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Abstract— Task-invariant control methods for powered
exoskeletons provide flexibility in assisting humans across
multiple activities and environments. Energy shaping con-
trol serves this purpose by altering the human body’s dy-
namic characteristics in closed loop. Our previous work on
potential energy shaping alters the gravitational vector to
reduce the user’s perceived gravity, but this method cannot
provide velocity-dependent assistance. The interconnec-
tion and damping assignment passivity-based control (IDA-
PBC) method provides more freedom to shape a dynamical
system’s energy through the interconnection structure of a
port-controlled Hamiltonian system model. This paper de-
rives a novel energetic control strategy based on IDA-PBC
for a backdrivable knee-ankle exoskeleton. The control law
provides torques that depend on various basis functions
related to gravitational and gyroscopic terms. We optimize
a set of constant weighting parameters for these basis
functions to obtain a control law that produces able-bodied
joint torques during walking on multiple ground slopes. We
perform experiments with an able-bodied human subject
wearing a knee-ankle exoskeleton to demonstrate reduced
activation in certain lower-limb muscles.

Index Terms— Biomedical, Optimization, Robotics

[. INTRODUCTION

COMMERCIALIZED exoskeletons such as HAL, Re-
Walk, Ekso Bionics, and Wandercraft use trajectory-
based, kinematic control methods for specific tasks [1], [2].
This type of control is appropriate for paraplegia, where
the exoskeleton provides complete assistance. However, it
overly constrains the volitional motion of people with remnant
voluntary ability, e.g., stroke patients. In contrast, trajectory-
free control methods are now being developed to provide task-
invariant assistance for practicing/relearning leg motions or
performing a continuum of activities in varying environments.
The energy shaping method provides task-invariant control
by altering the human body’s dynamic characteristics in the
closed-loop system. Lv and Gregg [3] proposed the potential
energy shaping for the underactuated human-exoskeleton sys-
tem based on the controlled Lagrangians method [4]. They
proved the system’s passivity and stability properties for the
fully-actuated contact condition, but these proofs could not be
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extended to underactuated phases because of the lack of a well-
defined potential energy in closed loop. Two different forms of
potential energy shaping were experimentally implemented on
a powered knee-ankle exoskeleton in [5], [6]. By also shaping
the mass/inertia matrix in the closed-loop system, total energy
shaping can achieve greater assistance than potential energy
shaping alone in simulation [7]. However, the corresponding
controller requires complicated calculations of the inverse
of the mass/inertia matrix, which has practical challenges
for real-time implementation. In [8], we combined a well-
defined, closed-loop modified potential energy (MPE) with
virtual spring and damping energy as an indirect form of
total energy shaping (i.e., kinetic terms corresponding to the
velocity-dependent damping energy), which achieved passiv-
ity and stability during all contact conditions. However, the
passivity condition [9], where the physical damping in the
mechanism must be sufficient to dissipate the excess energy
due to the sampling in discrete-time control implementations
in embedded systems, limited the overall shaping of the kinetic
terms. This method failed to achieve significant results over
potential energy shaping.

Interconnection and damping assignment passivity-based
control (IDA-PBC) provides extra freedom to shape the inter-
nal interconnection structure of a port-controlled Hamiltonian
system model [10], [11], which allows the shaping of inertial
terms, gravitational terms, and gyroscopic terms (including
centrifugal and Coriolis forces). This method has been used
to generate robust gaits for an underactuated compass-like
biped robot [12]. The present paper applies this method
to resolve current challenges for task-invariant exoskeleton
control, including the inertia matrix inverse, proofs of passivity
and stability, and invariant contact conditions.

