Parameterizing neural power spectra into periodic
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Electrophysiological signals exhibit both periodic and aperiodic properties. Periodic
oscillations have been linked to numerous physiological, cognitive, behavioral, and
disease states. Emerging evidence demonstrates the aperiodic component has putative
physiological interpretations, and dynamically changes with age, task demands, and
cognitive states. Electrophysiological neural activity is typically analyzed using
canonically-defined frequency bands, without consideration of the aperiodic (1/f-like)
component. We show that standard analytic approaches can conflate periodic
parameters (center frequency, power, bandwidth) with aperiodic ones (offset, exponent),
compromising physiological interpretations. To overcome these limitations, we introduce
a novel algorithm to parameterize neural power spectra as a combination of an aperiodic
component and putative periodic oscillatory peaks. This algorithm requires no a priori
specification of frequency bands. We validate this algorithm on simulated data, and
demonstrate how it can be used in applications ranging from analyzing age-related

changes in working memory to large-scale data exploration and analysis.
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INTRODUCTION

Neural oscillations are widely studied, with tens-of-thousands of publications to date. Nearly a
century of research has shown that oscillations reflect a variety of cognitive, perceptual, and
behavioral states’?, with recent work showing that oscillations aid in coordinating interregional
information transfer®*. Notably, oscillatory dysfunction has been implicated in nearly every major
neurological and psychiatric disorder®®. Following historical traditions, the vast majority of the
studies examining oscillations rely on canonical frequency bands, which are approximately
defined as: infraslow (< 0.1 Hz), delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz),
low gamma (30-60 Hz), high frequency activity (60-250 Hz), and fast ripples (200-400 Hz).
Although most of these bands are often described as oscillations, standard approaches fail to
assess whether an oscillation—meaning rhythmic activity within a narrowband frequency

range—is truly present (Fig. 1A,B).

In the frequency domain, oscillations manifest as narrowband peaks of power above the
aperiodic component (Fig. 1A)"®. Examining predefined frequency regions in the power
spectrum, or applying narrowband filtering (e.g., 8-12 Hz for the alpha band) without
parameterization, can lead to a misrepresentation and misinterpretation of physiological
phenomena, because apparent changes in narrowband power can reflect several different

physiological processes (Fig. 1C,D). These include: (i) reductions in true oscillatory power®;

11,12,

(i) shifts in oscillation center frequency'""?; (iii) reductions in broadband power'"®

, or; (iv)
changes in aperiodic exponent®'®'®. When narrowband power changes are observed, the
implicit assumption is typically a frequency-specific power change (Fig. 1C.i), however, each of
the alternative cases can also manifest as apparent oscillatory power changes, even when no
oscillation is present (Fig. 1D). That is, changes in any of these parameters can give rise to

identical changes in total narrowband power (Fig. 1C,D).

Even if an oscillation is present, careful adjudication between different oscillatory features—
such as center frequency and power—is required. Variability in oscillation features is ignored by
many approaches examining predefined bands and, without careful parameterization, these
differences can easily be misinterpreted as narrowband power differences (Fig. 1C). For
example, there is clear variability in oscillation center frequency across age®, and
cognitive/behavioral states'"'?. Oscillation bandwidth may also change, but this parameter is

underreported in the literature. Thus, what is thought to be a difference in band-limited
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oscillatory power could, instead, reflect center frequency differences between groups or

conditions of interest?"?? (Fig. 1C.ii).

Interpreting band-limited power differences is further confounded by the fact that oscillations are
embedded within aperiodic activity (represented by the dotted blue line in Fig. 1A). This
component of the signal stands in contrast to oscillations in that it need not arise from any
regular, rhythmic process®. For example, signals such as white noise, or even a single impulse
function, have power at all frequencies despite there being, by definition, no periodic aspect to
the signal (Extended Data Fig. 1B). Due to this aperiodic activity, pre-defined frequency bands
or narrowband filters will always estimate non-zero power, even when there is no detectable

oscillation present (Fig. 1B, Extended Data Fig. 1).

In neural data, this aperiodic activity has a 1/f-like distribution, with exponentially decreasing
power across increasing frequencies. This component can be characterized by a 1/ function,
whereby the x parameter, hereafter referred to as the aperiodic exponent, reflects the pattern of
aperiodic power across frequencies, and is equivalent to the negative slope of the power
spectrum when measured in log-log space®. The aperiodic component is additionally
parameterized with an ‘offset’ parameter, which reflects the uniform shift of power across
frequencies. This aperiodic component has traditionally been ignored, or is treated as either
noise or as a nuisance variable to be corrected for, such as is done in spectral whiteningzs,

rather than a feature to be explicitly parameterized.

Ignoring or correcting for the aperiodic component is problematic, as this component also
reflects physiological information. The aperiodic offset, for example, is correlated with both
neuronal population spiking™' and the fMRI BOLD signal'. The aperiodic exponent, in
contrast, has been related to the integration of the underlying synaptic currents®®, which have a
stereotyped double-exponential shape in the time-domain that naturally gives rise to the 1/f-like
nature of the power spectral density (PSD)". Currents with faster time constants, such as
excitatory (E) AMPA, have relatively constant power at lower frequencies before power quickly
decays whereas for inhibitory (I) GABA currents power decays more slowly as a function of
frequency. This means that the exponent will be lower (flatter PSD) when E>>|, and larger when
E<<I'. Thus, treating the aperiodic component as “noise” ignores its physiological correlates,

|17,27

which in turn relate to cognitive and perceptua states, while trait-like differences in aperiodic

t28

activity have been shown to be potential biological markers in development®® and aging’ as

well as disease, such as ADHD?°, or schizophrenia®.
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To summarize, periodic parameters such as frequency
as well as the aperiodic parameters of broadband offset'*'®> and exponent®'®"®, can and do
change in behaviorally and physiologically meaningful ways, with some emerging evidence
suggesting they interact with one another®'. Reliance on a priori frequency bands for oscillatory
analyses can result in the inclusion of aperiodic activity from outside the true physiological
oscillatory band (Fig. 1C.ii). Failing to consider aperiodic activity confounds oscillatory
measures, and masks crucial behaviorally and physiologically relevant information. Therefore, it
is imperative that spectral features are carefully parametrized to minimize conflating them with
one another and to avoid confusing the physiological basis of “oscillatory” activity with aperiodic

activity that is, by definition, arrhythmic.

To better characterize the signals of interest, and overcome the limitations of traditional
narrowband analyses, we introduce an efficient algorithm for parameterizing neural PSDs into
periodic and aperiodic components. This algorithm extracts putative periodic oscillatory
parameters characterized by their center frequency, power, and bandwidth; it also extracts the
offset and exponent parameters of the aperiodic component (Fig. 2). Importantly, this algorithm
requires no specification of narrowband oscillation frequencies; rather, it identifies oscillations

based on their power above the aperiodic component.

We test the accuracy of this algorithm against simulated power spectra where all the
parameters of the periodic and aperiodic components are known, providing a ground truth
against which to compare the algorithm’s ability to recover those parameters. The algorithm
successfully captures both periodic and aperiodic parameters, even in the presence of
significant simulated noise (Fig. 3). Additionally, we show that algorithm performs comparably to
expert human raters who manually identified peak frequencies in both human EEG and non-
human local field potential (LFP) spectra (Fig. 4). Finally, we demonstrate the utility of
algorithmic parameterization in three ways. First, we replicate and extend previous results
demonstrating spectral parameter differences between younger and older adults at rest (Fig. 5).
Next, we find a novel link between the aperiodic component and behavioral performance in a
working memory task (Fig. 6). Finally, by leveraging large-scale analysis of human
magnetoencephalography (MEG) data, we map the spatial patterns of oscillations and aperiodic
activity across the human neocortex, demonstrating how this method can be used at scale (Fig.
7).
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RESULTS

Algorithm performance against simulated data

To investigate algorithm performance, we simulated realistic neural PSDs with known ground
truth parameters. These simulated spectra consist of a combination of Gaussians, with variable
center frequency, power, and bandwidth; an aperiodic component with varying offset and
exponent; and noise. Algorithm performance was evaluated in terms of its ability to reconstruct
the individual parameters used to generate the data (Fig. 3; see Methods). Individual
parameter accuracy was considered, since the algorithm, without using the settings to limit the
number of fitted peaks, can arbitrarily increase R? and reduce error. Thus, overall fit error should
not be the sole method by which to assess algorithm performance, and should be considered
together with the number of peaks fit. This is because, in the extreme, if the algorithm fits a peak
at every frequency then the error between the center frequency of the true peak and the closest
identified peak will be artificially low. In addition, global goodness-of-fit measures such as R? or

mean squared error are not directly related to accuracy of individual parameter estimation.

Common analyses seek to identify and measure the most prominent oscillation in the power
spectrum. To assess algorithm performance at this task, we began by simulating a single
spectral peak with varying levels of both noise and aperiodic parameters (Fig. 3A). Algorithm
performance is assessed by the absolute error of each of the reconstructed parameters:
aperiodic offset and exponent (Fig. 3B), as well as center frequency, power, and bandwidth of
the largest peak (Fig. 3C). Note that power as returned by the algorithm always refers to
aperiodic-adjusted power—that is the magnitude of the peak over and above the aperiodic

component.

Simulated aperiodic exponents ranged between [0.5, 2.0] au/Hz, and the median absolute error
(MAE) of the algorithmically identified exponent remained below 0.1 au/Hz, even in the
presence of high noise, with MAE increasing monotonically across noise levels (Fig. 3B).
Spectral peaks were simulated with center frequencies between [3, 34] Hz, with peak power
between [0.15, 0.4] au above the aperiodic component, and bandwidths between [1, 3 HZz] (see
methods for full details). When identifying center frequency, MAE was within 1.25 Hz of the true
peak for all tested noise levels. For peak power MAE remained below 0.1 au, and for bandwidth

MAE was within 1.25 Hz, for even the largest noise scenarios. In both cases MAE increased
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monotonically with noise (Fig. 3A). Note that for bandwidth, a default algorithm parameter limits

maximum bandwidth to 8.0 Hz (see Methods), which likely reduces MAE.

Another use case for the algorithm is to identify multiple oscillations (Fig. 3D-F). Here we
assess performance as overall fit error, considered in combination with whether the algorithm
finds the correct number of oscillations. In the presence of multiple simulated peaks (Fig. 3D),
the median fit error increases monotonically as the number of peaks increases (Fig. 3E).
Multiple simulated peaks can differ significantly in power and can overlap, increasing fit error.
Despite this, the modal number of fit peaks matches the number of true simulated peaks (Fig.
3E,F).

