stroke be-
fore returning to rest [43]. Phase expression such as the stroke
velocity profile can vary not only from speaker to speaker, but
also between recordings of the same speaker [38]. This vari-
ability makes the task of automatic classification challenging,
and, for a new, unseen speaker, particularly error-prone. Never-
theless, we consider even imperfect phase labelling a useful and
reasonable way to explicitly describe different motion profiles
present within a gesture, separating effortful, accented gesture
strokes from less accentuated preparation and retraction as well
as still hold phases. In this work, we focus on modelling just
one speaker and his gesture dynamics to maximise training con-

sistency of gesture dynamics in the training set.

3. Dataset

We recorded a high-quality dataset of natural speech and 3D
motion specifically for the purpose of this work. We used a

single male actor for the complete recording. The actor is a

native English speaker producing spontaneous conversational
speech without interruptions, i.e., without verbal cues from a
conversation partner. The actor was free to choose any topic
in his speech but mostly covered personal stories and sports.
We chose an actor with naturally frequent gesturing behavior,
but he was unaware of the purpose of the recording. The actor
addressed a person situated behind the camera in order to give
him the visual feedback of a conversation partner. We recorded
25 takes, ranging between 10 and 20 minutes each, totalling
over 370 minutes (more than 6 hours) of data. The actor’s mo-
tion was captured with a 59 marker setup and 20 Vicon cameras
at 120 fps (frames per second). Audio was recorded at 44 kHz.
Video was captured with two cameras, one capturing a full body
shot and the second camera capturing a higher-quality close-up

shot of the face and parts of the upper body.

Fig. 3. Capture setup and location of joints. The 16 red markings indicate
the joints used for the gesture phase classification. The five green markings
indicate the spinal joints added to the joint set for gesture motion predic-
tion.

3.1. Data pre-pocessing

We process the recorded speech with openSMILE [44] to ex-
tract 26 Mel Frequency Cepstral Coeflicients (MFCCs), as well
as the FO (pitch) value. MFCCs are commonly used in speech
recognition tasks and the FO value as a prosodic feature carries
information about emphasis. Speech features are extracted with
a window size of 20 ms at steps of 10 ms, resulting in data of
100 fps.

We down-sample the motion capture data from 120 to 100
fps to match the speech features. We center and lock the root
node of the motion clips to the origin position with zero rotation
and then extract the absolute positional values of the captured

joints. Our actor remains fairly static in his lower body and
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we are therefore able to capture most of his dynamics from the
joints upward of the locked root.

We normalize all speech and joint position features to zero
mean and unit variance. We train all models on 20 fps; in order
not to lose data, we take 20 fps data from 5 subsequent starting

positions, resulting in 5 sets of 20 fps data.

3.2. Gesture phase annotation

We annotated the phase structure of a subset of 226 minutes
of the complete dataset using the ANVIL annotation tool [45].
The 226 minutes were selected at random from the dataset. We
aimed to annotate as much of our dataset as possible while en-
suring annotation quality. For this purpose, we trained six an-
notators whose work was then repeatedly cross-checked at the
start, before each annotator was assigned separate data clips.
We annotated nine different gesture phases; (1) preparation, (2)
stroke, (3) pre-hold, (4) hold, (5) independent hold, (6) rest
hold, (7) partial retract, (8) retract, and (9) ‘none’. Table 1
shows the frequency of each phase within the annotated data
subset. Pre-hold and hold occur before and after the gesture,
respectively. Independent hold occurs when a gesture has no
stroke, but is defined by a held pose. Rest hold occurs when the
hands are held in a relaxed position after a partial retract, with-
out being fully retracted to the sides of the body. None occurs
when no gesture is being performed; the arms are either fully
retracted to the sides of the body or a no-gesture movement such
as a self-adaptor is occurring.

Our speaker performs on average 38.1 gesture strokes per
minute, or one gesture every 1.6 seconds. Assuming roughly
the same gesture frequency in the remaining un-annotated 140
minutes of data, we estimate that our dataset contains approxi-
mately 14,000 gestures.

We computed pairwise coder agreement with ANVIL [45]
by double-annotating five samples totalling 50 minutes of
data, each with a different annotator combination. We found
high segmentation agreement, averaging 98.5% (min=95.5%,
max=99.9%), indicating high consistency in detecting phase
boundaries. For the overall coding agreement that includes

segment (or phase) labels, we achieved moderate agreement

as defined by Krippendorff’s alpha value [46], with a mean of
a = 046 (@min = 0.39, @qax = 0.5). As we pool all hold cat-
egories for the phase classifier in Section 4, we compare Krip-
pendorff’s alpha value for the case of treating post-stroke holds,
pre-holds, rest-holds and independent holds all as a uniform
hold category: @ = 0.47, @min = 0.43, @jpax = 0.53.

In order to evaluate the robustness of our automatic phase
classification in Section 4, we annotated a short sample of ges-
turing of a second speaker. For this, we took samples of just un-
der 5 minutes of data from the Trinity Speech-Gesture dataset
[22]. This sample was not included in the training set and only
used for evaluation. The speaker in the Trinity Speech-Gesture
dataset exhibits a qualitatively very different gesturing style to
that of the speaker in this work, visualized in the supplemen-
tal video. This speaker often incorporates the whole body in a
gesture and rarely stands still. This means that extracting the
motion of the upper body joints does not fully describe the per-
formed gesture, some information will be lost. Hold phases
mark another observable difference between our speaker and
the Trinity Speech-Gesture dataset; whereas holds tend to be
associated with minimal movement in our speaker, the Trinity
Speech-Gesture speaker’s holds appear overall less still, with
the speaker in seemingly constant motion.

Our annotated sample of the Trinity Speech-Gesture dataset
suggest a similar gesture stroke frequency as in our database;
we calculate 33.6 gesture strokes per minute. We annotated
160 strokes in this sample. All annotated phase frequencies are
reported and compared to our speaker in Table 1.

An example of an annotated gesture sequence is given in Fig-

ure 4.

