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Electrophysiological signals exhibit both periodic and aperiodic properties. Periodic 32 
oscillations have been linked to numerous physiological, cognitive, behavioral, and 33 
disease states. Emerging evidence demonstrates the aperiodic component has putative 34 
physiological interpretations, and dynamically changes with age, task demands, and 35 
cognitive states. Electrophysiological neural activity is typically analyzed using 36 
canonically-defined frequency bands, without consideration of the aperiodic (1/f-like) 37 
component. We show that standard analytic approaches can conflate periodic 38 
parameters (center frequency, power, bandwidth) with aperiodic ones (offset, exponent), 39 
compromising physiological interpretations. To overcome these limitations, we introduce 40 
a novel algorithm to parameterize neural power spectra as a combination of an aperiodic 41 
component and putative periodic oscillatory peaks. This algorithm requires no a priori 42 
specification of frequency bands. We validate this algorithm on simulated data, and 43 
demonstrate how it can be used in applications ranging from analyzing age-related 44 
changes in working memory to large-scale data exploration and analysis. 45 
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INTRODUCTION 47 

Neural oscillations are widely studied, with tens-of-thousands of publications to date. Nearly a 48 
century of research has shown that oscillations reflect a variety of cognitive, perceptual, and 49 
behavioral states1,2, with recent work showing that  oscillations aid in coordinating interregional 50 
information transfer3,4. Notably, oscillatory dysfunction has been implicated in nearly every major 51 
neurological and psychiatric disorder5,6. Following historical traditions, the vast majority of the 52 
studies examining oscillations rely on canonical frequency bands, which are approximately 53 
defined as: infraslow (< 0.1 Hz), delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), 54 
low gamma (30-60 Hz), high frequency activity (60-250 Hz), and fast ripples (200-400 Hz). 55 
Although most of these bands are often described as oscillations, standard approaches fail to 56 
assess whether an oscillation—meaning rhythmic activity within a narrowband frequency 57 
range—is truly present (Fig. 1A,B). 58 

In the frequency domain, oscillations manifest as narrowband peaks of power above the 59 
aperiodic component (Fig. 1A)7,8. Examining predefined frequency regions in the power 60 
spectrum, or applying narrowband filtering (e.g., 8-12 Hz for the alpha band) without 61 
parameterization, can lead to a misrepresentation and misinterpretation of physiological 62 
phenomena, because apparent changes in narrowband power can reflect several different 63 
physiological processes (Fig. 1C,D). These include: (i) reductions in true oscillatory power9,10; 64 
(ii) shifts in oscillation center frequency11,12; (iii) reductions in broadband power13–15, or; (iv) 65 
changes in aperiodic exponent8,16–19. When narrowband power changes are observed, the 66 
implicit assumption is typically a frequency-specific power change (Fig. 1C.i), however, each of 67 
the alternative cases can also manifest as apparent oscillatory power changes, even when no 68 
oscillation is present (Fig. 1D). That is, changes in any of these parameters can give rise to 69 
identical changes in total narrowband power (Fig. 1C,D). 70 

Even if an oscillation is present, careful adjudication between different oscillatory features—71 
such as center frequency and power—is required. Variability in oscillation features is ignored by 72 
many approaches examining predefined bands and, without careful parameterization, these 73 
differences can easily be misinterpreted as narrowband power differences (Fig. 1C). For 74 
example, there is clear variability in oscillation center frequency across age20, and 75 
cognitive/behavioral states11,12. Oscillation bandwidth may also change, but this parameter is 76 
underreported in the literature. Thus, what is thought to be a difference in band-limited 77 
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oscillatory power could, instead, reflect center frequency differences between groups or 78 
conditions of interest21,22 (Fig. 1C.ii). 79 

Interpreting band-limited power differences is further confounded by the fact that oscillations are 80 
embedded within aperiodic activity (represented by the dotted blue line in Fig. 1A). This 81 
component of the signal stands in contrast to oscillations in that it need not arise from any 82 
regular, rhythmic process23. For example, signals such as white noise, or even a single impulse 83 
function, have power at all frequencies despite there being, by definition, no periodic aspect to 84 
the signal (Extended Data Fig. 1B). Due to this aperiodic activity, pre-defined frequency bands 85 
or narrowband filters will always estimate non-zero power, even when there is no detectable 86 
oscillation present (Fig. 1B, Extended Data Fig. 1).  87 

In neural data, this aperiodic activity has a 1/f-like distribution, with exponentially decreasing 88 
power across increasing frequencies. This component can be characterized by a 1/fȤ function, 89 
whereby the Ȥ parameter, hereafter referred to as the aperiodic exponent, reflects the pattern of 90 
aperiodic power across frequencies, and is equivalent to the negative slope of the power 91 
spectrum when measured in log-log space24. The aperiodic component is additionally 92 
parameterized with an ‘offset’ parameter, which reflects the uniform shift of power across 93 
frequencies. This aperiodic component has traditionally been ignored, or is treated as either 94 
noise or as a nuisance variable to be corrected for, such as is done in spectral whitening25, 95 
rather than a feature to be explicitly parameterized. 96 

Ignoring or correcting for the aperiodic component is problematic, as this component also 97 
reflects physiological information. The aperiodic offset, for example, is correlated with both 98 
neuronal population spiking13,14 and the fMRI BOLD signal15. The aperiodic exponent, in 99 
contrast, has been related to the integration of the underlying synaptic currents26, which have a 100 
stereotyped double-exponential shape in the time-domain that naturally gives rise to the 1/f-like 101 
nature of the power spectral density (PSD)19. Currents with faster time constants, such as 102 
excitatory (E) AMPA, have relatively constant power at lower frequencies before power quickly 103 
decays whereas for inhibitory (I) GABA currents power decays more slowly as a function of 104 
frequency. This means that the exponent will be lower (flatter PSD) when E>>I, and larger when 105 
E<<I19. Thus, treating the aperiodic component as “noise” ignores its physiological correlates, 106 
which in turn relate to cognitive and perceptual17,27 states, while trait-like differences in aperiodic 107 
activity have been shown to be potential biological markers in development28 and aging18 as 108 
well as disease, such as ADHD29, or schizophrenia30. 109 
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To summarize, periodic parameters such as frequency11,12, power9,10, and potentially bandwidth, 110 
as well as the aperiodic parameters of broadband offset13–15 and exponent8,16–19, can and do 111 
change in behaviorally and physiologically meaningful ways, with some emerging evidence 112 
suggesting they interact with one another31. Reliance on a priori frequency bands for oscillatory 113 
analyses can result in the inclusion of aperiodic activity from outside the true physiological 114 
oscillatory band (Fig. 1C.ii). Failing to consider aperiodic activity confounds oscillatory 115 
measures, and masks crucial behaviorally and physiologically relevant information. Therefore, it 116 
is imperative that spectral features are carefully parametrized to minimize conflating them with 117 
one another and to avoid confusing the physiological basis of “oscillatory” activity with aperiodic 118 
activity that is, by definition, arrhythmic. 119 

To better characterize the signals of interest, and overcome the limitations of traditional 120 
narrowband analyses, we introduce an efficient algorithm for parameterizing neural PSDs into 121 
periodic and aperiodic components. This algorithm extracts putative periodic oscillatory 122 
parameters characterized by their center frequency, power, and bandwidth; it also extracts the 123 
offset and exponent parameters of the aperiodic component (Fig. 2). Importantly, this algorithm 124 
requires no specification of narrowband oscillation frequencies; rather, it identifies oscillations 125 
based on their power above the aperiodic component. 126 

We test the accuracy of this algorithm against simulated power spectra where all the 127 
parameters of the periodic and aperiodic components are known, providing a ground truth 128 
against which to compare the algorithm’s ability to recover those parameters. The algorithm 129 
successfully captures both periodic and aperiodic parameters, even in the presence of 130 
significant simulated noise (Fig. 3). Additionally, we show that algorithm performs comparably to 131 
expert human raters who manually identified peak frequencies in both human EEG and non-132 
human local field potential (LFP) spectra (Fig. 4). Finally, we demonstrate the utility of 133 
algorithmic parameterization in three ways. First, we replicate and extend previous results 134 
demonstrating spectral parameter differences between younger and older adults at rest (Fig. 5). 135 
Next, we find a novel link between the aperiodic component and behavioral performance in a 136 
working memory task (Fig. 6). Finally, by leveraging large-scale analysis of human 137 
magnetoencephalography (MEG) data, we map the spatial patterns of oscillations and aperiodic 138 
activity across the human neocortex, demonstrating how this method can be used at scale (Fig. 139 
7). 140 

  141 
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RESULTS 142 

Algorithm performance against simulated data 143 

To investigate algorithm performance, we simulated realistic neural PSDs with known ground 144 
truth parameters. These simulated spectra consist of a combination of Gaussians, with variable 145 
center frequency, power, and bandwidth; an aperiodic component with varying offset and 146 
exponent; and noise. Algorithm performance was evaluated in terms of its ability to reconstruct 147 
the individual parameters used to generate the data (Fig. 3; see Methods). Individual 148 
parameter accuracy was considered, since the algorithm, without using the settings to limit the 149 
number of fitted peaks, can arbitrarily increase R2 and reduce error. Thus, overall fit error should 150 
not be the sole method by which to assess algorithm performance, and should be considered 151 
together with the number of peaks fit. This is because, in the extreme, if the algorithm fits a peak 152 
at every frequency then the error between the center frequency of the true peak and the closest 153 
identified peak will be artificially low. In addition, global goodness-of-fit measures such as R2 or 154 
mean squared error are not directly related to accuracy of individual parameter estimation. 155 

Common analyses seek to identify and measure the most prominent oscillation in the power 156 
spectrum. To assess algorithm performance at this task, we began by simulating a single 157 
spectral peak with varying levels of both noise and aperiodic parameters (Fig. 3A). Algorithm 158 
performance is assessed by the absolute error of each of the reconstructed parameters: 159 
aperiodic offset and exponent (Fig. 3B), as well as center frequency, power, and bandwidth of 160 
the largest peak (Fig. 3C). Note that power as returned by the algorithm always refers to 161 
aperiodic-adjusted power—that is the magnitude of the peak over and above the aperiodic 162 
component. 163 

Simulated aperiodic exponents ranged between [0.5, 2.0] au/Hz, and the median absolute error 164 
(MAE) of the algorithmically identified exponent remained below 0.1 au/Hz, even in the 165 
presence of high noise, with MAE increasing monotonically across noise levels (Fig. 3B). 166 
Spectral peaks were simulated with center frequencies between [3, 34] Hz, with peak power 167 
between [0.15, 0.4] au above the aperiodic component, and bandwidths between [1, 3 Hz] (see 168 
methods for full details). When identifying center frequency, MAE was within 1.25 Hz of the true 169 
peak for all tested noise levels. For peak power MAE remained below 0.1 au, and for bandwidth 170 
MAE was within 1.25 Hz, for even the largest noise scenarios. In both cases MAE increased 171 
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monotonically with noise (Fig. 3A). Note that for bandwidth, a default algorithm parameter limits 172 
maximum bandwidth to 8.0 Hz (see Methods), which likely reduces MAE. 173 

Another use case for the algorithm is to identify multiple oscillations (Fig. 3D-F). Here we 174 
assess performance as overall fit error, considered in combination with whether the algorithm 175 
finds the correct number of oscillations. In the presence of multiple simulated peaks (Fig. 3D), 176 
the median fit error increases monotonically as the number of peaks increases (Fig. 3E). 177 
Multiple simulated peaks can differ significantly in power and can overlap, increasing fit error. 178 
Despite this, the modal number of fit peaks matches the number of true simulated peaks (Fig. 179 
3E,F). 180 

Additional simulations tested algorithm performance across broader frequency ranges 181 
(Extended Data Fig. 2). For the frequency range of 1-100 Hz, MAE was below 1.5 Hz for low 182 
frequency peaks (3-34 Hz), and below 4 Hz for high frequency peaks (50-90 Hz), across noise 183 
levels (Extended Data Fig. 2B). Across larger frequency ranges, spectra often exhibit a ‘knee’, 184 
or bend in the aperiodic component of the data24,32 (see Methods). Knee values were simulated 185 
between [0, 150] au, and MAE for the recovered parameters was below 15 au, while 186 
maintaining good performance for offset (MAE below 0.2) and exponent (MAE below 0.15) 187 
(Extended Data Fig. 2C). Finally, the robustness of the algorithm was assessed against 188 
violations of model assumptions, including fitting no knee when a knee is present, non-Gaussian 189 
peaks, and non-sinusoidal oscillations (Extended Data Fig. 3). 190 

