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A B S T R A C T

To accurately determine the reliability of SRAMs, we propose a method to estimate the wearout parameters of FEOL TDDB using on-line data collected during
operations. Errors in estimating lifetime model parameters are determined as a function of time, which are based on the available failure sample size. Systematic
errors are also computed due to uncertainty in estimation of temperature and supply voltage during operations, as well as uncertainty in process parameters and use
conditions.

1. Introduction

Static Random Access Memories (SRAMs) are major components of
systems-on-chips and are also used for memory in systems that require
very low power consumption and easy access to data. To ensure that
memory operation is stable, the reliability of SRAMs need to be con-
sidered. We focus on front-end gate oxide breakdown (FEOL TDDB),
which is the failure due to the buildup of traps in the dielectric region,
because it is one of the most important wearout mechanisms in semi-
conductors.

Prior work has focused on determining the impact of bias tem-
perature instability (BTI) on circuit performance as a function of time
and mitigating its impact [1–4]. In [1–3], the data retention voltage and
read access time parameters are accessed to estimate the threshold
voltage, which in turn is used to determine the extent of degradation
due to BTI. In [4], the SRAM is put in a test state to measure the leakage
current, which is also linked to degradation due to BTI and various
SRAM performance metrics. BTI (and hot carrier injection (HCI)) causes
degradation in circuit/device performance en route to failure. Hence,
performance degradation provides an indication of wearout, and per-
formance monitors are an appropriate way to detect wearout due to BTI
and HCI.

In this study, we use data on failures in the SRAM to estimate the
wearout model parameters of FEOL TDDB. FEOL TDDB models are not
based on degradation, but instead involve only a time-to-failure. Hence,
to detect failure rates, it is necessary to monitor actual failures and to
link these failures to lifetime models. Because of the large number of
identical cells, the SRAM can be used to detect the characteristics of
wearout due to FEOL TDDB. Hence, the task of this paper is to appro-
priately estimate the model parameters, using the SRAM data as a ve-
hicle.

The parameters to be extracted are those of the two parameter

Weibull distribution for FEOL TDDB: the characteristic lifetime, η, and
the shape parameter, β. The model parameters are extracted from time-
to-failure data from the cells in the SRAM.

This work determines the accuracy in extracting the model para-
meters by considering both random and systematic errors. The random
errors are due to the availability of samples (failed SRAM cells). Clearly,
more data provides more accurate model parameter extraction.
Systematic errors are due to usage variations, such as supply voltage
and operating temperature fluctuations, as well as variations due to
process parameters and workload. The analysis of systematic errors can
be used to determine when and if sensor data is needed to supplement
analytical wearout models when estimating wearout model parameters.

This paper examines how to analyze FEOL TDDB failures in SRAMS
during on-line operations. The rest of the paper is organized as follows.
Section 2 describes the methodology for extracting the wearout para-
meters. Section 3 shows the error analysis, and the paper is concluded
in Section 4.

2. Methodology

The lifetime distribution of a device due to wearout by front-end
gate oxide breakdown (FEOL TDDB) can be modeled with a two-para-
meter Weibull distribution:

=P t exp t( ) 1
(1)

where η is the characteristic lifetime and β is the shape parameter. For
FEOL TDDB:
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where a, b, c, d, and AFEOL are process-dependent constants. V and T are
voltage and temperature. W and L are the width and length of the
MOSFET device; s is the probability of stress. The parameters used in
this study were obtained from experimental data [5].

The characteristic lifetime of the SRAM, ηSRAM, is a combination of
Weibull distributions for the components, and is the solution of [6]:
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where ηi, i = 1, …, n are the characteristic lifetime of all the circuit
components, and βi are the corresponding shape parameters. Similarly,
it can be found that [6]:

=
=

SRAM
i

n

i
SRAM

i1

i

(4)

The difference between stressing a device to determine its lifetime
and an SRAM to determine its lifetime relates to the probability of
stress, s, of each of the devices. When we build models for individual
devices, we assume that s = 1. However, s depends on the use scenario
of the SRAM. As shown in Fig. 1, there are access transistors and latch
transistors present in the SRAM. Initially, if we assume that the SRAM
stores logic “1” 50% of the time and logic “0” 50% of the time, then
s = 0.5 in (2) for all cells' four transistors in the latch. s≈0 for the
access transistors, turning on only when the cell is accessed. 50% is set
as the baseline for comparison. If the duty cycle is changed, then the
SRAM will degrade at a different rate.

The SRAM failures due to FEOL TDDB during operation are calcu-
lated using Monte Carlo simulation. The random variable is the failure
probability in (1). The resulting data are time stamps for the failures of
SRAM cells. These SRAM failures can be permanent or soft errors. We
must separate failures due to permanent wearout from soft failures.
They can be separated with minor additions to the hardware [7]. We
must also separate failures due to other wearout mechanisms from
those caused by FEOL TDDB. The cause of failure can be identified via
BIST [8]. Hence, it is possible to isolate a sequence of failures due to
only FEOL TDDB for extraction of the FEOL TDDB wearout parameters.

