1	Molecular and Cellular Biology		
2	Minireview		
3	Submitted 03/15/2020		
4			
5	Looking down on NF-κB		
6			
7	Leah M. Williams, Thomas D. Gilmore		
8			
9	Department of Biology, Boston University, Boston, MA 02215, USA		
10			
11	*Corresponding author: Thomas D. Gilmore, Biology Department, Boston University, 5		
12	Cummington Mall, Boston, MA 02215, USA; 617-353-5444 (phone); 617-353-6340		
13	(fax); E-mail: gilmore@bu.edu		
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Abstract

The diversified NF-κB transcription factor family has been extensively characterized in organisms from flies to humans. However, homologs of NF-κB and many upstream signaling components have recently been characterized in basal phyla, including Cnidaria (sea anemones, corals, hydras, jellyfish), Porifera (sponges), and single-celled protists including Capsaspora owczarzaki and some choanoflagellates. Herein, we review what is known about basal NF-κBs and how that knowledge informs on the evolution and conservation of key sequences and domains in NF-κB, as well as the regulation of NF-κB activity. The structures and DNA-binding activities of basal NF-κB proteins resemble mammalian NF-κB p100 proteins, and their post-translational activation appears to have aspects of both canonical and non-canonical pathways in mammals. Several studies suggest that the single NF-κB proteins found in some basal organisms have dual roles in development and immunity. Further research on NF-κB in invertebrates will reveal information about the evolutionary roots of this major signaling pathway, shed light on the origins of regulated innate immunity, and may have relevance to our understanding of the responses of ecologically important organisms to changing environmental conditions and emerging pathogen-based diseases.

42

43

44 Keywords: NF-kappaB; evolution; development; innate immunity; signal transduction

45 Running title: NF-κB in basal invertebrates

INTRODUCTION

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

The Nuclear Factor-κB (NF-κB) superfamily comprises a group of related transcription factors that have been intensively studied for their involvement in development and immunity since their near simultaneous discovery in a retrovirus, flies, and mice almost 35 years ago (1-5). Indeed, there are now approximately 100,000 papers on NF-κB, the vast majority focusing on mammals, flies, and viruses. However, with the proliferation of genomic and transcriptomic sequencing over the past decade, it has been discovered that many organisms ostensibly less complex than insects have NF-κB-like genes (6–13). Herein, we critically review what is known about NF-κB in these more basal organisms, namely chidarians, poriferans, and protists. All NF-κB proteins are related by an N-terminal DNA-binding and dimerization region called the Rel Homology Domain (RHD) containing a nuclear localization sequence (NLS), and the RHD allows them to enter the nucleus, bind to specific DNA sites ("kB sites"), and activate or repress transcription of target genes for specified biological outcomes (14). In vertebrates and flies, the NF-κB superfamily can be divided into two subfamilies: the NF-κB proteins that consist of vertebrate p100 and p105 and Drosophila Relish; and the Rel proteins, which include vertebrate RelA, RelB, and c-Rel, as well as *Drosophila* Dif and Dorsal (14). Thus, flies and vertebrates all contain multiple NF-κB proteins that, for the most part, show complete combinatorial diversity by forming homodimers and heterodimers, which have distinct DNA target site specificities. The two subfamilies can be distinguished phylogenetically by sequence alignment of their RHDs, and by sequences C-terminal to the RHD. That is, NF-kB proteins contain C-terminal inhibitory Ankyrin (ANK) repeat domains and Rel proteins contain C-terminal

transactivation domains (Fig. 1). The ANK repeats, either within the NF-κB proteins themselves or in a separate family of NF-kB inhibitors (IkBs), regulate the subcellular localization of NF-kBs by binding to the RHD and sequestering them in the cytoplasm. Activation of the pathway by an appropriate upstream signal results in the degradation of the ANK repeat inhibitor, thus allowing the NF-kB dimer to enter the nucleus and bind DNA (14, 15). NF-κB p100 and p105 proteins also contain a C-terminal death domain (DD) that is important for protein-protein interactions with other members of the DD superfamily, which serve as adaptors in signaling pathways and/or to recruit other proteins into signaling complexes (15). Many evolutionarily conserved receptors can elicit downstream signals to activate NF-κB translocation to the nucleus. These receptors include Toll-like receptors (TLRs), tumor necrosis factor (TNF) receptors, and interleukin-1 receptors (IL-1Rs) (15), which interact with cytoplasmic adaptor proteins (e.g., MYD88 and MAL) to initiate downstream signaling. Once the pathway is activated, a series of phosphorylation events leads to the degradation of the ANK repeat inhibitor sequences, freeing NF-κB to translocate from the cytoplasm to the nucleus. In vertebrates, activation of NF-κB generally happens in one of two ways. In the canonical pathway, activation of an IkB kinase β (IKKβ) complex results in phosphorylation of an independent IκB protein, and phosphorylated IkB then undergoes ubiquitination and proteasomal degradation to liberate the NF-κB dimer. In the non-canonical pathway, activation of the related kinase IKKα leads to phosphorylation of a serine cluster located C-terminal to the ANK repeats on the p100 protein (16). These phosphorylations result in proteasomal processing of the inhibitory ANK repeats on p100 until the proteasome reaches a glycine-rich region

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

(GRR). At the GRR the proteasome falls off, generating p52, a C-terminally truncated version of p100 that can enter the nucleus (16). Similar pathways exist in flies, except the p100 homolog Relish has no GRR and the truncated, active form of Relish is generated by a site-specific proteolytic cleavage that removes the ANK repeat region (17).

Genomic and transcriptomic sequencing data strongly suggest that NF-κB was also pervasive through early evolution, based on the presence of NF-κB-like homologs in many extant organisms basal to flies and vertebrates. NF-κB homologs have been identified in single-celled organisms such as the protists *Capsaspora owczarzaki* (11) and choanoflagellates (12), which are hypothesized to be the closest living relatives to multicellular animals. NF-κBs have also been identified in a variety of basal marine organisms, including poriferans (sponges) and cnidarians (corals, sea anemones, hydras, and jellyfish) (7–10, 13). In most of these basal organisms, there are single NF-κB proteins, which, as discussed below, most closely resemble NF-κB subfamily proteins such as Relish and p100. Curiously, no NF-κB homologs have been found in nematodes (e.g., *Caenorhabditis elegans*), where the pathway appears to have been lost.