4. Phase classifier

Modelling gesture motion from speech directly is a hard
problem. As described in Section 1, the same phrase may
be plausibly accompanied by many different gesture shapes.
Speech features may be more easily associated with the dy-
namics of gesture motion; the kinematics of gestures (e.g.,

speed and acceleration) have been shown to correlate with the
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like, ‘look™

from my house”

Fig. 4. Sample of an annotated gesture sequence. For each annotated gesture phase, the speaker’s accompanying phrase is given. (1) The hands start in
a resting position. (2) The preparation phase brings the hands into position for the gesture. (3) The stroke phase carries the meaning of the gesture (the
act of giving). (4) The hands stay in position, the speaker pauses for a moment. (5) The hands are retracted partially towards a restful position. (6) A new
preparation phase immediately initializes the next gesture. (7) Another gesture stroke is performed, describing ‘“more”.

Table 1. Frequency of the 9 annotated phases in the total annotation set of 226 minutes.

Gesture phase Number of occurrences Percent of annotated time

Our speaker TSG speaker Our speaker TSG speaker
Preparation 5775 130 19.1% 14.9%
Pre-hold 979 17 3.2% 1.6%
Stroke 8655 160 39.6% 28.5%
Hold 5100 110 24.8% 26.1%
Independent hold 94 3 0.8% 0.7 %
Rest hold 474 27 3.1% 10.3%
Partial retract 1077 48 3.8% 6.5%
Retract 409 13 1.3% 2.1%
‘None’ 475 14 4.2% 9.3%
Total 23038 522 100% 100%

prosodic features of speech [47]. However, implicitly inferring
gesture dynamics from raw positional data may be difficult and
require a large amount of data. We therefore model these dy-
namics explicitly. Namely, we extract gesture phases as higher-
level representation of the characteristic dynamics of gesture
motion. This representation is sufficiently low-dimensional
(small set of different labels) to model its structure from a rela-
tively small dataset. We hand-annotated the phase structure of
3.75 hours of data (as described in Section 3.2) and trained a
classifier to detect gesture phases of a motion sequence. Our
objective is to use this phase classification to enforce a realistic
phase structure in the gesture generator’s output. A classifier
is necessary so that any new (un-annotated) motion can be seg-
mented into phases and judged for its structural realism. After

training the classifier on the annotated data subset, we never

use the true hand-annotated phase labels, we always use the
phase labels determined by the classifier and the full dataset.
An overview of the phase classifier’s role in the final architec-
ture is shown in Figure 5, and will be discussed in more detail

in Section 7.1.

speech
| real motion
. ]
Phase classifier |+ l

GAN

Fig. 5. Overview of the system architecture. The generator receives speech
features and produces gesture motion. The multi-discriminator GAN re-
ceives three different types of input: (1) the speech features belonging to a
motion segment, (2) a motion segment (real or generated), and (3) the phase
structure of the motion segment (determined by the phase classifier).

We furthermore train a robust 1-phase classifier for gesture
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stroke detection as a useful tool for future gesture analysis. The
stroke phase represents the core, meaning-carrying part of a
gesture, and hence its segmentation is essential for gesture form
analysis.

We validate all phase classification models on a second

speaker with different gesture style.

4.1. Method

The classifier assigns one phase label to each time-step of an
input sequence. For training the classifier, we reduce the anno-
tated gesture phase label set from nine to six classes that capture
the main phase types by combining all types of holds into one
class. This reduces the problem of unbalanced class frequen-
cies (e.g. only 94 independent holds out of 23,038 phases), as
well as removing some redundant information (e.g. a hold oc-
curring between preparation and stroke can be assumed to be
a pre-hold; a hold after a partial-retract is a rest-hold). Hence,
we combine the labels ‘pre-hold’, ‘hold’, ‘independent hold’
and ‘rest hold’ into a super-class ‘hold’. In effect, this simpli-
fies the classification task by labelling all still frame sequences
(sections with close-to-zero joint velocities) as one class, with
the exception of the completely retracted ‘none’ position where
the arms are relaxed by the side of the body. As discussed later,
the partial-retract phase proved difficult to classify, so for train-
ing our generative network, we decided to combine it with the
retract class, and due to its rarity we furthermore combine the
fully retracted ‘none’ class into the retract group. For our ad-
versarial training we therefore have four phase classes: Prepa-
ration, holds (including pre-holds, independent holds, and rest-
holds), strokes, and ‘other’. The ‘other’ class combines retracts,
partial retracts, and ‘none’ annotations. We believe this sub-
set captures the most essential dynamics of gesture motion; we
consider holds and strokes the most important representatives of
gesture dynamics and their separation tends to get lost in stan-
dard training of recurrent networks (mean pose convergence
leading to smoothed, damped motion). Second, we separate
the preparation phase due to its high frequency and relevance
in the gesture structure. Retracts are relatively infrequent for

our speaker, as is the ‘none’ phase (completely retracted po-

sition); we decided to pool these classes together to make for
a higher confidence model and a more achievable task for the
gesture generator. The phase labels produced by the classifier
are used as pseudo ground-truth during adversarial training, and
we therefore need the classifier to be as confident as possible in

its decisions.

4.2. Network architecture and training

The classifier processes sequences of 100 time steps (5 sec-
onds at 20 fps), and assigns a phase label to each step. The
input of the classifier are the x, y and z directional velocities
of 16 joints (total of 48 values), corresponding to the shoulder,
elbow, wrist, and each fingertip, as well as the corresponding
pitch value. The pitch value captures information about speech
emphasis and using a single speech feature ensures we are not
increasing the input space significantly and hence minimize the
network’s ability to overfit. Including pitch improves our classi-
fication scores (see Table 2), in line with the finding that speech
is associated with gesture phase [48].