Additional simulations tested algorithm performance across broader frequency ranges
(Extended Data Fig. 2). For the frequency range of 1-100 Hz, MAE was below 1.5 Hz for low
frequency peaks (3-34 Hz), and below 4 Hz for high frequency peaks (50-90 Hz), across noise
levels (Extended Data Fig. 2B). Across larger frequency ranges, spectra often exhibit a ‘knee’,
or bend in the aperiodic component of the data®**? (see Methods). Knee values were simulated
between [0, 150] au, and MAE for the recovered parameters was below 15 au, while
maintaining good performance for offset (MAE below 0.2) and exponent (MAE below 0.15)
(Extended Data Fig. 2C). Finally, the robustness of the algorithm was assessed against
violations of model assumptions, including fitting no knee when a knee is present, non-Gaussian

peaks, and non-sinusoidal oscillations (Extended Data Fig. 3).
Algorithm performance against expert human labeling

Next, we examined algorithm performance against how experts identify peaks in PSDs.
Because it is uncommon for human raters to manually measure the other spectral features
parameterized by the algorithm, human raters experienced in oscillation research (h=9)
identified only the center frequencies of peaks in human EEG and non-human primate LFP
PSDs (Fig. 4A,B). For many spectra there was strong consensus (e.g., Fig. 4A), but not for all
(e.g., Fig. 4B). Performance was quantified in terms of precision, recall, and F; score, the latter
of which combines precision and recall with equal weight (see Methods). This is a conservative
approach that underestimates the abilities of the algorithm (which is optimized to best fit the
entire spectrum, not just a peak’s center frequency). Also important is that the definition of
surrogate ground truth used here means that when human raters show disagreement regarding

the center frequency of putative oscillations, the algorithm will be marked as incorrect (Fig. 4B).
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Human labelers were relatively consistent in peak labeling for both EEG and LFP datasets, as
evidenced by above-chance recall for each rater with the majority (Fig. 4C). Despite the
disadvantages outlined above, the algorithm identified a similar number of peaks as the raters
for both EEG (n=64 PSDs; humans, algorithm: 1.81, 1.71; t,5=0.77, p=0.44) and LFP (n=42
spectra, humans, algorithm: 1.05, 1.10; t,4=-0.47, p=0.64). The algorithm had comparable
precision as humans for both EEG (humans, algorithm: 0.77, 0.81; z=0.18, p=1.0) and LFP
(humans, algorithm: 0.83, 0.63; z=-1.44, p=0.38). The algorithm had slightly lower recall
compared to humans for EEG (humans, algorithm: 0.87, 0.68; z=-2.15, p=0.092), and
comparable recall for LFP (humans, algorithm: 0.86, 0.84; z=-0.22, p=0.99).

Raters also demonstrated a strong precision/recall tradeoff (Spearman p=-0.91, p=2.2x10"")
(Fig. 4C). Such a tradeoff is common in search and classification, as most strategies to improve
recall come at the cost of precision, and vice versa. For example, one could achieve perfect
precision by marking only the most obvious, largest power, peak, but at the cost of failing to
recall all other peaks. Or one could achieve perfect recall by marking every frequency as
containing a peak, but at the cost of precision. For this reason, we assessed overall
performance using the F; score, which equally weights precision and recall. The algorithm had
comparable F; scores as humans for EEG (humans, algorithm: 0.79, 0.74; z=-0.44, p=0.96),
and slightly lower F; scores for LFP (humans, algorithm: 0.83, 0.72; z=-2.16, p=0.087) (Fig. 4D).

Age-related differences in spectral parameters

The practical utility of the algorithm was assessed across several EEG and MEG applications.
First, we replicated and extend previous work looking at age-related differences in spectral
parameters, such as alpha oscillations and aperiodic exponent, including how individualized
parameters differ with aging (Fig. 5); then we examined whether task-related parameters are
altered by working memory and aging (Fig. 6). To test this, we analyzed scalp EEG data from
younger (n=16; 20-30 years; 8 female) and older adults (n=14; 60-70 years; 7 female) at rest

and while performing a lateralized visual working memory task (see Methods).

Resting state analyses. Resting state alpha oscillations and aperiodic activity, as parameterized
by the algorithm, were compared between age groups. First, we quantified how much
individualized alpha parameters differed from canonical alpha. To do this, participant-specific
alpha oscillations were reconstructed based on individual peak frequencies from channel Oz

and were compared against a canonical 10 Hz-centered band. We observed considerable
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variation across participants (Fig. 5A,B, see Methods), as well as a significant difference
between groups (overlap with canonical alpha: younger=84%, older=71%; t,s=2.27, p=0.031;
Cohen’s d=0.83) (Fig. 5B). Note that this manifests as a difference in alpha power between
groups when using the canonical band analyses, though this is partly driven by more of older

adult’s alpha lying outside the canonical 8-12 Hz alpha range.

Older adults had lower (slower) alpha center frequencies than younger adults (younger=10.7
Hz, older=9.6 Hz; t,5=2.20, p=0.036; Cohen’s d=0.79) and lower aperiodic-adjusted alpha power
(younger=0.78 qu, older=0.45 sz; t6=2.52, p=0.018; Cohen’s d=0.93), though bandwidth did
not differ between groups (younger=1.9 Hz, older=1.8 Hz; {,3=0.48, p=0.632; Cohen’s d=0.17)
(Fig. 5C). The mean aperiodic-adjusted alpha power difference between groups was 0.33
uV?/Hz whereas, when comparing total (non aperiodic-adjusted) alpha power, the mean
difference was 0.45 pV?Hz. This demonstrates that, though alpha power changes with age, the
magnitude of this change is exaggerated by conflating age-related alpha changes with age-

related aperiodic changes.

Regarding aperiodic activity, older adults had lower aperiodic offsets (younger=-11.1 pV?
older=-11.9 pV? t,4=6.75, p<0.0001; Cohen’s d=2.45) and lower (flatter) aperiodic exponents
(younger=1.43 pV%Hz, older=0.75 uV?%Hz; t,4=7.19, p<0.0001; Cohen’s d=2.63) (Fig. 5E).
Participant-specific aperiodic components were reconstructed based on individual offset and
exponent parameter fits from channel Cz, and used to compare frequency-by-frequency
differences between groups (Fig. 5D). From reconstructions, significant differences were found
between groups in the frequency ranges 1.0-10.5 Hz and 40.2-45.0 Hz (p<0.05, uncorrected t-
tests at each frequency band). This demonstrates, in real data, how group differences in what
would traditionally be considered to be oscillatory bands can actually be caused by aperiodic—

non-oscillatory—differences between groups (c.f., Fig. 1).

Working memory analyses. To evaluate whether parameterized spectra can predict behavioral
performance, we analyzed a working memory task from the same dataset, in which participants
had to remember the color(s) of briefly presented squares over a short delay period. We then
attempted to predict behavioral performance, measured as d', from periodic and aperiodic
parameters calculated as a difference measures between baseline and delay period (see
Methods for task and analysis details). Ordinary least squares linear regression models were fit
to predict performance, and model comparisons were done to examine which spectral

parameters and estimation approaches best predicted behavior (Fig. 6A-C). The most
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consistent model for predicting behavior across groups (adjusting for the number of parameters
in the model) was one using only the two aperiodic parameters (offset and exponent; younger:
Fu. 46=3.94, p=0.0078, R.,*=0.19; older: F4 37=5.10, p=0.0023, R.;°=0.29). In the older adult
group, the aperiodic-adjusted alpha power model was also a significant predictor (Fs, 35=7.70,
p=0.0004, Rad,-2=0.33), performing better than a model using canonical alpha measures (Fg
38=95.18, p=0.0042, Rad,-2=0.23). In the younger adult group, neither measure of alpha power
significantly predicted behavior (Fig. 6E). This result highlights that, while traditional analyses of
such tasks typically focus on alpha activity®®, we find that the more accurate prediction of
behavior is from aperiodic activity, a pattern that may be misinterpreted as alpha dynamics in
canonical analyses, in particular when there are spectral parameter differences between

groups.
Spatial analysis of periodic and aperiodic parameters in resting state MEG

Finally, we parameterized a large dataset (n=80, 600,080 spectra) of source-reconstructed
resting state MEG data to quantify how spectral parameters varies across the cortex. When
collapsed across all participants and all cortical locations, the distribution of center frequencies
for all algorithm-extracted oscillations partially recapitulates canonical frequency bands, wherein
the most common frequencies are centered in the theta, alpha, and beta ranges (Fig. 7B).
Notably, however, there are extracted oscillations across all frequencies, so while canonical
bands do capture the modes of oscillatory activity, they are not an exhaustive description of

periodic activity in the human neocortex.

Because extracted peaks are broadly consistent with canonical bands, we clustered them post
hoc into theta (3-7 Hz), alpha (7-14 Hz), and beta (15-30 Hz) bands. When examined across the
cortex, we find that the aperiodic-adjusted oscillation band power also recapitulates well-
documented spatial patterns®*, where theta power is concentrated at the frontal midline, alpha
power is predominantly distributed over posterior and sensorimotor areas, and beta power is
focused centrally, over the sensorimotor cortex (Extended Data Fig. 4B). However, prior
reports using canonical methods may be at least partially driven by aperiodic activity, because
they do not separate or quantify if, or how often, oscillations are present over and above the
aperiodic component. To address this, we quantified how often an oscillation was observed, for
each band, across the cortex (Extended Data Fig. 4A). These two metrics were then combined

into an “oscillation score” measure (see Methods), which is a composite of the group-level

11
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oscillation occurrence probability weighted by the relative power of algorithmically identified

parameters (Fig. 7A).

The oscillation score allows us to examination the variability of periodic activity across
participants. For example, the oscillation scores approaching 1.0 in both alpha and beta indicate
a very high degree of consistency in these bands (a maximum score of 1.0 tells us that every
participant has an oscillation of maximum relative power in the same location). We find that
alpha and beta are ubiquitous across the cortex, though their relative power is concentrated in
specific regions (Extended Data Fig. 4). By contrast, theta is more variable, with max oscillation
scores <0.4 indicating significant variability in theta presence, and its relative power. Theta
oscillations are only sometimes observed in frontal regions at rest (Extended Data Fig. 4) and

are almost entirely absent in visual regions.

The explicit parametrization of each feature allows us to examine how each parameter varies
across the cortex. Note, for example, that the consistency of oscillation presence and relative
power do not imply that these oscillations are consistent in their center frequency, because we
also see significant variation of peak frequencies (Fig. 7B). We also show that, while the
aperiodic exponent has a mean value of 0.828 (Fig. 7C), there is spatial heterogeneity such that
highest exponent values are found in posterior regions, and the exponent gets gradually smaller
(flatter) as it moves anteriorly (Fig. 7A). We also examined relationships between parameters,
calculated as correlations between the spatial topographies of oscillation scores per parameter
(Fig. 7D). The strongest observed relationships were a negative correlation between theta and
alpha (r=-0.60, p<0.0001) and a positive correlation between alpha and the aperiodic exponent
(r=0.83, p<0.0001). Collectively, these analyses allow us to verify patterns of aperiodic-adjusted
periodic activity, and quantify, for the first time, the consistency of occurrence of oscillations. In
addition, the spatial topography of the aperiodic exponent is important to note when exploring
topographies of presumed oscillations derived from narrowband analyses, given that the

aperiodic component can drive observed spatial differences.

DISCUSSION

Despite the ubiquity of oscillatory analyses, there are several analytic assumptions that impact
the physiological interpretation of prior oscillation research. Standard approaches for quantifying
oscillations presume that oscillations are present, which may not be true (Extended Data Fig.

