
Light-Weight RetinaNet for Object Detection on
Edge Devices

Yixing Li
School of Computing, Informatics, and

Decision Systems Engineering
Arizona State University
Email: yixingli@asu.edu

Akshay Dua
School of Computing, Informatics, and

Decision Systems Engineering
Arizona State University
Email: adua5@asu.edu

Fengbo Ren
School of Computing, Informatics, and

Decision Systems Engineering
Arizona State University

Email: renfengbo@asu.edu

Abstract—This paper aims at reducing computation for Reti-
nanet, an mAP-30-tier network, to facilitate its practical deploy
ment on edge devices for providing IoT-based object detection
services. We first validate RetinaNet has the best FLOP-mAP
trade-off among all mAP-30-tier network. Then, we propose
a light-weight RetinaNet structure with effective computation-
accuracy trade-off by only reducing FLOPs in computationally
intensive layers. Compared with the most common way of
trading off computation with accuracy-input image scaling,
the proposed solution shows a consistently better FLOPs-mAP
trade-off curve. Light-weight RetinaNet achieves a 0.3% mAP
improvement at 1.8x FLOPs reduction point over the original
RetinaNet, and gains 1.8x more energy-efficiency on an Intel
Arria 10 FPGA accelerator in the context of edge computing. The
proposed method potentially can help a wide range of the object
detection applications to move closer to a preferred corner for a
better runtime and accuracy, while eqjoys more energy-efficient
inference at the edge.

I . I n t r o d u c t i o n

The Intemet-of-Things (IoT) boosts the vast amount of
streaming data. Due to the limited bandwidth and the latency
of cloud computing, it calls for the need of offloading the
computing to decentralized edge computing infrastructures [1],
On the other side, deep learning-based applications take the
advantage of heavy computing resources for training large
models to fit more and more complicated tasks. Even though
the model performs well in terms of accuracy, its complexity
may even make it impossible to be deployed on the edge
devices. In order to enable more IoT services on edge devices,
it is essential to study the effective computation and accuracy
trade-off of the deep learning-based models and tailor it for
IoT services on edge devices.

Object detection is the key module in face detection, track
ing objects, video surveillance, pedestrian detection, etc. [17],
[18]. With the recent development of deep learning, it boosts
the performance of object detection tasks. However, regarding
the computational complexity (in terms of FLOPs), a detection
network can possibly consume three orders of magnitude more
FLOPs than a classification network, which makes it much
more challenging to be deployed on an edge device.

With detection on edge devices, convenience stores with gas
stations can do real-time analysis of customers’ age and gender
for personalized on-screen recommendation [16]. Comparing
to detection in self-driving cars, a hard real-time scenario (30

fps), the in-store real-time recommendation system only needs
a soft real-time response (1-2 fps) and also has a certain
tolerance of the accuracy rate. To hit this target frame rate
with edge devices, the reasonable object detection solutions
fall in the upper mid range - mAP-30-tier.

In this paper, we use the mAP as the indicator to cate
gorize the existing object detection solutions. The mAP-20-
tier solutions are the most aggressive ones that target highly
energy- and resource-constrained devices, such as battery-
powered mobile devices. The existing solutions, such as
YOLOvl, YOLOv2, SSD, MobileNetv2-SSDLite [17], [18],
[14] have pushed hard to reduce the memory consumption
by trading off their accuracy performance. Their detection
accuracy on the large dataset (COCO test-dev 2017 [13])
yields to mAP of 22-25%. The mAP-40-tier solutions, such as
MaskRCNN and its variations, on the contrary, are targeting
the best mAP performance with less concern about compu
tation resources. The mAP-30-tier solutions do not sacrifice
the accuracy performance too much but are more aware of the
computational efficiency. In the mAP-30-tier, popular solutions
include Faster R-CNN, RetinaNet, YOLOv3 [20], [12], [19],
and their variants. These solutions can be potentially deployed
on edge GPUs (e.g., Nvidia T4 GPU) or FPGAs (e.g., Intel
Arria 10 FPGA based acceleration card), since the on-board
memory resources are generally enough for preloading the
weights of the mAP-30-tier networks. [10] verifies the linear
relation between FLOP count and inference runtime for the
same kind of network.