This paper presents a novel energetic control strategy based
on the IDA-PBC method for a backdrivable knee-ankle ex-
oskeleton designed in [5]. The contributions are summarized as
follows. First, the new control law provides torques based on a
linear combination of designed basis functions corresponding
to gravitational force vectors and gyroscopic forces. The
designed basis functions enable velocity-dependent assistance,
e.g., during early and late stance, which was not possible in
prior implementations of potential energy shaping. Second,
we formulate an optimization problem to design the basis
functions’ weighting parameters to fit normative biological
joint torques [13] for walking on multiple ground slopes.
The resulting torque control law produces a fraction of the
normative joint torque profile to offload musculature as in [14],
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Fig. 1. Left: Comex knee-ankle exoskeleton worn by a healthy user
(reproduced from [6]). Right: Kinematic model of the human body
(reproduced from [8]). COP denotes Center of Pressure. The solid links
denote the stance leg, and the dashed links denote the swing leg. Red
arcs indicate torques.

[15], but for multiple tasks. Third, we assess muscular effort
of one able-bodied human subject with the first experimental
implementation of fotal energy shaping on an exoskeleton.

[I. MODELING AND CONTROL METHODS

In this section, we briefly review the Hamiltonian dynamics
of the proposed human-exoskeleton system and the IDA-PBC
method. In particular, we introduce sufficient and necessary
conditions for the existence of a feedback control law that
renders an open-loop system equivalent to another closed-loop
system (a process known as matching).

A. Human-Exoskeleton Dynamics

The human-exoskeleton biped model is shown in Fig. 1. The
Cartesian coordinates of the heel, (py,py), are defined with
respect to the inertial reference frame (IRF), which depends
on the contact phase. The heel angle ¢ is defined with respect
to the vertical axis, and 6, and 6; are the stance ankle and
knee angles, respectively. The angle between the stance thigh
and the swing thigh is denoted by 0, and Oy and O, are the
swing knee and ankle angles, respectively. The masses of the
human and exoskeleton are combined together.

For control purposes, the dynamics of the stance and
swing legs are modeled separately with coupled interaction
forces F = [fy, fy, )T . The 5-DOF stance leg model has the
generalized coordinates g = [px, py, ¢, 04, 6¢]7. The conjugate
momenta p = M(q)g are defined by the positive-definite
inertia matrix M(q) € R and the velocity vector §. The
dynamics can be characterized by the Hamiltonian H(q, p) =
$p"M(q)~'p+V(q), where V(q) is the potential energy, and
expressed in the port-controlled Hamiltonian form as

q Osxs  Isxs 0sx1
[ﬁ] |:IS><5 05x5:| * [T+AT/J M
where the gradient VH = [(d,H)", (d,H)"]", and the vector of

joint torques 7 € R sums up the exoskeleton input Texo = Gu
and the human input T,m = Gv+J7 F. The control inputs u €
R? and v € R? represent the exoskeleton and human torques
at the knee and ankle joints, respectively. They are mapped
into the overall dynamics via matrix G € R>*2. The system
is underactuated with the number of generalized coordinates
larger than the number of control inputs. The interaction forces
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Fig. 2. Heel contact (left), flat foot (center), and toe contact (right) during
the single-support period of human locomotion. The biped is assumed
to be walking on a slope with angle y. This figure is updated from [5].
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F are mapped into the system’s dynamics by the Jacobian
matrix J. The Lagrange multiplier A represents the ground
reaction forces (GRFs) and is mapped into the system through
the constraint matrix A. From now on we omit ¢ and p terms
in matrices to simplify notation.

Following [5] we incorporate holonomic contact constraints
in the human-exoskeleton dynamics. The constraint functions
can be expressed as a;(q) = O.x1, where ¢ is the number
of constraints and the subscript ¢ € {heel, flat,toe} indicates
the contact configuration as shown in Fig. 2. The constraint
matrix A = V,a; € R = [A; 0.x,] satisfies Ag=Ad,H =0
given the top row of (1). For the heel contact phase the
holonomic contact constraint is @peer(q) = [px, py]T =0 and
the matrix Apee; = [lax2,02x1]- At the flat foot phase, the
constraint is a i (q) = [px, Py, ¢ — 7]T =0 and the matrix
Afiir = I3x3. For the toe contact phase, the constraint is
Aroe(q) = [px—1y(cosy—cos @), py—Is(siny—sin¢)]” =0 and
—lysin(¢)

1 0
0 1 Icos(9)
angle and [y is the length of the foot. More details for the

contact constraints are given in [3], [5].