1), and often rely on canonical frequency bands that presume that spectral power implies

12
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oscillatory power. These assumptions overlook the existence of aperiodic activity, which is itself
dynamic, and so cannot be simply ignored as stationary noise. Aperiodic activity also has
interesting demographic, cognitive, and clinical correlates, as well as physiological relevance,
and so should also be explicitly parameterized and analyzed. Here we introduce a novel method
for algorithmically extracting periodic and aperiodic components in electro- and
magnetophysiological data that addresses these often-overlooked issues in cognitive and

systems neuroscience.

We demonstrate this method with a series of applications, and highlight methodological points
and novel findings. We show how apparent age-related differences in oscillatory power can be
partially driven by shifts in oscillation center frequency (Fig. 1C). Specifically, we find that
canonical alpha band analyses (e.g., analyzing the 8-12 Hz range) fail to capture all of the
oscillatory power within individual participants, and are systematically biased between groups®
(Fig. 5B). In our data, canonical alpha analyses miss a greater proportion of power in older
adult’s true alpha activity compared to younger adult’s alpha, due to the fact that older adults
tend to have slower (lower frequency) alpha®® (Fig. 5A,B). This is important, as traditional
analyses using fixed bands fail to address inter-individual differences, which has methodological
consequences, and also ignores that variations in peak-frequencies within oscillation bands

have functional correlates and are of theoretical interest'?.

We also show how apparent oscillation power can be influenced by changes in the aperiodic
exponent, for example in the case of age-related changes in the aperiodic exponent (Fig. 5D,E).
Thus, though we replicate often-described age-related alpha power changes®, we find the
magnitude of this effect, when analyzed for alpha power specifically, is more subtle than
previously reported. This is because age-related changes in the aperiodic component also shift
total narrowband alpha power, despite the fact that power in a narrowband oscillation has not
changed relative to the aperiodic process® (Extended Data Fig. 1A). We conclude that periodic
activity is not the sole driver of the apparent ~10 Hz power differences in aging; and that the
magnitude of alpha power differences have been systemically confounded by concomitant

differences in aperiodic activity.

We also examined the utility of spectral parameterization in a cognitive context, analyzing EEG
data from a visual working memory task (Fig. 6). While such studies often focus on oscillatory
activity, in particular visual cortical alpha®, recent computational work shows the importance of

excitation/inhibition (EI) balance in working memory maintenance®. Given that the aperiodic
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exponent partially reflects El balance', and is systematically altered in aging'®, we
hypothesized that the aperiodic component would predict working memory performance. We
find that, across groups, event-related changes in the aperiodic parameters, rather than just
oscillatory alpha, most consistently predict individual working memory performance. In contrast,
delay period alpha parameters tracked behavior among older, but not younger, adults. This
suggests that there are categorical differences between groups regarding which spectral
parameters track working memory outcomes, and that these features are easy to conflate—or
miss—without explicit spectral parameterization, and highlights a novel finding of aperiodic

activity predicting working memory performance in human EEG data.

Finally, we applied the algorithm to a large collection of MEG data, mapping periodic and
aperiodic activity across the cortex (Fig. 7). Notably while these results broadly recapitulate
expected patterns of activity*®*’, the explicit parameterizations reveal features not possible with
traditional approaches. For example, we show that: 1) there is a large amount of variability, for
example, of oscillatory peak frequencies (Fig. 7B); 2) there are band-specific patterns of the
detectability of oscillatory peaks (Extended Data Fig. 4A) and aperiodic-adjusted power
(Extended Data Fig. 4A), and; 3) there is a gradient across the cortex of the aperiodic
exponent®. These findings highlight how traditional analyses are not adequately accounting for
the rich variation present in neural data because they use fixed frequency bands, they do not
account for the presence of aperiodic activity, and they overlook variability in oscillation

presence and in oscillatory features.

This work raises interesting possibilities for how to interpret common findings. Intriguingly, when
examined in the time-domain, differences in the aperiodic exponent manifest as raw voltage
differences (Extended Data Fig. 1A). It may be that observed differences between conditions,
for example in event-related spectral perturbations or evoked potentials, are partially
explainable by, or related to, differences in aperiodic exponent. This consideration is particularly
important when comparing between groups, given that the aperiodic exponent varies across
groups, including aging'® (Fig. 5D,E) and disease®*°.

The observation of within subject changes of the aperiodic exponent also has implications
regarding the ubiquitous negative correlation between low frequency (<30 Hz) and high
frequency (>40 Hz) activity*®, observed here in the EEG data (Fig. 5D). This is often interpreted
as a push/pull relationship between low frequency oscillations and gamma, however spectral

parameterization offers a different interpretation: a see-saw-like rotation of the spectrum at
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around 20-30 Hz due to a change in aperiodic activity. This results in decreased power in lower
frequencies with a simultaneous increase in higher frequency power. Here it would be a
mischaracterization to say that there was a task-related decrease in low frequency oscillations,
because that need not be the feature that was truly altered; instead, the aperiodic exponent
changed, manifesting as the spectrum “rotating” around a specific frequency point. This has

been observed to occur in a task-related manner in human visual cortex'’.

Across the gamma range, there can be both narrowband activity and broadband shifts®. There
may also be high variability of narrowband frequencies within participants such that averaging
across those bands decreases detectability overall statistical power*’. Parameterizing spectra
allows for detecting narrowband peaks, and inferring whether narrow- and/or broadband
aspects of the data are changing. This may also be useful for analyses such as phase-
amplitude coupling (PAC), which have provided a powerful means for probing the potential
mechanisms of neural communication***?. These analyses typically rely on fixed frequency
bands, which is problematic given that multiple-oscillator PAC exhibits different phase coupling
frequencies by cortical region*’. Using spectral parameterization to characterize oscillatory
components may allow for better identifying phase coupling modes across brain regions, task,

and time, thus increasing the specificity and accuracy of cross-frequency coupling analyses.

Altogether, the parameterization algorithm provides a principled method for quantifying the
neural power spectrum, increasing analytical power by disentangling periodic and aperiodic
components. This allows researchers to take full advantage of the rich variability present in
neural field potential data, rather than treating that variability as noise. These spectral features
reflect distinct properties of the data, but may also be inter-related, given the evidence that the
aperiodic exponent and band powers can be correlated****. This highlights the need for careful
parameterization to adjudicate between individual spectral features and their relationship to

cognitive, clinical, demographic, and physiological data.

Though the algorithm itself is agnostic to underlying physiological generators of the periodic and
aperiodic components, it can be leveraged to investigate theories and interpretations of them.
For example, changes in the aperiodic exponent may relate to a shift in the balance of the
transmembrane currents in the input region, such as a shift in El balance'. In oscillations,
traditional canonical frequency band analyses commit researchers to the idea that those
predefined bands have functional roles, rather than considering the underlying physiological

mechanisms that generate different spectral features. Spectral parameterization across scales,
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and in combination with other measures, may allow us to better link macroscale
electrophysiology to microscale synaptic and firing parameters®®, providing a better
understanding of the relationship between microscale synaptic dynamics and different
components in field potential signals, from microscale LFP, to mesoscale intracranial EEG, to

macroscale EEG and MEG?.

While there are other methods for measuring periodic and aperiodic activity, none jointly
parameterize aperiodic and periodic components. Some methods focus on identifying individual
differences in oscillations, however, they are mostly restricted to detecting the peak frequency
within a specific sub-band'". This has resulted in a broad literature looking at variation within
canonical bands, most commonly peak alpha frequency within and across individuals'"'%.
However, such approaches often assume only one peak within a band, do not generalize across
broad frequencies, and/or ignore aperiodic activity*®, perpetuating the conflation of aperiodic
and periodic processes. Other approaches attempt to control for the aperiodic component when
identifying oscillations, but do not parameterize both the aperiodic and periodic features
together. Often, these methods treat the aperiodic component as a nuisance variable, for
example by correcting for it via spectral whitening®, rather than a feature to be explicitly

modeled and parameterized.

A time-domain approach called BOSC (Better OSCillation Detector)*’ uses a simple linear fit to
the PSD to determine a power threshold in an attempt to isolate oscillations, though this does
not explicitly parameterize the aperiodic component for analysis. The irregular-resampling auto-
spectral analysis (IRASA) method is a decomposition method that seeks to explicitly separate
the periodic component from self-similar aperiodic activity through a resampling procedure®.
This approach does not parameterize aperiodic or periodic components, but can be combined
with model fitting of the isolated components. However, as the original authors noted, IRASA
smears multi-fractal components*® (knees). Neither of these methods (BOSC, IRASA), currently
allow for the same range of measurements as power spectrum parameterization (see
Supplementary Modeling Note), though future work could seek to integrate these different
methods. In direct comparisons of comparable measures, we find that spectral parameterization
is at least as performant, and typically better and more generalizable than BOSC or IRASA
(Extended Data Fig. 5; Supplementary Modeling Note). Other methods, such as principal
component variants, require manual component selection'. Collectively, the current method

addresses existing shortcomings by explicitly parameterizing periodic and aperiodic signals,
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flexibly fitting multiple peaks and different aperiodic functions, without requiring extensive

manual tuning or supervision.

There are some practical considerations to keep in mind when applying this method. The model,
as proposed, is applicable to multiple kinds of datasets, ranging from LFP to EEG and MEG.
Different modalities, and different frequency ranges, may require different settings for optimal
fitting, and fits should always be evaluated for goodness-of-fit. In particular, we find that it is
important for the aperiodic component to be fit in the correct aperiodic mode, reflecting if a knee
should be fit (Extended Data Figs. 2,3). Detailed notes and instructions for applying the algorithm
to different modalities, assessing model fits, and tuning parameters are all available in the online
documentation. There are also caveats to consider when interpreting model parameters.
Notably, while the presence of power above the aperiodic component is suggestive of an
oscillation, a spectral peak does not always imply a true oscillation at that frequency®. For
example, sharp wave rhythms, such as the sawtooth-like waves seen in hippocampus or the
sensorimotor mu rhythm, will manifest as narrowband power at harmonics of the fundamental
frequency®® (Extended Data Fig. 3G-I). Similarly, the lack of an observed peak over and above
the aperiodic component does not definitively imply the complete absence of an oscillation.
There could be very low power oscillations, highly variable oscillatory properties, and/or rare
burst events or within a long time series, that do not exhibit as clear spectral peaks. To address
these possibilities, spectral parameterization can be complemented with time-domain analysis

approaches?".

In conclusion, application of our algorithm shows that different physiological processes,
including changes in the exponent or offset of the aperiodic component or periodic oscillatory
changes, are often conflated®®. Our approach allows for disambiguating distinct changes in the
data by parameterizing aperiodic and periodic features, allowing for investigations of how these
features relate to cognitive functioning in health, aging, and disease, as well as their underlying
physiological mechanisms. The proposed algorithm is validated on simulated data, and
demonstrated with a series of data applications. Because of the speed and ease of the
algorithm and the interpretability of the fitted parameters, this tool opens avenues for the high-
throughput, large-scale analyses that will be critical for data-driven approaches to

neuroscientific research.
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FIGURE LEGENDS

Figure 1 | Overlapping nature of periodic and aperiodic spectral features. (A) Example neural power spectrum
with a strong alpha peak in the canonical frequency range (8-12 Hz, blue shaded region) and secondary beta peak
(not marked). (B) Same as A, but with the alpha peak removed. (C-D) Apparent changes in a narrowband range
(blue shaded region) can reflect several different physiological processes. Total power (green bars in the inset)
reflects the total power in the range, and relative power (purple bars in the insets) reflect relative power of the peak,
over and above the aperiodic component. (C) Measured changes, with a peak present, including: (i) oscillatory power
reduction; (ii) oscillation center frequency shift; (iii) broadband power shift, or; (iv) aperiodic exponent change. In each
simulated case, tofal measured narrowband power is similarly changed (inset, green bar), while only in the true power
reduction case (i) has the 8-12 Hz oscillatory power relative to the aperiodic component actually changed (inset,
purple bar). (D) Measured changes, with no peak present. This demonstrates how changes in the aperiodic
component can be erroneously interpreted as changes in oscillation power when only focusing on a narrow band of

interest.

