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Abstract—This paper aims at reducing computation for Reti- 
nanet, an mAP-30-tier network, to facilitate its practical deploy
ment on edge devices for providing IoT-based object detection 
services. We first validate RetinaNet has the best FLOP-mAP 
trade-off among all mAP-30-tier network. Then, we propose 
a light-weight RetinaNet structure with effective computation- 
accuracy trade-off by only reducing FLOPs in computationally 
intensive layers. Compared with the most common way of 
trading off computation with accuracy-input image scaling, 
the proposed solution shows a consistently better FLOPs-mAP 
trade-off curve. Light-weight RetinaNet achieves a 0.3% mAP 
improvement at 1.8x FLOPs reduction point over the original 
RetinaNet, and gains 1.8x more energy-efficiency on an Intel 
Arria 10 FPGA accelerator in the context of edge computing. The 
proposed method potentially can help a wide range of the object 
detection applications to move closer to a preferred corner for a 
better runtime and accuracy, while eqjoys more energy-efficient 
inference at the edge.

I .  I n t r o d u c t i o n

The Intemet-of-Things (IoT) boosts the vast amount of 
streaming data. Due to the limited bandwidth and the latency 
of cloud computing, it calls for the need of offloading the 
computing to decentralized edge computing infrastructures [1], 
On the other side, deep learning-based applications take the 
advantage of heavy computing resources for training large 
models to fit more and more complicated tasks. Even though 
the model performs well in terms of accuracy, its complexity 
may even make it impossible to be deployed on the edge 
devices. In order to enable more IoT services on edge devices, 
it is essential to study the effective computation and accuracy 
trade-off of the deep learning-based models and tailor it for 
IoT services on edge devices.

Object detection is the key module in face detection, track
ing objects, video surveillance, pedestrian detection, etc. [17],
[18]. With the recent development of deep learning, it boosts 
the performance of object detection tasks. However, regarding 
the computational complexity (in terms of FLOPs), a detection 
network can possibly consume three orders of magnitude more 
FLOPs than a classification network, which makes it much 
more challenging to be deployed on an edge device.

With detection on edge devices, convenience stores with gas 
stations can do real-time analysis of customers’ age and gender 
for personalized on-screen recommendation [16]. Comparing 
to detection in self-driving cars, a hard real-time scenario (30

fps), the in-store real-time recommendation system only needs 
a soft real-time response (1-2 fps) and also has a certain 
tolerance of the accuracy rate. To hit this target frame rate 
with edge devices, the reasonable object detection solutions 
fall in the upper mid range -  mAP-30-tier.

In this paper, we use the mAP as the indicator to cate
gorize the existing object detection solutions. The mAP-20- 
tier solutions are the most aggressive ones that target highly 
energy- and resource-constrained devices, such as battery- 
powered mobile devices. The existing solutions, such as 
YOLOvl, YOLOv2, SSD, MobileNetv2-SSDLite [17], [18], 
[14] have pushed hard to reduce the memory consumption 
by trading off their accuracy performance. Their detection 
accuracy on the large dataset (COCO test-dev 2017 [13]) 
yields to mAP of 22-25%. The mAP-40-tier solutions, such as 
MaskRCNN and its variations, on the contrary, are targeting 
the best mAP performance with less concern about compu
tation resources. The mAP-30-tier solutions do not sacrifice 
the accuracy performance too much but are more aware of the 
computational efficiency. In the mAP-30-tier, popular solutions 
include Faster R-CNN, RetinaNet, YOLOv3 [20], [12], [19], 
and their variants. These solutions can be potentially deployed 
on edge GPUs (e.g., Nvidia T4 GPU) or FPGAs (e.g., Intel 
Arria 10 FPGA based acceleration card), since the on-board 
memory resources are generally enough for preloading the 
weights of the mAP-30-tier networks. [10] verifies the linear 
relation between FLOP count and inference runtime for the 
same kind of network.