The overview of the FLOP-mAP profile of the existing
mAP-20-tier and mAP-30-tier detection networks are shown
in Fig. 1. The upper-left comer is the preferred comer in the
FLOP-mAP plane. We take the RetinaNet as the baseline since
it has the best FLOP-mAP trade-off in the mAP-30-tier. We
use the FLOP count as a key indicator for comparison. By
applying Faster R-CNN [20], RetinaNet [12] and YOLOv3
[19] on the same task for COCO detection dataset, which takes
an input image around 600 x 600-800x 800, the mAP will hit in
the range of 33%-36%. However, the FLOPs of Faster R-CNN
[20] is around 850 GFLOPs (gigaFLOPs), which is at least 5x
more than that of RetinaNet and YOLOv3 [19]. Apparently,
Faster R-CNN is not competitive in terms of computational
efficiency. From YOLOv2 [18] to YOLOv3 [19], it is inter-

978-1-7281-5503-6/20/$31.00 ©2020 IEEE
1

Authorized licensed use limited to: ASU Library. Downloaded on December 12,2020 at 05:32:52 UTC from IEEE Xplore. Restrictions apply.

esting that the authors have aggressively increased the number
of FLOPs from 30 to 140 GFLOPs to gain mAP improvement
from 21% to 33%. Even with that, the mAP of YOLOv3 is
2.5% lower than RetinaNet with 150 GFLOPs. Also, a low-end
version of MaskRCNN [7] with mAP of 37.8% cannot beat
RetinaNet in terms of runtime. These observations inspire us
to take the RetinaNet as the baseline to explore the feasibility
of creating a light-weight version of it.

There are two common methods to reduce the FLOPs in a
detection network. One way is to switch to another backbone,
while the other is to reduce the input image size. The first
method results in noticeable accuracy drop if one substitutes
a ResNet backbone [8] with a more shallow one. Typically it
is not considered as a good accuracy-FLOP trade-off scheme
with a small variation. With regard to reducing the input image
size, it is an intuitive way to reduce the FLOPs. However,
the accuracy-FLOP trade-off curve shows degradation in a
polynomial trend [10], There is an opportunity to find a more
linear degradation tendency curve for a better accuracy-FLOP
trade-off. We propose only to replace certain branches/layers
of the detection network with light-weight architecture and
keep the rest of the network unchanged. For the RetinaNet,
the heaviest branch is the succeeding layers of the finest FPN
(P3 in Fig. 2), which takes up to 48% of the total FLOPs. We
propose different light-weight architecture variants. Moreover,
the proposed method can also be applied to other blockwise-
FLOPs-imbalance detection networks.

The contribution of this paper is three-fold. First, we analyze
the accuracy-computation trade-off of RetinaNet and propose
a light-weight RetinaNet model structure by simplifying the
heaviest bottleneck layer. Second, we illustrate that the pro
posed light-weight RetinaNet has a constantly better FLOP-
mAP trade-off curve (linear degradation) than a naive input
image scaling approach (polynomial degradation). Third, we
quantitatively evaluate the runtime performance on an FPGA-
based edge node and show that the proposed method results
in 0.3% mAP improvement at 1.8x FLOP reduction with
no sacrifice in runtime, compared with input image scaling
method.

I I . R e l a t e d W o r k

The overview of the FLOP-mAP profile of the existing
mAP-20-tier and mAP-30-tier detection networks are shown
in Fig. 1. In the FLOP-mAP plane of Fig. 1, the upper-left
comer is the preferred comer, which has the best FLOP-mAP
tradeoff.

A. mAP-30-tier object detection networks
Faster RCNN [20] is an advanced architecture, which boosts

both the accuracy and runtime performance from R-CNN
and Fast R-CNN [4], [3]. As Faster RCNN [20] replaces
the selective search (used by Fast R-CNN) with RPN, it
significantly reduces the runtime of generating the region
proposals. However, in the inference stage of Faster R-CNN,
there are still around 256-1000 boxes feeding into the detection
network. It is really expensive to process this much data fed

in by the proposed boxes. As for the Faster RCNN to process
COCO dataset detection task with an Inception-ResNetV2 [21]
backbone, the total numbers of FLOPs can come up to over
800 GFLOPs.

Compared with Faster RCNN [20], the RetinaNet [12] tar
gets a simpler design for gaining speedup. A feature pyramid
network (FPN) [11] is attached to its backbone to generate
multi-scale pyramid features. Then, pyramid features go into
classification and regression branches, whose weights can be
shared across different levels of the FPN. The focal loss is
applied to compensate for the accuracy drop, which makes
its accuracy performance to be comparable with the Faster
RCNN.