Figure 2 | Algorithm schematic on real data. (A) The power spectral density (PSD) is first fit with an estimated
aperiodic component (blue). (B) The estimated aperiodic portion of the signal is subtracted from the raw PSD, the
residuals of which are assumed to be a mix of periodic oscillatory peaks and noise. (C) The maximum (peak) of the
residuals is found (orange). If this peak is above the noise threshold (dashed red line), calculated from the standard
deviation of the residuals, then a Gaussian (solid green line) is fit around this peak based on the peak’s frequency,
power, and estimated bandwidth (see Methods). The fitted Gaussian is then subtracted, and the process is iterated
until the next identified point falls below a noise threshold or the maximum number of peaks is reached. The peak-
finding at this step is only used for seeding the multi-Gaussian in D, and, as such, the output in D can be different
from the peaks detected at this step. (D) Having identified the number of putative oscillations, based on the number of
peaks above the noise threshold, multi-Gaussian fitting is then performed on the aperiodic-adjusted signal from B to
account for the joint power contributed by all the putative oscillations, together. In this example, two Gaussians are fit
with slightly shifted peaks (orange dots) from the peaks identified in C. (E) This multi-Gaussian model is then
subtracted from the original PSD from A. (F) A new fit for the aperiodic component is estimated—one that is less
corrupted by the large oscillations present in the original PSD (blue). (G) This re-fit aperiodic component is combined
with the multi-Gaussian model to give the final fit. (H) The final fit (red)—here parameterized as an aperiodic
component and two Gaussians (putative oscillations)—captures >99% of the variance of the original PSD. In this
example, the extracted parameters for the aperiodic component are: broadband offset = -21.4 au; exponent = 1.12
au/Hz. Two Gaussians were found, with the parameters: (1) frequency = 10.0 Hz, power = 0.69 au, bandwidth = 3.18
Hz; (2) frequency = 16.3 Hz, power = 0.14 au, bandwidth = 7.03 Hz.

Figure 3 | Algorithm performance on simulated data. (A-C) Power spectra were simulated with one peak (see
Methods), at five distinct noise levels (1000 spectra per noise level). (A) Example spectra with simulation parameters
are shown (black), as aperiodic [offset, exponent] and periodic [center frequency, power, bandwidth]. Spectral fits
(red), for the one-peak simulations in a low- and high-noise scenario. Simulation parameters for plotted example
spectra are noted. (B) Median absolute error (MAE) of the algorithmically identified aperiodic offset and exponent,
across noise levels, as compared to ground truth. (C) MAE of the algorithmically identified peak parameters—center

frequency, power, and bandwidth—across noise levels. In all cases, MAE increases monotonically with noise, but
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remains low. (D-F) A distinct set of power spectra were simulated to have different numbers of peaks (0-4, 1000
spectra per number of peaks) at a fixed noise level (0.01; see Methods). (D) Example simulated spectra, with fits, for
the multi-peak simulations. Conventions as in A. (E) Absolute model fit error for simulated spectra, across number of
simulated peaks. (F) The number of peaks present in simulated spectra compared to the number of fitted peaks. All
violin plots show full distributions, where small white dots represent median values and small box plots show median,
first and third quartiles, and ranges. The algorithm imposes a 6.0 Hz maximum bandwidth limit in its fit, giving rise to

the truncated errors for bandwidth in C. Note that the error axis is log-scaled in B,C,E.

Figure 4 | Algorithm performance compared to human raters on real EEG and LFP data. (A,B) Examples of two
different EEG spectra labeled by expert human raters, highlighting cases of strong (A) and weak (B) consensus
amongst raters. The black line is the PSD of real data against which center frequency estimates were made. The red
line is the algorithm fit; the red stars are the center frequencies identified by the algorithm. The dots are each
individual expert’s center frequency rating(s). Note that even when human consensus was low, with many identifying
no peaks, as in B, the algorithm still provides an accurate fit (in terms of the R? fit and error). Nevertheless, the
identified center frequencies in B would all be marked as false positives for the algorithm as compared to human
majority rule, penalizing the algorithm. (C) Human raters show a strong precision/recall tradeoff, with some variability
amongst raters. Inset is Spearman correlation between precision and recall. (D) Despite the penalty against the
algorithm for potential overfitting, as in B, it performs comparably to the human majority rule. n.s.: algorithm not

significantly different from human raters.

Figure 5 | Age-related shifts in spectral EEG parameters during resting state. (A) Visualization of individualized
oscillations as parameterized by the algorithm, selected as highest power oscillation in the alpha (7-14 Hz) range
from visual cortical EEG channel Oz for each participant. There are clear differences in oscillatory properties between
age groups that are quantified in C. (B) A comparison of alpha captured by a canonical 10 + 2 Hz band, as compared
to the average deviation of the center frequency of the parameterized alpha, for the younger group (left, blue) and
older group (right, green). In this comparison, the canonical band approach captures 84% of the parameterized alpha
in the younger adult group, and only 71% in the older adult group, as quantified in the middle panel, reflecting a
significant different (p=0.031). Red represents the alpha power missed by canonical analysis, which
disproportionately reflects more missed power in the older group. (C) Comparison of parameterized alpha center
frequency (p=0.036), aperiodic-adjusted power (p=0.018), and bandwidth (p=0.632), split by age group. (D)
Comparison of aperiodic components at channel Cz, per group. For this visualization, the aperiodic offset and
exponent, per participant, were used to reconstruct an “aperiodic only” spectrum (removing the putative oscillations).
Red shaded regions reflect areas where there are significant power differences at each frequency between groups (p
< 0.05 uncorrected t-tests). In this comparison, significant group differences in both aperiodic offset (p<0.0001) and
exponent (p=0.0001) (E) drive group-wise differences that otherwise appear to be band-specific in both low (< ~10
Hz) and high (> ~40 Hz) frequencies, when analyzed in a more traditional manner. Bars in B, C, E represent mean
values while stars indicate statistically significant difference, (two-sided paired samples t-test, uncorrected) at p <

0.05. n.s. not significant.

Figure 6 | Event-related spectral parameterization of working memory in aging. (A) Contralateral electrodes
(filled blue dots on the electrode localization map) were analyzed in a working memory task, with spectral fits to delay

period activity per channel, per trial, as well as to the pre-trial baseline period (see Methods). Task-related measures
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of each spectral parameter were computed by subtracting the baseline parameters from the delay period parameters.
(B) Parameters were collapsed across channels, to provide a measure per ftrial, and collapsed across trials, to
provide a measure per working memory load (condition). (C) For this analysis, condition average spectral parameters
were used to predict behavioral performance, measured as d', per condition. (D) The average evoked difference in
spectral parameters, between baseline and delay periods, for each group, presented as spectra reconstructed from
the spectral fits, including aperiodic and oscillatory alpha parameters. The inset tables present the changes in each
parameter, shaded if significant (one sample t-test, p < 0.05; green: positive weight; red: negative weight). For further
details of the statistical comparisons, see Supplementary Table 1. (E) Parameters for regression models predicting
behavioral performance for each group. All behavioral models use the evoked spectral parameters from A. Note that
all models also include an intercept term, and a covariate for load. Models were fit using ordinary least squares, and

the model r-squared and results of F-test for model significance are reported (see Methods).

Figure 7 | Large-scale analysis of MEG resting state data uncovers cortical spectral features. Spectral
parameterization was applied to a large MEG dataset (n=80 participants, 600,080 spectra). (A) Oscillation
topographies reflecting the oscillation score: the probability of observing an oscillation in the particular frequency
band, weighted by relative band power, after adjusting for the aperiodic component (see Methods). These
topographies quantify the known qualitative spatial distribution for canonical oscillation bands theta (3-7 Hz), alpha (7-
14 Hz), and beta (15-30 Hz). (Right) The topography of resting state aperiodic exponent fit values across the cortex.
Group exponent—calculated as the average (mean) exponent value, per vertex, across all participants—shows that
the aperiodic exponent is lower (flatter) for more anterior cortical regions. (B) The distribution of all center
frequencies, extracted across all participants (n = 80), roughly captures canonical bands, though there is substantial
heterogeneity. Peaks in the probability distribution are labeled for approximate canonical bands. (C) The distribution
of aperiodic exponent values, fit across all vertices and all participants. (D) Correlations between the oscillation
topographies and the exponent topography (as plotted in A) show that theta is spatially anti-correlated with the other

parameters.
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METHODS

Algorithm development and analyses for this manuscript were done with the Python
programming language. The code for the algorithm and for the analyses presented in this paper
are openly available (https://github.com/fooof-tools/fooof, see Code Availability statement).

The name of the Python module stands for ‘fitting oscillations and one-over f.
Algorithmic parameterization

The parameterization method presented herein quantifies characteristics of electro- or magneto-
physiological data, in the frequency domain. While many methods can be used to calculate the
power spectra for algorithmic parametrization, throughout this investigation we use Welch’s
method®’. The algorithm conceptualizes the PSD as a combination of an aperiodic

t°2°3 with overlying periodic components, or oscillations’. These putative oscillatory

componen
components of the PSD are characterized as frequency regions of power over and above the
aperiodic component, and are referred to here as “peaks”. The algorithm operates on PSDs in
semilog-power space, which is linearly spaced frequencies, and log-spaced power values,
which is the representation of the data for all of the following, unless noted. The aperiodic
component is fit as a function across the entire fitted range of the spectrum, and each oscillatory
peak is individually modeled with a Gaussian. Each Gaussian is taken to represent an
oscillation, whereby the three parameters that define a Gaussian are used to characterize the

oscillation (Fig. 2).

This formulation models the power spectrum as:

P=L+26n )

where power, P, representing the PSD, is a combination of the aperiodic component, L, and N
total Gaussians, G. Each G, is a Gaussian fit to a peak, for N total peaks extracted from the

power spectrum, modeled as:

G = axexp (ﬁ) @

2w?2
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where a is the power of the peak, in logso(power) values, ¢ is the center frequency, in Hz, w is

the standard deviation of the Gaussian, also in Hz, and F is the vector of input frequencies.
The aperiodic component, L, is modeled using a Lorentzian function, written as:
L =b—log(k + F¥) 3

where b is the broadband offset, x is the exponent, and k is the “knee” parameter, controlling for

the bend in the aperiodic component®*®2

, with F as the vector of input frequencies. Note that
when k=0, this formulation is equivalent to fitting a line in log-log space, which we refer to as the
fixed mode. Note that there is a direct relationship between the slope, a, of the line in log-log
spacing, and the exponent, x, which is ¥ = -a (when there is no knee). Fitting with k allows for
parameterizing bends, or knees, in the aperiodic component that are present in broad frequency

ranges, especially in intracranial recordings?.