Algorithm performance against expert human labeling  191 

Next, we examined algorithm performance against how experts identify peaks in PSDs. 192 
Because it is uncommon for human raters to manually measure the other spectral features 193 
parameterized by the algorithm, human raters experienced in oscillation research (n=9) 194 
identified only the center frequencies of peaks in human EEG and non-human primate LFP 195 
PSDs (Fig. 4A,B). For many spectra there was strong consensus (e.g., Fig. 4A), but not for all 196 
(e.g., Fig. 4B). Performance was quantified in terms of precision, recall, and F1 score, the latter 197 
of which combines precision and recall with equal weight (see Methods). This is a conservative 198 
approach that underestimates the abilities of the algorithm (which is optimized to best fit the 199 
entire spectrum, not just a peak’s center frequency). Also important is that the definition of 200 
surrogate ground truth used here means that when human raters show disagreement regarding 201 
the center frequency of putative oscillations, the algorithm will be marked as incorrect (Fig. 4B). 202 
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Human labelers were relatively consistent in peak labeling for both EEG and LFP datasets, as 203 
evidenced by above-chance recall for each rater with the majority (Fig. 4C). Despite the 204 
disadvantages outlined above, the algorithm identified a similar number of peaks as the raters 205 
for both EEG (n=64 PSDs; humans, algorithm: 1.81, 1.71; t63=0.77, p=0.44) and LFP (n=42 206 
spectra, humans, algorithm: 1.05, 1.10; t41=-0.47, p=0.64). The algorithm had comparable 207 
precision as humans for both EEG (humans, algorithm: 0.77, 0.81; z=0.18, p=1.0) and LFP 208 
(humans, algorithm: 0.83, 0.63; z=-1.44, p=0.38). The algorithm had slightly lower recall 209 
compared to humans for EEG (humans, algorithm: 0.87, 0.68; z=-2.15, p=0.092), and 210 
comparable recall for LFP (humans, algorithm: 0.86, 0.84; z=-0.22, p=0.99).  211 

Raters also demonstrated a strong precision/recall tradeoff (Spearman ȡ=-0.91, p=2.2×10-7) 212 
(Fig. 4C). Such a tradeoff is common in search and classification, as most strategies to improve 213 
recall come at the cost of precision, and vice versa. For example, one could achieve perfect 214 
precision by marking only the most obvious, largest power, peak, but at the cost of failing to 215 
recall all other peaks. Or one could achieve perfect recall by marking every frequency as 216 
containing a peak, but at the cost of precision. For this reason, we assessed overall 217 
performance using the F1 score, which equally weights precision and recall. The algorithm had 218 
comparable F1 scores as humans for EEG (humans, algorithm: 0.79, 0.74; z=-0.44, p=0.96), 219 
and slightly lower F1 scores for LFP (humans, algorithm: 0.83, 0.72; z=-2.16, p=0.087) (Fig. 4D). 220 

Age-related differences in spectral parameters 221 

The practical utility of the algorithm was assessed across several EEG and MEG applications. 222 
First, we replicated and extend previous work looking at age-related differences in spectral 223 
parameters, such as alpha oscillations and aperiodic exponent, including how individualized 224 
parameters differ with aging (Fig. 5); then we examined whether task-related parameters are 225 
altered by working memory and aging (Fig. 6). To test this, we analyzed scalp EEG data from 226 
younger (n=16; 20-30 years; 8 female) and older adults (n=14; 60-70 years; 7 female) at rest 227 
and while performing a lateralized visual working memory task (see Methods). 228 

Resting state analyses. Resting state alpha oscillations and aperiodic activity, as parameterized 229 
by the algorithm, were compared between age groups. First, we quantified how much 230 
individualized alpha parameters differed from canonical alpha. To do this, participant-specific 231 
alpha oscillations were reconstructed based on individual peak frequencies from channel Oz 232 
and were compared against a canonical 10 Hz-centered band. We observed considerable 233 
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variation across participants (Fig. 5A,B, see Methods), as well as a significant difference 234 
between groups (overlap with canonical alpha: younger=84%, older=71%; t28=2.27, p=0.031; 235 
Cohen’s d=0.83) (Fig. 5B). Note that this manifests as a difference in alpha power between 236 
groups when using the canonical band analyses, though this is partly driven by more of older 237 
adult’s alpha lying outside the canonical 8-12 Hz alpha range. 238 

Older adults had lower (slower) alpha center frequencies than younger adults (younger=10.7 239 
Hz, older=9.6 Hz; t28=2.20, p=0.036; Cohen’s d=0.79) and lower aperiodic-adjusted alpha power 240 
(younger=0.78 ȝV2, older=0.45 ȝV2; t28=2.52, p=0.018; Cohen’s d=0.93), though bandwidth did 241 
not differ between groups (younger=1.9 Hz, older=1.8 Hz; t28=0.48, p=0.632; Cohen’s d=0.17) 242 
(Fig. 5C). The mean aperiodic-adjusted alpha power difference between groups was 0.33 243 
ȝV2/Hz whereas, when comparing total (non aperiodic-adjusted) alpha power, the mean 244 
difference was 0.45 ȝV2/Hz. This demonstrates that, though alpha power changes with age, the 245 
magnitude of this change is exaggerated by conflating age-related alpha changes with age-246 
related aperiodic changes. 247 

Regarding aperiodic activity, older adults had lower aperiodic offsets (younger=-11.1 ȝV2, 248 
older=-11.9 ȝV2; t28=6.75, p<0.0001; Cohen’s d=2.45) and lower (flatter) aperiodic exponents 249 
(younger=1.43 ȝV2/Hz, older=0.75 ȝV2/Hz; t28=7.19, p<0.0001; Cohen’s d=2.63) (Fig. 5E). 250 
Participant-specific aperiodic components were reconstructed based on individual offset and 251 
exponent parameter fits from channel Cz, and used to compare frequency-by-frequency 252 
differences between groups (Fig. 5D). From reconstructions, significant differences were found 253 
between groups in the frequency ranges 1.0-10.5 Hz and 40.2-45.0 Hz (p<0.05, uncorrected t-254 
tests at each frequency band). This demonstrates, in real data, how group differences in what 255 
would traditionally be considered to be oscillatory bands can actually be caused by aperiodic—256 
non-oscillatory—differences between groups (c.f., Fig. 1). 257 

Working memory analyses. To evaluate whether parameterized spectra can predict behavioral 258 
performance, we analyzed a working memory task from the same dataset, in which participants 259 
had to remember the color(s) of briefly presented squares over a short delay period. We then 260 
attempted to predict behavioral performance, measured as d', from periodic and aperiodic 261 
parameters calculated as a difference measures between baseline and delay period (see 262 
Methods for task and analysis details). Ordinary least squares linear regression models were fit 263 
to predict performance, and model comparisons were done to examine which spectral 264 
parameters and estimation approaches best predicted behavior (Fig. 6A-C). The most 265 
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consistent model for predicting behavior across groups (adjusting for the number of parameters 266 
in the model) was one using only the two aperiodic parameters (offset and exponent; younger: 267 
F(4, 46)=3.94, p=0.0078, Radj

2=0.19; older: F(4, 37)=5.10, p=0.0023, Radj
2=0.29). In the older adult 268 

group, the aperiodic-adjusted alpha power model was also a significant predictor (F(3, 38)=7.70, 269 
p=0.0004, Radj

2=0.33), performing better than a model using canonical alpha measures (F(3, 270 

38)=5.18, p=0.0042, Radj
2=0.23). In the younger adult group, neither measure of alpha power 271 

significantly predicted behavior (Fig. 6E). This result highlights that, while traditional analyses of 272 
such tasks typically focus on alpha activity33, we find that the more accurate prediction of 273 
behavior is from aperiodic activity, a pattern that may be misinterpreted as alpha dynamics in 274 
canonical analyses, in particular when there are spectral parameter differences between 275 
groups. 276 

Spatial analysis of periodic and aperiodic parameters in resting state MEG 277 

Finally, we parameterized a large dataset (n=80, 600,080 spectra) of source-reconstructed 278 
resting state MEG data to quantify how spectral parameters varies across the cortex. When 279 
collapsed across all participants and all cortical locations, the distribution of center frequencies 280 
for all algorithm-extracted oscillations partially recapitulates canonical frequency bands, wherein 281 
the most common frequencies are centered in the theta, alpha, and beta ranges (Fig. 7B). 282 
Notably, however, there are extracted oscillations across all frequencies, so while canonical 283 
bands do capture the modes of oscillatory activity, they are not an exhaustive description of 284 
periodic activity in the human neocortex. 285 

Because extracted peaks are broadly consistent with canonical bands, we clustered them post 286 
hoc into theta (3-7 Hz), alpha (7-14 Hz), and beta (15-30 Hz) bands. When examined across the 287 
cortex, we find that the aperiodic-adjusted oscillation band power also recapitulates well-288 
documented spatial patterns34, where theta power is concentrated at the frontal midline, alpha 289 
power is predominantly distributed over posterior and sensorimotor areas, and beta power is 290 
focused centrally, over the sensorimotor cortex (Extended Data Fig. 4B). However, prior 291 
reports using canonical methods may be at least partially driven by aperiodic activity, because 292 
they do not separate or quantify if, or how often, oscillations are present over and above the 293 
aperiodic component. To address this, we quantified how often an oscillation was observed, for 294 
each band, across the cortex (Extended Data Fig. 4A). These two metrics were then combined 295 
into an “oscillation score” measure (see Methods), which is a composite of the group-level 296 
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oscillation occurrence probability weighted by the relative power of algorithmically identified 297 
parameters (Fig. 7A). 298 

The oscillation score allows us to examination the variability of periodic activity across 299 
participants. For example, the oscillation scores approaching 1.0 in both alpha and beta indicate 300 
a very high degree of consistency in these bands (a maximum score of 1.0 tells us that every 301 
participant has an oscillation of maximum relative power in the same location). We find that 302 
alpha and beta are ubiquitous across the cortex, though their relative power is concentrated in 303 
specific regions (Extended Data Fig. 4). By contrast, theta is more variable, with max oscillation 304 
scores <0.4 indicating significant variability in theta presence, and its relative power. Theta 305 
oscillations are only sometimes observed in frontal regions at rest (Extended Data Fig. 4) and 306 
are almost entirely absent in visual regions. 307 

The explicit parametrization of each feature allows us to examine how each parameter varies 308 
across the cortex. Note, for example, that the consistency of oscillation presence and relative 309 
power do not imply that these oscillations are consistent in their center frequency, because we 310 
also see significant variation of peak frequencies (Fig. 7B). We also show that, while the 311 
aperiodic exponent has a mean value of 0.828 (Fig. 7C), there is spatial heterogeneity such that 312 
highest exponent values are found in posterior regions, and the exponent gets gradually smaller 313 
(flatter) as it moves anteriorly (Fig. 7A). We also examined relationships between parameters, 314 
calculated as correlations between the spatial topographies of oscillation scores per parameter 315 
(Fig. 7D). The strongest observed relationships were a negative correlation between theta and 316 
alpha (r=-0.60, p<0.0001) and a positive correlation between alpha and the aperiodic exponent 317 
(r=0.83, p<0.0001). Collectively, these analyses allow us to verify patterns of aperiodic-adjusted 318 
periodic activity, and quantify, for the first time, the consistency of occurrence of oscillations. In 319 
addition, the spatial topography of the aperiodic exponent is important to note when exploring 320 
topographies of presumed oscillations derived from narrowband analyses, given that the 321 
aperiodic component can drive observed spatial differences. 322 

 323 
DISCUSSION 324 

Despite the ubiquity of oscillatory analyses, there are several analytic assumptions that impact 325 
the physiological interpretation of prior oscillation research. Standard approaches for quantifying 326 
oscillations presume that oscillations are present, which may not be true (Extended Data Fig. 327 
1), and often rely on canonical frequency bands that presume that spectral power implies 328 
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oscillatory power. These assumptions overlook the existence of aperiodic activity, which is itself 329 
dynamic, and so cannot be simply ignored as stationary noise. Aperiodic activity also has 330 
interesting demographic, cognitive, and clinical correlates, as well as physiological relevance, 331 
and so should also be explicitly parameterized and analyzed. Here we introduce a novel method 332 
for algorithmically extracting periodic and aperiodic components in electro- and 333 
magnetophysiological data that addresses these often-overlooked issues in cognitive and 334 
systems neuroscience. 335 