B. mAP-20-tier object detection networks
The YOLO network family is among the most popular

ones in the mAP-20-tier. The most distinguishing feature of
YOLO is its predefined grid cell. The input image can be
cut into SxS grid cells, and each cell only predicts one
object. This idea apparently helps to reduce the computation
complexity. However, in the meantime, it increases the chances
of undetected objects and has relatively bad performance in
detecting small objects. The YOLOvl [17] is only evaluated on
relatively small datasets (PASCAL VOC), aiming at enabling
real-time inference. From YOLOv2 [18] to YOLOv3 [19],
the mAP performance results on COCO test-dev2015 dataset
is boosted from 21.6% to 33.0%. It’s worth noting that the
accuracy gain of YOLOv3 comes along with the FLOPs
increment from 63 GFLOPs to 141 GFLOPs. YOLOv3 [19]
should not be categorized as a light-weight one anymore, as
the FLOP count and mAP are closed to those of RetinaNet-
ResNet50-FPN (156 GFLOPs and mAP = 35.7%). We also
include other light-weight object detection networks such as
SSD and SSDLite [14] in Fig.l for providing an overview of
the FLOP-mAP profile of mAP-20-tier detection networks.

C. Others and discussions
For the most accurate detection networks, the mAP-40-

tier, the representative work is the MaskRCNN [7]. In the
benchmark study of model zoo [5], at the mAP = 37.8%,
MaskRCNN is less computation-efficient than RetinaNet.
Also, it mainly targets at high detection accuracy with less
constraint on computational complexity. While the mAP-20-
tier ones are extremely compact, aiming at highly energy-
and resource-constrained devices, such as the battery-powered
mobile devices. The mAP-30-tier ones are more suitable for
edge deployment, and the RetinaNet can win over any others in
FLOP-mAP tradeoff. These inspires us to take the RetinaNet
as the baseline design to explore a better scheme for accuracy
and FLOPs trade-off for the mAP30-tier detection on edge.

III. L i g h t - w e i g h t R e t i n a N e t

In this section, we first analyze the RetinaNet network
with a focus on the distribution of the number of floating
point operations (FLOPs) across different layers in Section
III.A. Then, we discuss the approach for creating light-weight
RetinaNet in Section in.B.

2
Authorized licensed use limited to: ASU Library. Downloaded on December 12,2020 at 05:32:52 UTC from IEEE Xplore. Restrictions apply.

38

36

34

32

30

1 28

26

24

22

SSD
20

RetinaN et-800
ietinaN et-700

R etinaN et-

O
600 q

YOLOv3-

u
608

RetinaN et-500

O O
R etinaN et-

O
4 0 0 ^ Y O L O v 3 416

YO LO v3-320

.''' *
SSD

\
SSD Lite-^ m A P 2 0 - t ie r
obileNetv2

YOLOv2- 416

_,ite -M obileN et
/

- .Faste rRCNN-
Ince ptionRe snetV2

50 100 150
GFLOPs

850

Fig. 1. An overview of the mAP-20-tier and mAP-30-tier detection networks.

0

1/32

1/16

1/8

1/4

ResNet-50- FPN Detection ---------- ►)
backend

D3-D7

Fig. 2. RetinaNet (ResNet50-FPN-800x800) network architecture.

A. RetinaNet Primer

The RetinaNet architecture is composed of three parts
a backbone, a feature pyramid network (FPN) [11], and a
detection backend, as shown in Fig. 2. The image is first
processed by the backbone, which usually is the ResNet Archi
tecture. Here, it is worthy of noting that although MobileNet’s
performance [9] is on a par with ResNet in classification
tasks, MobileNet may not be a good alternative to ResNet
for detection tasks. From both [10] and our observation, using
MobileNet [9] as the backbone for detection tasks will suffer
from much more accuracy drop than it does for classification
tasks. The main reason is that the confidence scores of a
MobileNet-based backbone are the trade-off for lower compu
tation costs. Therefore, a MobileNet-based backbone is hardly
a desirable choice for high precision object detection networks.
The backbone, together with the subsequent FPN forms an
encoder-decoder-like network. The benefit of the FPN is that
it merges the features of consecutive layers from the coarsest
to the finest level. After that, the multi-scale pyramid features
(P3-P7) feed into the backend where two detection branches

FPN
___I___

Detection backend

5.1 6.9 10.5

■
5.1 0.8 0.4

4.0 3.7

22.1

0.4 0.8

S N

* ^ $

t 8.