The overview of the FLOP-mAP profile of the existing 
mAP-20-tier and mAP-30-tier detection networks are shown 
in Fig. 1. The upper-left comer is the preferred comer in the 
FLOP-mAP plane. We take the RetinaNet as the baseline since 
it has the best FLOP-mAP trade-off in the mAP-30-tier. We 
use the FLOP count as a key indicator for comparison. By 
applying Faster R-CNN [20], RetinaNet [12] and YOLOv3
[19] on the same task for COCO detection dataset, which takes 
an input image around 600 x 600-800x 800, the mAP will hit in 
the range of 33%-36%. However, the FLOPs of Faster R-CNN
[20] is around 850 GFLOPs (gigaFLOPs), which is at least 5x 
more than that of RetinaNet and YOLOv3 [19]. Apparently, 
Faster R-CNN is not competitive in terms of computational 
efficiency. From YOLOv2 [18] to YOLOv3 [19], it is inter-
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esting that the authors have aggressively increased the number 
of FLOPs from 30 to 140 GFLOPs to gain mAP improvement 
from 21% to 33%. Even with that, the mAP of YOLOv3 is 
2.5% lower than RetinaNet with 150 GFLOPs. Also, a low-end 
version of MaskRCNN [7] with mAP of 37.8% cannot beat 
RetinaNet in terms of runtime. These observations inspire us 
to take the RetinaNet as the baseline to explore the feasibility 
of creating a light-weight version of it.

There are two common methods to reduce the FLOPs in a 
detection network. One way is to switch to another backbone, 
while the other is to reduce the input image size. The first 
method results in noticeable accuracy drop if one substitutes 
a ResNet backbone [8] with a more shallow one. Typically it 
is not considered as a good accuracy-FLOP trade-off scheme 
with a small variation. With regard to reducing the input image 
size, it is an intuitive way to reduce the FLOPs. However, 
the accuracy-FLOP trade-off curve shows degradation in a 
polynomial trend [10], There is an opportunity to find a more 
linear degradation tendency curve for a better accuracy-FLOP 
trade-off. We propose only to replace certain branches/layers 
of the detection network with light-weight architecture and 
keep the rest of the network unchanged. For the RetinaNet, 
the heaviest branch is the succeeding layers of the finest FPN 
(P3 in Fig. 2), which takes up to 48% of the total FLOPs. We 
propose different light-weight architecture variants. Moreover, 
the proposed method can also be applied to other blockwise- 
FLOPs-imbalance detection networks.

The contribution of this paper is three-fold. First, we analyze 
the accuracy-computation trade-off of RetinaNet and propose 
a light-weight RetinaNet model structure by simplifying the 
heaviest bottleneck layer. Second, we illustrate that the pro
posed light-weight RetinaNet has a constantly better FLOP- 
mAP trade-off curve (linear degradation) than a naive input 
image scaling approach (polynomial degradation). Third, we 
quantitatively evaluate the runtime performance on an FPGA- 
based edge node and show that the proposed method results 
in 0.3% mAP improvement at 1.8x FLOP reduction with 
no sacrifice in runtime, compared with input image scaling 
method.

I I .  R e l a t e d  W o r k

The overview of the FLOP-mAP profile of the existing 
mAP-20-tier and mAP-30-tier detection networks are shown 
in Fig. 1. In the FLOP-mAP plane of Fig. 1, the upper-left 
comer is the preferred comer, which has the best FLOP-mAP 
tradeoff.

A. mAP-30-tier object detection networks
Faster RCNN [20] is an advanced architecture, which boosts 

both the accuracy and runtime performance from R-CNN 
and Fast R-CNN [4], [3]. As Faster RCNN [20] replaces 
the selective search (used by Fast R-CNN) with RPN, it 
significantly reduces the runtime of generating the region 
proposals. However, in the inference stage of Faster R-CNN, 
there are still around 256-1000 boxes feeding into the detection 
network. It is really expensive to process this much data fed

in by the proposed boxes. As for the Faster RCNN to process 
COCO dataset detection task with an Inception-ResNetV2 [21] 
backbone, the total numbers of FLOPs can come up to over 
800 GFLOPs.