We demonstrate this method with a series of applications, and highlight methodological points 336 
and novel findings. We show how apparent age-related differences in oscillatory power can be 337 
partially driven by shifts in oscillation center frequency (Fig. 1C). Specifically, we find that 338 
canonical alpha band analyses (e.g., analyzing the 8-12 Hz range) fail to capture all of the 339 
oscillatory power within individual participants, and are systematically biased between groups22 340 
(Fig. 5B). In our data, canonical alpha analyses miss a greater proportion of power in older 341 
adult’s true alpha activity compared to younger adult’s alpha, due to the fact that older adults 342 
tend to have slower (lower frequency) alpha20 (Fig. 5A,B). This is important, as traditional 343 
analyses using fixed bands fail to address inter-individual differences, which has methodological 344 
consequences, and also ignores that variations in peak-frequencies within oscillation bands 345 
have functional correlates and are of theoretical interest12.  346 

We also show how apparent oscillation power can be influenced by changes in the aperiodic 347 
exponent, for example in the case of age-related changes in the aperiodic exponent (Fig. 5D,E). 348 
Thus, though we replicate often-described age-related alpha power changes20, we find the 349 
magnitude of this effect, when analyzed for alpha power specifically, is more subtle than 350 
previously reported. This is because age-related changes in the aperiodic component also shift 351 
total narrowband alpha power, despite the fact that power in a narrowband oscillation has not 352 
changed relative to the aperiodic process6 (Extended Data Fig. 1A). We conclude that periodic 353 
activity is not the sole driver of the apparent ~10 Hz power differences in aging; and that the 354 
magnitude of alpha power differences have been systemically confounded by concomitant 355 
differences in aperiodic activity.  356 

We also examined the utility of spectral parameterization in a cognitive context, analyzing EEG 357 
data from a visual working memory task (Fig. 6). While such studies often focus on oscillatory 358 
activity, in particular visual cortical alpha33, recent computational work shows the importance of 359 
excitation/inhibition (EI) balance in working memory maintenance35. Given that the aperiodic 360 
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exponent partially reflects EI balance19, and is systematically altered in aging18, we 361 
hypothesized that the aperiodic component would predict working memory performance. We 362 
find that, across groups, event-related changes in the aperiodic parameters, rather than just 363 
oscillatory alpha, most consistently predict individual working memory performance. In contrast, 364 
delay period alpha parameters tracked behavior among older, but not younger, adults. This 365 
suggests that there are categorical differences between groups regarding which spectral 366 
parameters track working memory outcomes, and that these features are easy to conflate—or 367 
miss—without explicit spectral parameterization, and highlights a novel finding of aperiodic 368 
activity predicting working memory performance in human EEG data.  369 

Finally, we applied the algorithm to a large collection of MEG data, mapping periodic and 370 
aperiodic activity across the cortex (Fig. 7). Notably while these results broadly recapitulate 371 
expected patterns of activity36,37, the explicit parameterizations reveal features not possible with 372 
traditional approaches. For example, we show that: 1) there is a large amount of variability, for 373 
example, of oscillatory peak frequencies (Fig. 7B); 2) there are band-specific patterns of the 374 
detectability of oscillatory peaks (Extended Data Fig. 4A) and aperiodic-adjusted power 375 
(Extended Data Fig. 4A), and; 3) there is a gradient across the cortex of the aperiodic 376 
exponent36. These findings highlight how traditional analyses are not adequately accounting for 377 
the rich variation present in neural data because they use fixed frequency bands, they do not 378 
account for the presence of aperiodic activity, and they overlook variability in oscillation 379 
presence and in oscillatory features. 380 

This work raises interesting possibilities for how to interpret common findings. Intriguingly, when 381 
examined in the time-domain, differences in the aperiodic exponent manifest as raw voltage 382 
differences (Extended Data Fig. 1A). It may be that observed differences between conditions, 383 
for example in event-related spectral perturbations or evoked potentials, are partially 384 
explainable by, or related to, differences in aperiodic exponent. This consideration is particularly 385 
important when comparing between groups, given that the aperiodic exponent varies across 386 
groups, including aging18 (Fig. 5D,E) and disease29,30.  387 

The observation of within subject changes of the aperiodic exponent also has implications 388 
regarding the ubiquitous negative correlation between low frequency (<30 Hz) and high 389 
frequency (>40 Hz) activity38, observed here in the EEG data (Fig. 5D). This is often interpreted 390 
as a push/pull relationship between low frequency oscillations and gamma, however spectral 391 
parameterization offers a different interpretation: a see-saw-like rotation of the spectrum at 392 
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around 20-30 Hz due to a change in aperiodic activity. This results in decreased power in lower 393 
frequencies with a simultaneous increase in higher frequency power. Here it would be a 394 
mischaracterization to say that there was a task-related decrease in low frequency oscillations, 395 
because that need not be the feature that was truly altered; instead, the aperiodic exponent 396 
changed, manifesting as the spectrum “rotating” around a specific frequency point. This has 397 
been observed to occur in a task-related manner in human visual cortex17.  398 

Across the gamma range, there can be both narrowband activity and broadband shifts39. There 399 
may also be high variability of narrowband frequencies within participants such that averaging 400 
across those bands decreases detectability overall statistical power40. Parameterizing spectra 401 
allows for detecting narrowband peaks, and inferring whether narrow- and/or broadband 402 
aspects of the data are changing. This may also be useful for analyses such as phase-403 
amplitude coupling (PAC), which have provided a powerful means for probing the potential 404 
mechanisms of neural communication4,41,42. These analyses typically rely on fixed frequency 405 
bands, which is problematic given that multiple-oscillator PAC exhibits different phase coupling 406 
frequencies by cortical region42. Using spectral parameterization to characterize oscillatory 407 
components may allow for better identifying phase coupling modes across brain regions, task, 408 
and time, thus increasing the specificity and accuracy of cross-frequency coupling analyses. 409 

Altogether, the parameterization algorithm provides a principled method for quantifying the 410 
neural power spectrum, increasing analytical power by disentangling periodic and aperiodic 411 
components. This allows researchers to take full advantage of the rich variability present in 412 
neural field potential data, rather than treating that variability as noise. These spectral features 413 
reflect distinct properties of the data, but may also be inter-related, given the evidence that the 414 
aperiodic exponent and band powers can be correlated43,44. This highlights the need for careful 415 
parameterization to adjudicate between individual spectral features and their relationship to 416 
cognitive, clinical, demographic, and physiological data. 417 

Though the algorithm itself is agnostic to underlying physiological generators of the periodic and 418 
aperiodic components, it can be leveraged to investigate theories and interpretations of them. 419 
For example, changes in the aperiodic exponent may relate to a shift in the balance of the 420 
transmembrane currents in the input region, such as a shift in EI balance19. In oscillations, 421 
traditional canonical frequency band analyses commit researchers to the idea that those 422 
predefined bands have functional roles, rather than considering the underlying physiological 423 
mechanisms that generate different spectral features. Spectral parameterization across scales, 424 
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and in combination with other measures, may allow us to better link macroscale 425 
electrophysiology to microscale synaptic and firing parameters45, providing a better 426 
understanding of the relationship between microscale synaptic dynamics and different 427 
components in field potential signals, from microscale LFP, to mesoscale intracranial EEG, to 428 
macroscale EEG and MEG26.  429 

While there are other methods for measuring periodic and aperiodic activity, none jointly 430 
parameterize aperiodic and periodic components. Some methods focus on identifying individual 431 
differences in oscillations, however, they are mostly restricted to detecting the peak frequency 432 
within a specific sub-band11. This has resulted in a broad literature looking at variation within 433 
canonical bands, most commonly peak alpha frequency within and across individuals11,12. 434 
However, such approaches often assume only one peak within a band, do not generalize across 435 
broad frequencies, and/or ignore aperiodic activity46, perpetuating the conflation of aperiodic 436 
and periodic processes. Other approaches attempt to control for the aperiodic component when 437 
identifying oscillations, but do not parameterize both the aperiodic and periodic features 438 
together. Often, these methods treat the aperiodic component as a nuisance variable, for 439 
example by correcting for it via spectral whitening25, rather than a feature to be explicitly 440 
modeled and parameterized.  441 

A time-domain approach called BOSC (Better OSCillation Detector)47 uses a simple linear fit to 442 
the PSD to determine a power threshold in an attempt to isolate oscillations, though this does 443 
not explicitly parameterize the aperiodic component for analysis. The irregular-resampling auto-444 
spectral analysis (IRASA) method is a decomposition method that seeks to explicitly separate 445 
the periodic component from self-similar aperiodic activity through a resampling procedure48. 446 
This approach does not parameterize aperiodic or periodic components, but can be combined 447 
with model fitting of the isolated components. However, as the original authors noted, IRASA 448 
smears multi-fractal components48 (knees). Neither of these methods (BOSC, IRASA), currently 449 
allow for the same range of measurements as power spectrum parameterization (see 450 
Supplementary Modeling Note), though future work could seek to integrate these different 451 
methods. In direct comparisons of comparable measures, we find that spectral parameterization 452 
is at least as performant, and typically better and more generalizable than BOSC or IRASA 453 
(Extended Data Fig. 5; Supplementary Modeling Note). Other methods, such as principal 454 
component variants, require manual component selection14. Collectively, the current method 455 
addresses existing shortcomings by explicitly parameterizing periodic and aperiodic signals, 456 
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flexibly fitting multiple peaks and different aperiodic functions, without requiring extensive 457 
manual tuning or supervision. 458 

There are some practical considerations to keep in mind when applying this method. The model, 459 
as proposed, is applicable to multiple kinds of datasets, ranging from LFP to EEG and MEG. 460 
Different modalities, and different frequency ranges, may require different settings for optimal 461 

fitting, and fits should always be evaluated for goodness-of-fit. In particular, we find that it is 462 

important for the aperiodic component to be fit in the correct aperiodic mode, reflecting if a knee 463 

should be fit (Extended Data Figs. 2,3). Detailed notes and instructions for applying the algorithm 464 

to different modalities, assessing model fits, and tuning parameters are all available in the online 465 
documentation. There are also caveats to consider when interpreting model parameters. 466 
Notably, while the presence of power above the aperiodic component is suggestive of an 467 
oscillation, a spectral peak does not always imply a true oscillation at that frequency49. For 468 
example, sharp wave rhythms, such as the sawtooth-like waves seen in hippocampus or the 469 
sensorimotor mu rhythm, will manifest as narrowband power at harmonics of the fundamental 470 
frequency49 (Extended Data Fig. 3G-I). Similarly, the lack of an observed peak over and above 471 
the aperiodic component does not definitively imply the complete absence of an oscillation. 472 
There could be very low power oscillations, highly variable oscillatory properties, and/or rare 473 
burst events or within a long time series, that do not exhibit as clear spectral peaks. To address 474 
these possibilities, spectral parameterization can be complemented with time-domain analysis 475 
approaches21. 476 

In conclusion, application of our algorithm shows that different physiological processes, 477 
including changes in the exponent or offset of the aperiodic component or periodic oscillatory 478 
changes, are often conflated50. Our approach allows for disambiguating distinct changes in the 479 
data by parameterizing aperiodic and periodic features, allowing for investigations of how these 480 
features relate to cognitive functioning in health, aging, and disease, as well as their underlying 481 
physiological mechanisms. The proposed algorithm is validated on simulated data, and 482 
demonstrated with a series of data applications. Because of the speed and ease of the 483 
algorithm and the interpretability of the fitted parameters, this tool opens avenues for the high-484 
throughput, large-scale analyses that will be critical for data-driven approaches to 485 
neuroscientific research. 486 