■

l

0.3 1

11.5
4 .5 4.5 1.1

2.1 3.9 3.9 3.9 3.9 3.9

42.9
■ memory/% ■ FLOPs/%

Fig. 3. The FLOPs and memory (parameter) distribution of RetinaNet
(ResNet50-FPN-800x800) across different blocks.

ResNet-50

1.0

are used for bounding box regression and object classification.
Note that the detection branch and bounding box branch do not
share weights. The weights of each branch are shared across
the pyramid features (P3-P7).

The FLOP distribution of RetinaNet architecture (ResNet50-
FPN-800x800, as shown in Fig. 2) across different blocks
is shown in Fig. 3., where each block corresponds to the
same block in Fig. 2. The detection backend D3-D7 is the
succeeding layer of P3-P7, respectively. As in the original
design, D3-D7 share the same weight parameters, the average
memory cost of D3-D7 is shown in Fig. 3. The FLOP count
of the D3 block dominates the total FLOP count at 48.1%.
This unbalanced FLOP distribution is quite different from
that of the ResNet architecture, which has a small FLOP
count variance across different blocks. The unbalanced FLOP
distribution presents an opportunity to get a meaningful overall
FLOP reduction at little cost of accuracy drop by only reducing
computational complexity of the heaviest layer. Specifically, if
we can reduce the FLOPs of D3 by half, the total FLOPs can
be reduced by 24%.

3
Authorized licensed use limited to: ASU Library. Downloaded on December 12,2020 at 05:32:52 UTC from IEEE Xplore. Restrictions apply.

_____ i____
3x3 conv, dw

T —
1x1 conv, 256T ~
3x3 conv, dw

T —
1x1 conv, 256

T ~
3x3 conv, dw

T ~
1x1 conv, 256P ~
3x3 conv, dw

T ~
1x1 conv, 256 — ^ —

D-block-v1

Fig. 4.

B. Tiny backend solution

1) Light-weight block: Intuitively, we can reduce the filter
size to get FLOP reduction. As shown in Fig. 4, we propose
different block designs for the detection branches of ResNet.
The D-block-vl applies the MobileNet [9] building block. A
3x3 depth-wise (dw) convolution is followed by a 1 x 1 convo
lutional block to substitute an original layer. The D-block-v2
alternately uses the l x l and 3x3 kernel. It is inspired by
YOLOvl [17], which has replaced the 3x3 kernels without
introducing residual blocks. The reduction of D-block-v3 is
more aggressive, which replaces all the 3x3 convolutions with
l x l convolutions. In general, if one substitutes a given block
with a more light-weight block, it will cause accuracy drop
of the network as a trade-off for less computation cost. In our
case, we also observe accuracy (mAP) drop if we replace the
original blocks with light-weight blocks in detection backend.
Therefore, we propose to add limited overheads to compensate
for the accuracy drop here with a partially shared weights
scheme.

2) Partially shared weights: As illustrated in Section
III.B.l, the light-weight detection blocks is to trade off lower
computational complexity with accuracy drop. To compensate
for the accuracy drop, we propose to replace the fully shared
weight scheme in the original RetinaNet with a partial shared
weight scheme. As shown in Fig. 2, P3-P7 are the multi
scale feature map outputs of FPN, which are then fed into
detection backend D3-D7, respectively. Although D3-D7 share
the weight parameters, D3-D7 have different input sizes (P3-
P7), respectively, and D3-D7 are processed in serial. Fig. 5(a)
is the original detection backend that D3-D7 fully share the
weights. In Fig. 5(b), only D4-D7 share the weights with the
original configuration, while D3 is processed by the light
weight D-block-vl/v2/v3 proposed in Section III.B.l.