The network is visualized in more detail in Figure 6, but gen-
erally consists of a two-layer recurrent network with an addi-
tional densely connected NN (neural network) layer for input
processing. The recurrent layers are Long Short Term Memory
(LSTM) cells; specifically, a unidirectional LSTM in the first
recurrent layer, and a bidirectional LSTM in the second recur-
rent layer. LSTM cells can handle sequential data, such as time
series data, and bidirectional LSTMs specifically take both past
and future data into account for predicting a time step. We reg-
ularize the network by applying dropout after each layer and
batch normalization before the final output. Dropout rates are
empirically determined to provide good performance without
overfitting.

Of our total of 226 minutes of annotated data, we separate
6.5 minutes of validation data by randomly selecting 13 start
indices from which to take 30 seconds of data without over-
lap. Composing the validation data of snippets from multiple
takes this way ensures that the validation performance is not
annotator- or take-specific. The remaining annotations serve as

training data.
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We trained three classification models for segmenting ges-
ture. Firstly, we train a 6-class model distinguishing all an-
notated phases (pooling all hold categories), second, a 4-class
classifier pooling rare phases into an ‘other’ class, and third, a
1-class model for detecting only the core stroke phase with in-
creased confidence. For the two multi-phase models, we train a
version each with and without speech pitch input; the network
details are visualized in Figure 6. For the stroke classifier, we
predict a single class, the stroke phase, which is the essential
phase in gesture. This allows for more confident classification
when dealing with different speaker styles, extending the ap-
plicability of this work. The stroke classifier is visualized in
Figure 7. The output layer applies a softmax activation in the
case of the 4- and 6-class model, and a sigmoid activation in
the single-class stroke classifier. The differences in network
architecture between the 3 classifiers results from empirically
finding the best performing configuration for each number of
classes. The number and size of recurrent layers was chosen
based on the best found trade-off between modelling capacity
and generalizability, i.e. reaching good performance without

overfitting.

FO 48 joint offset values

Dense (128, relu) ]
[ LSTM (256, dropout 30%) |
L] | Bidirectional LSTM (256, dropout 30%) |

1 of 6 phase labels

FO 48 joint offset values
3 [

| Dense (128, relu) ]
Dropout (30%!

| LSTM (128, dropout 30%) |
¥

1

i

¥

i

| Bidirectional LSTM (128, dropout 30%
Batch normalization

1 of 4 phase labels

i

Fig. 6. The two detailed network configurations for our 4-phase classifier
and our 6-phase classifier. ‘Dense’ denotes a standard densely connected
NN layer. In brackets are denoted the layer size or the dropout ratio. The
48 joint values refer to the x, y, and z offsets of the 16 joints shown in Figure
3.

FO 48 joint offset values
[

Dense (128, relu) ]
Dropout (30%)]

| Bidirectional LSTM (256, dropout 50%) |

Dropout [50%]
Batch normalization

stroke yes/no

Fig. 7. The network configurations for our 1-phase (stroke) classifier.

4.3. Results
4.3.1. Multi-phase classifiers

The multi-phase classifiers reach an overall weighted F-score
of 0.76 for both the 4-class and the 6-class model. The detailed
results can be seen in Table 2. The stroke and hold phases reach
the highest scores; this is likely due to both their distinct dy-
namics as well as their high frequency in the training set (see
Table 1). Lower frequency phases with less distinct dynam-
ics, such as partial retracts, are more difficult to detect. Fur-
thermore, partial-retracts and preparation phases both average
a length of less than 500 ms, making them potentially harder
to catch as well as align; at our training sample rate of 20 fps,
a prediction with just one frame of erroneous shift would only
yield an 80% score. Notably, the annotated phase labels are
only pseudo ground truth, as determined by an annotator, re-
sulting in some inconsistencies and errors. Inter-rater category
agreement for our evaluation samples averages 64.4%, capping
the realistically achievable score for the phase classifier.

Since the input is always a sequence of 5 seconds from a ran-
domly drawn starting point, the classifier has limited context
information for predicting the phase label of a time step. Pro-
viding the label of the phase preceding a sequence or increasing
sequence length may improve classification results.

Validating our classifiers on the annotated sample of the Trin-
ity Speech-Gesture dataset (denoted as ‘TSG speaker’), the 4-
class model proves more robust with an F-score of 0.69. The 6-
class model reaches a score of 0.65, with the weakness lying in
the less common classes, particularly partial-retract. The most
confidently predicted class throughout all model versions and
across both speakers is the ‘hold’ class; this may be the easiest
class to extract as it contains almost all sections of zero veloc-
ity. Possible exceptions are the no-gesture sections annotated
as ‘none’, though our speaker tends to swing his arms during
these and indeed not stay still.

We compare results for the two multi-phase classification
models (4-class and 6-class), with and without speech pitch in-
put (Table 2). The benefit of including pitch in the input to
the classifier is more pronounced for the 6-class model, where

all individual scores except ‘partial retract’ are improved by in-
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cluding pitch, as well as showing an improvement of 0.03 in the
overall weighted F-score. For the 4-class model, the individ-
ual class scores improve (all except stroke) or remain the same
(stroke), but the weighted overall F remains the same when in-
cluding pitch as input. We also report the performance of the
no-pitch models on the second speaker. No benefit is apparent
for including pitch of the second speaker; this may be due to
the articulation differences between the training and the valida-
tion speaker and using the pitch derivative instead could address
this.

We compare our results with the work of Madeo et al. [38]
(Figure 2), who employ a hierarchical strategy of single-class
classifiers, where e.g. a hold classifier first detects all holds,
subsequently a stroke classifier detects all strokes in the re-
maining data, etc. Their results represent the best scores across
multiple models rather than a single model encompassing all
gesture classes. That is, they trained combinations of single-
class classifiers and the here reported results represent the high-
est scores for each class across combinations. For example,
the model achieving the score of 0.79 for detecting a prepa-
ration phase is not the same model that achieves the score of
0.79 for stroke detection. Another significant difference to our
work lies in the dataset composition; Madeo et al. [38] restrict
the two captured participants to describing one of three comic
strips. Their results indicate high dependence of performance
on the comic story the classifiers were trained on (significantly
reduced performance when training and test data were taken
from different comic strip retelllings), as well as on which par-
ticipant a classifier was trained on. As our dataset was captured
across multiple days, with a large variety of spontaneous, un-
cued gestures, the performance of the classifiers presented in

Madeo et al. [38] would likely not be adequate for this work.