  487 
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FIGURE LEGENDS 635 
 636 
Figure 1 | Overlapping nature of periodic and aperiodic spectral features. (A) Example neural power spectrum 637 
with a strong alpha peak in the canonical frequency range (8-12 Hz, blue shaded region) and secondary beta peak 638 
(not marked). (B) Same as A, but with the alpha peak removed. (C-D) Apparent changes in a narrowband range 639 
(blue shaded region) can reflect several different physiological processes. Total power (green bars in the inset) 640 
reflects the total power in the range, and relative power (purple bars in the insets) reflect relative power of the peak, 641 
over and above the aperiodic component. (C) Measured changes, with a peak present, including: (i) oscillatory power 642 
reduction; (ii) oscillation center frequency shift; (iii) broadband power shift, or; (iv) aperiodic exponent change. In each 643 
simulated case, total measured narrowband power is similarly changed (inset, green bar), while only in the true power 644 
reduction case (i) has the 8-12 Hz oscillatory power relative to the aperiodic component actually changed (inset, 645 
purple bar). (D) Measured changes, with no peak present. This demonstrates how changes in the aperiodic 646 
component can be erroneously interpreted as changes in oscillation power when only focusing on a narrow band of 647 
interest. 648 

 649 
Figure 2 | Algorithm schematic on real data. (A) The power spectral density (PSD) is first fit with an estimated 650 
aperiodic component (blue). (B) The estimated aperiodic portion of the signal is subtracted from the raw PSD, the 651 
residuals of which are assumed to be a mix of periodic oscillatory peaks and noise. (C) The maximum (peak) of the 652 
residuals is found (orange). If this peak is above the noise threshold (dashed red line), calculated from the standard 653 
deviation of the residuals, then a Gaussian (solid green line) is fit around this peak based on the peak’s frequency, 654 
power, and estimated bandwidth (see Methods). The fitted Gaussian is then subtracted, and the process is iterated 655 
until the next identified point falls below a noise threshold or the maximum number of peaks is reached. The peak-656 
finding at this step is only used for seeding the multi-Gaussian in D, and, as such, the output in D can be different 657 
from the peaks detected at this step. (D) Having identified the number of putative oscillations, based on the number of 658 
peaks above the noise threshold, multi-Gaussian fitting is then performed on the aperiodic-adjusted signal from B to 659 
account for the joint power contributed by all the putative oscillations, together. In this example, two Gaussians are fit 660 
with slightly shifted peaks (orange dots) from the peaks identified in C. (E) This multi-Gaussian model is then 661 
subtracted from the original PSD from A. (F) A new fit for the aperiodic component is estimated—one that is less 662 
corrupted by the large oscillations present in the original PSD (blue). (G) This re-fit aperiodic component is combined 663 
with the multi-Gaussian model to give the final fit. (H) The final fit (red)—here parameterized as an aperiodic 664 
component and two Gaussians (putative oscillations)—captures >99% of the variance of the original PSD. In this 665 
example, the extracted parameters for the aperiodic component are: broadband offset = -21.4 au; exponent = 1.12 666 
au/Hz. Two Gaussians were found, with the parameters: (1) frequency = 10.0 Hz, power = 0.69 au, bandwidth = 3.18 667 
Hz; (2) frequency = 16.3 Hz, power = 0.14 au, bandwidth = 7.03 Hz. 668 
 669 
Figure 3 | Algorithm performance on simulated data. (A-C) Power spectra were simulated with one peak (see 670 
Methods), at five distinct noise levels (1000 spectra per noise level). (A) Example spectra with simulation parameters 671 
are shown (black), as aperiodic [offset, exponent] and periodic [center frequency, power, bandwidth]. Spectral fits 672 
(red), for the one-peak simulations in a low- and high-noise scenario. Simulation parameters for plotted example 673 
spectra are noted. (B) Median absolute error (MAE) of the algorithmically identified aperiodic offset and exponent, 674 
across noise levels, as compared to ground truth. (C) MAE of the algorithmically identified peak parameters—center 675 
frequency, power, and bandwidth—across noise levels. In all cases, MAE increases monotonically with noise, but 676 
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remains low. (D-F) A distinct set of power spectra were simulated to have different numbers of peaks (0-4, 1000 677 
spectra per number of peaks) at a fixed noise level (0.01; see Methods). (D) Example simulated spectra, with fits, for 678 
the multi-peak simulations. Conventions as in A. (E) Absolute model fit error for simulated spectra, across number of 679 
simulated peaks. (F) The number of peaks present in simulated spectra compared to the number of fitted peaks. All 680 
violin plots show full distributions, where small white dots represent median values and small box plots show median, 681 
first and third quartiles, and ranges. The algorithm imposes a 6.0 Hz maximum bandwidth limit in its fit, giving rise to 682 
the truncated errors for bandwidth in C. Note that the error axis is log-scaled in B,C,E. 683 

Figure 4 | Algorithm performance compared to human raters on real EEG and LFP data. (A,B) Examples of two 684 
different EEG spectra labeled by expert human raters, highlighting cases of strong (A) and weak (B) consensus 685 
amongst raters. The black line is the PSD of real data against which center frequency estimates were made. The red 686 
line is the algorithm fit; the red stars are the center frequencies identified by the algorithm. The dots are each 687 
individual expert’s center frequency rating(s). Note that even when human consensus was low, with many identifying 688 
no peaks, as in B, the algorithm still provides an accurate fit (in terms of the R2 fit and error). Nevertheless, the 689 
identified center frequencies in B would all be marked as false positives for the algorithm as compared to human 690 
majority rule, penalizing the algorithm. (C) Human raters show a strong precision/recall tradeoff, with some variability 691 
amongst raters. Inset is Spearman correlation between precision and recall. (D) Despite the penalty against the 692 
algorithm for potential overfitting, as in B, it performs comparably to the human majority rule. n.s.: algorithm not 693 
significantly different from human raters. 694 

Figure 5 | Age-related shifts in spectral EEG parameters during resting state. (A) Visualization of individualized 695 
oscillations as parameterized by the algorithm, selected as highest power oscillation in the alpha (7-14 Hz) range 696 
from visual cortical EEG channel Oz for each participant. There are clear differences in oscillatory properties between 697 
age groups that are quantified in C. (B) A comparison of alpha captured by a canonical 10 ± 2 Hz band, as compared 698 
to the average deviation of the center frequency of the parameterized alpha, for the younger group (left, blue) and 699 
older group (right, green). In this comparison, the canonical band approach captures 84% of the parameterized alpha 700 
in the younger adult group, and only 71% in the older adult group, as quantified in the middle panel, reflecting a 701 
significant different (p=0.031). Red represents the alpha power missed by canonical analysis, which 702 
disproportionately reflects more missed power in the older group. (C) Comparison of parameterized alpha center 703 
frequency (p=0.036), aperiodic-adjusted power (p=0.018), and bandwidth (p=0.632), split by age group. (D) 704 
Comparison of aperiodic components at channel Cz, per group. For this visualization, the aperiodic offset and 705 
exponent, per participant, were used to reconstruct an “aperiodic only” spectrum (removing the putative oscillations). 706 
Red shaded regions reflect areas where there are significant power differences at each frequency between groups (p 707 
< 0.05 uncorrected t-tests). In this comparison, significant group differences in both aperiodic offset (p<0.0001) and 708 
exponent (p=0.0001) (E) drive group-wise differences that otherwise appear to be band-specific in both low (< ~10 709 
Hz) and high (> ~40 Hz) frequencies, when analyzed in a more traditional manner. Bars in B, C, E represent mean 710 
values while stars indicate statistically significant difference, (two-sided paired samples t-test, uncorrected) at p < 711 
0.05. n.s. not significant. 712 

Figure 6 | Event-related spectral parameterization of working memory in aging. (A) Contralateral electrodes 713 
(filled blue dots on the electrode localization map) were analyzed in a working memory task, with spectral fits to delay 714 
period activity per channel, per trial, as well as to the pre-trial baseline period (see Methods). Task-related measures 715 
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of each spectral parameter were computed by subtracting the baseline parameters from the delay period parameters. 716 
(B) Parameters were collapsed across channels, to provide a measure per trial, and collapsed across trials, to 717 
provide a measure per working memory load (condition). (C) For this analysis, condition average spectral parameters 718 
were used to predict behavioral performance, measured as d', per condition. (D) The average evoked difference in 719 
spectral parameters, between baseline and delay periods, for each group, presented as spectra reconstructed from 720 
the spectral fits, including aperiodic and oscillatory alpha parameters. The inset tables present the changes in each 721 
parameter, shaded if significant (one sample t-test, p < 0.05; green: positive weight; red: negative weight). For further 722 
details of the statistical comparisons, see Supplementary Table 1. (E) Parameters for regression models predicting 723 
behavioral performance for each group. All behavioral models use the evoked spectral parameters from A. Note that 724 
all models also include an intercept term, and a covariate for load. Models were fit using ordinary least squares, and 725 
the model r-squared and results of F-test for model significance are reported (see Methods). 726 

Figure 7 | Large-scale analysis of MEG resting state data uncovers cortical spectral features. Spectral 727 
parameterization was applied to a large MEG dataset (n=80 participants, 600,080 spectra). (A) Oscillation 728 
topographies reflecting the oscillation score: the probability of observing an oscillation in the particular frequency 729 
band, weighted by relative band power, after adjusting for the aperiodic component (see Methods). These 730 
topographies quantify the known qualitative spatial distribution for canonical oscillation bands theta (3-7 Hz), alpha (7-731 
14 Hz), and beta (15-30 Hz). (Right) The topography of resting state aperiodic exponent fit values across the cortex. 732 
Group exponent—calculated as the average (mean) exponent value, per vertex, across all participants—shows that 733 
the aperiodic exponent is lower (flatter) for more anterior cortical regions. (B) The distribution of all center 734 
frequencies, extracted across all participants (n = 80), roughly captures canonical bands, though there is substantial 735 
heterogeneity. Peaks in the probability distribution are labeled for approximate canonical bands. (C) The distribution 736 
of aperiodic exponent values, fit across all vertices and all participants. (D) Correlations between the oscillation 737 
topographies and the exponent topography (as plotted in A) show that theta is spatially anti-correlated with the other 738 
parameters. 739 
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METHODS 742 

Algorithm development and analyses for this manuscript were done with the Python 743 
programming language. The code for the algorithm and for the analyses presented in this paper 744 
are openly available (https://github.com/fooof-tools/fooof; see Code Availability statement). 745 
The name of the Python module stands for ‘fitting oscillations and one-over f’.  746 

Algorithmic parameterization 747 

The parameterization method presented herein quantifies characteristics of electro- or magneto-748 
physiological data, in the frequency domain. While many methods can be used to calculate the 749 
power spectra for algorithmic parametrization, throughout this investigation we use Welch’s 750 
method51. The algorithm conceptualizes the PSD as a combination of an aperiodic 751 
component52,53, with overlying periodic components, or oscillations7. These putative oscillatory 752 
components of the PSD are characterized as frequency regions of power over and above the 753 
aperiodic component, and are referred to here as “peaks”. The algorithm operates on PSDs in 754 
semilog-power space, which is linearly spaced frequencies, and log-spaced power values, 755 
which is the representation of the data for all of the following, unless noted. The aperiodic 756 
component is fit as a function across the entire fitted range of the spectrum, and each oscillatory 757 
peak is individually modeled with a Gaussian. Each Gaussian is taken to represent an 758 
oscillation, whereby the three parameters that define a Gaussian are used to characterize the 759 
oscillation (Fig. 2). 760 

This formulation models the power spectrum as: 761 
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where power, P, representing the PSD, is a combination of the aperiodic component, L, and N 762 
total Gaussians, G. Each Gn is a Gaussian fit to a peak, for N total peaks extracted from the 763 
power spectrum, modeled as: 764 
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where a is the power of the peak, in log10(power) values, c is the center frequency, in Hz, w is 765 
the standard deviation of the Gaussian, also in Hz, and F is the vector of input frequencies. 766 

The aperiodic component, L, is modeled using a Lorentzian function, written as:  767 

ܮ ൌ ܾ െ ���ሺ݇ ൅  ఞሻ���������������ሺ͵ሻܨ

where b is the broadband offset, Ȥ is the exponent, and k is the “knee” parameter, controlling for 768 
the bend in the aperiodic component24,32, with F as the vector of input frequencies. Note that 769 
when k=0, this formulation is equivalent to fitting a line in log-log space, which we refer to as the 770 
fixed mode. Note that there is a direct relationship between the slope, a, of the line in log-log 771 
spacing, and the exponent, Ȥ, which is Ȥ = -a (when there is no knee). Fitting with k allows for 772 
parameterizing bends, or knees, in the aperiodic component that are present in broad frequency 773 
ranges, especially in intracranial recordings24. 774 