The proposed partially shared weights scheme mainly has
two advantages. First, as D3 has its independent weight
parameters, it can learn more tailored features at its feature
map scale (D3-D7 have different sizes of feature maps), which
can compensate for the accuracy drop brought by reducing
computational complexity. Second, it allows us to focus on
reducing the computational complexity of the heaviest bottle
neck block without touching the rest of the network. By doing
so, D4-D7 are produced by exact the same architecture as
the D4-D7 in the original RetinaNet, which should guarantee

Indep en d en t w eigh t for D 3
(a) (b)

Fig. 5. Fully and partially shared weights for detection backend.

the same performance for D4-D7 outputs. Also, since the
backbone (ResNet-50) dominates the memory consumption (as
shown in Fig. 3), the overhead of memory consumption here
(less than 1%) can be negligible.

IV . R e s u l t s a n d d i s c u s s i o n

A. Experimental setup

To measure the accuracy performance, we perform our
experiments in Caffe2 with 4 Titan X GPUs. We build upon
the open-source code of RetinaNet in [5]. As the original work
is trained with 8 GPUs, we scale down the base learning rate
by 2x and extend the training epochs by 2x, as suggested
in [6]. Besides, since [15] proves the deep neural network is
less easy to overfit when its computational complexity is re
duced by network compression, we further extend the training
epochs (by the same ratio of FLOP reduction) for getting a
better accuracy rate. In all the experiments, we use the same
the network configuration as RetinaNet-ResNet50-FPN. The
source code is available online at https://github.com/PSCLab-
ASU/LW-RetinaNet/.

To evaluate the runtime performance on FPGA-based edge
devices, we mapped RetinaNet and light-weight RetinaNet on
an Intel Arria 10 GX 1150 FPGA acceleration card hosted
by an Linux edge server. Intel FPGA SDK for OpenCL
version 18.0 is used to compile the device code. The host
code is written in C/C++ and the device code in OpenCL
C language. SystolicArrayCNN - an open-source optimized
OpenCL kernel is used for CNN acceleration [2]1. Each layer
is run with an optimized OpenCL-based FPGA kernel for the
runtime and power evaluation.

B. Performance on COCO dataset
The COCO dataset [13] is considered as the most challeng

ing dataset for object detection. We only perform experiments
on COCO dataset (so does the original RetinaNet [12]). We
train the light-weight RetinaNet on the 2017 COCO training
dataset and test it on the COCO test-dev.

1https://github.com/PSCLab-ASU/SystolicArrayCNN

1x1 conv, 256

i '
3x3 conv, 256

♦ '
1x1 conv, 256V '
3x3 conv, 256

T

1x1 conv, 256

+ ~
1x1 conv, 256

+ ~
1x1 conv, 256V ~
1x1 conv, 256r

D-block-v2 D-block-v3

light-weight blocks for detection backend.

4
Authorized licensed use limited to: ASU Library. Downloaded on December 12,2020 at 05:32:52 UTC from IEEE Xplore. Restrictions apply.

35.8TABLE I
C o m p a r i s o n b e t w e e n d i f f e r e n t l ig h t - w e ig h t b l o c k .

Light-weight block scale mAP AmAP\% GFLOPs AFLOPs/%
original 800 35.7 0 156 0

D-block-vl 800 34.3 1.4 135 15.4
D-block-v2 800 35.6 0.1 135 6.4
D-block-v3 800 35.1 0.6 89 15.4

TABLE B
C o n f i g u r a t i o n s o f d i f f e r e n t l ig h t - w e i g h t (L W) R e t i n a N e t .

Light-weight block Detection backend
Classification Bouding box

LW-RetinaNet-v 1 D-block-v2 V
LW -RetinaNet-v2 D-block-v3 V
LW -RetinaNet-v3 D-block-v3 V v

TABLE m
R e s o u r c e u t i l i z a t i o n o f I n t e l A r r i a 10 GX 1150 FPGA

im p l e m e n t a t io n .

Resource Type Utilization amount Percentage
Frequency 210 MHz -

Logic utilization 248K / 427K 58%
DSP utilization 1,184 / 1,518 78%

BRAM utilization 1,818 / 2,713 67%

Table 1 shows the comparison among different light-weight
blocks that we propose in Section III.B.l. In this set of exper
iments, we only use the light-weight block in the regression
branch (for the bounding box) of detection backend, which
is the upper branch shown in Fig. 2 detection backend. The
results of Table 1 show that the D-block-vl - the one with
the MobileNet building block has 0.8% lower mAP compared
with the D-block-v3, which has the same FLOP reduction
percentile. It also aligns with our analysis in Section ELB
that although MobileNet is proven to a powerful light-weight
classification network architecture, MobileNet building block
is not guaranteed to be the best building block substitution for
other computer vision tasks. Therefore, with the same scale
of FLOP reduction, we choose D-block-v3 over D-block-vl
in the following experiment. As the D-block-v2 performs less
aggressive FLOP reduction, its mAP is only reduced by 0.1%,
which is a good trade-off for a small scale FLOP reduction
(15%).