4.3.2. Stroke classifier

The stroke classifier reaches a weighted average F-score of
0.83 on the speaker it has been trained on (our speaker), and
a score of 0.82 on the validation speaker. Inter-coder category
agreement for the case of stroke/ no stroke is naturally higher

than for the full set of gesture phases, averaging 74.3%. In-

terestingly, it can be seen that the stroke classification score
(first line in Table 3) is the same as in the 4-class model, reach-
ing 0.79 for the training set speaker, and 0.72 for the valida-
tion speaker (the 6-class model coming very close with 0.78
and 0.71, respectively), suggesting that we may be reaching the
maximum score possible with an imperfect training set. The
higher phase label consistency of the stroke training set may

therefore be the main reason for the more robust classification.

4.4. Discussion

Looking at the relationship between the achieved F-scores
and the inter-rater category agreement, we hypothesize that im-
proving coder agreement would much improve classification re-
sults. We believe future improvements on the phase classifica-
tion should focus on improving the training data consistency
rather than the classification model.

The robust classification score of the stroke classifier for both
our speaker as well as the validation speaker makes it a good
tool for future gesture analysis. As the stroke phase represents
the essential, meaning-carrying part of a gesture, stroke seg-
mentation is useful for additional information extraction such
as gesture form detection.

It is less straightforward to train a classifier for other single
phase types, as was done with the stroke present/ not present
classifier. Since other phases occur less often across the training
set, splitting our dataset into e.g. preparation/ no preparation
would result in about a 1:5 ratio. Such unbalanced classifiers
are more difficult to train, requiring a weighted loss function or
an adapted (balanced) dataset (the latter resulting in a smaller
training dataset).

‘Hold’ predictions may be more easily segmented by sim-
ply computing sections of close to zero velocity, and this could
aid additional segmentation by an annotator as well as increase

inter-coder consistency.

5. Gesture generator

The gesture generator is the core of our system and mod-

els the speech-to-gesture translation. The generator receives
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Table 2. F-scores of phase classifier. Results without pitch input are reported in brackets behind the results with pitch input. Our ‘other’ class combines the
labels retract, partial retract, and none. The results denoted as TSG correspond to our validation speaker taken from the Trinity Speech-Gesture dataset.

Gesture phase 4 classes 4 classes 6 classes 6 classes F-score
TSG speaker TSG speaker  Madeo et al. [38]

Preparation 0.64 (0.63) 0.56 (0.55) 0.65 (0.64) 0.56 (0.51) 0.79

Stroke 0.79 (0.79) 0.72 (0.7) 0.79 (0.78) 0.71 (0.71) 0.79

Hold 0.83 (0.82) 0.76 (0.76) 0.81 (0.78) 0.74 (0.77) 0.58

Partial retract - - 0.47 (0.49) 0.39 (0.35) -

Retract - - 0.73 (0.70) 0.54 (0.52) 0.5

‘None’ - - 0.75 (0.56) 0.51 (0.59) -

‘Other’ 0.64 (0.6) 0.58 (0.54) - - -

Overall 0.76 (0.76) 0.69 (0.67) 0.76 (0.73) 0.65 (0.66)

Table 3. F-scores of the stroke classifier. from the ground truth. During later multi-adversarial training,

Gesture phase Our speaker TSG speaker the generator receives less direct output feedback and is there-
Stroke 0.79 0.72 fore less likely to be able to overfit on the dataset. The adver-
No stroke 0.85 0.86
Overall 0.83 0.82 sarial loss merely tells the generator the likelihood of the dis-

speech features as input and produces the positions of the 21

joints shown in Figure 3.

5.1. Generator architecture

The generator receives 27 speech features as input, composed
of 26 MFCC values and the speech pitch (FO) value. The gen-
erator then infers the X, y, and z positions of 21 joints: the hand,
arm, and spine joints depicted in Figure 3.

The generator architecture is visualized in Figure 8. The
speech input is processed by a densely connected NN layer (size
256, relu activation), followed by a dropout layer (30% during
pre-training, 20% during adversarial training) and batch nor-
malization. The network core is a Gated Recurrent Unit (GRU,
size 256, dropout of 50% during pre-training and 20% during
adversarial training). A GRU is a variant of a recurrent network
cell with fewer parameters than an LSTM, allowing faster train-
ing. The output layer (densely connected NN layer with linear
activation) of the generator produces the X, y and z position of
21 joints.

During pre-training (described in the below Section 5.2), the
dropout rate is larger due to the MSE function used in pre-
training posing a high probability of overfitting. The MSE gives

the generator direct feedback on how far each predicted pose is

criminator(s) finding its output to be real data, without per-pose

numerical error feedback.

26 MFCCs + FO

[ %, y, z of 21 joints (63 values) |

Fig. 8. The generator network. The generator receives 27 prosodic speech
features (26 MFCCs + F0) and produces the xyz position of 21 joints. In
brackets are denoted the layer size or the dropout ratio; the larger dropout
ratios apply to pre-training with MSE.

5.2. Generator pre-training

During later adversarial training (Section 7.1), the generator
will receive feedback based on the phase structure of its mo-
tion output. This phase structure will be determined by the
phase classifier previously described in Section 4. The auto-
matic phase classification means that no matter what input, a
phase label will be assigned to each time-step. Data points di-
verging from a skeleton structure and not resembling human
motion may get assigned an indeterminable phase label. We do
not want very unrealistic data to be assigned a potentially realis-
tic phase labelling. This could allow for the following scenario:
the generator generates effectively noise, the classifier produces

a realistic phase structure based on this, the generator receives
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positive feedback for having produced motion with a realistic
phase structure. We therefore first ensure a quality baseline of
generator output that can reasonably be assigned phase labels
by the phase classifier. Hence, before adversarial training, we
initialize the generator to a baseline output resembling a skele-
ton structure.