Given a sequence of time stamps for SRAM failures due to only FEOL
TDDB, we extract the Weibull parameters using generalized maximum
likelihood estimation [9]. The original SRAM cell parameters for FEOL
TDDB degradation in this study are with η = 20 years and β = 1.12. As
shown in Fig. 2(a), the SRAM failure samples for a sample size of
94,000 (an SRAM with 94 k cells) due to FEOL TDDB are plotted on a
Weibull plot. The FEOL TDDB extracted parameters are η = 19.966 and
β = 1.119.

If data is collected during operations, all samples are not available.
Fig. 2(b) shows the case where only the first 100 failed samples are
available. The FEOL TDDB extracted parameters are η = 39.66,
β = 0.99 for the first 100 samples, which are far from the actual
parameters, η = 20 and β = 1.12. As the sample size is increased to
94,000, the FEOL TDDB extracted parameters are η = 19.966 and
β = 1.119, which are close to the actual parameters.

The observed data is from an SRAM cell. However, wearout models,
such as in (1) are for single devices with s = 1. Therefore, if we extract
the wearout model parameters from SRAM data (η and β), the observed
parameters are not those of single devices. They are for collections of
devices, as computed with (3) and (4). Therefore, we need to map the
observed results to the device model. We use simulation to find the
mapping between the process-level Weibull parameters and SRAM cell
Weibull parameters, as shown in Fig. 3. The figures show that any set of
device-level wearout model parameters maps to SRAM cell failure
distribution parameters.

Since we observe only the SRAM parameters, the maps in Fig. 3
must be inverted to map the observed SRAM parameters into device
model parameters, as shown in Fig. 4.

3. Error analysis

There are random and systematic errors in the computation of the
extracted parameters. The random error comes from the limited sample
size used to extract the parameters and properties of the map in Fig. 3.
The systematic error comes from uncertainty in temperature, supply
voltage, process parameters and use scenario.

3.1. Random error: the effect of sample size

The number of samples increases the accuracy in the estimation of

Fig. 1. Circuit diagram of an SRAM, where A1 and A2 are the access transistors,
and L1, L2, L3 and L4 are the latch transistors.

(a)

(b)

Fig. 2. SRAM failure samples due to FEOL TDDB for (a) a sample size of 94,000
with extracted FEOL TDDB failure parameters, η = 19.966 and β = 1.119, and
(b) a sample size of 100 out of 94,000 SRAM cells with extracted FEOL TDDB
failure parameters of η = 39.66 and β = 0.99.
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the characteristic lifetime and shape parameter. Using model para-
meters and (1), we computed the expected number of samples as a
function of time for an SRAM with 94 k cells. Fig. 5 shows the relative
standard deviation (standard deviation/mean) for ln(η) as a function of
time. The result for β is similar.

Fig. 5(a) is the relative error in estimating SRAM parameters. These
are mapped to device model parameters with the functions in Fig. 4.
The errors in estimating the parameters of the SRAM combine with the
slope to determine the errors in estimating the model parameters, i.e.,
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Fig. 5(b) shows an example standard deviation of extracting the
characteristic lifetime for the device vs. time. The results for the shape
parameter, β, are similar. The standard deviation errors for the device
are larger than those of the SRAM, because the mapping from the cell to
process-level parameters introduces large sensitivities. For the SRAM
cell, a 30% error is observed at 0.019 years, a 20% error is seen at
0.036 years, and a 10% error is found at 0.111 yrs. For the device in
Fig. 5(b), the standard deviation falls to 30% in 4.7 years.

3.2. Systematic errors

We consider four sources of systematic error that can cause the
estimated device parameters to differ from their true values. These in-
clude variation in the environment, such as temperature and supply
voltage. Systematic errors can also be due to process parameter varia-
tions and variation in the use scenario.

The percent changes in the SRAM characteristic lifetime errors due
to the percent changes in operating temperature and voltage are shown
in Fig. 6. When the operating temperature overshoots by 15% or vol-
tage overshoots by 5%, the characteristic lifetime errors drop 82%.
However, when the operating temperature undershoots by 15%, the
SRAM characteristic lifetime errors can increase by 1373%. Similarly,
when the operating voltage undershoots by 5%, the SRAM character-
istic lifetime errors can increase by 1512%. This signals that under-
shooting the operating conditions has a larger effect on changing the
SRAM lifetime compared to overshooting, which can be as large as 16.7
times larger for temperature with a 15% error in operating conditions,
and 18.44 times larger for voltage with a 5% error in operating con-
ditions, respectively. These errors translate into systematic errors in the
estimation of device wearout parameters.

To see how the percent changes in characteristic lifetime due to
variations in systematic errors translate into actual errors in device
model parameters, we compute the sensitivity of device model

(a)

(b)

Fig. 3. Mapping between process-level Weibull parameters (η and β) and SRAM
cell Weibull parameters for (a) η and (b) β for FEOL TDDB.

(a)

(b)

Fig. 4. Inverse mapping between process-level Weibull parameters (η and β)
and SRAM cell Weibull parameters for (a) η and (b) β for FEOL TDDB.