The final outputs of the algorithm are the parameters defining the best fit for the aperiodic
component and the N Gaussians. In addition to the Gaussian parameters, the algorithm
computes transformed ‘peak’ parameters. For these peak parameters, we define: (1) center
frequency as the mean of the Gaussian; (2) aperiodic-adjusted power—the distance between
the peak of the Gaussian and the aperiodic fit (this is different from the power in the case of
overlapping Gaussians that might share overlapping power), and; (3) bandwidth as 2std of the
fitted Gaussian. Notably, this algorithm extracts all these parameters together in a manner that
accounts for potentially overlapping oscillations; it also minimizes the degree to which they are

confounded and requires no specification of canonical oscillation frequency bands.

To accomplish this, the algorithm first finds an initial fit of the aperiodic component (Fig. 2A).
This first fitting step is crucial and not trivial, as any traditional fitting method, such as linear
regression, or even robust regression methods designed to account for the effects of outliers on
linear fitting, can still be significantly pulled away from the true aperiodic component due to the
overwhelming effect of the high power oscillation peaks. To account for this, we introduce a
procedure that attempts to fit the aperiodic aspects of the spectrum only. To do so, initial seed
values for offset and exponent are set to the power of the first frequency in the PSD and an
estimated slope, calculated between the first and last points of the spectrum (calculated in /og-
log spacing, and converted to a positive value, since x = -a). These seed values are used to
estimate a first-pass fit. This fit is then subtracted from the original PSD, creating a flattened

spectrum, from which a power threshold (set at the 2.5 percentile) is used to find the lowest
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power points among the residuals, such that this excludes any portion of the PSD with peaks
that have high power values in the flattened spectrum. This approach identifies only the data
points along the frequency axis that are most likely to not be part of an oscillatory peak, thus
isolating parts of the spectrum most likely to represent the aperiodic component (Fig. 2A). A
second fit of the original PSD is then performed only on these frequency points, giving a better
estimate of the aperiodic component. This is, in effect, similar to approaches that have
attempted to isolate the aperiodic component from oscillations by fitting only to spectral
frequencies outside of an a priori oscillation', but does so in a more unbiased fashion. The

percentile threshold value can be adjusted if needed, but in practice rarely needs to be.

After the estimated aperiodic component is isolated, it is regressed out, leaving the non-
aperiodic activity (putative oscillations) and noise (Fig. 2B). From this aperiodic-adjusted (i.e.,
flattened) PSD, an iterative process searches for peaks that are each individually fit with a
Gaussian (Fig. 2C). Each iteration first finds the highest power peak in the aperiodic-adjusted
(flattened) PSD. The location of this peak along the frequency axis is extracted, along with the
peak power. These stored values are used to fit a Gaussian around the central frequency of the
peak. The standard deviation is estimated from the full-width, half-maximum (FWHM) around
the peak by finding the distance between the half-maximum powers on the left- and right flanks
of the putative oscillation. In the case where there are two overlapping oscillations, this estimate
can be very wide, so the FWHM is estimated as twice the shorter of the two sides. From FWHM,
the standard deviation of the Gaussian can be estimated via the equivalence:
FWHM

std = 4
2vV2In2 )

This estimated Gaussian is then subtracted from the flattened PSD, the next peak is found, and
the process is repeated. This peak-search step halts when it reaches the noise floor, based on a
parameter defined in units of the standard deviation of the flattened spectrum, re-calculated for
each iteration (default = 2std). Optionally, this step can also be controlled by setting an absolute
power threshold, and/or a maximum number of Gaussians to fit. The power thresholds (relative
or absolute) determine the minimum power beyond the noise floor that a peak must extend in
order to be considered a putative oscillation. Once the iterative Gaussian fitting process halts, in
order to handle edge cases, Gaussian parameters that heavily overlap (whose means are within
0.75std of the other), and/or are too close to the edge (<= 1.0std) of the spectrum, are then

dropped. The remaining collected parameters for the N putative oscillations (center frequency,
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power, and bandwidth) are used as seeds in a multi-Gaussian fitting method (Python:
scipy.optimize.curve_fit). Each fitted Gaussian is constrained to be close to (within 1.5std) of its
originally guessed Gaussian. This process attempts to minimize the square error between the

flattened spectrum and N Gaussians simultaneously (Fig. 2D).

This multi-Gaussian fit is then subtracted from the original PSD, in order to isolate an aperiodic
component from the parameterized oscillatory peaks (Fig. 2E). This peak-removed PSD is then
re-fit, allowing for a more precise estimation of the aperiodic component (Fig. 2F). When
combined with the equation for the N-Gaussian model (Fig. 2G), this procedure gives a highly-
accurate parameterization of the original PSD (Fig. 2H; in this example, >99% of the variance in
the original PSD is accounted for by the combined aperiodic + periodic components).
Goodness-of-fit is estimated by comparing each fit to the original power spectrum in terms of the

median absolute error (MAE) of the fit as well as the R? of the fit.

The fitting algorithm has some settings, that can be provided by the user, one of which defines
the aperiodic mode, with options of ‘fixed’ or ‘knee’, which dictates whether to fit the aperiodic
component with a knee. This parameter should be chosen to match the properties of the data,
over the range to be fit. The algorithm also requires a setting for the relative threshold for
detecting peaks, which defaults to 2, in units of standard deviation. In addition, there are
optional settings, which can be used to define: (1) the maximum number of peaks; (2) limits on
the possible bandwidth of extracted peaks, and; (3) absolute, rather than relative, power
thresholds. The algorithm can often be used without needing to change these settings. Some
tuning may be useful for tuning algorithmic performance to different datasets with potentially
different properties, for example, data from different modalities, data with different amounts of
noise, and/or for fitting across different frequency ranges. Detailed description and guidance on
these settings and if and how to change them can be found in the tool's documentation. All
parameter names, as well as their descriptions, units, default values, and accessibility to the API

are also presented in Supplementary Table 2.

Code for this algorithm is available as a Python package, licensed under an open source
compliant Apache-2.0 license. The module supports Python >= 3.5, with minimal dependencies
of numpy and scipy (>= version 0.19), and is available to download from the Python Package
Index (https://pypi.python.org/pypi/fooof/). The package is openly developed and maintained on
GitHub (https://github.com/fooof-tools/fooof/). The project’s repository includes the codebase, a

test-suite, instructions for installing and contributing to the package, and the documentation
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materials. The documentation is also hosted on the documentation website (https://fooof-
tools.github.io/), which includes tutorials, examples, frequently asked questions, a section on
motivations for parameterizing neural power spectra, and a list of all the functionality available.
On contemporary hardware (3.5 GHz Intel i7 MacBook Pro), a single PSD is fit in approximately
10-20 ms. Because each PSD is fit independently, this package has support for running in

parallel across PSDs to allow for high-throughput parameterization.
Simulated PSD creation and algorithm performance analysis

Power spectra were simulated following the same underlying assumption of the fitting
algorithm— that PSDs can be reasonably approximated as a combination of an aperiodic
component and overlying peaks, that reflect putative periodic components of the signal. The
equations used in the algorithm and described in the methods for the fitting procedure were
used to simulate power spectra, such that for each simulated spectrum, the underlying
parameters used to generate it are known. On top of the simulated aperiodic component with
overlying peaks, white noise was added, with the level of noise controlled by a scaling factor.

The power spectra were therefore simulated as an adapted version of equation (1):[J

N
P=L+ZGn+ms (5)
n=0

Where P is a simulated power spectrum, L and G, are the same as described in equations (2)
and (3) respectively, ¢ is white noise, applied independently across frequencies, and m is a

multiplicative scaling factor of that noise.

For all simulations, the parameterization algorithm was used with settings of
{peak_width_limits=[1,8], max_n_peaks=6, min_peak_height=0.1,  peak_threshold=2.0,
aperiodic_mode="'fixed’}, except where noted. For each set of simulations, 1000 power spectra
were simulated for each condition. The algorithm was fit to each simulated spectrum, and
estimated values for each parameter were compared to ground truth values of the simulated
data. Deviation of the parameter values was calculated as the absolute deviation for the fit value
from the ground truth value. We also collected the goodness-of-fit metrics (error and R?) and the

number of fit peaks from the spectral parameterizations.
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For the first set of simulations, power spectra were generated across the frequency range of 2-
40 Hz, with a frequency resolution of 0.25 Hz (Fig. 3A-F). The aperiodic component was
generated with y-intercept (offset) parameter of 0, and without a knee (k=0). Exponent values
were sampled uniformly from possibilities {0.5, 1, 1.5, 2}. Oscillation center frequencies came
from the range of 3-34 Hz (1 Hz steps), with each center frequency sampled as the observed
probability of center frequencies at that frequency in real data, namely the MEG dataset
described in this study. For simulations in which there were multiple peaks within a single
spectrum (Fig. 3D-F), center frequencies were similarly sampled at random, with the extra
constraint that a candidate center frequency was rejected if it was within 2 Hz on either side of
another center frequency already selected for the simulated spectrum, such that individual
spectra could not have superimposed peaks. Peak powers and bandwidths were sampled
uniformly from {0.15, 0.20, 0.25, 0.4} and {1, 2, 3} respectively, independent of their center

frequency.

A set of power spectra were generated with one peak per spectrum across five noise levels
{0.0, 0.025, 0.05, 0.10, 0.15} (Fig. 3A-C). In these simulations, the center frequency, power, and
bandwidth of the fit peak, as well the aperiodic exponent, were compared to the ground truth
parameters. In order to compare ground truth parameters to the spectral reconstructions, which
potentially included more than one peak, the highest power peak was extracted from the
spectral fit to use for comparison. In another set of simulations, PSDs were created with a
varying number of peaks — between 0 and 4 — with a fixed noise value of 0.01 (Fig. 3D-F). For
these simulations, the performance of the algorithm was examined in terms of the fit error
across the number of peaks, as well by comparing the number of simulated peaks to the

number of peaks in the spectral fit.

Simulated power spectra to test across a broader frequency range were generated across the
frequency range of 1-100 Hz, with a frequency resolution of 0.5 Hz (Extended Data Fig. 2 A-C).
These spectra were created with knees, using knee values of {0, 10, 25, 100, 150}, sampled
with equal probability, with offset and exponent values sampled as done previously. For these
spectra two peaks were added, one in the low frequency range, sampled as previously
described, with an additional peak sampled with a center frequency sampled, with even
probability, from between 50 and 90 Hz (in 1 Hz) steps, with the same sampled power and
bandwidth values as used previously. These spectra were generated across different noise

levels, as before. Spectra were fit using the same algorithm settings as before, except for
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aperiodic mode being set to ‘knee’. Parameter reconstruction was evaluated, with the addition of

calculating the accuracy of the reconstructed knee parameter.