We pre-train the generator with a standard mean squared er-

ror (MSE) loss of generated versus real motion:

1 T
MS Emg.my) = = > (mg = m, )’ (1)

=1
MSE training allows for fast convergence towards a skeleton

structure, but as expected, this training suffers from mean pose
convergence and produces only very damped motions around
the average joint positions. This is visualized in Figure 1f, as
well as in the supplemental video. We use this model as the
starting point for the adversarial training, and utilize the training
history for pre-training the phase discriminator as described in

Section 6.1.

{a) Input {b} Input
0/1 (sigmoid)

0/1 (sigmoid)

* LSTM unit:

Phase discriminator:
Bidirectional, 40% dropout, 30% recurrent dropout

Motion discr. & displacement discr.:
Unidirectional, 40% dropout, 10% recurrent dropout

Fig. 9. Network architecture of the adversaries. Left: Phase, motion, and
displacement discriminators. Right: Minibatch discriminator. All discrim-
inators apply input transformation via a standard densely connected NN
layer. (The minibatch layer applies Equation 2 before the input transfor-
mation.) Dropout is applied subsequently, followed by a recurrent unit
(left) or another densely connected NN layer (right). The output layer ap-
plies a sigmoid activation.

6. Adversaries

A training objective with a standard regression loss can be
problematic for gesture generation due to the variability of
speech gesture. The same or a similar utterance may reason-
ably be associated with various different gestures; the generator
may produce a subjectively valid gesture that is nonetheless ob-

jectively far from the ground-truth pose sequence, resulting in a

high training error. A common result is mean pose convergence,
where the generator produces damped motion around the mean,
minimizing error across all possibilities. Our adversarial train-
ing paradigm removes the tight constraint of predicting exact
poses while still enforcing higher-level descriptors of natural
gesture, as well as lower-level humanoid skeleton configuration
constraints.

Specifically, in an adversarial training paradigm, the genera-
tor receives as feedback only a single value per generated ges-
ture sequence, representing the decision of the discriminator
whether the presented sequence looks real or not. Therefore,
rather than receiving a numerical error for every pose in a se-
quence as is the case in a standard regression loss, the generator
receives a single, more qualitative judgement about the entire
pose sequence.

Our chosen descriptors of natural gesture can be summarized
as three basic objectives: (1) The generator should produce se-
quences of joint positions that represent valid human skeleton
configurations. (2) The produced pose sequences should de-
scribe realistic gesture dynamics, including distinct phases of
e.g. acceleration as well as stillness. (3) The output pose se-
quences should be appropriate with respect to the speech they
accompany. With this selection of objectives, we aim to ensure
that our output can both be considered speech gesture (valid
human skeleton moving according to speech), as well as ad-
dressing the problems in previous works of overly smooth or
lethargic motion, by explicitly enforcing some characteristics
of gesture motion dynamics.

In this Section, we will discuss how we represent the above
output objectives with a set of training adversaries, called dis-
criminators, each enforcing a different part of the objectives.
Each discriminator is a separate neural network, with its own
training loss feedback. Their architectures are detailed in Fig-

ure 9; we will describe each discriminator one-by-one below.

6.1. Phase structure discriminator

The phase discriminator’s job is to determine whether the
generator’s output follows a realistic gesture phase structure.

This discriminator therefore only receives phase labels as input
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rather than joint positions. We additionally provide the phase
discriminator with the pitch value at each time-step as an in-
dicator of speech emphasis. The network architecture of the
phase discriminator is detailed in Figure 9a.

Phase labels are always determined by the phase classifier;
that is, we never use the ground truth annotation during adver-
sarial training. This ensures that any differences in the phase
structure of real and generated data is not due to potentially
noisy automatic classification. As the phase labels are auto-
matically determined by the phase classifier, we want to ensure
somewhat sensible input to the classifier, i.e. input resembling
human motion. We utilize the training history of the generator’s
pre-training to prepare the phase discriminator. The training
history of the generator are the generator weights saved peri-
odically during its pre-training described in Section 5.2. The
phase discriminator’s pre-training utilizes this as follows: The
phase discriminator receives the classified phase labelling of
an untrained generator (i.e. noise input). When the phase dis-
criminator achieves an accuracy score of at least 70% for three
batches in a row, the generator gets ‘upgraded’ with the next
set of weights from the training history. This is repeated un-
til the phase discriminator has reached the weights level of the
fully pre-trained generator. This step-by-step upgrading of the
generator’s weights serves to not overwhelm the discriminator

during pre-training.
6.2. Motion realism discriminator

Adversarial training between the generator and the phase dis-
criminator alone will quickly lead to divergence from the skele-
ton structure due to the phase discriminator only judging the au-
tomatically classified phase labels. As described in Section 5.2,
the phase classifier may assign a realistic phase structure to un-
realistic input; when the generator is judged solely on this phase
structure, it may receive positive discriminator feedback for en-
tirely unrealistic output and we found this to lead to increas-
ing divergence from skeleton-like joint positions. To address
this problem, we employ a second discriminator that judges the
output of the generator directly by receiving the raw generated

joint positions, as well as the corresponding audio features. The

63 joint values (X, y, z of 21 joints) and 27 speech features are
passed into the network architecture detailed in Figure 9a.

The motion realism discriminator is pre-trained in a classic
adversarial training setting with a new generator in order to
learn to detect unrealistic point clouds not resembling a skele-
ton. This is necessary in order to not allow the already pre-

trained generator to regress to non-humanoid point clouds.

6.3. Minibatch discriminator

Adversarial training is prone to suffering from mode col-
lapse, where the generator produces repetitive patterns of out-
put. While the discriminator can immediately learn that this
specific pattern comes from the generator, the generator only
needs to shift its repetitive output slightly to fool the discrimi-
nator. This may be repeated in an infinite cat and mouse game.
One reason for this mode collapse is that a standard discrim-
inator only judges one output sequence at a time, rather than
in the context of a whole batch of data. A minibatch layer can
be added to allow the discriminator to see this context and en-
sure that the generator cannot get away with even novel patterns
when they are repetitive throughout the data batch [49].