The final outputs of the algorithm are the parameters defining the best fit for the aperiodic 775 
component and the N Gaussians. In addition to the Gaussian parameters, the algorithm 776 
computes transformed ‘peak’ parameters. For these peak parameters, we define: (1) center 777 
frequency as the mean of the Gaussian; (2) aperiodic-adjusted power—the distance between 778 
the peak of the Gaussian and the aperiodic fit (this is different from the power in the case of 779 
overlapping Gaussians that might share overlapping power), and; (3) bandwidth as 2std of the 780 
fitted Gaussian. Notably, this algorithm extracts all these parameters together in a manner that 781 
accounts for potentially overlapping oscillations; it also minimizes the degree to which they are 782 
confounded and requires no specification of canonical oscillation frequency bands. 783 

To accomplish this, the algorithm first finds an initial fit of the aperiodic component (Fig. 2A). 784 
This first fitting step is crucial and not trivial, as any traditional fitting method, such as linear 785 
regression, or even robust regression methods designed to account for the effects of outliers on 786 
linear fitting, can still be significantly pulled away from the true aperiodic component due to the 787 
overwhelming effect of the high power oscillation peaks. To account for this, we introduce a 788 
procedure that attempts to fit the aperiodic aspects of the spectrum only. To do so, initial seed 789 
values for offset and exponent are set to the power of the first frequency in the PSD and an 790 
estimated slope, calculated between the first and last points of the spectrum (calculated in log-791 
log spacing, and converted to a positive value, since Ȥ = -a). These seed values are used to 792 
estimate a first-pass fit. This fit is then subtracted from the original PSD, creating a flattened 793 
spectrum, from which a power threshold (set at the 2.5 percentile) is used to find the lowest 794 



  

 30

power points among the residuals, such that this excludes any portion of the PSD with peaks 795 
that have high power values in the flattened spectrum. This approach identifies only the data 796 
points along the frequency axis that are most likely to not be part of an oscillatory peak, thus 797 
isolating parts of the spectrum most likely to represent the aperiodic component (Fig. 2A). A 798 
second fit of the original PSD is then performed only on these frequency points, giving a better 799 
estimate of the aperiodic component. This is, in effect, similar to approaches that have 800 
attempted to isolate the aperiodic component from oscillations by fitting only to spectral 801 
frequencies outside of an a priori oscillation18, but does so in a more unbiased fashion. The 802 
percentile threshold value can be adjusted if needed, but in practice rarely needs to be. 803 

After the estimated aperiodic component is isolated, it is regressed out, leaving the non-804 
aperiodic activity (putative oscillations) and noise (Fig. 2B). From this aperiodic-adjusted (i.e., 805 
flattened) PSD, an iterative process searches for peaks that are each individually fit with a 806 
Gaussian (Fig. 2C). Each iteration first finds the highest power peak in the aperiodic-adjusted 807 
(flattened) PSD. The location of this peak along the frequency axis is extracted, along with the 808 
peak power. These stored values are used to fit a Gaussian around the central frequency of the 809 
peak. The standard deviation is estimated from the full-width, half-maximum (FWHM) around 810 
the peak by finding the distance between the half-maximum powers on the left- and right flanks 811 
of the putative oscillation. In the case where there are two overlapping oscillations, this estimate 812 
can be very wide, so the FWHM is estimated as twice the shorter of the two sides. From FWHM, 813 
the standard deviation of the Gaussian can be estimated via the equivalence: 814 
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This estimated Gaussian is then subtracted from the flattened PSD, the next peak is found, and 815 
the process is repeated. This peak-search step halts when it reaches the noise floor, based on a 816 
parameter defined in units of the standard deviation of the flattened spectrum, re-calculated for 817 
each iteration (default = 2std). Optionally, this step can also be controlled by setting an absolute 818 
power threshold, and/or a maximum number of Gaussians to fit. The power thresholds (relative 819 
or absolute) determine the minimum power beyond the noise floor that a peak must extend in 820 
order to be considered a putative oscillation. Once the iterative Gaussian fitting process halts, in 821 
order to handle edge cases, Gaussian parameters that heavily overlap (whose means are within 822 
0.75std of the other), and/or are too close to the edge (<= 1.0std) of the spectrum, are then 823 
dropped. The remaining collected parameters for the N putative oscillations (center frequency, 824 
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power, and bandwidth) are used as seeds in a multi-Gaussian fitting method (Python: 825 
scipy.optimize.curve_fit). Each fitted Gaussian is constrained to be close to (within 1.5std) of its 826 
originally guessed Gaussian. This process attempts to minimize the square error between the 827 
flattened spectrum and N Gaussians simultaneously (Fig. 2D). 828 

This multi-Gaussian fit is then subtracted from the original PSD, in order to isolate an aperiodic 829 
component from the parameterized oscillatory peaks (Fig. 2E). This peak-removed PSD is then 830 
re-fit, allowing for a more precise estimation of the aperiodic component (Fig. 2F). When 831 
combined with the equation for the N-Gaussian model (Fig. 2G), this procedure gives a highly-832 
accurate parameterization of the original PSD (Fig. 2H; in this example, >99% of the variance in 833 
the original PSD is accounted for by the combined aperiodic + periodic components). 834 
Goodness-of-fit is estimated by comparing each fit to the original power spectrum in terms of the 835 
median absolute error (MAE) of the fit as well as the R2 of the fit.  836 

The fitting algorithm has some settings, that can be provided by the user, one of which defines 837 
the aperiodic mode, with options of ‘fixed’ or ‘knee’, which dictates whether to fit the aperiodic 838 
component with a knee. This parameter should be chosen to match the properties of the data, 839 
over the range to be fit. The algorithm also requires a setting for the relative threshold for 840 
detecting peaks, which defaults to 2, in units of standard deviation. In addition, there are 841 
optional settings, which can be used to define: (1) the maximum number of peaks; (2) limits on 842 
the possible bandwidth of extracted peaks, and; (3) absolute, rather than relative, power 843 
thresholds. The algorithm can often be used without needing to change these settings. Some 844 
tuning may be useful for tuning algorithmic performance to different datasets with potentially 845 
different properties, for example, data from different modalities, data with different amounts of 846 
noise, and/or for fitting across different frequency ranges. Detailed description and guidance on 847 
these settings and if and how to change them can be found in the tool’s documentation. All 848 
parameter names, as well as their descriptions, units, default values, and accessibility to the API 849 
are also presented in Supplementary Table 2. 850 

Code for this algorithm is available as a Python package, licensed under an open source 851 
compliant Apache-2.0 license. The module supports Python >= 3.5, with minimal dependencies 852 
of numpy and scipy (>= version 0.19), and is available to download from the Python Package 853 
Index (https://pypi.python.org/pypi/fooof/). The package is openly developed and maintained on 854 
GitHub (https://github.com/fooof-tools/fooof/). The project’s repository includes the codebase, a 855 
test-suite, instructions for installing and contributing to the package, and the documentation 856 
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materials. The documentation is also hosted on the documentation website (https://fooof-857 
tools.github.io/), which includes tutorials, examples, frequently asked questions, a section on 858 
motivations for parameterizing neural power spectra, and a list of all the functionality available. 859 
On contemporary hardware (3.5 GHz Intel i7 MacBook Pro), a single PSD is fit in approximately 860 
10-20 ms. Because each PSD is fit independently, this package has support for running in 861 
parallel across PSDs to allow for high-throughput parameterization. 862 

Simulated PSD creation and algorithm performance analysis 863 

Power spectra were simulated following the same underlying assumption of the fitting 864 
algorithm– that PSDs can be reasonably approximated as a combination of an aperiodic 865 
component and overlying peaks, that reflect putative periodic components of the signal. The 866 
equations used in the algorithm and described in the methods for the fitting procedure were 867 
used to simulate power spectra, such that for each simulated spectrum, the underlying 868 
parameters used to generate it are known. On top of the simulated aperiodic component with 869 
overlying peaks, white noise was added, with the level of noise controlled by a scaling factor. 870 
The power spectra were therefore simulated as an adapted version of equation (1):� 871 
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Where P is a simulated power spectrum, L and Gn are the same as described in equations (2) 873 
and (3) respectively,  İ is white noise, applied independently across frequencies, and m is a 874 
multiplicative scaling factor of that noise. 875 

For all simulations, the parameterization algorithm was used with settings of 876 
{peak_width_limits=[1,8], max_n_peaks=6, min_peak_height=0.1, peak_threshold=2.0, 877 
aperiodic_mode=‘fixed’}, except where noted. For each set of simulations, 1000 power spectra 878 
were simulated for each condition. The algorithm was fit to each simulated spectrum, and 879 
estimated values for each parameter were compared to ground truth values of the simulated 880 
data. Deviation of the parameter values was calculated as the absolute deviation for the fit value 881 
from the ground truth value. We also collected the goodness-of-fit metrics (error and R2) and the 882 
number of fit peaks from the spectral parameterizations. 883 
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For the first set of simulations, power spectra were generated across the frequency range of 2-884 
40 Hz, with a frequency resolution of 0.25 Hz (Fig. 3A-F). The aperiodic component was 885 
generated with y-intercept (offset) parameter of 0, and without a knee (k=0). Exponent values 886 
were sampled uniformly from possibilities {0.5, 1, 1.5, 2}. Oscillation center frequencies came 887 
from the range of 3-34 Hz (1 Hz steps), with each center frequency sampled as the observed 888 
probability of center frequencies at that frequency in real data, namely the MEG dataset 889 
described in this study. For simulations in which there were multiple peaks within a single 890 
spectrum (Fig. 3D-F), center frequencies were similarly sampled at random, with the extra 891 
constraint that a candidate center frequency was rejected if it was within 2 Hz on either side of 892 
another center frequency already selected for the simulated spectrum, such that individual 893 
spectra could not have superimposed peaks. Peak powers and bandwidths were sampled 894 
uniformly from {0.15, 0.20, 0.25, 0.4} and {1, 2, 3} respectively, independent of their center 895 
frequency. 896 

A set of power spectra were generated with one peak per spectrum across five noise levels 897 
{0.0, 0.025, 0.05, 0.10, 0.15} (Fig. 3A-C). In these simulations, the center frequency, power, and 898 
bandwidth of the fit peak, as well the aperiodic exponent, were compared to the ground truth 899 
parameters. In order to compare ground truth parameters to the spectral reconstructions, which 900 
potentially included more than one peak, the highest power peak was extracted from the 901 
spectral fit to use for comparison. In another set of simulations, PSDs were created with a 902 
varying number of peaks – between 0 and 4 – with a fixed noise value of 0.01 (Fig. 3D-F). For 903 
these simulations, the performance of the algorithm was examined in terms of the fit error 904 
across the number of peaks, as well by comparing the number of simulated peaks to the 905 
number of peaks in the spectral fit.  906 

Simulated power spectra to test across a broader frequency range were generated across the 907 
frequency range of 1-100 Hz, with a frequency resolution of 0.5 Hz (Extended Data Fig. 2 A-C). 908 
These spectra were created with knees, using knee values of {0, 10, 25, 100, 150}, sampled 909 
with equal probability, with offset and exponent values sampled as done previously. For these 910 
spectra two peaks were added, one in the low frequency range, sampled as previously 911 
described, with an additional peak sampled with a center frequency sampled, with even 912 
probability, from between 50 and 90 Hz (in 1 Hz) steps, with the same sampled power and 913 
bandwidth values as used previously. These spectra were generated across different noise 914 
levels, as before. Spectra were fit using the same algorithm settings as before, except for 915 
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aperiodic mode being set to ‘knee’. Parameter reconstruction was evaluated, with the addition of 916 
calculating the accuracy of the reconstructed knee parameter.  917 

Additional simulations were created to evaluate the model performance with respect to 918 
violations of model assumptions (Extended Data Fig. 3A-I). To examine violations of the 919 
aperiodic model assumptions, a set of spectra were also simulated with knees (Fig. 3A-C) but 920 
were fit in the ‘fixed’ aperiodic mode, using the same settings as before. Simulations were 921 
created as described above for simulations including knees, except that in order to evaluate the 922 
influence of knee parameters, spectra were simulated and grouped by knee values, for values 923 
of {0, 10, 50, 100, 150}, using a fixed noise level of 0.01. For these simulations, performance 924 
was primarily evaluated in terms of reconstruction accuracy of the aperiodic exponent, and in 925 
the number of fit peaks.  926 