Additional simulations were created to evaluate the model performance with respect to
violations of model assumptions (Extended Data Fig. 3A-l). To examine violations of the
aperiodic model assumptions, a set of spectra were also simulated with knees (Fig. 3A-C) but
were fit in the ‘fixed’ aperiodic mode, using the same settings as before. Simulations were
created as described above for simulations including knees, except that in order to evaluate the
influence of knee parameters, spectra were simulated and grouped by knee values, for values
of {0, 10, 50, 100, 150}, using a fixed noise level of 0.01. For these simulations, performance
was primarily evaluated in terms of reconstruction accuracy of the aperiodic exponent, and in

the number of fit peaks.

To examine model violations of the periodic component, power spectra were also simulated
using asymmetric peaks in the frequency domain (Extended Data Fig. 3D-F). For these
simulations, peaks were simulated as skewed gaussians, in which an additional parameter is
used that controls the skewness of the peaks (simulated in code with “scipy.stats.skewnorm®).
These simulations were created across the frequency range of 2-40 Hz, with a fixed noise value
of 0.01. Each spectrum contained a single peak, with peak parameters sampled as in the prior
simulations for this range. A skew value was added to the peak, across conditions with skew
values of {0, 5, 10, 25, 50}. For these simulations, performance was primarily evaluated in terms

of reconstruction accuracy of the peak center frequency, and in the number of fit peaks.

In addition, time series simulations were created with non-sinusoidal oscillations (Extended
Data Fig. 3G-l), to investigate how the algorithm performs with asymmetric cycles and the
resulting power spectra. Simulations were created as time series signals of oscillations of
asymmetric cycles combined with aperiodic activity, using the simulation tools in the NeuroDSP
Python toolbox>*. Time series were simulated as 10 second segments at a sampling rate of 500
Hz. The aperiodic component of the signal was simulated as a 1/f signal, with exponent values
sampled from the same values as above. The periodic component of the data was an
asymmetric oscillation, with a peak frequency sampled as above. These oscillations were
created with varying across rise-decay symmetry values* of {0.5, 0.625, 0.75, 0.875, 1.0}. Note
that a value of 0.5, with a symmetric rise and decay is a sinusoid, whereas values approaching
1 are increasingly sawtooth-like. The full signal was a combination of the two components, from

which power spectra were calculated, using Welch’s method (2 second segments, 50% overlap,
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Hanning window). The power spectrum models were then fit across the frequency range of [2,
40], using the same settings as above. For these simulations, performance was primarily
evaluated in terms of reconstruction accuracy of the peak center frequency, and in the number

of fit peaks.

Finally, simulated data were also used to compare spectral parameterization to other related
methods (Extended Data Fig. 5), which are described and reported in the Supplementary
Modeling Note. For the method comparison simulations, we considered three test cases:
signals with an aperiodic component and one oscillation over the frequency range of 2-40 Hz;
signals with aperiodic activity and multiple (three) oscillations, also across 2-40 Hz; and signals
with two peaks over a broader frequency range (1-100 Hz), in which the aperiodic component
included a knee. For all comparisons between methods, paired samples t-tests were used to
evaluate the difference between the distributions of errors for each method, and effect sizes
were calculated with Cohen’s d. Statistical comparisons were computed on log-transformed

errors, because the distributions are approximately log-normal.

Spectral parameterization was first compared to the aperiodic fit as performed using the BOSC
method*’, which is a linear fit of the log-log power spectrum (Extended Data Fig. 5A-C). For
these measures, power spectra were directly simulated, with parameters sampled as previously
described. We also compared measurements of aperiodic fitting to IRASA* (Extended Data
Fig. 5D-F). Since IRASA operates on time series, simulated data in this case were created as
time series, as previously described, creating 10-second signals with a sampling rate of 1000
Hz. Aperiodic time series with a knee were created using a previously described physiological
time series model'. Periodic and aperiodic parameters were sampled as previously described,
except for the knee time series, for which the aperiodic exponent is always 2, due to the time
series model. IRASA decomposition was applied directly to the simulated time series. Spectral
parameterization was applied to power spectra computed from the simulated time series, using
Welch’s method (1 second segments, 50% overlap, Hanning window). Finally, as an example
real data case, we used an example real data spectrum of LFP data from rat hippocampus,
available from the openly available HC-2 database®, to which spectral parameterization and
IRASA were applied (Extended Data Fig. 5G-I).

Human labelers versus algorithm
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In addition to simulated power spectra, randomly selected EEG (n = 64) and LFP (n = 42) PSDs
were labeled by the algorithm and by expert human raters (n = 9). PSDs were calculated using
Welch’s method®' (1 second segments, 50% overlap, Hanning window). These PSDs were then
fit and labeled from 2 to 40 Hz. Note that human labeling was done only for the center
frequencies of putative oscillations on the PSDs that had the aperiodic component still present,
as this is the most common human PSD parameterization approach. This misses all other
features that the algorithm can also parameterize (power, bandwidth, offset, and exponent).
Raters gave a high/low confidence rating to their labels, to provide a human analog for
overfitting, and all plots and analyses use only results from the high-confidence ratings
(including low-confidence ratings significantly impairs human label performance). Comparisons
of the average number of peaks fit to each spectrum were done using independent-samples t-
tests, where for each spectrum we counted the number of peaks identified by the algorithm, and
compared that number across all spectra to the average number of peaks the human raters

found per spectrum.

In order to estimate a putative “truth” for real physiological data where ground truth is unknown,
we used a majority rule approach wherein a “consensus truth” criterion was calculated for each
PSD separately by estimating the majority consensus for each identified peak. Specifically, for
each PSD, all peaks identified by every human labeler were pooled, and the frequency of
identification was established for each peak. Those peaks that were identified by the majority of
labelers (n > 4) within 1.0 Hz of one another were set as the putative truth for that PSD. All
human labelers, and the algorithm, were then scored against this putative truth. Precision,
recall, and F; scores for human raters and the algorithm were calculated for each rater across
all PSDs. Accuracy measures were then averaged across human labelers and compared the
those of the algorithm. Normally, precision is calculated as the number of true positives divided
by the total of true positives and false positives. However, because ground truth is unknown,
“true positive” and “false positive” here are defined relative to the consensus truth. Similarly,
recall is calculated as the number of true positives divided by the total of true positives and false
negatives. The F; score is a weighted measure of accuracy that combines precision and recall.
This metric is used because precision can be artificially very high while recall is very low; for
example, it is possible to inflate precision by simply identifying a peak at every point along the
frequency axis, thus no peaks would ever be missed, but recall would be severely impacted. If
no peaks were found, precision and recall were all set to 0. Correct rejections were not included

in performance estimates; had they been included, every non-peak that was correctly identified
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as such (most of the power spectra) would be marked as a correct rejection, skewing
performance results. For those instances when a human labeler or the algorithm identified no
peaks in the PSD, precision and recall values were set to 0 if the putative truth contained any
peaks, and to 1 if there was no consensus among human labelers on any of the peaks (i.e., the
putative truth criterion was 0 peaks). Thus, the majority rule scoring system did not penalize
either human labelers or the algorithm for correctly rejecting false positives. All reported p values
are Bonferroni corrected for the three correlated comparisons (precision, recall, and F;)
performed for each modality (EEG and LFP). Comparisons of these measures across PSDs
were assessed using the z-score, where the algorithm’s precision, recall, and F1 scores were
compared to the distribution of the raters’ scores. For the Spearman correlation, rater precision

and recall on both EEG and LFP data were included.
Algorithmic analysis of EEG, LFP, and MEG data

Analyzed data are from openly available and previously reported datasets. Samples sizes were
determined by the size of available datasets, without using power analyses, but our sample
sizes are similar to those reported in previous publications for the EEG'%% | FP*"*8 and
MEG®'?*3 datasets. In the analyzed datasets, there were no experimentally defined groups
requiring assignment, and thus no randomization or blinding procedures were used. Where
relevant, analyzed distributions were tested for normality, to test validity of the applied statistical

tests, and full distributions of data are also shown.

Scalp EEG data. Electroencephalography (EEG) data from a previously described study>® were
re-analyzed here. Briefly, we collected 64-channel scalp EEG from 17 younger (20-30 years old)
and 14 older (60-70 years old) participants while they performed a visual working memory task
as well as a resting state period. All participants gave informed consent approved by the
University of California, Berkeley Committee on Human Research. Participants were tested in a
sound-attenuated EEG recording room using a 64+8 channel BioSemi ActiveTwo system. EEG
data were amplified (-3dB at ~819 Hz analog low-pass, DC coupled), digitized (1024 Hz), and
stored for offline analysis. Horizontal eye movements (HEOG) were recorded at both external
canthi; vertical eye movements (VEOG) were monitored with a left inferior eye electrode and
superior eye or fronto-polar electrode. All data were referenced offline to an average reference.
All EEG data were processed with the MNE Python toolbox®®, the algorithm described herein,
and custom scripts. These data have previously been reported®®, though all analyses presented

here are novel using our new algorithmic approach.
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EEG task and stimuli. Participants performed a visual working memory task. They were
instructed to maintain central fixation and asked to respond using the index finger of their right
hand. The visual working memory paradigm was slightly modified from the procedures used in
Vogel and Machizawa (2004)* as previously outlined®, where additional task details can be
found. Participants were visually presented with a constant fixation cross in the center of the
screen throughout the entire duration of the experiment. At the beginning of each trial, this cross
would flash to signal the beginning of the trial. This was followed 350 ms later by one, two, or
three (corresponding to the load level) differently colored squares for 180 ms, lateralized to
either the left or right visual hemifield. After a 900 ms delay, a test array of the same number of
colored squares appeared in the same spatial location. Participants were instructed to respond
with a button press to indicate whether or not one item in the test array had changed color
compared to the initial memory array. Each participant performed 8 blocks of 40 trials each, with

trials presented in random order in terms of side and load.

EEG behavioral data analysis. Behavioral accuracy was assessed using a d' measure of
sensitivity which takes into account the false alarm rate to correct for response bias (d' = Z(hit
rate)-Z(false alarm rate)). To avoid mathematical constraints in the calculation of d', we applied
a standard correction procedure, wherein, for any participants with a 100% hit rate or 0% false
alarm rate, performance was adjusted such that 1/(2N) false alarms were added or 1/(2N) hits

subtracted where necessary.

EEG Pre-processing. Each participant's EEG data were first filtered with a highpass filter at 1
Hz, and then decomposed using ICA®'. Any ICA components that significantly correlated with
HEOG and/or VEOG activity were automatically identified and rejected. A two-minute segment
of data from the beginning of the recording was extracted and analyzed as resting state data.
Trials were epoched from -0.85 to 1.10 seconds relative to stimulus onset. All incorrect trials
and trials with artifacts were excluded from subsequent analysis. The AutoReject procedure was
used to estimate thresholds and automatically reject any trials with artifacts, as well as to

interpolate bad channels®.

EEG resting state data analysis. Power spectra were calculated for all channels, using Welch's
method®’ (2 second windows, 50% overlap),, for a two-minute segment of extracted resting
state data from the beginning of the recording. These power spectra were fit using the
algorithm, using the settings {peak width_limits=[1,6], max_n_peaks=6, min_peak height=0.05,

peak_threshold=1.5, aperiodic_mode=‘fixed’}. The average R? of spectral fits was 0.96,
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reflecting good fits, though one participant from the younger group was considered an outlier,
with R? and absolute error of the fit more than 2.5 standard deviations away from the mean; this
participant was dropped from further analyses in the resting condition. Estimated periodic
spectral parameters were analyzed from a posterior channel of interest, Oz, chosen to capture

visual cortical alpha activity. Aperiodic parameters were analyzed from channel Cz.