For the swing leg model, the configuration vector is given
by gsw = [hx,ty, Oin, Ok, O5a) T, Where (hy,hy) are the positions
of the hip with respect to the IRF. The angle between the
vertical axis and the swing thigh is denoted as 6,;,. The swing
leg dynamics do not have contact constraints.

the matrix A, (gq) = , where 7 is the slope

B. Incorporating Contact Constraints into Dynamics

We cannot directly apply the IDA-PBC method to dynamics
(1) due to the varying contact conditions during stance. Our
previous approaches [7], [8] treated the GRFs as the external
forces and made assumptions on contact matrices to cancel
out the effect of the GRFs in the control law. In this paper,
we explicitly express the GRFs in the dynamics and obtain a
contact-invariant control law.

We first differentiate Ad,H =0 along ¢ and p and plug in
¢ and p from (1) to obtain

i(Aa H) = ,(Ad,H)" ¢+ 9,(Ad,H)" p

= 0,(A0,H)" 9pH —AdLH(9,H —T—ATA) =0
so that A can be solved as

A =(AdLHAT) [~ 0,(Ad,H)" 9pH +Ad% H(0,H — 7)].



Plugging A into (1) and setting W = (Aé?;zHAT)’1 € Rexe,

gl 0 1 VH
p] — |TITATWARLH  —ATW,(Ad,H)"

0
T {(IATWAa,sz)(GHGvHTF)] :

We can augment the above system in the port-controlled
Hamiltonian form [11], where

Lq;} =SVH+ {G;L(u+8)+J{F] '

The skew-symmetric matrix # = — #7 is defined as

[0 x]
S = {_X/l Y),
Y, = —-ATWa,(Ad,H)" + d,(Ad,H)WA,

} X, = I—ATWA8§2H,

where we apply Ad,H =0 to obtain the upper-right block
of the matrix _#. The matrix _# reveals the internal inter-
connection structure of the open-loop dynamics, and matrices
G) =X, G and J{ =X, JT are defined respectively.

C. Matching Condition with Constrained Dynamics

Assume we have closed the feedback loop for exoskeleton
input u, while the human inputs v and F remain open-loop
in the Hamiltonian system. We consider a desired, closed-
loop Hamiltonian H(p,q) = 3p"M~'p+V, where V = V+A\7
represents the new potential energy with shaping term V.
The corresponding gravitational vector is N =V, V =V, V +
VqV =N+N. We set M =M to simplify the matching
process and avoid complicated calculations of the inverse of
the mass/inertia matrix in the control law. However, we will
still achieve velocity-dependent shaping through the intercon-
nection structure of the closed-loop Hamiltonian system. The
desired closed-loop dynamics based on H are

q 0 I|lgp 0
= VH 5 2
[p] [—1 JJ + {Gv +JTF —&—AT/J @
where the skew-symmetric matrix J, represents the extra DOF
provided by the IDA-PBC method, and

A =(A9%HAT) ' {~0,(Ad,H)" 9,H
+Ad,H[0,H — J,,H — Gv—J"FI}.

Plugging A into (2), we have

gl son 0
[p} =/ VH + |:GZV+J{F:| ’
s . 0o Xx7
where//T[X Y)L
N !
trix describing the internal interconnection structure of the
closed-loop system with X; = X), and ¥; = —Y{ =J, -
ATW[9,(Ad,H)T + A3§2HJZ] + T 8;2HAT + 9y (Ad,H)|WA.
Matrices G; and Jj; are equivalent to G and Jj.
Based on standard results in [16], Hamiltonian systems (1)
and (2) match if we have

Gyu=—X,(0,H—94H) + (Y; —Y3)0,H,
=X (—0yH + dyH + J20,H),

] is a skew-symmetric ma-

which yields the corresponding matching condition as
0= Gy Xy (—0,H + 9,H + J29,H), 3)

where Gi‘ € R33 is the (full-rank) left annihilator of Gy, i.e.,
G5 G, =0.