Compared with Faster RCNN [20], the RetinaNet [12] tar
gets a simpler design for gaining speedup. A feature pyramid 
network (FPN) [11] is attached to its backbone to generate 
multi-scale pyramid features. Then, pyramid features go into 
classification and regression branches, whose weights can be 
shared across different levels of the FPN. The focal loss is 
applied to compensate for the accuracy drop, which makes 
its accuracy performance to be comparable with the Faster 
RCNN.

B. mAP-20-tier object detection networks
The YOLO network family is among the most popular 

ones in the mAP-20-tier. The most distinguishing feature of 
YOLO is its predefined grid cell. The input image can be 
cut into SxS grid cells, and each cell only predicts one 
object. This idea apparently helps to reduce the computation 
complexity. However, in the meantime, it increases the chances 
of undetected objects and has relatively bad performance in 
detecting small objects. The YOLOvl [17] is only evaluated on 
relatively small datasets (PASCAL VOC), aiming at enabling 
real-time inference. From YOLOv2 [18] to YOLOv3 [19], 
the mAP performance results on COCO test-dev2015 dataset 
is boosted from 21.6% to 33.0%. It’s worth noting that the 
accuracy gain of YOLOv3 comes along with the FLOPs 
increment from 63 GFLOPs to 141 GFLOPs. YOLOv3 [19] 
should not be categorized as a light-weight one anymore, as 
the FLOP count and mAP are closed to those of RetinaNet- 
ResNet50-FPN (156 GFLOPs and mAP = 35.7%). We also 
include other light-weight object detection networks such as 
SSD and SSDLite [14] in Fig.l for providing an overview of 
the FLOP-mAP profile of mAP-20-tier detection networks.

C. Others and discussions
For the most accurate detection networks, the mAP-40- 

tier, the representative work is the MaskRCNN [7]. In the 
benchmark study of model zoo [5], at the mAP = 37.8%, 
MaskRCNN is less computation-efficient than RetinaNet. 
Also, it mainly targets at high detection accuracy with less 
constraint on computational complexity. While the mAP-20- 
tier ones are extremely compact, aiming at highly energy- 
and resource-constrained devices, such as the battery-powered 
mobile devices. The mAP-30-tier ones are more suitable for 
edge deployment, and the RetinaNet can win over any others in 
FLOP-mAP tradeoff. These inspires us to take the RetinaNet 
as the baseline design to explore a better scheme for accuracy 
and FLOPs trade-off for the mAP30-tier detection on edge.

III. L i g h t - w e i g h t  R e t i n a N e t

In this section, we first analyze the RetinaNet network 
with a focus on the distribution of the number of floating
point operations (FLOPs) across different layers in Section 
III.A. Then, we discuss the approach for creating light-weight 
RetinaNet in Section in.B.
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Fig. 1. An overview of the mAP-20-tier and mAP-30-tier detection networks.
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Fig. 2. RetinaNet (ResNet50-FPN-800x800) network architecture.

A. RetinaNet Primer

The RetinaNet architecture is composed of three parts 
a backbone, a feature pyramid network (FPN) [11], and a 
detection backend, as shown in Fig. 2. The image is first 
processed by the backbone, which usually is the ResNet Archi
tecture. Here, it is worthy of noting that although MobileNet’s 
performance [9] is on a par with ResNet in classification 
tasks, MobileNet may not be a good alternative to ResNet 
for detection tasks. From both [10] and our observation, using 
MobileNet [9] as the backbone for detection tasks will suffer 
from much more accuracy drop than it does for classification 
tasks. The main reason is that the confidence scores of a 
MobileNet-based backbone are the trade-off for lower compu
tation costs. Therefore, a MobileNet-based backbone is hardly 
a desirable choice for high precision object detection networks. 
The backbone, together with the subsequent FPN forms an 
encoder-decoder-like network. The benefit of the FPN is that 
it merges the features of consecutive layers from the coarsest 
to the finest level. After that, the multi-scale pyramid features 
(P3-P7) feed into the backend where two detection branches

FPN
___I___

Detection backend
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Fig. 3. The FLOPs and memory (parameter) distribution of RetinaNet 
(ResNet50-FPN-800x800) across different blocks.