Instead of integrating minibatch discrimination into the mo-
tion realism discriminator, we achieved better performance
when outsourcing the task to a separate discriminator. This dis-
criminator receives 63 joint values (X,y,z of 21 joints) generated
by the generator or taken from the ground truth and calculates

a minibatch similarity measure:
sim(X) = L'(W - X), )

where L' denotes the L1 norm and W is a 300-dimensional
(trainable) weight tensor. The detailed architecture of the mini-

batch discriminator is shown in Figure 9b.

6.4. Displacement discriminator

The generator’s output at the beginning of adversarial train-
ing is the damped motion learned from the MSE pre-training.
To encourage the generator towards less damped motion, we
introduce a displacement discriminator that receives the same
motion input as the phase classifier, namely the per-frame x,

y, and z offset of the 16 arm joints (48 values). That is, the
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displacement discriminator explicitly sees how much each joint
has moved at each time-step; it can penalize a generator that
produces very slow (or very fast) motion. In effect, the dis-
placement discriminator judges the directional velocity of the
generated joint positions. The displacement discriminator also
serves to reduce jitter in the motion (offset in one direction al-
ways followed by some offset to opposite direction).

The error from this discriminator receives a lesser weight and
serves as a minor side objective of the generator training, help-
ing to stabilize and speed up convergence and smooth output
motion. The architecture of the displacement discriminator fol-
lows that of the motion realism discriminator and is visualized

in Figure 9a.

7. Training process

During adversarial training, the generator’s output is judged
by all discriminators and an averaged error is computed, as de-
tailed in Section 7.1 below. This is followed by a training step of
objective numerical errors. The objective error functions speed
up convergence and enable continuous prediction, as described

in Section 7.2.

7.1. Adversarial training

The adversarial training is visualized in Figure 10 and sum-

marized below:

o The generator receives 27 prosodic speech features as in-

put and generates corresponding 3D positions of 21 joints.

e The phase classifier first converts the joint positions to
frame offsets and subsequently predicts a sequence of ges-
ture phase labels. The phase classifier also receives as in-
put the FO (pitch) value of each frame. The classifier’s

weights are fixed during adversarial training.

e The produced phase label sequence of the classifier, plus
the FO value, serve as input for the phase structure dis-

criminator.

e The motion realism discriminator receives the joint po-
sitions directly, as well as all corresponding 27 speech fea-

tures.

e The displacement discriminator receives the same mo-
tion input as the phase classifier, the per-frame joint offsets

of the 16 arm and hand joints.

e The minibatch discriminator only receives the joint po-

sitions as input.

All three discriminators are trained with a binary cross-entropy
loss to determine whether a motion sequence is real or gener-
ated. The discriminators learn independently from each other,
sharing no weights and receiving individual training loss feed-
back. The loss of the generator with respect to the three dis-
criminators is weighted and combined into a single value for
the generator’s training step. All models work with input se-
quences of 5 seconds, at 20 fps, resulting in 100 time-steps.
During adversarial training steps, the generator optimizes the
binary cross-entropy of the discriminators’ output. The gener-
ator’s training error with respect to the four discriminators is

averaged for each optimization step in the following manner:

Lean(G) =

W,,.E(G, Dp) +w,.L(G,D,) + wy, L(G, D) + wa L(G, Dg)
Wp + Wy + Wiy + Wy ’

3)
withw, =2,w, =4,w, =4, andwy =1,

where w), is the weight assigned to the phase discriminator’s
loss, w, the weight for the motion realism discriminator, w,, the
weight for the minibatch discriminator, and w, the weight for
the displacement discriminator. .£(G, D) represents the genera-
tor’s objective with respect to one discriminator. The weighting
of 2:4:4:1 was chosen by empirically finding values that led
to stable training with respect to all discriminator objectives,
without the generator collapsing with respect to one or more
objectives. The adversarial training of the generator is visual-
ized in Figure 10, representing a more detailed version of the
previously presented Figure 5. We use the RMSprop optimizer

during adversarial training.

7.2. Objective loss penalties

In addition to the adversarial updates of the generator, one

MSE correction is performed per two adversarial steps. The
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Fig. 10. Adversarial training. The generator produces joint positions based
on input speech features. Its output is judged by four discriminators with
separate objectives, and a weighted error is computed with respect to all
four evaluations. Each discriminator optimizes the binary cross-entropy
objective, deciding if a given data sample is real or generated.

MSE avoids major deviations of the generator’s output from
a realistic skeleton structure that would produce nonsensical
phase label output and slow down the training overall. An alter-
native, similar approach would be to restrict joint positions to
realistic ranges.

The generator is trained to predict gesture motion for 5 sec-
onds of speech input at a time rather than for continuous input.
Gesture motion is therefore continuous within 5 second predic-
tion intervals, but can be visibly discontinuous between inter-
vals. To avoid having to compute smooth transitions in post-
processing, we introduce a penalty for the generator for discon-
tinuous sequences within a training batch. The discontinuation
penalty is computed as the mean squared distance between the
start position of a sequence and the end position of the preced-
ing sequence. The penalty for first sequence within a batch is
always set to zero and otherwise:

T

1
Ln(G) = 2 Y GCOO -GOE-D)* . @)

=1
We observed during adversarial training that the predicted
finger positions often move far from the hand. To speed up
the training process, we added a simple finger distance penalty

restricting the predictions to realistic ranges. We compute the

distance of each finger marker to the respective hand marker
and calculate the MSE with respect to the real distances:

n

1
Lfingers(G) = ; Z(Dfingers(G(x)) - Dfingers(Y(x)))z 5

i=1
with Y(x) denoting the ground truth for sample x, and Dyjygers
computed as the concatenation of each finger marker’s x, y, and

z distance from the respective hand.