T-tests were performed to evaluate differences between age groups. For visualization purposes,
periodic and/or aperiodic components were reconstructed for each participant's fitted
parameters. To explore if aperiodic differences could drive frequency-specific power differences,
t-tests were run at each frequency, comparing between younger and older adult group, for the
power values from the reconstructed aperiodic-only signal. To compare participant-specific fits
to canonical band analyses, the overlap of a Gaussian centered at 10 Hz with a +/-2 Hz
bandwidth (reflecting the common 8-12 Hz alpha range) was calculated with the individualized
center frequency per participant, using a fixed +/-2 Hz bandwidth range. All t-tests are two-

tailed.

EEG task data analysis. For task analyses, data were analyzed from visual cortical alpha
electrodes contralateral to the hemifield of visual stimulus presentation (right hemifield stimuli:
{P3, P5, P7, P9, PO3, PO7, O1}; left hemifield stimuli: {P4, P6, P8, P10, PO4, PO8, O2}). Only
correct trials were analyzed, and trials were collapsed across presentation side. Trials were split
up into the three segments of interest: baseline [-0.85 to -0.35 sec], early trial segment [0.10 to

0.60 sec], and late trial segment [0.50 to 1.00 sec].

For spectral parameterization analyses, PSDs were calculated across each segment, for each
channel, and spectra were fit, using the same settings as the rest data. Fitted parameters were
then averaged across channels, to arrive at one set of parameters per trial, per participant. For
comparison, two canonical alpha band analyses were run, one in which trial data were filtered to
the alpha range (8-12 Hz), and another in which the data were filtered +/- 2 Hz around an
individualized alpha center frequency®, identified as the frequency of peak power between the
range 7-14 Hz. These filtered copies of the data were then epoched and Hilbert transformed to
calculate analytic alpha amplitude. Average analytic alpha was calculated across each time
segment. Evoked measures of each parameter (i.e., canonical alpha, aperiodic-adjusted alpha
power, and aperiodic offset and exponent) were calculated, in which the value of the parameter
in the late trial was baseline-corrected by the measure of the parameter from the pre-trial

baseline period for each investigated parameter.
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To investigate which estimation technique (canonical band estimation vs. spectral
parameterization) and which spectral parameter(s) best predicted behavior, regression models
were used to predict d', per load, from canonical or spectral parameterization output measures,
separately for each age group. We used a baseline behavioral model, predicting d' from the
memory load (the number of presented items in the trial), and all models also used load as a
covariate. To compare which features best predicted behavior, we predicted separate models,
using 1) canonical alpha, 2) canonical alpha measured at an individualized frequency, 3)

parameterized alpha, 4) parameterized aperiodic features. These models are described as:

d' = by + bi(load) + ¢ baseline model

d' = by + by(load) + by (apw(c)) + € canonical alpha model

d' = by + by(load) + by(apw(cir)) + € individualized canonical alpha model
d' = by + by(load) + by(apwp)) + € parameterized alpha model

d' = bo + by (load) + by(apexy) + b3(aposr) + € aperiodic model

In the above, a,, represents alpha power, and c, icf, p represent ‘canonical’, ‘canonical with
individualized frequency’, and ‘parameterized’, respectively, and ap represents aperiodic, with
exp and off denoting exponent and offset respectively. All models were fit as ordinary least
squares linear models. Model fitting and comparisons were done using the statsmodels module
in Python. The F-test for overall significance of the model was used to evaluate whether each

model provided a significant fit.

LFP data. LFP data used for algorithm validation came from two male rhesus monkeys
(Maccaca mulatta) 4 to 5 years of age, collected for a previously reported experiment
(methodological details can be found in the corresponding manuscript®”). All procedures were
carried out in accord with the US National Institutes of Health guidelines and the
recommendations of the University of California, Berkeley Animal Care and Use Committee.
Neuronal responses were recorded from PFC using arrays of 8-32 tungsten microelectrodes.
Local field potentials were recorded with a 1 kHz sampling frequency and analyzed offline. LFP
were isolated from the band-passed (0-100 Hz) recordings, and spectral fits were done on a
channel-by-channel basis using Welch’s method and the same settings used for the EEG

analyses described above.
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MEG data. Open-access resting-state MEG data, as well as corresponding T1-weighted MRIs
for each participant, were accessed from the young adult dataset from the Human Connectome
Project (HCP) database®. Briefly, a subset of 95 participants from the HCP had MEG
recordings. Of this group, 80 participants met our quality control procedures and were included
in the analyses here (ages 22-35; 35 female). Participants were excluded due to missing resting
state recordings, missing anatomical scans needed for source projection, or due to excessive
artifacts. One participant was rejected post fitting due to being an outlier on goodness-of-fit
and/or aperiodic parameters (more than 3 standard deviations from the group mean). For each
participant, the first available rest recording was used, comprising approximately 6 minutes of

eyes open, resting state data. Full details of the data collection are available elsewhere®®.

MEG data were pre-processed following best-practice guidelines®, using the Brainstorm
software toolbox®. Cardiac and eye related artifacts (blinks and saccades) were automatically
detected from ECG and EOG traces respectively and removed from the data using signal-space

projections (SSP) from data segments selected from around each artifactual event®

using
default parameters in Brainstorm. All MEG data were manually inspected for any remaining
artifacts, and any contaminated segments were marked as bad, and not included in any further
analysis. Cleaned, pre-processed resting state data were then epoched into 5 second

segments.

Using the segmentation procedures available in Freesurfer®, each participants’ T1-weighted
anatomical MRI scan was used to construct scalp and cortical surfaces. Individual high-
resolution surfaces were downsampled to 7501 vertices using Brainstorm to serve as cortical
reconstructions for MEG source imaging. Structural MRI images were co-registered with the
MEG recordings using anatomical landmarks (nasion, and pre-auricular points) and digitized
head points available from the recording, which were automatically aligned in Brainstorm, and

then manually checked and tuned, as needed.

For source-projection, the overlapping-sphere technique for forward modeling of the neural
magnetic fields was used, using perpendicularly oriented current dipoles for each individual’s
anatomy’'. Source projections were calculated using Brainstorm’s weighted minimum norm
estimate (WMNE) applied to the preprocessed sensor data. Empty room recordings, also
available from the HCP, were used as an empirical estimate of the noise for each MEG sensor,

in the wMNE projection. For group analysis, individual source maps were then geometrically
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registered to the ICBM152 brain template, a non-linear average of 152 participants’?, using

Brainstorm’s multilinear registration technique.

For each epoch, a PSD was estimated using an adapted version of Welch’s method, which
averaged across the individual FFTs using the median’, as opposed to the mean, in order to
deal with the skewed nature of power value distributions’, using a window size of 2 seconds.
For each participant, at every vertex, a PSD was calculated from source-projected data, on the
group template brain. Power values were then averaged across all available epochs to obtain

one PSD per vertex, per individual.

Following pre-processing, source projection, and spectral analysis, we had PSD representations
of resting state activity at each of 7501 vertices for each of the 80 participants, projected on a
template brain. Each of these spectra were then fit across the frequency range [2, 40], with
settings {peak_ width_limits=[1,6], max_n_peaks=6, min_peak height=0.1, peak_threshold=2,
aperiodic_mode="‘fixed’}, providing an aperiodic exponent and offset value per vertex as well as
a list of extracted peaks (if found) per vertex, per participant. In rare cases, the algorithm can fail
to converge on a solution and thus does not provide a fit. This was the case for a total of 4
spectra out of 600,080. For any spectrum for which this happened, that vertex for that
participant was set as having no detected peaks, and the aperiodic exponent was interpolated

as the mean value of all successful fits from that participant.

To analyze and visualize the putative oscillation results, all extracted peaks were post hoc
sorted into pre-defined oscillation bands of theta (3-7 Hz), alpha (7-14 Hz), and beta (15-30 Hz).
These ranges were chosen to capture the approximate clusters of peaks in the extracted data
(see Fig. 7B). To do so, per vertex and per participant, peak output parameters were selected,
for each band, if they corresponded to a peak with a center frequency within the band limits. If
there was no peak within that range, that vertex was set as having no oscillation in that band. If
more than one peak was found for the given range, the highest power peak was selected. From
this band-specific data, we then created group maps for each oscillation band across all
vertices. For each band we extract two maps: an oscillation power map as well as an oscillation
probability map, which is the percent of the group that had a peak within that band at that

vertex.

We then calculated a power-normalized “oscillation score”. To do so, for each band, the

average peak power value at each vertex, across all participants, was divided by the maximum
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average power value from the distribution of all vertices, such that the vertex that displays the
highest band power across the group receives a score of 1, and every other vertex receives a
normalized score between 0 and 1. This power ratio was then multiplied, vertex-by-vertex, with
the oscillation probability topography. The resultant oscillation score is a bounded measure that
can take values between 0 and 1, whereby a maximal score of 1 reflects that every participant
has an oscillation in the specified band at the specified vertex, and that oscillation has the
greatest average power at that vertex. Scores lower than 1 reflect increased variation in the

presence and/or relative power of oscillations across the group.

Note that oscillation scores lower than 1 cannot, by themselves, be disambiguated in terms of
where the variability lies. For example, an oscillation score of approximately 0.5 could reflect
either a location in which oscillations tend to be of maximal power, but are only observed across
approximately half the group, or oscillations that are consistent across the entire group, at about
half the maximal power, or some middle ground between the two. These situations can be
disambiguated by examining both the oscillation probability and power ratio maps separately.
We then calculated the Pearson correlation between the topographies of oscillation scores for
each band as well as the correlation between each band’s oscillation score and the aperiodic

exponent topography.

Reporting Summary. Further information on the research design and methods is available in the

Life Sciences Reporting Summary.
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Data Availability Statement

All empirical behavioral and physiological data reported and analyzed in this manuscript are
secondary uses of data that has previously been published and/or was accessed from openly

available data repositories.

Simulated Data. A copy of the simulated data, as well as the code to regenerate it, is available
in the GitHub repository: https://github.com/TomDonoghue/SimFOOOF

EEG Data. Data was analyzed from a previously described study**

MEG Data. Open-access MEG data was analyzed from the Human-Connectome Project®*®°,
which is described on the project site (https://www.humanconnectome.org/), and available
through the data portal (https://db.humanconnectome.org/).

LFP Data. Local field potential data was analyzed from rhesus monkey from a previously
described study®’. Additional LFP data from rats was accessed from the HC-2 dataset™, which
is available from the ‘Collaborative Research in Computational Neuroscience (CRCNS) data

sharing portal (https://crcns.org/).

Code Availability Statement

Custom code used in this manuscript is predominantly using the Python programming language,
version 3.7. In addition, some pre-processing of MEG data was done in Matlab (R2017a), using

the Brainstorm package (https://neuroimage.usc.edu/brainstorm/).

Algorithm Code. The algorithm code is openly available and released under the Apache 2.0
open-source software license. The code for the algorithm is available on GitHub

(https://github.com/fooof-tools/fooof), and from PyPi (https:/pypi.org/project/fooof/), and

includes a dedicated documentation site (https://fooof-tools.github.io/).