ResNet-50

1.0

are used for bounding box regression and object classification. 
Note that the detection branch and bounding box branch do not 
share weights. The weights of each branch are shared across 
the pyramid features (P3-P7).

The FLOP distribution of RetinaNet architecture (ResNet50- 
FPN-800x800, as shown in Fig. 2) across different blocks 
is shown in Fig. 3., where each block corresponds to the 
same block in Fig. 2. The detection backend D3-D7 is the 
succeeding layer of P3-P7, respectively. As in the original 
design, D3-D7 share the same weight parameters, the average 
memory cost of D3-D7 is shown in Fig. 3. The FLOP count 
of the D3 block dominates the total FLOP count at 48.1%. 
This unbalanced FLOP distribution is quite different from 
that of the ResNet architecture, which has a small FLOP 
count variance across different blocks. The unbalanced FLOP 
distribution presents an opportunity to get a meaningful overall 
FLOP reduction at little cost of accuracy drop by only reducing 
computational complexity of the heaviest layer. Specifically, if 
we can reduce the FLOPs of D3 by half, the total FLOPs can 
be reduced by 24%.
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B. Tiny backend solution

1) Light-weight block: Intuitively, we can reduce the filter 
size to get FLOP reduction. As shown in Fig. 4, we propose 
different block designs for the detection branches of ResNet. 
The D-block-vl applies the MobileNet [9] building block. A 
3x3 depth-wise (dw) convolution is followed by a 1 x 1 convo
lutional block to substitute an original layer. The D-block-v2 
alternately uses the l x l  and 3x3 kernel. It is inspired by 
YOLOvl [17], which has replaced the 3x3 kernels without 
introducing residual blocks. The reduction of D-block-v3 is 
more aggressive, which replaces all the 3x3 convolutions with 
l x l  convolutions. In general, if one substitutes a given block 
with a more light-weight block, it will cause accuracy drop 
of the network as a trade-off for less computation cost. In our 
case, we also observe accuracy (mAP) drop if we replace the 
original blocks with light-weight blocks in detection backend. 
Therefore, we propose to add limited overheads to compensate 
for the accuracy drop here with a partially shared weights 
scheme.

2) Partially shared weights: As illustrated in Section 
III.B.l, the light-weight detection blocks is to trade off lower 
computational complexity with accuracy drop. To compensate 
for the accuracy drop, we propose to replace the fully shared 
weight scheme in the original RetinaNet with a partial shared 
weight scheme. As shown in Fig. 2, P3-P7 are the multi
scale feature map outputs of FPN, which are then fed into 
detection backend D3-D7, respectively. Although D3-D7 share 
the weight parameters, D3-D7 have different input sizes (P3- 
P7), respectively, and D3-D7 are processed in serial. Fig. 5(a) 
is the original detection backend that D3-D7 fully share the 
weights. In Fig. 5(b), only D4-D7 share the weights with the 
original configuration, while D3 is processed by the light
weight D-block-vl/v2/v3 proposed in Section III.B.l.

The proposed partially shared weights scheme mainly has 
two advantages. First, as D3 has its independent weight 
parameters, it can learn more tailored features at its feature 
map scale (D3-D7 have different sizes of feature maps), which 
can compensate for the accuracy drop brought by reducing 
computational complexity. Second, it allows us to focus on 
reducing the computational complexity of the heaviest bottle
neck block without touching the rest of the network. By doing 
so, D4-D7 are produced by exact the same architecture as 
the D4-D7 in the original RetinaNet, which should guarantee

Indep en d en t w eigh t for D 3
(a) (b)

Fig. 5. Fully and partially shared weights for detection backend.

the same performance for D4-D7 outputs. Also, since the 
backbone (ResNet-50) dominates the memory consumption (as 
shown in Fig. 3), the overhead of memory consumption here 
(less than 1%) can be negligible.