As discussed in this review, only recently have several studies investigated how transcription factor NF-κB and its upstream and downstream pathways function in early-branching organisms. We provide insight into how this highly conserved transcription factor and its regulatory pathway arose, describe domains that have appeared at pivotal points of evolution and biological processes likely controlled by NF-κB, and discuss areas of basal NF-κB knowledge that remain unanswered.

STRUCTURES OF BASAL NF-KB PROTEINS

Many basal eukaryotes have NF-κB proteins that are structurally and phylogenetically most similar to vertebrate NF-kB proteins rather than Rel proteins. In most cases, these organisms have single p100-like RHD-ANK repeat NF-κB proteins. For example, the protist Capsaspora, the sponge Amphimedon queenslandica, and several cnidarians all have NF-κBs with an RHD and C-terminal ANK repeats on the same transcript (8, 18–23). Many ANK repeat-containing proteins are found throughout the genomes of archaea, bacteria, and all plants and animals (24, 25), and therefore, we think it likely that during the evolution of eukaryotes there arose a primitive RHD-only protein, which developed the ability to interact with a pre-existing ANK repeatcontaining protein. At some point, these interacting RHD and ANK-repeat genes fused to create the more modern single RHD-ANK-repeat protein. Nevertheless, some basal organisms have NF-κB-like proteins without C-terminal ANK repeat domains. Among protists, several choanoflagellates have NF-kB-like proteins that do not have C-terminal ANK repeat domains (12). Choanoflagellates comprise a sister group to all metazoans, and are part of a diverse group of single-celled, colony-forming organisms that live in waters around the world. Although the genomes of the classically studied choanoflagellates *Monosiga brevicollis* and *Salpingoeca rosetta* do not contain NF-κB homologs (26), a large-scale transcriptomic sequence analysis of 19 choanoflagellates (12) showed that 12 had transcripts that encode RHD-containing NFκB-like sequences (12). However, none of these 12 choanoflagellate NF-κB-like proteins appears to have C-terminal ANK repeat domains (Fig. 1). Moreover, several choanoflagellate NF-kB-like proteins also have extended N-terminal domains that are not present in any other NF-κB proteins (Fig. 1, Table S1). Overall, these 19 choanoflagellate

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

transcriptomes encode zero to three NF-κB-like proteins, none of which has C-terminal ANK repeats. Indeed, it is not yet known whether choanoflagellate NF-κBs are regulated by an ANK repeat-containing IκB-like inhibitor. The lack of ANK repeats in choanoflagellate NF-κB proteins and the wide diversification of NF-κBs among choanoflagellates are likely a result of 600 million years of independent evolution among the diverse species of choanoflagellates. In contrast, the protist *Capsaspora* does contain a bipartite RHD-ANK protein (11). Thus, the earliest NF-κB with an RHD-ANK fusion likely arose in the protist lineage that led to *Capsaspora*, but was excluded or lost in the lineage that led to choanoflagellates.

Although the choanoflagellate and *Capsaspora* NF-κBs differ from one another in their overall structures (i.e., especially the absence of a C-terminal ANK-repeat region in choanoflagellates), they share two motifs within their RHDs (Fig. 2, Motif 7 and 10 in teal and yellow) that are not present in any metazoans. Among choanoflagellate NF-κBs, there is a great deal of sequence diversity, which is consistent with the overall genetic differences among choanoflagellates wherein the average phylogenetic distance between any pair of choanoflagellates is greater than the phylogenetic distance between sponges and mammals (12). Nevertheless, a Bayesian tree analysis of the 12 choanoflagellate RHDs identified to date clusters them as an outgroup to several fly and vertebrate NF-κBs and Rels, which demonstrates a clear divergence of the choanoflagellate NF-κBs from the metazoan NF-κB superfamily (Fig. 2). In general, one finds that NF-κBs within a single choanoflagellate species that has multiple NF-κB proteins (e.g., *Salpingoeca helianthicam*) are highly related (Fig. 2), suggesting that they arose by gene duplication events.

Among poriferans, the fully sequenced genome of the demisponge Amphimedon queenslandica encodes a single full-length NF-kB protein that contains clear features of the human p100 NF-κB protein: that is, it has an RHD, NLS, GRR, six ANK repeats, and a DD (21, 27) (Fig. 1). However, between the GRR and the ANK repeats, A. queenslandica NF-κB contains a region that has no known function and no homology to any other protein (21, 27) (Fig. 1, yellow). More limited sequencing data indicate that other sponges also contain NF-kB-like transcripts, which, to date, only contain RHD sequences (28). Many of these sponge NF-κB-like proteins appear much shorter than the prototypical NF-κB proteins, but this may simply be due to lack of sequence coverage; for example, Corticium candelabrum is reported to have a transcript for NF-κB that consists of only 86 amino acids that are similar to the beginning of the RHD (28). All characterized enidarians appear to contain single NF-κB proteins, but the overall structures of these NF-kB proteins have diverged, in some cases, likely by genesplitting events. Thus, many cnidarians (the anemones Edwarseilla lineata (23) and Exaiptasia pallida (22) and the corals Acropora digitifera, Stylophora pistillata, Orbicella faveolata, and Pocillopora damicornis (18–20) have prototypical RHD-ANK repeat bipartite proteins, whereas others have separate RHD and ANK repeat proteins. In the best studied example of the latter, the sea anemone Nematostella vectensis has a single 440 amino acid NF-κB-like protein that is most similar to the processed vertebrate p50/p52 NF-κB proteins based on phylogenetic analysis of RHD amino acid sequences, intron-exon structure of the RHD, and the presence of a GRR after the RHD (29). Moreover, a separate N. vectensis gene encodes an IkB-like ANK-repeat protein with substantial homology to C-terminal sequences of the ANK-repeat domains of