The configurations for different versions of light-weight
RetinaNet with D-block-v2 or D-block-v3 light-weight blocks
are shown in Table 2. Specifically, Table 2 shows which light
weight block is applied to which branches of the backend
in each version. The corresponding light-weight RetinaNet
performance results are shown in Table 4. As scaling down
input image size is the only method that proposed in existing
work of FLOP-mAP trade-off for RetinaNet, we also cite
the performance results of the original RetinaNet at different
input scales from the original paper[12]. For better comparison
between the proposed method and input image scaling method,
we visualize the FLOPs and accuracy trade-off in Fig. 6. Each
data point in Fig. 6 corresponds to one row of the results in

35.6

35.4

35.2

35

34.8

34.6

34.4

34.2

34

LW-

LW-Re tinaNe t-
v2

. . k : £
LW-RetinaNet-

v3

Hf ' -■
+0.3%

m ____ 1 mAP

Re tinaNe t -600

A4 ... o
^ RetinaNet-800

. +0.1%
—mAP

Re tinaNet-700

80 90 100 110 120 130

GFLOPs
140 150 160

Fig. 6. FLOPs and mAP trade-off for input image size scaling versus the
proposed method.

v1

Table 4. We mark the trending curve of hght-weight RetinaNet
in red dot curve and that of original RetinaNet in blue dot
curve. The upper-left comer is the preferred comer in the
FLOP-mAP plane. As the red curve is constantly closer to the
preferred comer, it indicates that the proposed method has a
better FLOP-mAP trade-off than the conventional input image
scaling method. The difference between these two methods
results in a 0.1% mAP gap at the same number of FLOPs with
low reduction ratio of 15%. However, as we further reduce
the number of FLOPs, the proposed method shows a trend
of linear degradation, while the input image scaling method
degrade in a more polynomial fashion. Fig. 6 clearly shows
a divergence around 90 GFLOPs, where the input scaling
method yields to 0.3% more accuracy drop than the proposed
method.

We use the experimental setup in IV.A to evaluate the run
time performance on FPGA-based edge devices. The resource
utilization of the FPGA kernel mapped on an Intel Arria 10
GX 1150 FPGA board is shown in Table 3. The actual runtime
shown in Table 4 is evaluated by accumulating the layerwise
runtime. The reported power is the total board power that
measured by actual testing on the FPGA board. Comparing
the RetinaNet at the input scale of 600 to LW-RetinaNet-v3,
LW-RetinaNet-v3 achieves an 0.3% mAP improvement over
the original RetinaNet for the same runtime, and also is 1.8x
more energy-efficient. One can observe that the actual runtime
is approximately proportional to the FLOP count in Table 4,
which also validates the feasibility of choosing FLOP count as
the indicator to optimize the heavy FLOP layers for speedup.

As any detection methods with FPN structure can result in
an imbalanced FLOP distribution, the proposed method can
be potentially applied to any such kind of detection network
for a better FLOP-mAP trade-off with more energy-efficient
edge inference.

V. C o n c l u s i o n

In this paper, we present a light-weight RetinaNet model
that has a constantly better FLOP-mAP trade-off curve (lin
ear degradation) than a naive input image scaling approach
(polynomial degradation). The key is to substitute the heavi
est bottleneck layer of blockwise-FLOP-imbalance RetinaNet

5
Authorized licensed use limited to: ASU Library. Downloaded on December 12,2020 at 05:32:52 UTC from IEEE Xplore. Restrictions apply.