To examine model violations of the periodic component, power spectra were also simulated 927 
using asymmetric peaks in the frequency domain (Extended Data Fig. 3D-F). For these 928 
simulations, peaks were simulated as skewed gaussians, in which an additional parameter is 929 
used that controls the skewness of the peaks (simulated in code with `scipy.stats.skewnorm`). 930 
These simulations were created across the frequency range of 2-40 Hz, with a fixed noise value 931 
of 0.01. Each spectrum contained a single peak, with peak parameters sampled as in the prior 932 
simulations for this range. A skew value was added to the peak, across conditions with skew 933 
values of {0, 5, 10, 25, 50}. For these simulations, performance was primarily evaluated in terms 934 
of reconstruction accuracy of the peak center frequency, and in the number of fit peaks.  935 

In addition, time series simulations were created with non-sinusoidal oscillations (Extended 936 
Data Fig. 3G-I), to investigate how the algorithm performs with asymmetric cycles and the 937 
resulting power spectra. Simulations were created as time series signals of oscillations of 938 
asymmetric cycles combined with aperiodic activity, using the simulation tools in the NeuroDSP 939 
Python toolbox54. Time series were simulated as 10 second segments at a sampling rate of 500 940 
Hz. The aperiodic component of the signal was simulated as a 1/f signal, with exponent values 941 
sampled from the same values as above. The periodic component of the data was an 942 
asymmetric oscillation, with a peak frequency sampled as above. These oscillations were 943 
created with varying across rise-decay symmetry values49 of {0.5, 0.625, 0.75, 0.875, 1.0}. Note 944 
that a value of 0.5, with a symmetric rise and decay is a sinusoid, whereas values approaching 945 
1 are increasingly sawtooth-like. The full signal was a combination of the two components, from 946 
which power spectra were calculated, using Welch’s method (2 second segments, 50% overlap, 947 
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Hanning window). The power spectrum models were then fit across the frequency range of [2, 948 
40], using the same settings as above. For these simulations, performance was primarily 949 
evaluated in terms of reconstruction accuracy of the peak center frequency, and in the number 950 
of fit peaks. 951 

Finally, simulated data were also used to compare spectral parameterization to other related 952 
methods (Extended Data Fig. 5), which are described and reported in the Supplementary 953 
Modeling Note. For the method comparison simulations, we considered three test cases: 954 
signals with an aperiodic component and one oscillation over the frequency range of 2-40 Hz; 955 
signals with aperiodic activity and multiple (three) oscillations, also across 2-40 Hz; and signals 956 
with two peaks over a broader frequency range (1-100 Hz), in which the aperiodic component 957 
included a knee. For all comparisons between methods, paired samples t-tests were used to 958 
evaluate the difference between the distributions of errors for each method, and effect sizes 959 
were calculated with Cohen’s d. Statistical comparisons were computed on log-transformed 960 
errors, because the distributions are approximately log-normal. 961 

Spectral parameterization was first compared to the aperiodic fit as performed using the BOSC 962 
method47, which is a linear fit of the log-log power spectrum (Extended Data Fig. 5A-C). For 963 
these measures, power spectra were directly simulated, with parameters sampled as previously 964 
described. We also compared measurements of aperiodic fitting to IRASA48 (Extended Data 965 
Fig. 5D-F). Since IRASA operates on time series, simulated data in this case were created as 966 
time series, as previously described, creating 10-second signals with a sampling rate of 1000 967 
Hz. Aperiodic time series with a knee were created using a previously described physiological 968 
time series model19. Periodic and aperiodic parameters were sampled as previously described, 969 
except for the knee time series, for which the aperiodic exponent is always 2, due to the time 970 
series model. IRASA decomposition was applied directly to the simulated time series. Spectral 971 
parameterization was applied to power spectra computed from the simulated time series, using 972 
Welch’s method (1 second segments, 50% overlap, Hanning window). Finally, as an example 973 
real data case, we used an example real data spectrum of LFP data from rat hippocampus, 974 
available from the openly available HC-2 database55, to which spectral parameterization and 975 
IRASA were applied (Extended Data Fig. 5G-I).  976 

Human labelers versus algorithm 977 
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In addition to simulated power spectra, randomly selected EEG (n = 64) and LFP (n = 42) PSDs 978 
were labeled by the algorithm and by expert human raters (n = 9). PSDs were calculated using 979 
Welch’s method51 (1 second segments, 50% overlap, Hanning window). These PSDs were then 980 
fit and labeled from 2 to 40 Hz. Note that human labeling was done only for the center 981 
frequencies of putative oscillations on the PSDs that had the aperiodic component still present, 982 
as this is the most common human PSD parameterization approach. This misses all other 983 
features that the algorithm can also parameterize (power, bandwidth, offset, and exponent). 984 
Raters gave a high/low confidence rating to their labels, to provide a human analog for 985 
overfitting, and all plots and analyses use only results from the high-confidence ratings 986 
(including low-confidence ratings significantly impairs human label performance). Comparisons 987 
of the average number of peaks fit to each spectrum were done using independent-samples t-988 
tests, where for each spectrum we counted the number of peaks identified by the algorithm, and 989 
compared that number across all spectra to the average number of peaks the human raters 990 
found per spectrum. 991 

In order to estimate a putative “truth” for real physiological data where ground truth is unknown, 992 
we used a majority rule approach wherein a “consensus truth” criterion was calculated for each 993 
PSD separately by estimating the majority consensus for each identified peak. Specifically, for 994 
each PSD, all peaks identified by every human labeler were pooled, and the frequency of 995 
identification was established for each peak. Those peaks that were identified by the majority of 996 
labelers (n > 4) within 1.0 Hz of one another were set as the putative truth for that PSD. All 997 
human labelers, and the algorithm, were then scored against this putative truth. Precision, 998 
recall, and F1 scores for human raters and the algorithm were calculated for each rater across 999 
all PSDs. Accuracy measures were then averaged across human labelers and compared the 1000 
those of the algorithm. Normally, precision is calculated as the number of true positives divided 1001 
by the total of true positives and false positives. However, because ground truth is unknown, 1002 
“true positive” and “false positive” here are defined relative to the consensus truth. Similarly, 1003 
recall is calculated as the number of true positives divided by the total of true positives and false 1004 
negatives. The F1 score is a weighted measure of accuracy that combines precision and recall. 1005 
This metric is used because precision can be artificially very high while recall is very low; for 1006 
example, it is possible to inflate precision by simply identifying a peak at every point along the 1007 
frequency axis, thus no peaks would ever be missed, but recall would be severely impacted. If 1008 
no peaks were found, precision and recall were all set to 0. Correct rejections were not included 1009 
in performance estimates; had they been included, every non-peak that was correctly identified 1010 
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as such (most of the power spectra) would be marked as a correct rejection, skewing 1011 
performance results. For those instances when a human labeler or the algorithm identified no 1012 
peaks in the PSD, precision and recall values were set to 0 if the putative truth contained any 1013 
peaks, and to 1 if there was no consensus among human labelers on any of the peaks (i.e., the 1014 
putative truth criterion was 0 peaks). Thus, the majority rule scoring system did not penalize 1015 
either human labelers or the algorithm for correctly rejecting false positives. All reported p values 1016 
are Bonferroni corrected for the three correlated comparisons (precision, recall, and F1) 1017 
performed for each modality (EEG and LFP). Comparisons of these measures across PSDs 1018 
were assessed using the z-score, where the algorithm’s precision, recall, and F1 scores were 1019 
compared to the distribution of the raters’ scores. For the Spearman correlation, rater precision 1020 
and recall on both EEG and LFP data were included. 1021 

Algorithmic analysis of EEG, LFP, and MEG data 1022 

Analyzed data are from openly available and previously reported datasets. Samples sizes were 1023 
determined by the size of available datasets, without using power analyses, but our sample 1024 
sizes are similar to those reported in previous publications for the EEG18,33,56, LFP57,58, and 1025 
MEG31,34,36 datasets. In the analyzed datasets, there were no experimentally defined groups 1026 
requiring assignment, and thus no randomization or blinding procedures were used. Where 1027 
relevant, analyzed distributions were tested for normality, to test validity of the applied statistical 1028 
tests, and full distributions of data are also shown.  1029 

Scalp EEG data. Electroencephalography (EEG) data from a previously described study33 were 1030 
re-analyzed here. Briefly, we collected 64-channel scalp EEG from 17 younger (20-30 years old) 1031 
and 14 older (60-70 years old) participants while they performed a visual working memory task 1032 
as well as a resting state period. All participants gave informed consent approved by the 1033 
University of California, Berkeley Committee on Human Research. Participants were tested in a 1034 
sound-attenuated EEG recording room using a 64+8 channel BioSemi ActiveTwo system. EEG 1035 
data were amplified (-3dB at ~819 Hz analog low-pass, DC coupled), digitized (1024 Hz), and 1036 
stored for offline analysis. Horizontal eye movements (HEOG) were recorded at both external 1037 
canthi; vertical eye movements (VEOG) were monitored with a left inferior eye electrode and 1038 
superior eye or fronto-polar electrode. All data were referenced offline to an average reference. 1039 
All EEG data were processed with the MNE Python toolbox59, the algorithm described herein, 1040 
and custom scripts. These data have previously been reported33, though all analyses presented 1041 
here are novel using our new algorithmic approach. 1042 
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EEG task and stimuli. Participants performed a visual working memory task. They were 1043 
instructed to maintain central fixation and asked to respond using the index finger of their right 1044 
hand. The visual working memory paradigm was slightly modified from the procedures used in 1045 
Vogel and Machizawa (2004)56 as previously outlined60, where additional task details can be 1046 
found. Participants were visually presented with a constant fixation cross in the center of the 1047 
screen throughout the entire duration of the experiment. At the beginning of each trial, this cross 1048 
would flash to signal the beginning of the trial. This was followed 350 ms later by one, two, or 1049 
three (corresponding to the load level) differently colored squares for 180 ms, lateralized to 1050 
either the left or right visual hemifield. After a 900 ms delay, a test array of the same number of 1051 
colored squares appeared in the same spatial location. Participants were instructed to respond 1052 
with a button press to indicate whether or not one item in the test array had changed color 1053 
compared to the initial memory array. Each participant performed 8 blocks of 40 trials each, with 1054 
trials presented in random order in terms of side and load. 1055 

EEG behavioral data analysis. Behavioral accuracy was assessed using a d' measure of 1056 
sensitivity which takes into account the false alarm rate to correct for response bias (d' = Z(hit 1057 
rate)-Z(false alarm rate)). To avoid mathematical constraints in the calculation of d', we applied 1058 
a standard correction procedure, wherein, for any participants with a 100% hit rate or 0% false 1059 
alarm rate, performance was adjusted such that 1/(2N) false alarms were added or 1/(2N) hits 1060 
subtracted where necessary.  1061 

EEG Pre-processing. Each participant’s EEG data were first filtered with a highpass filter at 1 1062 
Hz, and then decomposed using ICA61. Any ICA components that significantly correlated with 1063 
HEOG and/or VEOG activity were automatically identified and rejected. A two-minute segment 1064 
of data from the beginning of the recording was extracted and analyzed as resting state data. 1065 
Trials were epoched from -0.85 to 1.10 seconds relative to stimulus onset. All incorrect trials 1066 
and trials with artifacts were excluded from subsequent analysis. The AutoReject procedure was 1067 
used to estimate thresholds and automatically reject any trials with artifacts, as well as to 1068 
interpolate bad channels62. 1069 

EEG resting state data analysis. Power spectra were calculated for all channels, using Welch's 1070 
method51 (2 second windows, 50% overlap),, for a two-minute segment of extracted resting 1071 
state data from the beginning of the recording. These power spectra were fit using the 1072 
algorithm, using the settings {peak_width_limits=[1,6], max_n_peaks=6, min_peak_height=0.05, 1073 
peak_threshold=1.5, aperiodic_mode=‘fixed’}. The average R2 of spectral fits was 0.96, 1074 
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reflecting good fits, though one participant from the younger group was considered an outlier, 1075 
with R2 and absolute error of the fit more than 2.5 standard deviations away from the mean; this 1076 
participant was dropped from further analyses in the resting condition. Estimated periodic 1077 
spectral parameters were analyzed from a posterior channel of interest, Oz, chosen to capture 1078 
visual cortical alpha activity. Aperiodic parameters were analyzed from channel Cz. 1079 