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

vertebrate p100/p105 (29). That the separate *N. vectensis* NF-κB and IκB genes arose due to a gene splitting event is supported by four lines of evidence: 1) the existence of RHD-ANK repeat bipartite proteins in more basal organisms (e.g., *Capsaspora*, *A. queenslandica*); 2) the presence of remnant GRR sequences at the C terminus of *N. vectensis* NF-κB; 3) the homology of the separate *N. vectensis* IκB protein to mammalian NF-κB protein C-terminal ANK repeats; and 4) the presence of an intact RHD-ANK protein in the closely related anemone *E. lineata* (23). Similar to *N. vectensis*, the hydras *Hydractinia symbiolongicarpus* (30) and *Hydra magnipapillata* (31) and the jellyfish *Aurelia* (13) have separate RHD-only NF-κB proteins and IκB-like genes, all of which likely came about due to gene-splitting events, which are common in cnidarians (32, 33).

ACTIVITY AND REGULATION OF BASAL NF-kBs

The activity and regulation of NF- κ B proteins in vertebrates are now known in great detail. Many of these properties are conserved in basal NF- κ Bs, however, there are clear exceptions.

Although not formally shown, either biochemically or structurally, it is likely that all basal NF-κB-like proteins bind conserved DNA sites as homodimers. For example, the NF-κB-κB site protein-DNA complexes seen in electrophoretic mobility shift assays using cnidarian and sponge NF-κB proteins migrate in a manner suggesting that the NF-κB proteins are dimers (18, 22, 27, 34). Furthermore, based on protein-binding microarrays (PBMs), the NF-κB proteins of *Capsaspora*, the sponge *A. queenslandica*, and two sea anemones bind to a set of κB sites that are more similar to the sites bound by

mammalian NF-κB proteins than by Rel proteins (22, 35) a biochemical finding that is consistent with their overall structural organization and phylogenetic data.

Basal NF-κB proteins appear to be activators of κB site-containing promoters. That is, the RHD sequences of sponge and cnidarian NF-κB proteins function as activators of transcription when expressed in reporter gene assays in yeast and human cells (18, 22, 27, 34). The ability of these basal NF-κBs to function as independent activators of transcription is more similar to Relish, which can act as a homodimeric transcriptional activator (17), than to mammalian p50/p52 proteins, which are generally activators of transcription when in heterodimers with a Rel protein (14, 15). No DNA-binding or transcriptional regulatory studies have been performed with choanoflagellate NF-κBs.

The most extensive research on basal NF-κB activity has been done with the NF-κB protein of the sea anemone *N. ventensis* (Nv-NF-κB). Curiously, it was found that wild populations of these anemones have two major alleles of Nv-NF-κB that differ at 10 residues, six of which are in the RHD (36). Two of these variable residues are ones that are predicted to contact DNA, and, as a consequence, one of the allelic Nv-NF-κB proteins (Nv-NF-κB-C) binds DNA with an approximately two-fold higher affinity than the other variant (Nv-NF-κB-S) (37). Despite its reduced DNA-binding activity, Nv-NF-κB-S activates transcription in reporter gene assays in human cells more effectively than Nv-NF-κB-C (37). Overall, the PBM-based binding site profiles of both Nv-NF-κB alleles still largely resemble that of mammalian p50 (22, 35). Interestingly, the DNA-binding site profiles of Nv-NF-κB-C and Nv-NF-κB-S are as different from each other as each is from human p50 (22), suggesting that within a given species (i.e., *N. vectensis*)

there can be considerable flexibility in DNA binding site recognition that does not have an obvious effect on the organism's phenotype.

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

In the mammalian non-canonical pathway, human p100 is phosphorylated by IKKα at a cluster of serine residues that are located C-terminal to the ANK repeats, and this phosphorylation induces proteasomal processing of the C-terminal sequences up to the GRR (16). This cluster of serine residues is conserved in many cnidarian NF-κBs, including those of the corals Pocillopora damicornis, Orbicella faveolata, Stylophora pistillata, and Acropora millepora, and the sea anemones Actinia tenebrosa, Aulactinia veratra, and Aiptasia, as well as one sponge (A. queenslandica) (7, 18–22, 27, 38, 39). Furthermore, phosphorylation and proteasomal processing of NF-kBs from two cnidarians (Aiptasia and O. faveolata) and the sponge A. queenslandica can be induced by co-expression of human IKK α and IKK β or the single Aiptasia or O. faveolata IKKs (18, 22, 27), suggesting that IKK-dependent processing of chidarian and sponge NF-κBs can occur in their natural settings. However, no IKK homolog has yet been identified in the sponge A. queenslandica. On the other hand, the Capsaspora NF-kB protein clearly has C-terminal ANK repeats and a GRR, but it does not have any apparent C-terminal IKK target site serine residues and no IKK can be found in the *Capsaspora* genome. Overall, the emergence of IKK proteins appears generally coincident with the presence of regulatory serine residues in the ANK repeat domains of basal NF-κBs. Taken together, these findings suggest that phosphorylation-dependent processing of the RHD-ANK repeat proteins was first invented in sponges and that a different form of regulated processing occurs with Capsaspora NF-κB. Of note, the Drosophila Relish protein also lacks C-terminal serine residues and a GRR and is processed by a site-specific protease

cleavage event (17), and in some conditions, shortened human p105 NF-κB proteins can be generated by ribosomal stalling (40).

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

For the *N. vectensis* NF-κB protein, which lacks C-terminal ANK repeats, it was shown that the independent Nv-IκB could directly bind to Nv-NF-κB and that this Nv-IκB could be phosphorylated by an Nv-IKK-related kinase (34). Thus, aspects of canonical signaling may also be present in cnidarians.