IV . R e s u l t s  a n d  d i s c u s s i o n

A. Experimental setup

To measure the accuracy performance, we perform our 
experiments in Caffe2 with 4 Titan X GPUs. We build upon 
the open-source code of RetinaNet in [5]. As the original work 
is trained with 8 GPUs, we scale down the base learning rate 
by 2x and extend the training epochs by 2x, as suggested 
in [6]. Besides, since [15] proves the deep neural network is 
less easy to overfit when its computational complexity is re
duced by network compression, we further extend the training 
epochs (by the same ratio of FLOP reduction) for getting a 
better accuracy rate. In all the experiments, we use the same 
the network configuration as RetinaNet-ResNet50-FPN. The 
source code is available online at https://github.com/PSCLab- 
ASU/LW-RetinaNet/.

To evaluate the runtime performance on FPGA-based edge 
devices, we mapped RetinaNet and light-weight RetinaNet on 
an Intel Arria 10 GX 1150 FPGA acceleration card hosted 
by an Linux edge server. Intel FPGA SDK for OpenCL 
version 18.0 is used to compile the device code. The host 
code is written in C/C++ and the device code in OpenCL 
C language. SystolicArrayCNN -  an open-source optimized 
OpenCL kernel is used for CNN acceleration [2]1. Each layer 
is run with an optimized OpenCL-based FPGA kernel for the 
runtime and power evaluation.

B. Performance on COCO dataset
The COCO dataset [13] is considered as the most challeng

ing dataset for object detection. We only perform experiments 
on COCO dataset (so does the original RetinaNet [12]). We 
train the light-weight RetinaNet on the 2017 COCO training 
dataset and test it on the COCO test-dev.

1https://github.com/PSCLab-ASU/SystolicArrayCNN
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light-weight blocks for detection backend.
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35.8TABLE I
C o m p a r i s o n  b e t w e e n  d i f f e r e n t  l ig h t - w e ig h t  b l o c k .

Light-weight block scale mAP AmAP\% GFLOPs AFLOPs/%
original 800 35.7 0 156 0

D-block-vl 800 34.3 1.4 135 15.4
D-block-v2 800 35.6 0.1 135 6.4
D-block-v3 800 35.1 0.6 89 15.4

TABLE B
C o n f i g u r a t i o n s  o f  d i f f e r e n t  l ig h t - w e i g h t (L W ) R e t i n a N e t .

Light-weight block Detection backend
Classification Bouding box

LW-RetinaNet-v 1 D-block-v2 V
LW -RetinaNet-v2 D-block-v3 V
LW -RetinaNet-v3 D-block-v3 V v

TABLE m
R e s o u r c e  u t i l i z a t i o n  o f  I n t e l  A r r i a  10 GX 1150 FPGA 

im p l e m e n t a t io n  .

Resource Type Utilization amount Percentage
Frequency 210 MHz -

Logic utilization 248K / 427K 58%
DSP utilization 1,184 / 1,518 78%

BRAM utilization 1,818 / 2,713 67%

Table 1 shows the comparison among different light-weight 
blocks that we propose in Section III.B.l. In this set of exper
iments, we only use the light-weight block in the regression 
branch (for the bounding box) of detection backend, which 
is the upper branch shown in Fig. 2 detection backend. The 
results of Table 1 show that the D-block-vl -  the one with 
the MobileNet building block has 0.8% lower mAP compared 
with the D-block-v3, which has the same FLOP reduction 
percentile. It also aligns with our analysis in Section ELB 
that although MobileNet is proven to a powerful light-weight 
classification network architecture, MobileNet building block 
is not guaranteed to be the best building block substitution for 
other computer vision tasks. Therefore, with the same scale 
of FLOP reduction, we choose D-block-v3 over D-block-vl 
in the following experiment. As the D-block-v2 performs less 
aggressive FLOP reduction, its mAP is only reduced by 0.1%, 
which is a good trade-off for a small scale FLOP reduction 
(15%).