T-tests were performed to evaluate differences between age groups. For visualization purposes, 1080 
periodic and/or aperiodic components were reconstructed for each participant’s fitted 1081 
parameters. To explore if aperiodic differences could drive frequency-specific power differences, 1082 
t-tests were run at each frequency, comparing between younger and older adult group, for the 1083 
power values from the reconstructed aperiodic-only signal. To compare participant-specific fits 1084 
to canonical band analyses, the overlap of a Gaussian centered at 10 Hz with a +/-2 Hz 1085 
bandwidth (reflecting the common 8-12 Hz alpha range) was calculated with the individualized 1086 
center frequency per participant, using a fixed +/-2 Hz bandwidth range. All t-tests are two-1087 
tailed. 1088 

EEG task data analysis. For task analyses, data were analyzed from visual cortical alpha 1089 
electrodes contralateral to the hemifield of visual stimulus presentation (right hemifield stimuli: 1090 
{P3, P5, P7, P9, PO3, PO7, O1}; left hemifield stimuli: {P4, P6, P8, P10, PO4, PO8, O2}). Only 1091 
correct trials were analyzed, and trials were collapsed across presentation side. Trials were split 1092 
up into the three segments of interest: baseline [-0.85 to -0.35 sec], early trial segment [0.10 to 1093 
0.60 sec], and late trial segment [0.50 to 1.00 sec].  1094 

For spectral parameterization analyses, PSDs were calculated across each segment, for each 1095 
channel, and spectra were fit, using the same settings as the rest data. Fitted parameters were 1096 
then averaged across channels, to arrive at one set of parameters per trial, per participant. For 1097 
comparison, two canonical alpha band analyses were run, one in which trial data were filtered to 1098 
the alpha range (8-12 Hz), and another in which the data were filtered +/- 2 Hz around an 1099 
individualized alpha center frequency63, identified as the frequency of peak power between the 1100 
range 7-14 Hz. These filtered copies of the data were then epoched and Hilbert transformed to 1101 
calculate analytic alpha amplitude. Average analytic alpha was calculated across each time 1102 
segment. Evoked measures of each parameter (i.e., canonical alpha, aperiodic-adjusted alpha 1103 
power, and aperiodic offset and exponent) were calculated, in which the value of the parameter 1104 
in the late trial was baseline-corrected by the measure of the parameter from the pre-trial 1105 
baseline period for each investigated parameter.  1106 
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To investigate which estimation technique (canonical band estimation vs. spectral 1107 
parameterization) and which spectral parameter(s) best predicted behavior, regression models 1108 
were used to predict d', per load, from canonical or spectral parameterization output measures, 1109 
separately for each age group. We used a baseline behavioral model, predicting d' from the 1110 
memory load (the number of presented items in the trial), and all models also used load as a 1111 
covariate. To compare which features best predicted behavior, we predicted separate models, 1112 
using 1) canonical alpha, 2) canonical alpha measured at an individualized frequency, 3) 1113 
parameterized alpha, 4) parameterized aperiodic features. These models are described as: 1114 

݀ᇱ ൌ ܾ଴ ൅ ܾଵሺ݈݀ܽ݋ሻ ൅  baseline model 1115     ߝ�

݀Ԣ ൌ ܾ଴ ൅ ܾଵሺ݈݀ܽ݋ሻ ൅ ܾଶሺߙ௣௪ሺ௖ሻሻ ൅  canonical alpha model 1116    ߝ�

݀Ԣ ൌ ܾ଴ ൅ ܾଵሺ݈݀ܽ݋ሻ ൅ ܾଶሺߙ௣௪ሺ௖௜௙ሻሻ ൅  individualized canonical alpha model 1117   ߝ�

݀Ԣ ൌ ܾ଴ ൅ ܾଵሺ݈݀ܽ݋ሻ ൅ ܾଶሺߙ௣௪ሺ௣ሻሻ ൅  parameterized alpha model 1118    ߝ�

݀Ԣ ൌ ܾ଴ ൅ ܾଵሺ݈݀ܽ݋ሻ ൅ ܾଶ൫ܽ݌௘௫௣൯ ൅ ܾ͵൫ܽ݌௢௙௙൯ ൅  aperiodic model  1119  ߝ�

In the above, ߙ௣௪ represents alpha power, and c, icf, p represent ‘canonical’, ‘canonical with 1120 

individualized frequency’, and ‘parameterized’, respectively, and ܽ݌ represents aperiodic, with 1121 
exp and off denoting exponent and offset respectively. All models were fit as ordinary least 1122 
squares linear models. Model fitting and comparisons were done using the statsmodels module 1123 
in Python. The F-test for overall significance of the model was used to evaluate whether each 1124 
model provided a significant fit.  1125 

LFP data. LFP data used for algorithm validation came from two male rhesus monkeys 1126 
(Maccaca mulatta) 4 to 5 years of age, collected for a previously reported experiment 1127 
(methodological details can be found in the corresponding manuscript57). All procedures were 1128 
carried out in accord with the US National Institutes of Health guidelines and the 1129 
recommendations of the University of California, Berkeley Animal Care and Use Committee. 1130 
Neuronal responses were recorded from PFC using arrays of 8-32 tungsten microelectrodes. 1131 
Local field potentials were recorded with a 1 kHz sampling frequency and analyzed offline. LFP 1132 
were isolated from the band-passed (0-100 Hz) recordings, and spectral fits were done on a 1133 
channel-by-channel basis using Welch’s method and the same settings used for the EEG 1134 
analyses described above. 1135 
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MEG data. Open-access resting-state MEG data, as well as corresponding T1-weighted MRIs 1136 
for each participant, were accessed from the young adult dataset from the Human Connectome 1137 
Project (HCP) database64. Briefly, a subset of 95 participants from the HCP had MEG 1138 
recordings. Of this group, 80 participants met our quality control procedures and were included 1139 
in the analyses here (ages 22-35; 35 female). Participants were excluded due to missing resting 1140 
state recordings, missing anatomical scans needed for source projection, or due to excessive 1141 
artifacts. One participant was rejected post fitting due to being an outlier on goodness-of-fit 1142 
and/or aperiodic parameters (more than 3 standard deviations from the group mean). For each 1143 
participant, the first available rest recording was used, comprising approximately 6 minutes of 1144 
eyes open, resting state data. Full details of the data collection are available elsewhere65.  1145 

MEG data were pre-processed following best-practice guidelines66, using the Brainstorm 1146 
software toolbox67. Cardiac and eye related artifacts (blinks and saccades) were automatically 1147 
detected from ECG and EOG traces respectively and removed from the data using signal-space 1148 
projections (SSP) from data segments selected from around each artifactual event68 using 1149 
default parameters in Brainstorm. All MEG data were manually inspected for any remaining 1150 
artifacts, and any contaminated segments were marked as bad, and not included in any further 1151 
analysis. Cleaned, pre-processed resting state data were then epoched into 5 second 1152 
segments.  1153 

Using the segmentation procedures available in Freesurfer69, each participants’ T1-weighted 1154 
anatomical MRI scan was used to construct scalp and cortical surfaces. Individual high-1155 
resolution surfaces were downsampled to 7501 vertices using Brainstorm to serve as cortical 1156 
reconstructions for MEG source imaging. Structural MRI images were co-registered with the 1157 
MEG recordings using anatomical landmarks (nasion, and pre-auricular points) and digitized 1158 
head points available from the recording, which were automatically aligned in Brainstorm, and 1159 
then manually checked and tuned, as needed.  1160 

For source-projection, the overlapping-sphere technique70 for forward modeling of the neural 1161 
magnetic fields was used, using perpendicularly oriented current dipoles for each individual’s 1162 
anatomy71. Source projections were calculated using Brainstorm’s weighted minimum norm 1163 
estimate (wMNE) applied to the preprocessed sensor data. Empty room recordings, also 1164 
available from the HCP, were used as an empirical estimate of the noise for each MEG sensor, 1165 
in the wMNE projection. For group analysis, individual source maps were then geometrically 1166 
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registered to the ICBM152 brain template, a non-linear average of 152 participants72, using 1167 
Brainstorm’s multilinear registration technique.  1168 

For each epoch, a PSD was estimated using an adapted version of Welch’s method, which 1169 
averaged across the individual FFTs using the median73, as opposed to the mean, in order to 1170 
deal with the skewed nature of power value distributions73, using a window size of 2 seconds. 1171 
For each participant, at every vertex, a PSD was calculated from source-projected data, on the 1172 
group template brain. Power values were then averaged across all available epochs to obtain 1173 
one PSD per vertex, per individual. 1174 

Following pre-processing, source projection, and spectral analysis, we had PSD representations 1175 
of resting state activity at each of 7501 vertices for each of the 80 participants, projected on a 1176 
template brain. Each of these spectra were then fit across the frequency range [2, 40], with 1177 
settings {peak_width_limits=[1,6], max_n_peaks=6, min_peak_height=0.1, peak_threshold=2, 1178 
aperiodic_mode=‘fixed’}, providing an aperiodic exponent and offset value per vertex as well as 1179 
a list of extracted peaks (if found) per vertex, per participant. In rare cases, the algorithm can fail 1180 
to converge on a solution and thus does not provide a fit. This was the case for a total of 4 1181 
spectra out of 600,080. For any spectrum for which this happened, that vertex for that 1182 
participant was set as having no detected peaks, and the aperiodic exponent was interpolated 1183 
as the mean value of all successful fits from that participant.  1184 

To analyze and visualize the putative oscillation results, all extracted peaks were post hoc 1185 
sorted into pre-defined oscillation bands of theta (3-7 Hz), alpha (7-14 Hz), and beta (15-30 Hz). 1186 
These ranges were chosen to capture the approximate clusters of peaks in the extracted data 1187 
(see Fig. 7B). To do so, per vertex and per participant, peak output parameters were selected, 1188 
for each band, if they corresponded to a peak with a center frequency within the band limits. If 1189 
there was no peak within that range, that vertex was set as having no oscillation in that band. If 1190 
more than one peak was found for the given range, the highest power peak was selected. From 1191 
this band-specific data, we then created group maps for each oscillation band across all 1192 
vertices. For each band we extract two maps: an oscillation power map as well as an oscillation 1193 
probability map, which is the percent of the group that had a peak within that band at that 1194 
vertex. 1195 

We then calculated a power-normalized “oscillation score”. To do so, for each band, the 1196 
average peak power value at each vertex, across all participants, was divided by the maximum 1197 
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average power value from the distribution of all vertices, such that the vertex that displays the 1198 
highest band power across the group receives a score of 1, and every other vertex receives a 1199 
normalized score between 0 and 1. This power ratio was then multiplied, vertex-by-vertex, with 1200 
the oscillation probability topography. The resultant oscillation score is a bounded measure that 1201 
can take values between 0 and 1, whereby a maximal score of 1 reflects that every participant 1202 
has an oscillation in the specified band at the specified vertex, and that oscillation has the 1203 
greatest average power at that vertex. Scores lower than 1 reflect increased variation in the 1204 
presence and/or relative power of oscillations across the group. 1205 

Note that oscillation scores lower than 1 cannot, by themselves, be disambiguated in terms of 1206 
where the variability lies. For example, an oscillation score of approximately 0.5 could reflect 1207 
either a location in which oscillations tend to be of maximal power, but are only observed across 1208 
approximately half the group, or oscillations that are consistent across the entire group, at about 1209 
half the maximal power, or some middle ground between the two. These situations can be 1210 
disambiguated by examining both the oscillation probability and power ratio maps separately. 1211 
We then calculated the Pearson correlation between the topographies of oscillation scores for 1212 
each band as well as the correlation between each band’s oscillation score and the aperiodic 1213 
exponent topography. 1214 

Reporting Summary. Further information on the research design and methods is available in the 1215 
Life Sciences Reporting Summary.   1216 
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Data Availability Statement 1217 

All empirical behavioral and physiological data reported and analyzed in this manuscript are 1218 
secondary uses of data that has previously been published and/or was accessed from openly 1219 
available data repositories. 1220 

Simulated Data. A copy of the simulated data, as well as the code to regenerate it, is available 1221 
in the GitHub repository: https://github.com/TomDonoghue/SimFOOOF 1222 

EEG Data. Data was analyzed from a previously described study33 1223 

MEG Data. Open-access MEG data was analyzed from the Human-Connectome Project64,65, 1224 
which is described on the project site (https://www.humanconnectome.org/), and available 1225 
through the data portal (https://db.humanconnectome.org/).  1226 
 1227 
LFP Data. Local field potential data was analyzed from rhesus monkey from a previously 1228 

described study57. Additional LFP data from rats was accessed from the HC-2 dataset55, which 1229 

is available from the ‘Collaborative Research in Computational Neuroscience (CRCNS) data 1230 
sharing portal (https://crcns.org/).  1231 