Proteasomal-mediated processing has not been directly demonstrated to induce nuclear translocation of any basal NF-κB in its natural setting. However, in a reconstituted mammalian cell system, IKK-induced processing of the anemone Aiptasia NF-κB can be blocked by a proteasome inhibitor (22). In addition, when expressed in chicken tissue culture cells, the full-length RHD-ANK proteins of the coral O. faveolata, the anemone Aiptasia, and the sponge A. queenslandica are located in the cytoplasm, and deletion of the ANK repeat domains of these NF-kBs causes them to localize to the nucleus (18, 22, 27), suggesting that C-terminal processing would do the same in their host organisms. Similarly, in these same assays, the naturally truncated anemone Nv-NFκB protein localizes to the nucleus, but it is sequestered in the cytoplasm when Nv-IκB is co-expressed (34). Of note, although the C-terminal ANK repeat sequences block nuclear translocation and reporter gene activation by the sponge NF-kB protein, the ANK repeats do not inhibit NF-κB's in vitro DNA-binding activity (27), unlike what is seen with NFκBs of cnidarians and other higher metazoans. Nothing is known about the subcellular localization or regulation of the choanoflagellate NF-kB proteins, which lack a clear NLS as well as C-terminal ANK repeats.

Notwithstanding the above-described reconstitution experiments conducted with cnidarian and sponge NF-κBs in vertebrate cell systems, it is not known whether or how regulated processing of basal NF-κBs occurs in any natural setting. Indeed, in both the anemone *Aiptasia* (22) and one demosponge (27), most NF-κB protein is largely processed and nuclear in the absence of any known stimulus. Furthermore, certain treatments (e.g., bleaching in *Aiptasia* and LPS treatment of *O. faveolata* coral tissue) may induce NF-κB activation by inducing transcriptional upregulation of NF-κB pathway genes rather than C-terminal processing (18, 22).

BASAL NF-KBS LIKELY HAVE ROLES IN DEVELOPMENT AND IMMUNITY

One of the most important questions regarding NF-κB is what biological processes are regulated by this transcription factor in cnidarians, sponges, and protists? At least in cnidarians and sponges, there is evidence that NF-κB has roles in both early development and adult immunity (Table 1).

Role of NF-kB in sponge and cnidarian development

In the sponge *A. queenslandica* and several cnidarians, NF-κB transcripts are expressed in the early embryo. In *A. queenslandica*, fluorescent *in situ* staining has shown that NF-κB transcripts are broadly expressed throughout the embryo after cleavage, and are particularly strong in granular cells, which eventually become the outer layer of the developing embryo (21). Similarly, some cnidarians express NF-κB transcripts in the early embryo and juvenile larvae (41-46). In the anemone *N. vectensis*, NF-κB mRNA expression is seen as early as one hour post fertilization (hpf) (43-46), and nuclear NF-κB

protein was detected as early as the late gastrula stage (42). Morpholino-based knockdown of NF-κB in the developing *N. vectensis* embryo led to a failure to develop cnidocytes at the juvenile polyp stage (42). Cnidocytes are a Cnidaria-specific cell type that is involved in a variety of sensing, prey capture, and perhaps defense roles (47). In addition, morpholino knockdown of the single NF-κB-inducing Toll-like receptor (TLR) transcript also led to an early developmental defect in *N. vectensis* (48).

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

298

299

300

301

302

303

Role of NF-kB in juvenile and adult sponges and cnidarians

NF-κB transcripts and proteins have also been detected in several cell types in developed sponge tissues. Whole-mount in situ hybridization of juvenile sponge tissue showed that NF-κB transcripts are present in flask cells, which are large ciliated cells that express a range of genes whose orthologues play roles in eumetazoan neurons (21). Two recent studies (49, 50) performed single cell sequencing on different adult sponge cell types, and they reported that NF-kB transcripts were primarily expressed in two cell types: choanocytes, which are cells that reside in the chambers that allow the sponge to filter feed, and archaeocytes, which are motile phagocytic cells that are inside the mesoglea. In a black encrusting sponge (Cliona sp.), nuclear NF-κB protein was detected in several scattered cells throughout the animal (27). Furthermore, anti-NF-κB Western blots of whole tissue extracts from this *Cliona sp.* contained proteins similar in size to the NF-κB proteins of A. queenslandica. Treatment of this sponge tissue with lipopolysaccharide (LPS, a potent TLR-to-NF-κB inducer in mammals) produced further processing of the putative full-length NF-κB protein and an increase in κB-site binding activity. Similarly, treatment of two Mediterranean species of sponges, Aplysina

aerophoba and Dysidea avara with an immunogenic cocktail of LPS and peptidoglycan led to the upregulation of immune-related receptors involved in signaling to NF-κB (51).

Taken together, the above studies suggest that NF-κB plays a role in a select number of cells involved in sponge immunity. In one sponge, NF-κB protein appears to be constitutively in its processed active state and in the nucleus of select cells (27). Whether this constitutive nuclear localization of NF-κB is the result of a chronic processing of this protein in the sponge or represents a naturally truncated isoform that is preferentially expressed has not been determined.

Several studies have suggested that NF-κB also has a role in immunity in adult cnidarians. In the anemone *N. vectensis*, cytoplasmic NF-κB and IκB are expressed in a subset of cnidocytes in the body column of juvenile and adult anemones (42). NF-κB protein is also highly expressed in cnidocytes that are present in circulating multicellular bodies called nematosomes, which also express high levels of TLR and c-GAS-STING innate immune signaling components that are upstream of NF-κB (48, 52). Those results, along with the ability of nematosomes to take up bacteria (48, 52), suggest that the nematosome is a primitive circulating immune organ in some anemones.