8. Results

We conducted a series of qualitative evaluations to clarify
the roles of each discriminator and their benefits for generator
training, and quantitative evaluations of the resulting generator

output.

8.1. Qualitative evaluation

In this section, we discuss how each discriminator as well as
the objective loss penalties affects the output of the generator

qualitatively.

8.1.1. Phase structure discriminator

The phase structure discriminator allows us to capture impor-
tant gesture dynamics without having to rely on implicit learn-
ing from a larger dataset (such as in Ginosar et al. [33]). During
the pre-training described in Section 6.1, this discriminator eas-
ily learns to distinguish the (noisy) classified phase structures
of real motion and motion produced by the pre-trained gen-
erator. During adversarial training, the phase discriminator’s
accuracy remains balanced with the generator’s while the gen-
erator’s output is improving in quality. We visualize the ben-
efits of the phase discriminator for encouraging better gesture
motion dynamics in the supplemental video; without the phase
discriminator, the motion shows no clear holds or accelerations
characteristic of the stroke phase. The motion appears to corre-

spond less with the speech prosody.

8.1.2. Motion realism discriminator
The phase discriminator’s judgment alone is not a sufficient
constraint for the generator’s output. As described in Section

6.2, the automatic phase label classification of the generator’s

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Preprint Submitted for review / Computers & Graphics (2020) 15

output and the phase classifier’s naivety with respect to non-
human point clouds provides too much room for the generator
to produce unrealistic data. The motion discriminator presents
a better constraint for maintaining a skeleton structure as it sees
the generator’s output directly and successfully constrains the
generator to data points resembling a skeleton structure. Fig-
ure le visualizes the output distribution produced by a genera-
tor unconstrained by a motion discriminator. The supplemen-
tal video also shows a sample of the motion produced without
a motion realism discriminator; the joint positions move away
from the skeleton structure, producing output not resembling

human motion.

8.1.3. Minibatch discriminator

As a vanilla discriminator only judges output sequences in
isolation, without taking the context of the data batch into con-
sideration, the generator can suffer from mode collapse, as de-
scribed in 6.3, and visualized by the plotted data distribution in
Figure 1c. Our minibatch discriminator successfully forces the
generator to produce more diverse output. The supplemental
video shows the repetitive motion generated under mode col-
lapse, as well as the improved, more diverse output with mini-
batch discrimination. We considered two alternative integra-
tions of minibatch discrimination into our model, namely as
part of the motion realism discriminator and as part of a separate
discriminator. In practice, we find the adversarial training to be
more stable when outsourcing the minibatch discrimination to a
separate discriminator only receiving motion input. Generator
training was less likely to collapse with respect to one discrimi-
nator when the adversarial objective was more distributed. The
benefit of employing multiple discriminators has also been dis-

cussed in previous works [50, 51].

8.1.4. Displacement discriminator

Learning from the phase discriminator’s feedback is poten-
tially difficult for the generator due to the hidden layers between
the generator and phase discriminator (i.e., the phase classifier’s
computations that are inaccessible to the generator). The gen-
erator’s motion output is first converted to per-frame offsets of

the joints and then passed to the classifier for higher level fea-

ture extraction. Introducing a discriminator receiving the same
processed motion as the classifier can provide more direct feed-
back. In practice, we found that the addition of such a dis-
placement discriminator sped up learning and moved predic-
tions away faster from the damped baseline motion produced by
the pre-trained generator. We visualize this by plotting an ex-
ample data distribution in Figure 1d. The slow departure from
the mean pose when training the model without the displace-
ment discriminator is also shown in the supplemental video. We
also illustrate the smoothing benefit of the displacement dis-
criminator in the video: When training the generator without
any discriminator receiving the joint offsets (i.e. with neither
the displacement discriminator nor the phase classifier and dis-
criminator), the motion output displays a great amount of jitter.
We show that adding the displacement discriminator reduces
jitter to a large degree. This discriminator receives the smallest

weighting in the generator’s objective.

8.1.5. Adversarial error weighting

We find a weighting of 2:4:4:1 for the error of the phase dis-
criminator, motion realism discriminator, minibatch discrim-
inator, and the displacement discriminator, respectively, to
achieve the most stable training, measured by the accuracy of
the binary cross-entropy objective for each discriminator. This
weighting allows us to see stable accuracy improvements for
the generator across all adversarial objectives without collapse

with regard to one or more objectives.

8.1.6. Objective losses

The discontinuation penalty is largely successful in reduc-
ing the positional jumps between predicted motion sequences,
making the model more applicable for continuous gesture gen-
eration for long sequences of speech input. The finger distance
penalty proved a simple measure to avoid unrealistic finger po-
sitions without strongly constraining the generator in its predic-

tions.

8.2. Quantitative evaluation

We provide a quantitative evaluation of our generation results

based on the wrist motion in Figure 11. We present these results
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Fig. 11. Quantitative gesture generation evaluation. Top: Wrist velocity for each predicted time step, median across 150 sequences (see Equations 6 and 7).
Bottom: Maximum distance of the wrists from mean pose for 50 randomly selected sequences.

in an ablation manner, as in Figure 1, evaluating how removal of
a specific discriminator in training affects the generation result.

The top graph plots the wrist velocity per predicted time step,
each representing the median over 150 predicted gesture se-
quences. This 1-dimensional velocity of the 3-dimensional x,
y, z joint coordinates of a time step t and a sequence i is more

specifically calculated as follows:

VelOCity(ti) =[x = Xt | + [y = Yt | = |z — zp1] (6)
velocity(t) = median(®, 1", ..t', ..1") @)

We can see that one of the closest matches of real motion
(red) are achieved by our model (purple) and the system config-
uration removing the motion discriminator (green). However,

the latter configuration generates joint positions that heavily vi-

olate human skeleton constraints. Removing the minibatch dis-
criminator (brown) produces faster than real motion, as well
as resulting in highly repetitive output. The output under re-
moval of the displacement discriminator (blue) as well as the
output the generator trained solely with a mean squared error
loss (yellow) exhibits very slow motion, much below realistic

levels.