(a)

(b)

Fig. 5. Standard deviation error of the extraction of ln(η) as a function of time
for the (a) SRAM with η = 20 yrs., β = 1.12 and (b) a single device.
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(a)

(b)

Fig. 6. Percent changes in errors in device characteristic lifetime estimation
from variations in (a) temperature and (b) voltage. Voltage error differences
above 5% causes the SRAM to fail upon startup and below −5% causes the
SRAM to have essentially infinite characteristic lifetimes (e.g. above 300 years).

Fig. 7. Sensitivity of the extraction of ln(ηdevice) to changes in temperature,
within the range of temperature sensor accuracy.

Fig. 8. Sensitivity of the extraction of ln(ηdevice) to changes in voltage, within
the range of voltage sensor accuracy.

(a)

(b)

Fig. 9. Percent changes in errors for characteristic lifetime from variations in
(a) channel length and (b) duty cycle (error calibrated to a duty cycle of 50%).

Fig. 10. Sensitivity resulting from changes in channel length.

Fig. 11. Sensitivity from changes in duty cycle.
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parameters to temperature and voltage, as follows:

= +
ln( )

ln( )
(ln( ))/ln( )
(ln( ))/ln( )

ln ln
.device

device

device device

SRAM SRAM

SRAM
SRAM

T
T

device
device

SRAM
SRAM

SRAM
SRAM

T
T

))
ln( )

( )

))
ln( )

( )

( )

( )

(6)

and

= +
ln( )

ln( )
(ln( ))/ln( )
(ln( ))/ln( )

ln ln
.device

device

device device

SRAM SRAM

SRAM
SRAM

V
V

device
device

SRAM
SRAM

SRAM
SRAM

V
V

))
ln( )

( )

))
ln( )

( )

( )

( )

(7)

Hence, systematic errors are calculated by combining the sensitivity
to the shift in temperature and voltage and the sensitivity in Fig. 4,
relating the SRAM and device wearout parameters.

It can be seen that systematic errors due to shifts in temperature and
voltage are very large, especially for shifts towards lower temperatures and
voltages. The systematic errors are not so large for positive shifts in voltage
and temperature. This means that we have a much higher risk of over-
estimating lifetime than underestimating it. This also indicates that ex-
tracting model parameters must be used in conjunction with sensor data.

There are a wide variety of sensors that can be used to monitor
temperature and voltage [10–14]. These sensors are widely used and
embedded in system-on-chips (SoCs), because they are used to slow
down operations when the temperature is too high, in order to prevent
overheating, with a typical limit being 85 °C, which is the limit for
Raspberry Pi SOCs [15]. For a 45 nm process, the accuracy for a tem-
perature and voltage sensor is 4.13 °C and 10.67 mV, respectively in the
range from 0.91 V ~ 1.09 V and 0 °C ~ 120 °C [11]. Therefore, tem-
perature variations can be detected within 2%. The sensitivity of ex-
traction of wearout parameters to variation in temperature and voltage
is illustrated in Figs. 7 and 8, respectively.

When the temperature or voltage variations are positive, the
random errors dominate the temperature/voltage variations, and vise
versa. The positive temperature/voltage changes make the samples fail
in a very short time, so the random effects from sample size is hard to
observe for these cases. Therefore, process monitors are needed to make
sure the temperature and voltage do not have negative changes, which
makes the errors increase greatly.

Environmental parameters, such as temperature and voltage, are not the
only causes of systematic variation. Die-to-die process parameter variations
and duty cycle (which is a function of the application run on the SRAM) can
also cause systematic errors. We assume that die-to-die variation in channel
length is the primary source of process parameter variations.

An application has a distribution of duty cycles among the SRAM
cells. A duty cycle of 0, means that the cell stores only a 0, while a duty
cycle of 0.5, corresponds to a cell that stores 0 50% of the time. The
duty cycle impacts the stress distribution. If the mapping in Figs. 3 and
4 are constructed for a cell with a 50% duty cycle, and the actual cell
experiences only a 30% duty cycle, the mapping back to device model
parameters will produce errors. Most applications have duty cycle
distributions that center around 30–50% [16].

As can be seen from Fig. 9, errors in process parameters and duty
cycle cause smaller changes in errors in the lifetime, and as can be seen
from Figs. 10 and 11, these errors cause smaller errors in the extracted
parameters than voltage and temperature.

The errors in process parameters and duty cycle are also smaller
than random variations. If cost and space are an issue, process and duty
cycle monitors can be excluded, because they are not as dominant.

4. Conclusions

This paper has proposed to use the SRAM to count bit failures to
determine the FEOL TDDB model parameters for a circuit operating in

the field. Both random and systematic errors have been evaluated for a
case study. Overall, systematic errors are larger than random errors
when extracting device wearout parameters. Of the systematic errors,
changes in supply voltage and temperature produce the largest errors.
All four conditions should be monitored with sensors during operation
to update the models accordingly. With appropriate sensors of oper-
ating conditions, the SRAM can be used to estimate wearout model
parameters for individual chips using data from operation.
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