Aiptasia is a tropical anemone that has been used as a model for cnidarian symbiosis with algal dinoflagellates in the family Symbiodiniaceae (53). Infection of both larval and adult Aiptasia with algal symbionts of certain strains results in down-regulation of NF-κB transcripts, protein, and DNA-binding activity (22, 54, 55). Conversely, induction of loss-of-symbiosis with either chemical or heat treatment results in increased levels of NF-κB expression and activity (22), and Aiptasia lacking symbionts are more resistant to bacterial infection than ones with symbionts (55). These results have

led to the hypothesis that suppression of NF-κB-directed immunity is required for the establishment of algal symbiosis in some cnidarians, similar to what has been found in amphibians (56). It is noteworthy that the symbiont-modulated changes in NF-κB activity in *Aiptasia* occurred primarily at the level of expression (22), and not by post-translational induction as generally seen in vertebrate systems. That is, both symbiotic and aposymbiotic *Aiptasia* had nuclear NF-κB-staining cells, but NF-κB-staining cells were substantially increased in *Aiptasia* in which symbiont loss had occurred (22).

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

The research on NF-κB in Aiptasia is of high interest because corals host the same family of algal symbionts and because ocean warming-induced loss of symbiosis ("bleaching"), as well as microbial pathogen infections, are causing large-scale loss of coral reef health (53). Several studies have also investigated NF-κB and NF-κB pathway gene expression in corals, and such studies further suggest a role for NF-κB in immunity and symbiosis/dysbiosis (Table 1). For example, transcripts encoding NF-κB and its signaling components have been identified in transcriptomes from bleached O. faveolata (57), and treatment of O. faveolata tissue with LPS resulted in differential expression of genes in a manner that indicated activation of the NF-kB pathway (18). Furthermore, NFκB mRNA was substantially upregulated in the coral Acropora palmata following extended exposure to elevated water temperature (58). While another study found that NF-κB transcripts were only transiently induced shortly after heat treatment in the coral Acropora hyacinthus (59). Thus, NF-κB may be affected in different ways in different cnidarians undergoing heat stress-induced changes. Additionally, some studies have shown an increase in transcripts encoding members of the NF-κB pathway in corals with

microbial diseases (18, 60), further suggesting that NF-κB has an immune-related role in cnidarians.

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

Several lines of evidence suggest that TLR and TLR-like pathways are upstream activators of NF-κB in cnidarians. First, homologs of TLR-to-NF-κB pathway signaling are present in most chidarians (6-8, 13, 18, 19, 29, 32, 34). Second, *Hydra* and *N*. vectensis TLR-like proteins have a conserved ability to activate NF-κB when ectopically expressed in human cells (31, 48). Third, as mentioned above, TLR and NF-κB proteins are expressed in many of the same chidocytes in adult N. vectensis (48). Fourth, treatment of O. faveolata coral tissue with the mammalian TLR ligand LPS can induce NF-κB pathway gene expression (18). Indeed, TLR-to-NF-kB signaling has been proposed to play a role in embryonic development (42, 48), immunity (18, 31, 38, 48, 60), and regeneration (61) in cnidarians. Nevertheless, TLR is not the sole receptor that can signal to NF-κB in mammals that is also present in cnidarians. For example, cnidarians also possess homologs to TNF receptors and their downstream components (29), which are extensively characterized activators of NF-κB in vertebrates. However, the ability of cnidarian TNF receptors to activate NF-kB in cnidarians has not been investigated. The biological role of NF-κB in single-celled organisms remains unknown (Table 1). However, one may speculate that biological processes controlled by NF-κB in protists are quite different than in multicellular animals, given that protists have no innate or adaptive immunity. Thus, if NF-kB plays a role in immunity in protists, it may do so in an unexpected manner. Or, in the case of *Capsaspora*, which is a symbiont of the snail *B*.

similar to what has been proposed for Aiptasia-Symbiocinicae symbiosis. Alternatively,

galbrata, NF-κB may modulate either protist or host immunity to facilitate symbiosis,

NF-κB could play a "developmental" role in the solitary vs. colony states seen in many protists, including choanoflagellates. Finally, NF-κB may be involved in some protist-specific process, for example, one species of choanoflagellate has been shown to be induced to sexually reproduce upon stimulation with bacterial components (62).

CONCLUSIONS AND FUTURE PROSPECTS

Since its discovery, NF-κB has been studied as a prominent player in many biological processes in vertebrate and fly systems. Nonetheless, until a decade ago, NF-κB was not known to be present in the genomes of organisms basal to insects. The discovery of NF-κBs in single-celled protists has led to improved hypotheses for how this transcription factor evolved (Fig. 3). That is, we propose that prior to the rise of holozoan life, ANK repeats were present in bacteria and archaea genomes. Some ancestral organism developed a primordial RHD-only protein that eventually fused to an ANK repeat protein, resulting in the modern-day bipartite NF-κB protein. RHDs then diversified in choanoflagellates, while metazoans retained the full-length NF-κB fusion protein and also developed separate NF-κB/Rel and IκB proteins, likely from gene splitting and duplication events (Fig. 3).

Several studies have now demonstrated that the NF-κB proteins of evolutionarily basal organisms have many of the same structural features, activities, modes of regulation, and biological effects that are found in the expanded set of NF-κB and Rel proteins of more complex organisms. For example, ANK repeat regulation of the NF-κB RHD is even found in protists, and NF-κB is likely to have dual roles in development and immunity in organisms from sponges to humans. Nevertheless, there are clear differences

in basal NF-κBs. Particularly intriguing is the finding that NF-κB proteins appear to be constitutively processed and active in some sponges and anemones, and that induced activation of the NF-κB pathway may be at the transcriptional level in some of these same basal organisms.

Studies on the evolution of NF-κB have only scratched the surface of what is yet to be discovered. Future studies will likely seek to identify the most primitive biological processes controlled by NF-κB in protists. Moreover, the identification of NF-κB target genes and the development of genetic systems to study gene function will certainly reveal much about the function of NF-κB in cnidarians and sponges. In particular, the identification of immune response gene targets of NF-κB in basal organisms may provide insights into novel microbials, as well as reveal information about molecular processes underlying global ecological crises of marine invertebrates, such as coral bleaching and microbial pathogenesis. Looking backwards at the evolutionary history of NF-κB will no doubt bring knowledge to our understanding of ancient immunity, especially in those organisms that are environmentally sensitive and are situated at the base of multicellular life.

Materials and Methods

Phylogenetic analysis.