The bottom graph in Figure 11 plots the maximum distance
travelled away from the mean pose, for 50 example sequences.
The closest match to real wrist position ranges is achieved by
our model, though it does not reach the wide ranges of real
motion. The MSE-trained generator and the no-displacement-
discriminator condition show a comparable level of variation

to real motion, but the gestures are overall closer to the body

20

21

22

23

24

25



20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Preprint Submitted for review / Computers & Graphics (2020) 17

both than real motion and than for our model. The no-motion-
discriminator condition similarly produces lower ranges than
real motion. The no-minibatch-discriminator condition pro-
duces very stable ranges, indicative of the repetitive gesture se-

quences generated.

9. Discussion

We explored generative adversarial networks for speech-to-
gesture translation with higher level feature extraction. For this
purpose, we first recorded a dataset of over six hours of nat-
ural, conversational speech with high-quality 3D motion cap-
ture. Gesture motion is marked by distinct dynamics, including
phases of acceleration and effort, of pause, and of relaxation.
These higher-level dynamics can be difficult to capture implic-
itly. To enforce these dynamics more explicitly in a top-down
manner, we train a classifier to detect gesture phases automat-
ically, and then train a phase structure discriminator to detect
realistic versus non-realistic phase sequences.

To train the phase classifier, we hand-annotated the phases
of an over 3.7 hour long subset of our dataset using 9 differ-
ent phase labels. We validate our results on a second speaker,
for whom we annotate an additional small sample of gesture
sequences. We compare three models of phase classification
with different levels of detail (1-, 4-, and 6-class classification).
We achieve good results, and we conclude that our error rate
may to a relatively large extend be due to inter-coder incon-
sistencies. This leads to the dilemma of weighing data quan-
tity against data quality; the large time requirement of hand-
annotation (1 hour or more work for 1 minute of data) tempts
distributing the work load across a number of people, but this
may lead to increased problems with annotation consistency.
When motion capture is available, we suggest that automati-
cally pre-annotating all sections with close to zero velocity as
‘hold’ could speed up the annotation process as well as increase
inter-coder agreement in future work.

Our 1-class stroke classifier performs similarly well on both
our speaker and the validation speaker. 4- and 6-class classi-
fication reaches equal scores for our speaker; for the valida-

tion speaker, the 4-class model achieves a significantly higher

score. One reason for the drop in performance on the valida-
tion speaker for the multi-phase models may be differences in
speaker style, leading to different expressions of gesture phase.
The higher the level of detail, the larger are the expected inter-
speaker differences. Ideal phase classification may therefore

always be speaker-specific.

For training our gesture generator, instead of using a stan-
dard regression loss, we construct a generative adversarial set-
ting with multiple discriminators. We observe a clear advantage
of adversarial training over using a standard regression loss; the
produced motion has a larger positional range, more realistic

velocity, and appears much less damped.

By using multiple discriminators, we can phrase the speech-
to-gesture generation problem as a series of sub-problems. We
use our automatic phase labelling to enforce a more realistic
gesture phase structure in our output; this is the task of the phase
structure discriminator. The phase structure discriminator en-
ables the enforcement of higher level dynamic characteristics
in the output without having to rely on implicit learning from a

large amount of data.

Because an automatic phase classifier will always assign
some phase label to even random point clouds, we constrain the
motion output with a second discriminator judging the gener-
ated joint positions as real or fake; this is the task of the motion
realism discriminator. Because the motion realism discrimina-
tor’s task is to judge one generated motion sequence at a time, it
can allow for the same sequence to be generated repeatedly. A
minibatch discriminator detects such repetitive patterns, ensur-
ing diversity in the output. Lastly, generated motion can often
look jittery; we address this by including a the training objec-
tive of realistic joint displacement per frame, monitored by the

displacement discriminator.

To our knowledge, this is the first work using adversarial
training for generating 3D gesture motion from natural speech,
and the first work exploring the use of multiple discriminators
for the purpose. We observe a benefit of using multiple dis-
criminators to stabilize adversarial training, and we report how

each discriminator addresses a distinct sub-problem in the ges-
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ture generation task. We employ explicit modelling of the dy-
namics of gesture motion to allow learning of these higher level
features from a smaller dataset. We see our work as a further
step towards enabling automatic animation of realistic conver-
sational agents.

Our results are limited to gesture generation for the single
speaker we recorded and more data of various speakers would
be necessary to make generalizations. Due to the high vari-
ance of gesture behavior across speakers, this is a very difficult
task. Because we generate gesture motion from prosodic speech
features, semantically meaningful gestures can hardly be in-
ferred without explicitly employing speech recognition meth-
ods. Speech recognition, however, would likely only yield a
benefit when using a much larger dataset, ensuring a number of

examples of the same phrases.

10. Future work

While generated motion improved greatly with respect to
standard regression loss training, the produced motion still
lacks desirable levels of realism. Looking forward, we will ex-
plore other measures of realism that may complement adversar-
ial training.

We are interested in working towards explicit enforcement
of gesture phase by using the gesture phase as a conditional
input for the generator, comparable to the approach proposed
by Holden et al. [29], who use locomotion phase as input in a
character control system. This may require gesture phase ex-
traction solely from input speech, rather than motion data. In
this regard, Yunus et al. [48] report interesting initial results in
predicting gesture phase from prosodic speech features.

Using our gesture phase extraction, we want to analyze
speech gesture further to understand better the relationship of
gesture characteristic and accompanying speech. Considering
the suggested differences in phase expression, as well previ-
ously found differences in gesture style (e.g. Ginosar et al.
[33]), we want to investigate how gesture meaning can, or can-
not, be compared across speakers.

We are also looking to explore the use of convolutional net-

works within a generative adversarial paradigm, such as in Gi-

nosar et al. [33], exploring visual data representations of speech

as well as motion.
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