To solve the matching condition (3), we express X; explic-
itly by decomposing M into four sub-matrices as

My M
M{M; MJ’

where M; € R33 and M, € R?2*2. Then we obtain

vl — { A7l —A"' MM ! ]
- —LagT A—1 -1 —1agT A—1 —1]|>
M MIATY M M MY AT MM,

where A = M; — MoM,'MJ. As a result, we have W =
(AA~'AT)~! and X, can be expressed as

x, — |Bx3—7% ZmM;!
* 0 by ]’

where Z; :AfWAgA_l. Plugging X, into G,, we have G =
[MZIMZT Z{ Dx2]" and the corresponding left annihilator G}L
equals [l3x3 —Z; MoM,']. Plugging in G and X, we have
the following solution of the matching condition (3) as

0= []3><3 — 27 03><2] [—&,ﬁ—s—&qH—HgapHL
=[Bx3—2Zy 03x2] [-N+N+LHM 'p]. 4)

By zeroing the unactuated parts (first three elements) of —N 4
N+J,M~'p, the matching condition (3) is satisfied.

The above solution is equivalent to the results in [8], where
we treated the GRFs as external forces and assumed there
exists a mapping of the GRFs between the open-loop and
closed-loop systems. Here, we incorporate the GRFs into the
system’s dynamics to enable proofs of passivity and stability
without making assumptions on the GRFs.

D. Shaping Strategies and Control Law

As mentioned in [8], a proper potential energy V exists in
the closed-loop system when the gravitational forces vector N
is well-defined with a symmetric Jacobian matrix, i.e., 32’{ =
J

%1;]” for any i, j € {1,---,5}. This closed-loop potential energy

can then be retrieved by the variable gradient method [17],
even during the underactuated phases.

The interconnection structure J, provides extra freedom to
introduce artificial gyroscopic terms QT8,,H, where Q is a
smooth vector-valued function, and J, = (9,0)" — 9,0. The
artificial gyroscopic terms QT8PH are linear in the p-variables
(the momenta). As mentioned in [10], Q(g) must depend only
on the coordinates ¢ for the closed-loop system (2) to be
integrable, i.e., there exists an equivalent Lagrangian L(q,§) =
$6"Mg+ 4" Q(q) —V to ensure passivity. Given the solution
(4), the shapeable structure of the closed-loop Hamiltonian
system is characterized below.

Proposition 2.1: The closed-loop system (2) is integrable
with a well-defined potential energy if the unactuated parts
of N and Q are zero, and the actuated parts depend
only on the actuated state variables. For the stance leg




model, this means N = [0,0,0,N,4(6,,6;),N5(84,6;)]" and Q =
[0,0,0,04(64,6k),05(64,61)]" .

The proof follows by checking the skew-symmetry property
of the J, matrix and the symmetry of the Jacobian matrix d,N
in the solution (4).

The control law with the feasible shaping structure is

u=G"(dH—d,H+ LM ' p), (5)

with Gt = (GTG)"'G" being the left pseudoinverse of G.
This IDA-PBC method is more general than the controller
in [8] by including artificial gyroscopic terms that achieve
velocity-dependent shaping without affecting the system’s
kinetic energy due to the skew-symmetry of J;.

We can form multiple basis functions for the shaping
terms in (5) as long as Proposition 2.1 is satisfied, which
converts our controller design into an optimization process to
fit the normative joint moment data in [13]. Importantly, the
basis functions have physical meanings that correspond to the
gravitational vector and the gyroscopic forces that act within
the system, resulting in an integrable Hamiltonian system.
These basis functions aim to change the effect of these forces
and capture the essential characteristics of walking.

We design N = —a& — - — o4& and LM 'p =
0 1&ip1 + -+ 0,€, as linear combinations of the basis
functions {£1,&,...,&,}, where & € R>*! and w is the total
number of basis functions. We express the torque control input
u=G " (—N+hM'p) =G (oué + m& + -+ &) =
®(g, p) . We then optimize the constant coefficients ¢ so the
outputs of control law u best fit normative human joint torques
y when inputting normative human kinematic trajectories [13].