The configurations for different versions of light-weight 
RetinaNet with D-block-v2 or D-block-v3 light-weight blocks 
are shown in Table 2. Specifically, Table 2 shows which light
weight block is applied to which branches of the backend 
in each version. The corresponding light-weight RetinaNet 
performance results are shown in Table 4. As scaling down 
input image size is the only method that proposed in existing 
work of FLOP-mAP trade-off for RetinaNet, we also cite 
the performance results of the original RetinaNet at different 
input scales from the original paper[12]. For better comparison 
between the proposed method and input image scaling method, 
we visualize the FLOPs and accuracy trade-off in Fig. 6. Each 
data point in Fig. 6 corresponds to one row of the results in
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Fig. 6. FLOPs and mAP trade-off for input image size scaling versus the 
proposed method.

v1

Table 4. We mark the trending curve of hght-weight RetinaNet 
in red dot curve and that of original RetinaNet in blue dot 
curve. The upper-left comer is the preferred comer in the 
FLOP-mAP plane. As the red curve is constantly closer to the 
preferred comer, it indicates that the proposed method has a 
better FLOP-mAP trade-off than the conventional input image 
scaling method. The difference between these two methods 
results in a 0.1% mAP gap at the same number of FLOPs with 
low reduction ratio of 15%. However, as we further reduce 
the number of FLOPs, the proposed method shows a trend 
of linear degradation, while the input image scaling method 
degrade in a more polynomial fashion. Fig. 6 clearly shows 
a divergence around 90 GFLOPs, where the input scaling 
method yields to 0.3% more accuracy drop than the proposed 
method.

We use the experimental setup in IV.A to evaluate the run
time performance on FPGA-based edge devices. The resource 
utilization of the FPGA kernel mapped on an Intel Arria 10 
GX 1150 FPGA board is shown in Table 3. The actual runtime 
shown in Table 4 is evaluated by accumulating the layerwise 
runtime. The reported power is the total board power that 
measured by actual testing on the FPGA board. Comparing 
the RetinaNet at the input scale of 600 to LW-RetinaNet-v3, 
LW-RetinaNet-v3 achieves an 0.3% mAP improvement over 
the original RetinaNet for the same runtime, and also is 1.8x 
more energy-efficient. One can observe that the actual runtime 
is approximately proportional to the FLOP count in Table 4, 
which also validates the feasibility of choosing FLOP count as 
the indicator to optimize the heavy FLOP layers for speedup.

As any detection methods with FPN structure can result in 
an imbalanced FLOP distribution, the proposed method can 
be potentially applied to any such kind of detection network 
for a better FLOP-mAP trade-off with more energy-efficient 
edge inference.

V. C o n c l u s i o n

In this paper, we present a light-weight RetinaNet model 
that has a constantly better FLOP-mAP trade-off curve (lin
ear degradation) than a naive input image scaling approach 
(polynomial degradation). The key is to substitute the heavi
est bottleneck layer of blockwise-FLOP-imbalance RetinaNet

5
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TABLE TV
Comparison of original RetinaNet and  proposed light-weight RetinaNet.

scale mAP AP50 AP75 APS APM APL GFLOPs ratio runtime(s)
power

efficiency
(uJ/pixel)

RetinaNet 800 35.7 55 38.5 18.9 38.9 46.3 156 0 1.7 74
RetinaNet 700 35.1 54.2 37.7 18 39.3 46.4 119 1.3x 1.3 74
RetinaNet 600 34.3 53.2 36.9 16.2 37.4 47.4 88 1.8x 0.9 70
LW-RetinaNet-v1 800 35.4 54.4 38.2 18.3 38.7 46 135 1.1x 1.5 66
LW-RetinaN et-v2 800 35.1 54.3 37.7 17.9 38.4 45.7 114 1.4x 1.2 53
LW-RetinaN et-v3 800 34.6 53.1 37.3 15.7 38.7 44.6 89 1.8x 0.9 39

with simplified building blocks, while keeping the rest of the 
network untouched. Experiment results show that, at a 1.8x 
FLOP reduction point, the light-weight RetinaNet achieves 
0.3% mAP improvement and 1.8x more energy-efficiency on 
an FPGA-based edge node. The proposed method can be 
potentially applied to any FPN-based detection network that 
has imbalanced blockwise FLOP distribution for an improved 
FLOP-mAP trade-off, with more energy-efficient inference at 
the edge.
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