The RHD sequences of NF-κB from cnidarians, poriferans, and choanoflagellate organisms were compared phylogenetically to annotated vertebrate NF-κB and Rel proteins and rooted with the predicted RHD of *Capsaspora owczarzaki* NF-κB. Details on databases and sequence acquisition can be found in Table S2. Conserved motifs from

435 MEME analysis were truncated based on motif predictions (Table S2), were aligned by 436 Clustal Omega (63) for Bayesian Analysis (Fig. 1). Other phylogenetic analyses showed 437 similar results (data not shown). 438 439 Acknowledgments 440 We thank Anvitha Addanki for help with the analysis of choanoflagellate NF-κB 441 proteins. The authors' research on the evolution and basal functions of NF-κB was supported by the following National Science Foundation grants (to T.D.G.): MCB-442 443 0924749, IOS-1557804, and IOS-1937650. L.M.W. was supported by an NSF Graduate 444 Research Fellowship. 445 446 The authors declare no conflict of interest.

- 448 References
- 1. Gilmore TD, Temin HM. 1986. Different localization of the product of the v-rel
- oncogene in chicken fibroblasts and spleen cells correlates with transformation by
- 451 REV-T. Cell 44:791–800.
- 2. Gilmore TD. 1990. NF-κB, KBF1, dorsal, and related matters. Cell 62:841–843.
- 3. Steward R. 1987. Dorsal, an embryonic polarity gene in *Drosophila*, is homologous to
- the vertebrate proto-oncogene, c-rel. Science 238:692–694.
- 4. Ghosh S, Gifford AM, Riviere LR, Tempst P, Nolan GP, Baltimore D. 1990. Cloning
- of the p50 DNA binding subunit of NF-κB: homology to rel and dorsal. Cell
- 457 62:1019–1029.
- 5. Kieran M, Blank V, Logeat F, Vandekerckhove J, Lottspeich F, Le Bail O, Urban MB,
- Kourilsky P, Baeuerle PA, Israël A. 1990. The DNA binding subunit of NF-κB is
- identical to factor KBF1 and homologous to the *rel* oncogene product. Cell
- 461 62:1007–1018.
- 462 6. Gilmore TD, Wolenski FS. 2012. NF-κB: where did it come from and why? Immunol
- 463 Rev 246:14–35.
- 7. Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, Li Y,
- Hambleton EA, Guse A, Oates ME, Gough J, Weis VM, Aranda M, Pringle JR,
- Voolstra CR. 2015. The genome of *Aiptasia*, a sea anemone model for coral
- 467 symbiosis. Proc Natl Acad Sci USA 112:11893–11898.

- 8. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M,
- Fujiwara M, Koyanagi R, Ikuta T, Fujiyama A, Miller DJ, Satoh N. 2011. Using the
- 470 Acropora digitifera genome to understand coral responses to environmental change.
- 471 Nature 476:320–323.
- 9. Putnam NH, Srivastave M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A,
- Shapiro H, Lindquist E, Kapitono VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas
- SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS. 2007. Sea
- anemone genome reveals ancestral eumetazoan gene repertoire and genomic
- organization. Science 317:86-94.
- 10. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards
- 478 GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska
- M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M,
- 480 Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S,
- Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS.
- 482 2010. The *Amphimedon queenslandica* genome and the evolution of animal
- 483 complexity. Nature 466:720–726.
- 484 11. Suga H, Chen Z, Mendoza A de, Sebé-Pedrós A, Brown MW, Kramer E, Carr M,
- 485 Kerner P, Vervoort M, Sánchez-Pons N, Torruella G, Derelle R, Manning G, Lang
- 486 BF, Russ C, Haas BJ, Roger AJ, Nusbaum C, Ruiz-Trillo I. 2013. The Capsaspora
- genome reveals a complex unicellular prehistory of animals. Nat Commun 4:1–9.
- 488 12. Richter DJ, Fozouni P, Eisen MB, King N. 2018. Gene family innovation,
- conservation and loss on the animal stem lineage. eLife 7:e34226.

- 490 13. Gold DA, Katsuki T, Li Y, Yan X, Regulski M, Ibberson D, Holstein T, Steele RE,
- Jacobs DK, Greenspan RJ. 2019. The genome of the jellyfish *Aurelia* and the
- 492 evolution of animal complexity. Nat Ecol Evol 3:96–104.
- 493 14. Gilmore TD. 2006. Introduction to NF-κB: players, pathways, perspectives.
- 494 Oncogene 25:6680–6684.
- 495 15. Hayden MS, Ghosh S. 2008. Shared principles in NF-κB signaling. Cell 132:344.362.
- 496
- 497 16. Sun S-C. 2011. Non-canonical NF-κB signaling pathway. Cell Res 21:71–85.
- 498 17. Stöven S, Silverman N, Junell A, Hedengren-Olcott M, Erturk D, Engström Y,
- Maniatis T, Hultmark D. 2003. Caspase-mediated processing of the *Drosophila* NF-
- κB factor Relish. Proc Natl Acad Sci USA 100:5991–5996.
- 18. Williams LM, Fuess LE, Brennan JJ, Mansfield KM, Salas-Rodriguez E, Welsh J,
- Awtry J, Banic S, Chacko C, Chezian A, Dowers D, Estrada F, Hsieh Y-H, Kang J,
- Li W, Malchiodi Z, Malinowski J, Matuszak S, McTigue T, Mueller D, Nguyen B,
- Nguyen M, Nguyen P, Nguyen S, Njoku N, Patel K, Pellegrini W, Pliakas T, Qadir
- D, Ryan E, Schiffer A, Thiel A, Yunes SA, Spilios KE, Pinzón C JH, Mydlarz LD,
- Gilmore TD. 2018. A conserved toll-like receptor-to-NF-κB signaling pathway in
- the endangered coral *Orbicella faveolata*. Dev Comp Immunol.
- 508 19. Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot J-F, Tambutté S,
- Allemand D, Aranda M. 2017. Comparative analysis of the genomes of *Stylophora*
- 510 pistillata and Acropora digitifera provides evidence for extensive differences
- between species of corals. Sci Rep 7:1–14.