The optimization problem is defined as

argmin YilU(qj,pj, ) =Y, )"W;[U (g}, pj, ) Y]]
+U(0,0,0)"W,U (0,0, cx)

where the objective function corresponds to the least square
error of the exoskeleton control inputs U € R™*! and the
normative human joint torques Y; € R™<! with the weighting
matrix W; and the number of time samples m. The subscript j
represents the number of different walking tasks, including
level-ground walking and ramp walking. The state vectors
qj,Pj € R™<! comprise samples over time for the given task
j. We also include W, for regulation with zero states ¢ =0
and p =0, where minimal torques should be provided.

A closed-form solution of the optimal coefficients & can be
easily obtained as a* = (®TWD)~'dTWY. As a result, the
corresponding control law equals u = ®(g, p)a*, which will
be scaled down to a desired fraction of normative torque.

E. Passivity and Stability

We now explore the input-output passivity and stability
results of the exoskeleton-human system.
Proposition 2.2: The closed-loop system (2) is passive from
the human input Ty, to the output 8,,H .
Proof: We can choose the total energy E(q,p) = H as a
storage function [17]. The time derivative of E(q,p) is

£ = VAT (1] < () B+ ) AT = 91

where we use the skew-symmetry property of the intercon-
nection structure and (d,H)TATA =0 due to the fact that
constraint forces do no work [18]. |

Input-output passivity implies that the energy growth of
the coupled human-exoskeleton system is controlled by the
human. This provides safe interaction with the exoskeleton,
but stability depends on the human control law. We examine
stability of the closed-loop system around an equilibrium point
in a similar way to [8]. The equilibrium point (g*,0) is the state
where the forces along the shaped potential energy balance the
muscular forces and the ground reaction forces, i.e., X3 N —
X3 Thum = 0. We make the common assumption that the human
is modulating joint impedance where Thym = —K,e — K;é [5].
The constant diagonal matrices K,, K; are positive semi-
definite, and e = g — g represents the difference between g
and the human’s set-point vector g (which is not necessarily
the same as the equilibrium ¢* in impedance control). We can
now state Proposition 2.3.

Proposition 2.3: Consider the closed-loop system (2), the
equilibrium point (¢*,0) is stable in the sense of Lyapunov
given human input Ty, = —Kpe — Kyé.

Proof: We can set the Lyapunov function to be

-1 q .
¥ (q,p) =H+ EeTKPe—i— A(s)TA(5,0)-ds—V°,  (6)
J4q0
where o is the state at 1 =0 and V° is a constant such
that ¥ is positive definite and vanishes at the equilibrium
point (¢*,0). The Lyapunov function ¥ achieves its minimal
point when 9,7 =¢=p=0 and 9,7 =N+ Kpe+ATA =
X3 N — X; Thum = 0, i.e., at the equilibrium point (¢*,0). The
incorporation of quoA(s)TZ(s,O) -ds guarantees the appear-
ance of the GRFs to balance the unactuated parts of N at
the equilibrium state when 9,7 (¢,0) = 0. As a result, the
Lyapunov function 7 is positive definite and vanishes only at
the equilibrium point (¢*,0).
The time-derivative of Lyapunov function (6) is

¥V =VH" [Z] +4¢"Kpe+4"AA(q,0) = —¢"Kag <0,
which shows that the shaped system is Lyapunov stable. H
Although asymptotic stability has not been guaranteed,
Lyapunov stability ensures the response will remain in a
neighborhood of the equilibrium under human impedance
control. This result satisfies our control objective of partial
torque assistance while the human controls their kinematics.

[1l. RESULTS

We now show optimization results to demonstrate the
proposed controller’s ability to recreate normative torques
for three different ground slopes. We also experimentally
implement the controller on a knee-ankle exoskeleton used
by a healthy human subject as a proof-of-concept.

A. Design Optimization

The internal gyroscopic force term of the system includes
centrifugal and Coriolis forces. Together with the gravitational
vector N, these forces are expressed as trigonometric functions
of state variables. As a result, we choose the basis functions in
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Fig. 3. Exoskeleton control torques and normative human torques
(mean and variance) based on human treadmill walking data at incline
(10°), level ground (0°), and decline (—10°) at Im/s. Positive values
represent ankle dorsiflexion and knee extension.