Analysis Code. All the code used for the analyses is openly available, and indexed on Github
(https://github.com/fooof-tools/Paper). This includes all the code used for the simulations
(https://github.com/TomDonoghue/SimFOOOF), the EEG analyses
(https://github.com/TomDonoghue/EEGFOOOF) and for the MEG analyses
(https://github.com/TomDonoghue/MEGFOOQOOQOF).
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A oscillation occurrence probability maps
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SUPPLEMENTARY MODELING NOTE
Algorithm comparison against other approaches

A key focus of the proposed algorithm has been to contextualize it in relation to approaches and
standard methods that are typically used within research on oscillations. There are also other
methods that do consider aperiodic neural activity, such as BOSC#” and IRASA“8. They do so,
however, in ways that differ substantially from spectral parameterization, rendering it difficult to
employ direct comparisons between the different methods. Overall, one of the key differences
between them and the method proposed here is that it considers the aperiodic activity to be a
signal that should be directly parameterized, while most other approaches treat it as a nuisance
variable®> and/or have different conceptions and goals with respect to the data. In this section,
related methods, focusing on IRASA and BOSC, are discussed and compared, including

descriptions of the differences between these methods.
First, a brief summary of how each method differs in their conceptual approach:

Spectral Parameterization, as proposed, is a model fitting method. A mathematical model
is used to parameterize periodic and aperiodic activity. It is applied to the frequency

domain, and returns parameter estimates for all fitted components.

BOSC estimates relative oscillatory power. BOSC is applied to, and analyzed in, the time
domain, measuring occurrence and relative power of rhythms, using a threshold computed
from a linear aperiodic fit applied in the spectral domain. This method measures adjusted
power of oscillations, in the time domain, but does not explicitly parameterize periodic or

aperiodic activity.

IRASA is a decomposition method. IRASA decomposes self-similar from non-self-similar
activity. It is applied to the time domain, and returns decompositions of the data in the
frequency domain. The IRASA method does not parameterize components, though it is

typically used in conjunction with a linear fitting procedure of the log-log spectrum.

Overall, these methods are different in their goals, applications, and assumptions, and this
complicates simple, direct comparisons. However, because each of these methods employs a
measure of aperiodic activity, accuracy for fitting the aperiodic component can be directly

compared in simulated data (Extended Data Fig. 5). Notably, as discussed here, a key difference



between the methods is the conceptual model embodied and employed by each of these

methods.

BOSC. Though related, the design, goals, and outputs of the BOSC method are quite different
from spectral parameterization, and BOSC does not return measures that are directly comparable
to the majority of the parameters fit by the proposed algorithm. BOSC is designed to compute
aperiodic-adjusted oscillatory power in the time domain. To do so, it applies a linear fit to the log-
log power spectrum to learn a threshold value, that is then applied in the time-domain, to compute
oscillatory power over the threshold. Simulated power spectra were used to compare median
absolute error (MAE) between spectral parameterization (param) and the linear log-log fits
(linear), as used in BOSC (Extended Data Fig. 5A-C). Spectral parameterization outperforms the
default linear aperiodic fit in BOSC, across all tested situations (see Methods) including a low
frequency range with one peak (MAEpaam=0.003, MAEnea=0.045; t999=53.86, p=1.1x102%,
Cohen’s d=1.58) a low frequency range with multiple peaks (MAEpaam=0.026, MAE jinea=0.102;
tag9=37.22, p<6.7x10191; Cohen’s d=0.95) and a high frequency range with two peaks and an
aperiodic knee (MAEparam=0.006, MAE inea=0.377; t999=62.47, p=0.0; Cohen’s d=2.30). Overall,
the linear fitting approach for aperiodic activity used by BOSC is significantly biased by oscillatory
peaks, and also does not consider, or deal with, multi-fractal data, such as knees, and is

outperformed by spectral parameterization.

However, the overall goal of BOSC is not to parameterize aperiodic activity, and the aperiodic fit
it uses is not intended as an optimized measure of aperiodic activity, but rather as a heuristic fit
for its main goal of computing a relative measure of oscillatory power. Since BOSC operates on
the time domain, it does not parameterize oscillations in the same was as spectral
parameterization, and the periodic measures it returns are not directly comparable to anything
measured and returned by the spectral parameterization algorithm. BOSC also implicitly uses a
particular model of aperiodic activity: fitting a linear fit to the log-log spectrum, which is equivalent
to the fixed’ aperiodic mode (though it is not fit in the same way). This is a limited model that does
not generalize to properties seen in neural data, such as aperiodic knees. Using this particular
aperiodic model is not a requirement of the BOSC method, per se, and so an interesting topic for
future work could be to integrate the BOSC time-domain approach with different models and

approaches for spectral fitting, such as allowed for by the proposed algorithm.



IRASA. IRASA is a decomposition technique that separates putative components of the data.
Technically, it separates fractal (self-similar) activity from non-self-similar activity, with the goal of
disentangling oscillations from true 1/fx activity. The resampling procedure it employs makes
assumptions about the nature of the aperiodic activity, specifically that it is self-similar. This is
consistent with true 1/f activity — however, it does not readily extend to the cases often observed
in neural data, in which there is a ‘knee’ in the aperiodic component of the data. These ‘knees’ in
the data are described in the original IRASA paper*® as ‘multi-fractal breakpoints’, and it was noted
that the IRASA method blurs these breakpoints. Relatedly, IRASA, as predominantly a
decomposition technique, does not propose a model for parameterizing the separated
components. It is typically used with a linear fit applied to the estimated 1/fx component, after
IRASA has been used to try and remove the non-self-similar features (putative oscillations). This
is equivalent to our ‘fixed’ (no knee) model. Notably, IRASA does not (without additional
developments) parameterize periodic components, and so there are no direct comparisons
available for this aspect of our fitting approach, nor does it generalize to other observed forms of

the aperiodic component.

Spectral parameterization, as proposed here, does not make as strict assumptions about the
nature of the aperiodic activity. Rather it simply tries to find the best fit to the oscillation-removed
aperiodic component, applying the selected aperiodic fit function, without requiring the same
assumptions of overall self-similarity. These differences in the applications and models between
our approach and IRASA limit the range of direct comparisons that can be made. IRASA also
operates on time domain data, which is different from spectral parameterization. Therefore, for
comparisons, plausible time series were simulated with known aperiodic components (such as
was done for the comparisons in Extended Data Fig. 3G-l). IRASA was applied to the simulated
time domain data and compared to spectral parameterization applied to power spectra computed
from the simulated time series (Extended Data Fig. 5A-C). Note that IRASA does not explicitly
parameterize the resulting aperiodic component, so an extra parameterization step must be taken
to compare approaches. For the low frequency range, with one or multiple peaks, the common
linear fit that is typically used with IRASA was applied. In the data with one simulated oscillation,
the two methods perform comparably (MAEpaam=0.053, MAEss=0.060; fs99=0.75, p<0.45;
Cohen’s d=0.03). In the case of multiple peaks, spectral parameterization has a modest
performance benefit (MAEparam=0.052, MAE asa =0.068; t999=5.52, p<4.3%108; Cohen’s 0d=0.23).



Additionally, time series data with a knee were simulated using a physiological time series
model'®. For this case, the typical linear fit that is often used with IRASA is ill-posed for the nature
of the aperiodic component, and as expected, performs very poorly (MAE;2s2=0.67). This is due
to a model mismatch, however IRASA does not propose any general model for parameterizing
the aperiodic component. For a fairer comparison, the IRASA-derived aperiodic component was
fit with the knee model definition proposed here. Note that this approach is something of a hybrid,
as it relies on the spectral parameterization model to give a good parameterization of the IRASA
results, but is the clearest way to compare across methods in this case. In data with an aperiodic
knee, spectral parameterization outperforms the IRASA decomposition (MAEpaam=0.063,
MAE 2s2=0.090; t999=8.45, p<9.7x10-'7; Cohen’s d=0.35). In addition, the way that IRASA distorts
aperiodic components with knees creates a systematic bias in the measured aperiodic
parameters. In the simulated data, which has a true exponent value of 2, the median estimated
exponent using IRASA is 1.91, as compared to 1.97 using spectral parameterization. This reflects
a systematic bias in the direction of the errors due to the distortion from the IRASA method when

applied to data that is not strictly self-similar.

These differences between the methods can also be visualized using a real data example,
demonstrating that these limitations do have practical relevance. As an illustrative example,
rodent hippocampal data is shown, demonstrating a case in which there is a prominent theta
oscillation, its harmonic, and a knee in the aperiodic component (Extended Data Fig. 5G-I).
IRASA, at default settings, has difficulty separating out the large peaks, leaving non-aperiodic
activity in the decomposed aperiodic component (Extended Data Fig. 5G). These larger peaks
can be increasingly removed by increasing the amount of resampling, however, this additional
resampling further blurs the aperiodic activity that IRASA separates, due to the knee (Extended
Data Fig. 5H). By comparison, the periodic-removed component from our proposed algorithm can
simultaneously address large peaks and variable model forms of the aperiodic component
(Extended Data Fig. 5l). Overall, IRASA performs well in some contexts, and is a useful and
interesting decomposition approach, however a key issue is that the resampling procedure of
IRASA assumes the precise fractal nature of aperiodic activity, which does not generalize to

common use cases in real neural data.



YNG Group OLD Group
t-value p-value cohens-d t-value p-value cohens-d
apoff -3.810 0.0004 -0.533 -2.881 0.0063 -0.444
APexp -2.521 0.0149 -0.353 -0.380 0.7060 -0.059
Olef 0.438 0.6632 0.061 2.265 0.0289 0.350
Olpw 5.354 <0.0001 0.750 -0.125 0.9011 -0.019
Olbw -1.657 0.1038 -0.232 0.849 0.4007 0.131

Supplementary Table 1 | Statistical results for the EEG task analysis. Statistical results for analyzing which spectral
parameters have task-related responses. One-sample t-tests and effect size measures, using Cohen’s-d, were
computed to test if evoked measures of each parameter differ significantly from zero, as summarized in Figure 6d.



I . default API
name description units .
value |accessible?
. . Bounds on the [min, max]
k dth 1 t e .
peak wi limits peak bandwidth. hertz [0.5,12] Yes
max_n_peaks Maximum number of peaks to fit. integer Infinite Yes
min peak height Absolute minimum power log 0.0 Yes
- - threshold for peaks. power '
Relative minimum power
k th hold
peax_thresho threshold for peaks. std 2.0 Yes
. Whether to fit the aperiodic fixed' or | .. .
aperiodic mode ) . . fixed Yes
- component with a knee parameter. knee
. Power percentile to select points | percenta
ap percentile thresh . . 2.5 No
- = - to fit aperiodic component. ge
_ap_guess Seed values for aperiodic fitting. float [None, O, No
None]
bw std edge Threshold for dropping peaks gaussian 10 No
- - = close to the edge. std
gauss overlap thresh Threshold for dropping gaussian 0.75 No
- - - overlapping peaks. std
cf bound Bound on Qentre—f_requ_ency gaussian 15 No
- - for multi-gaussian fit. std

Supplementary Table 2 | Algorithm parameters
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