Code Availability Statement 1232 

Custom code used in this manuscript is predominantly using the Python programming language, 1233 
version 3.7. In addition, some pre-processing of MEG data was done in Matlab (R2017a), using 1234 
the Brainstorm package (https://neuroimage.usc.edu/brainstorm/).  1235 

Algorithm Code. The algorithm code is openly available and released under the Apache 2.0 1236 
open-source software license. The code for the algorithm is available on GitHub 1237 
(https://github.com/fooof-tools/fooof), and from PyPi (https://pypi.org/project/fooof/), and 1238 
includes a dedicated documentation site (https://fooof-tools.github.io/). 1239 

Analysis Code. All the code used for the analyses is openly available, and indexed on Github 1240 
(https://github.com/fooof-tools/Paper). This includes all the code used for the simulations 1241 
(https://github.com/TomDonoghue/SimFOOOF), the EEG analyses 1242 
(https://github.com/TomDonoghue/EEGFOOOF) and for the MEG analyses 1243 
(https://github.com/TomDonoghue/MEGFOOOF). 1244 
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SUPPLEMENTARY MODELING NOTE 

Algorithm comparison against other approaches 

A key focus of the proposed algorithm has been to contextualize it in relation to approaches and 
standard methods that are typically used within research on oscillations. There are also other 
methods that do consider aperiodic neural activity, such as BOSC47 and IRASA48. They do so, 
however, in ways that differ substantially from spectral parameterization, rendering it difficult to 
employ direct comparisons between the different methods. Overall, one of the key differences 
between them and the method proposed here is that it considers the aperiodic activity to be a 
signal that should be directly parameterized, while most other approaches treat it as a nuisance 
variable25 and/or have different conceptions and goals with respect to the data. In this section, 
related methods, focusing on IRASA and BOSC, are discussed and compared, including 
descriptions of the differences between these methods.  

First, a brief summary of how each method differs in their conceptual approach: 

Spectral Parameterization, as proposed, is a model fitting method. A mathematical model 
is used to parameterize periodic and aperiodic activity. It is applied to the frequency 
domain, and returns parameter estimates for all fitted components. 

BOSC estimates relative oscillatory power. BOSC is applied to, and analyzed in, the time 
domain, measuring occurrence and relative power of rhythms, using a threshold computed 
from a linear aperiodic fit applied in the spectral domain. This method measures adjusted 
power of oscillations, in the time domain, but does not explicitly parameterize periodic or 
aperiodic activity.  

IRASA is a decomposition method. IRASA decomposes self-similar from non-self-similar 
activity. It is applied to the time domain, and returns decompositions of the data in the 
frequency domain. The IRASA method does not parameterize components, though it is 
typically used in conjunction with a linear fitting procedure of the log-log spectrum.  

Overall, these methods are different in their goals, applications, and assumptions, and this 
complicates simple, direct comparisons. However, because each of these methods employs a 
measure of aperiodic activity, accuracy for fitting the aperiodic component can be directly 
compared in simulated data (Extended Data Fig. 5). Notably, as discussed here, a key difference 



between the methods is the conceptual model embodied and employed by each of these 
methods.  

BOSC. Though related, the design, goals, and outputs of the BOSC method are quite different 
from spectral parameterization, and BOSC does not return measures that are directly comparable 
to the majority of the parameters fit by the proposed algorithm. BOSC is designed to compute 
aperiodic-adjusted oscillatory power in the time domain. To do so, it applies a linear fit to the log-
log power spectrum to learn a threshold value, that is then applied in the time-domain, to compute 
oscillatory power over the threshold. Simulated power spectra were used to compare median 
absolute error (MAE) between spectral parameterization (param) and the linear log-log fits 
(linear), as used in BOSC (Extended Data Fig. 5A-C). Spectral parameterization outperforms the 
default linear aperiodic fit in BOSC, across all tested situations (see Methods) including a low 
frequency range with one peak (MAEparam=0.003, MAElinear=0.045; t999=53.86, p=1.1×10-297; 
Cohen’s d=1.58) a low frequency range with multiple peaks (MAEparam=0.026, MAElinear=0.102; 
t999=37.22, p<6.7×10-191; Cohen’s d=0.95) and a high frequency range with two peaks and an 
aperiodic knee (MAEparam=0.006, MAElinear=0.377; t999=62.47, p=0.0; Cohen’s d=2.30). Overall, 
the linear fitting approach for aperiodic activity used by BOSC is significantly biased by oscillatory 
peaks, and also does not consider, or deal with, multi-fractal data, such as knees, and is 
outperformed by spectral parameterization.  

However, the overall goal of BOSC is not to parameterize aperiodic activity, and the aperiodic fit 
it uses is not intended as an optimized measure of aperiodic activity, but rather as a heuristic fit 
for its main goal of computing a relative measure of oscillatory power. Since BOSC operates on 
the time domain, it does not parameterize oscillations in the same was as spectral 
parameterization, and the periodic measures it returns are not directly comparable to anything 
measured and returned by the spectral parameterization algorithm. BOSC also implicitly uses a 
particular model of aperiodic activity: fitting a linear fit to the log-log spectrum, which is equivalent 
to the ‘fixed’ aperiodic mode (though it is not fit in the same way). This is a limited model that does 
not generalize to properties seen in neural data, such as aperiodic knees. Using this particular 
aperiodic model is not a requirement of the BOSC method, per se, and so an interesting topic for 
future work could be to integrate the BOSC time-domain approach with different models and 
approaches for spectral fitting, such as allowed for by the proposed algorithm. 



IRASA. IRASA is a decomposition technique that separates putative components of the data. 
Technically, it separates fractal (self-similar) activity from non-self-similar activity, with the goal of 
disentangling oscillations from true 1/fχ activity. The resampling procedure it employs makes 
assumptions about the nature of the aperiodic activity, specifically that it is self-similar. This is 
consistent with true 1/f activity – however, it does not readily extend to the cases often observed 
in neural data, in which there is a ‘knee’ in the aperiodic component of the data. These ‘knees’ in 
the data are described in the original IRASA paper48 as ‘multi-fractal breakpoints’, and it was noted 
that the IRASA method blurs these breakpoints. Relatedly, IRASA, as predominantly a 
decomposition technique, does not propose a model for parameterizing the separated 
components. It is typically used with a linear fit applied to the estimated 1/fχ component, after 
IRASA has been used to try and remove the non-self-similar features (putative oscillations). This 
is equivalent to our ‘fixed’ (no knee) model. Notably, IRASA does not (without additional 
developments) parameterize periodic components, and so there are no direct comparisons 
available for this aspect of our fitting approach, nor does it generalize to other observed forms of 
the aperiodic component.  

Spectral parameterization, as proposed here, does not make as strict assumptions about the 
nature of the aperiodic activity. Rather it simply tries to find the best fit to the oscillation-removed 
aperiodic component, applying the selected aperiodic fit function, without requiring the same 
assumptions of overall self-similarity. These differences in the applications and models between 
our approach and IRASA limit the range of direct comparisons that can be made. IRASA also 
operates on time domain data, which is different from spectral parameterization. Therefore, for 
comparisons, plausible time series were simulated with known aperiodic components (such as 
was done for the comparisons in Extended Data Fig. 3G-I). IRASA was applied to the simulated 
time domain data and compared to spectral parameterization applied to power spectra computed 
from the simulated time series (Extended Data Fig. 5A-C). Note that IRASA does not explicitly 
parameterize the resulting aperiodic component, so an extra parameterization step must be taken 
to compare approaches. For the low frequency range, with one or multiple peaks, the common 
linear fit that is typically used with IRASA was applied. In the data with one simulated oscillation, 
the two methods perform comparably (MAEparam=0.053, MAEirasa=0.060; t999=0.75, p<0.45; 
Cohen’s d=0.03). In the case of multiple peaks, spectral parameterization has a modest 
performance benefit (MAEparam=0.052, MAEirasa =0.068; t999=5.52, p<4.3×10-8; Cohen’s d=0.23).  



Additionally, time series data with a knee were simulated using a physiological time series 
model19. For this case, the typical linear fit that is often used with IRASA is ill-posed for the nature 
of the aperiodic component, and as expected, performs very poorly (MAEirasa=0.67). This is due 
to a model mismatch, however IRASA does not propose any general model for parameterizing 
the aperiodic component. For a fairer comparison, the IRASA-derived aperiodic component was 
fit with the knee model definition proposed here. Note that this approach is something of a hybrid, 
as it relies on the spectral parameterization model to give a good parameterization of the IRASA 
results, but is the clearest way to compare across methods in this case. In data with an aperiodic 
knee, spectral parameterization outperforms the IRASA decomposition (MAEparam=0.063, 
MAEirasa=0.090; t999=8.45, p<9.7×10-17; Cohen’s d=0.35). In addition, the way that IRASA distorts 
aperiodic components with knees creates a systematic bias in the measured aperiodic 
parameters. In the simulated data, which has a true exponent value of 2, the median estimated 
exponent using IRASA is 1.91, as compared to 1.97 using spectral parameterization. This reflects 
a systematic bias in the direction of the errors due to the distortion from the IRASA method when 
applied to data that is not strictly self-similar. 

These differences between the methods can also be visualized using a real data example, 
demonstrating that these limitations do have practical relevance. As an illustrative example, 
rodent hippocampal data is shown, demonstrating a case in which there is a prominent theta 
oscillation, its harmonic, and a knee in the aperiodic component (Extended Data Fig. 5G-I). 
IRASA, at default settings, has difficulty separating out the large peaks, leaving non-aperiodic 
activity in the decomposed aperiodic component (Extended Data Fig. 5G). These larger peaks 
can be increasingly removed by increasing the amount of resampling, however, this additional 
resampling further blurs the aperiodic activity that IRASA separates, due to the knee (Extended 
Data Fig. 5H). By comparison, the periodic-removed component from our proposed algorithm can 
simultaneously address large peaks and variable model forms of the aperiodic component 
(Extended Data Fig. 5I). Overall, IRASA performs well in some contexts, and is a useful and 
interesting decomposition approach, however a key issue is that the resampling procedure of 
IRASA assumes the precise fractal nature of aperiodic activity, which does not generalize to 
common use cases in real neural data. 

  



 

 
Supplementary Table 1 | Statistical results for the EEG task analysis. Statistical results for analyzing which spectral 
parameters have task-related responses. One-sample t-tests and effect size measures, using Cohen’s-d, were 
computed to test if evoked measures of each parameter differ significantly from zero, as summarized in Figure 6d. 
  

 YNG Group OLD Group 
 t-value p-value cohens-d t-value p-value cohens-d 

apoff -3.810 0.0004 -0.533 -2.881 0.0063 -0.444 
apexp -2.521 0.0149 -0.353 -0.380 0.7060 -0.059 
αcf 0.438 0.6632 0.061 2.265 0.0289 0.350 
αpw 5.354 < 0.0001 0.750 -0.125 0.9011 -0.019 
αbw -1.657 0.1038 -0.232 0.849 0.4007 0.131 



 
 

name description units default 
value 

API 
accessible? 

peak_width_limits Bounds on the [min, max]  
peak bandwidth. hertz [0.5, 12] Yes 

max_n_peaks Maximum number of peaks to fit. integer Infinite Yes 

min_peak_height Absolute minimum power  
threshold for peaks. 

log 
power 0.0 Yes 

peak_threshold Relative minimum power  
threshold for peaks. std 2.0 Yes 

aperiodic_mode Whether to fit the aperiodic 
component with a knee parameter. 

'fixed' or 
'knee' 'fixed' Yes 

_ap_percentile_thresh Power percentile to select points  
to fit aperiodic component. 

percenta
ge 2.5 No 

_ap_guess Seed values for aperiodic fitting. float [None, 0, 
None] No 

_bw_std_edge Threshold for dropping peaks  
close to the edge. 

gaussian 
std 1.0 No 

_gauss_overlap_thresh Threshold for dropping  
overlapping peaks. 

gaussian 
std 0.75 No 

_cf_bound Bound on centre-frequency  
for multi-gaussian fit. 

gaussian 
std 1.5 No 

 
Supplementary Table 2 | Algorithm parameters 
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