J> and N of the control law (5) to be trigonometric functions
that depend on the actuated state variables (6,,6;), accord-
ing to Proposition 2.1. We propose two shaping strategies:
1) modified potential energy (MPE) has basis functions for
potential energy shaping only, and 2) modified Hamiltonian
(HAM) has basis functions for artificial gyroscopic terms in
addition to potential energy. The MPE method has six basis
functions, and the HAM method has twelve basis functions
(six more basis functions related to joint velocities). We fit
the control law outputs to the across-subject averaged human
joint moments over level-ground and slopes +10° at a fixed
walking speed (1m/s) [13]. The process provides the optimal
parameters o. Fig. 3 shows the results with the derived control
laws. The HAM method prevents the dorsiflexion spike at late
stance exhibited by MPE during level and inclined walking.
The HAM method also has a wider range for the knee torques
due to the artificial gyroscopic terms, although they sometimes
exceed normative trends (e.g., during late stance).

B. Proof-of-Concept Test with a Healthy Human Subject

1) Implementation: The controller was implemented on a
4.5 kg partial-assist knee-ankle exoskeleton (Comex [5], [19],
Fig. 1) to demonstrate proof-of-concept for providing ap-
propriate assistance over multiple walking conditions. The
actuators are backdrivable due to a low 24:1 gear ratio, and
produce 30 Nm continuous torque (60 Nm peak) using a
200 W frameless BLDC motor. Knee and ankle joint angles are
provided by high-precision relative encoders. The commanded
assistance torques are determined by multiplying the optimized
control law (in Nm/kg) with the subject’s body weight and a
percent level-of-assistance.

2) Methods: As a proof-of-concept, we enrolled a sin-
gle human subject (male, mass: 78 kg, height: 1.78 m) to
demonstrate the controller’s ability to assist musculature for
multiple inclines and speeds. We consider different speeds to
1) check the controller’s ability to handle extra conditions out
of the design in Section III-A, and 2) investigate the effect
of the velocity-dependent artificial gyroscopic terms of HAM
method compared to the position-based MPE method. The
study was approved by the Institutional Review Board at the

University of Michigan (HUMO00164931). We assessed muscle
activation via electromyography (EMG) of vastus medialis
oblique (VMO), biceps femoris (BF), tibialis anterior (TA),
and soleus (SOL), which respectively function as a knee
extensor, knee flexor, dorsiflexor, and plantarflexor.

The experiment consisted of four treadmill walking tasks:
level walking at 0.6 m/s (cadence of 70 steps/min) and 1 m/s
(cadence of 83 steps/min), and incline/decline walking on a
+5° slope at 0.6 m/s (cadence of 70 steps/min). The tasks
were repeated for four exoskeleton modes: bare (no exoskele-
ton), passive (unpowered exoskeleton), active exoskeleton with
MPE, and active exoskeleton with HAM. The speed (comfort-
able: 0.6 m/s, and fast: 1 m/s) and cadence were self-selected
by the subject during practice trials and were encouraged with
a metronome during the experimental trials. While a total of
30 gait cycles were collected for each task and mode, only
the last 10 with relatively consistent kinematics were used for
final analysis. Use of the treadmill handrails was disallowed
during the experimental trials. The level-of-assistance for the
active modes was set to 15%, based on the subject’s comfort
level during the practice trials.

The trials were cropped into gait cycles by using a threshold
on the instrumented treadmill’s vertical force. For each task,
each muscle’s EMG was rectified and smoothed using a second
order low-pass Butterworth filter (cutoff 6 Hz), and then
normalized with respect to the maximum peak of the ensemble
averages (across repetitions) of the four modes as % MVC
[20]. After temporally normalizing the EMG (as % stride), the
mean amplitude was calculated to represent muscular effort,
similar to [6].