- 512 20. Cunning R, Bay RA, Gillette P, Baker AC, Traylor-Knowles N. 2018. Comparative
- analysis of the *Pocillopora damicornis* genome highlights role of immune system in
- 514 coral evolution. Sci Rep 8:1–10.
- 21. Gauthier M, Degnan BM. 2008. The transcription factor NF-κB in the demosponge
- Amphimedon queenslandica: insights on the evolutionary origin of the Rel
- 517 homology domain. Dev Genes Evol 218:23–32.
- 518 22. Mansfield KM, Carter NM, Nguyen L, Cleves PA, Alshanbayeva A, Williams LM,
- Penvose AR, Crowder C, Finnerty JR, Gilmore TD, Siggers TW, Weis VM. 2017.
- Transcription factor NF-κB is modulated by symbiotic status in a sea anemone
- model of cnidarian bleaching. Sci Rep 7:16025.
- 522 23. Stefanik DJ, Lubinski TJ, Granger BR, Byrd AL, Reitzel AM, DeFilippo L, Lorenc
- A, Finnerty JR. 2014. Production of a reference transcriptome and transcriptomic
- database (EdwardsiellaBase) for the lined sea anemone, *Edwardsiella lineata*, a
- parasitic cnidarian. BMC Genomics 15:71.
- 526 24. Al-Khodor S, Price CT, Kalia A, Abu Kwaik Y. 2010. Functional diversity of
- ankyrin repeats in microbial proteins. Trends Microbiol 18:132–139.
- 528 25. Jernigan KK, Bordenstein SR. 2014. Ankyrin domains across the Tree of Life. PeerJ
- 529 2:e264.
- 26. Hoffmeyer TT, Burkhardt P. 2016. Choanoflagellate models Monosiga brevicollis
- and Salpingoeca rosetta. Curr Opin Genet Dev 39:42–47.

- 532 27. Williams LM, Inge MM, Mansfield KM, Rasmussen A, Afghani J, Agrba M, Albert
- C, Andersson C, Babaei M, Babaei M, Bagdasaryants A, Bonilla A, Browne A,
- Carpenter S, Chen T, Christie B, Cyr A, Dam K, Dulock N, Erdene G, Esau L,
- Esonwune S, Hanchate A, Huang X, Jennings T, Kasabwala A, Kehoe L, Kobayashi
- R, Lee M, LeVan A, Liu Y, Murphy E, Nambiar A, Olive M, Patel D, Pavesi F,
- Petty CA, Samofalova Y, Sanchez S, Stejskal C, Tang Y, Yapo A, Cleary JP, Yunes
- SA, Siggers T, Gilmore TD. 2020. Transcription factor NF-κB in a basal metazoan,
- the sponge, has conserved and unique sequences, activities, and regulation. Dev
- 540 Comp Immunol 103559.
- 28. Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP. 2014. The analysis of eight
- transcriptomes from all poriferan classes reveals surprising genetic complexity in
- 543 sponges. Mol Biol Evol 31:1102–1120.
- 544 29. Sullivan JC, Kalaitzidis D, Gilmore TD, Finnerty JR. 2007. Rel homology domain-
- containing transcription factors in the cnidarian *Nematostella vectensis*. Dev Genes
- 546 Evol 217:63–72.
- 30. Zárate-Potes A, Ocampo ID, Cadavid LF. 2019. The putative immune recognition
- 548 repertoire of the model chidarian Hydractinia symbiolongicarpus is large and
- 549 diverse. Gene 684:104–117.
- 31. Franzenburg S, Fraune S, Künzel S, Baines JF, Domazet-Lošo T, Bosch TCG. 2012.
- MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing
- bacterial colonizers. Proc Natl Acad Sci 109:19374–19379.

- 32. Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei
- T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin
- N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima
- T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law
- L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y,
- Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S,
- Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C,
- Ogura A, Takahashi T, Steinmetz PRH, Zhang X, Aufschnaiter R, Eder M-K, Gorny
- A-K, Salvenmoser W, Heimberg AM, Wheeler BM, Peterson KJ, Böttger A,
- Tischler P, Wolf A, Gojobori T, Remington KA, Strausberg RL, Venter JC,
- Technau U, Hobmayer B, Bosch TCG, Holstein TW, Fujisawa T, Bode HR, David
- 564 CN, Rokhsar DS, Steele RE. 2010. The dynamic genome of *Hydra*. Nature
- 565 464:592–596.
- 33. Gacesa R, Chung R, Dunn SR, Weston AJ, Jaimes-Becerra A, Marques AC,
- Morandini AC, Hranueli D, Starcevic A, Ward M, Long PF. 2015. Gene
- duplications are extensive and contribute significantly to the toxic proteome of
- nematocysts isolated from *Acropora digitifera* (Cnidaria: Anthozoa: Scleractinia).
- 570 BMC Genomics 16:774.
- 571 34. Wolenski FS, Garbati MR, Lubinski TJ, Traylor-Knowles N, Dresselhaus E, Stefanik
- DJ, Goucher H, Finnerty JR, Gilmore TD. 2011. Characterization of the core
- elements of the NF-κB signaling pathway of the sea anemone *Nematostella*
- 574 *vectensis.* Mol Cell Biol 31:1076–1087.