TABLE TV
Comparison of original RetinaNet and proposed light-weight RetinaNet.

scale mAP AP50 AP75 APS APM APL GFLOPs ratio runtime(s)
power

efficiency
(uJ/pixel)

RetinaNet 800 35.7 55 38.5 18.9 38.9 46.3 156 0 1.7 74
RetinaNet 700 35.1 54.2 37.7 18 39.3 46.4 119 1.3x 1.3 74
RetinaNet 600 34.3 53.2 36.9 16.2 37.4 47.4 88 1.8x 0.9 70
LW-RetinaNet-v1 800 35.4 54.4 38.2 18.3 38.7 46 135 1.1x 1.5 66
LW-RetinaN et-v2 800 35.1 54.3 37.7 17.9 38.4 45.7 114 1.4x 1.2 53
LW-RetinaN et-v3 800 34.6 53.1 37.3 15.7 38.7 44.6 89 1.8x 0.9 39

with simplified building blocks, while keeping the rest of the
network untouched. Experiment results show that, at a 1.8x
FLOP reduction point, the light-weight RetinaNet achieves
0.3% mAP improvement and 1.8x more energy-efficiency on
an FPGA-based edge node. The proposed method can be
potentially applied to any FPN-based detection network that
has imbalanced blockwise FLOP distribution for an improved
FLOP-mAP trade-off, with more energy-efficient inference at
the edge.

A c k n o w l e d g m e n t

This work is supported by an NSF grant (IIS/CPS-1652038)
and an unrestricted gift from Radius AI, Inc. The computing
infrastructure used in this work is supported by an NFS grant
(CNS-1629888). The Arria 10 GX FPGA Development Kits
used for this research was donated by Intel FPGA University
Program. We thank Dr. Aykut Dengi and Bobby Chowdary
from Radius AI, Inc. for fruitful research discussions.

R e f e r e n c e s

[1] S. Biookaghazadeh, M. Zhao, and F. Ren. Are fpga suitable for edge
computing? In USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 18), 2018.

[2] A. Dua. Hardware acceleration of video analytics using opencl.
[3] R. Girshick. Fast r-cnn. In Proceedings o f the IEEE international

conference on computer vision, pages 1440-1448, 2015.
[4] R. Girshick, I. Donahue, T. Darrell, et al. Region-based convolutional

networks for accurate object detection and segmentation. IEEE trans
actions on pattern analysis and machine intelligence, 38(1):142—158,
2016.

[5] R. Girshick, I. Radosavovic, G. Gkioxari, et al. Detectron.
https://github.com/facebookresearch/detectron, 2018.

[6] R Goyal, P. Dollar, R. Girshick, et al. Accurate, large minibatch sgd:
Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[7] K. He, G. Gkioxari, P. Dollar, et al. Mask r-cnn. In Proceedings o f the
IEEE international conference on computer vision, pages 2961-2969,
2017.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings o f the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

[9] A. G Howard, M. Zhu, B. Chen, et al. Mobilenets: Efficient convolu
tional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[10] J. Huang, V. Rathod, C. Sun, et al. Speed/accuracy trade-offs for modem
convolutional object detectors. In Proceedings o f the IEEE conference
on computer vision and pattern recognition, pages 7310-7311, 2017.

[11] T. Lin, P. Dollar, R. Girshick, et al. Feature pyramid networks for object
detection. In Proceedings o f the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2117-2125, 2017.

[12] T. Lin, P. Goyal, R. Girshick, et al. Focal loss for dense object detection.
In Proceedings o f the IEEE international conference on computer vision,
pages 2980-2988, 2017.

[13] T.-Y. Lin, M. Maire, S. Belongie, et al. Microsoft coco: Common objects
in context. In European conference on computer vision, pages 740-755.
Springer, 2014.

[14] W. Liu, D. Anguelov, D. Erhan, et al. Ssd: Single shot multibox detector.
In European conference on computer vision, pages 21-37. Springer,
2016.

[15] Z. Liu, M. Sun, Y. Zhou, et al. Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270, 2018.

[16] Radius AI. Changing the landscape of the c-store market, 2019.
[17] J. Redmon, S. Diwala, R. Girshick, et al. You only look once: Unified,

real-time object detection. In Proceedings o f the IEEE conference on
computer vision and pattern recognition, pages 779-788, 2016.

[18] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In
Proceedings o f the IEEE conference on computer vision and pattern
recognition, pages 7263-7271, 2017.

[19] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[20] S. Ren, K. He, R. Girshick, et al. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 91-99, 2015.

[21] C. Szegedy, V. Vanhoucke, S. Ioffe, et al. Rethinking the inception
architecture for computer vision. In Proceedings o f the IEEE conference
on computer vision and pattern recognition, pages 2818-2826, 2016.

6
Authorized licensed use limited to: ASU Library. Downloaded on December 12,2020 at 05:32:52 UTC from IEEE Xplore. Restrictions apply.