3) Results: Table 1 presents muscular effort comparisons
between the four modes for the four tasks. In general, the
dominant muscles in the stance phase (VMO and SOL) had
reduced effort for the active modes, compared to bare and
especially passive. For VMO, this trend was the strongest
for the decline task and held for the HAM mode’s incline
task. It should be noted that the VMO is significantly more
active during the decline and incline tasks, compared to level
walking [21], for which effort in active modes was reduced
only compared to passive. Comex assistance reduced the SOL
effort in the incline task, where it is considerably more active
than level, and in decline where it is mostly passive [21].
Fig. 4 shows the ensemble-averaged VMO and SOL EMGs
for bare and active modes, with the Comex assistance torques
overlaid. Comex assistance torques were consistent with the
optimized results in Fig. 3 and generally in harmony with the
corresponding muscle activations for all tasks. One exception
was during late stance-early swing, where the knee torque had
an excessive peak. The general alignment explains the VMO
and SOL effort reductions.

The active modes did not reduce muscle activation for TA
and BF, which are mainly involved in the swing phase for
leg clearance. Upon analysis of Fig. 4, we see that assistive
dorsiflexion torques in the swing phase (> 60% stride) were
lower than the estimated backdrive torque (3 Nm, see [5, Fig.
16]), suggesting the subject experienced more resistance than
assistance. Analysis of BF activity (not shown, similar trend
to Fig. 4 in [6]) reveals large activity during late stance-early



TABLE |
EFFORT COMPARISONS FOR VMO, BF, TA, AND SOL: SHOWING MEAN
(+ SD) FOR TASKS (ROWS) AND MODES (COLUMNS).

Effort
[%MVC] MPE HAM PASSIVE BARE

” VMO 314 (2.1) | 31.0 (2.1) | 33.8 (2.0) | 28.0 (3.3)
— E BF 28.7(3.5) | 294 42) | 23.8 (3.1) | 142 (1.9)
% = TA 379 (39) | 409 (1.4) | 37.5(1.5) | 30.2 (5.7)
— = SOL 26.3 (1.8) | 27.5 (1.8) | 31.8 (2.5) | 25.1 (2.0)
o VMO 354 (27) | 333 (2.5) | 43.1(2.1) | 494 (3.7)
£ E BF 35.6 (5.7) | 32.6 (6.6) | 37.6 (5.2) | 26.9 (3.8)
3o TA 314 (34) | 328 (25) | 329 (3.4) | 18.7 (2.5
AS SOL 422 (5.7) | 457 (5.7) | 42.5(6.5) | 41.3 (34)
” VMO 349 (3.7) | 358 (4.0) | 394 (3.3) | 359 (24
- E BF 242 (1.5) | 252 (2.7) | 22.8(3.3) | 109 2.7)
% © TA 29.7 (3.4) | 30.7 (2.9) | 27.0 (1.8) | 18.5 (3.1)
—H o SOL 36.8 (5.0) | 33.7 (34) | 37.1 4.2) | 27.0 (3.3)
" VMO 36.6 (3.9) | 33.8 (2.7) | 37.6 (3.3) | 36.3 (7.0)
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Fig. 4. SOL and VMO ensemble-averaged EMGs and respective

Comex torques for decline (—5°), level (0°), and incline (5°) at 0.6 m/s.
Positive torques represent ankle dorsiflexion and knee extension.

swing for both active and passive modes, compared to bare.
This may be caused by the un-assisted hip joint compensating
for the added distal mass of the exoskeleton, requiring greater
hip drive (an additional function of the BF).

The observations in Fig. 4 and Table I meet our simulation
expectations and demonstrate the potential to assist muscu-
lature in multiple tasks. Additional human subjects would be
needed to draw more generic conclusions about the controller’s
effectiveness, which is left to future work.

IV. CONCLUSION

In this paper, we proposed a novel energetic control strategy
for a knee-ankle exoskeleton that can shape both gravitational
and gyroscopic terms based on the IDA-PBC, which was
optimized to fit normative human torques. We performed

a proof-of-concept experiment with an able-bodied human
subject to demonstrate the proposed controller’s ability to
assist in multiple walking conditions. Future work will include
more extensive clinical testing with this control approach. We
will also extend the design optimization to include more tasks,
including stair climbing and sit-to-stand/stand-to-sit.
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