- 35. Ryzhakov G, Teixeira A, Saliba D, Blazek K, Muta T, Ragoussis J, Udalova IA.
- 576 2013. Cross-species analysis reveals evolving and conserved features of the nuclear
- 577 factor κB (NF-κB) proteins. J Biol Chem 288:11546–11554.
- 36. Sullivan JC, Wolenski FS, Reitzel AM, French CE, Traylor-Knowles N, Gilmore TD,
- 579 Finnerty JR. 2009. Two alleles of NF-κB in the sea anemone *Nematostella vectensis*
- are widely dispersed in nature and encode proteins with distinct activities. PloS One
- 581 4:e7311.
- 582 37. Wolenski FS, Chandani S, Stefanik DJ, Jiang N, Chu E, Finnerty JR, Gilmore TD.
- 583 2011. Two polymorphic residues account for the differences in DNA binding and
- transcriptional activation by NF-κB proteins encoded by naturally occurring alleles
- in Nematostella vectensis. J Mol Evol 73:325–336.
- 38. Anderson DA, Walz ME, Weil E, Tonellato P, Smith MC. 2016. RNA-Seq of the
- Caribbean reef-building coral *Orbicella faveolata* (Scleractinia-Merulinidae) under
- 588 bleaching and disease stress expands models of coral innate immunity. PeerJ
- 589 4:e1616.
- 39. Ying H, Hayward DC, Cooke I, Wang W, Moya A, Siemering KR, Sprungala S, Ball
- EE, Forêt S, Miller DJ. 2019. The whole-genome sequence of the coral *Acropora*
- *millepora*. Genome Biol Evol 11:1374–1379.
- 593 40. Lin L, DeMartino GN, Greene WC. 1998. Cotranslational biogenesis of NF-κB p50
- by the 26S proteasome. Cell 92:819–828.

- 595 41. Siboni N, Abrego D, Motti CA, Tebben J, Harder T. 2014. Gene expression patterns
- during the early stages of chemically induced larval metamorphosis and settlement
- of the coral *Acropora millepora*. PLOS ONE 9:e91082.
- 598 42. Wolenski FS, Bradham CA, Finnerty JR, Gilmore TD. 2013. NF-κB is required for
- cnidocyte development in the sea anemone *Nematostella vectensis*. Dev Biol
- 600 373:205–215.
- 43. Warner JF, Guerlais V, Amiel AR, Johnston H, Nedoncelle K, Röttinger E. 2018.
- NvERTx: a gene expression database to compare embryogenesis and regeneration in
- the sea anemone *Nematostella vectensis*. Development 145:dev162867.
- 44. Fischer AH, Mozzherin D, Eren AM, Lans KD, Wilson N, Cosentino C, Smith J.
- 2014. SeaBase: a multispecies transcriptomic resource and platform for gene
- network interface. Integr Comp Biol 54:250-263.
- 45. Tulin S, Aguiar D, Istrail S, Smith J. 2013. A quantitative reference transcriptome for
- Nematostella vectensis early embryonic development: a pipeline for de novo
- assembly in emerging model systems. Evodevo 4:16.
- 46. Helm RR, Siebert S, Tulin S, Smith J, Dunn CW. 2013. Characterization of
- differential transcript abundance through time during *Nematostella vectensis*
- development. BMC Genomics 14:266.
- 47. Babonis LS, Martindale MQ. 2014. Old cell, new trick? Cnidocytes as a model for
- the evolution of novelty. Integr Comp Biol 54:714–722.

- 48. Brennan JJ, Messerschmidt JL, Williams LM, Matthews BJ, Reynoso M, Gilmore
- TD. 2017. Sea anemone model has a single Toll-like receptor that can function in
- pathogen detection, NF-κB signal transduction, and development. Proc Natl Acad
- 618 Sci USA 201711530.
- 49. Sogabe S, Hatleberg WL, Kocot KM, Say TE, Stoupin D, Roper KE, Fernandez-
- Valverde SL, Degnan SM, Degnan BM. 2019. Pluripotency and the origin of animal
- multicellularity. Nature 570:519-522.
- 50. Musser JM, Schippers KJ, Nickel M, Mizzon G, Kohn AB, Pape C, Hammel JU,
- Wolf F, Liang C, Hernández-Plaza A, Achim K, Schieber NL, Francis WR, R SV,
- Kling S, Renkert M, Feuda R, Gaspar I, Burkhardt P, Bork P, Beck M, Kreshuk A,
- Wörheide G, Huerta-Cepas J, Schwab Y, Moroz LL, Arendt D. 2019. Profiling
- cellular diversity in sponges informs animal cell type and nervous system evolution.
- 627 bioRxiv https://doi.org/10.1101/758276.
- 51. Pita L, Hoeppner M, Ribes M, Hentschel U. 2018. Differential expression of immune
- receptors in two marine sponges upon exposure to microbial-associated molecular
- 630 patterns. Sci Rep 8:16081.
- 52. Babonis LS, Martindale MQ, Ryan JF. 2016. Do novel genes drive morphological
- novelty? An investigation of the nematosomes in the sea anemone *Nematostella*
- 633 vectensis. BMC Evol Biol 16:114.
- 634 53. Weis VM. 2008. Cellular mechanisms of cnidarian bleaching: stress causes the
- collapse of symbiosis. J Exp Biol 211:3059–3066.

- 636 54. Wolfowicz I, Baumgarten S, Voss PA, Hambleton EA, Voolstra CR, Hatta M, Guse
- A. 2016. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection
- in cnidarians. Sci Rep 6:1–12.
- 639 55. Mansfield KM, Cleves PA, Vlack EV, Kriefall NG, Benson BE, Camacho DJ,
- Hemond O, Pedroza M, Siggers T, Pringle JR, Davies SW, Gilmore TD. 2019.
- Varied effects of algal symbionts on transcription factor NF-κB in a sea anemone
- and a coral: possible roles in symbiosis and thermotolerance. bioRxiv
- 643 https://doi.org/10.1101/640177.
- 56. Burns JA, Zhang H, Hill E, Kim E, Kerney R. 2017. Transcriptome analysis
- illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis.
- 646 eLife 6:e22054.
- 57. Pinzón JH, Kamel B, Burge CA, Harvell CD, Medina M, Weil E, Mydlarz LD. 2015.
- Whole transcriptome analysis reveals changes in expression of immune-related
- genes during and after bleaching in a reef-building coral. R Soc Open Sci 2:140214.
- 58. DeSalvo MK, Sunagawa S, Voolstra CR, Medina M. 2010. Transcriptomic responses
- to heat stress and bleaching in the elkhorn coral *Acropora palmata*. Mar Ecol Prog
- 652 Ser. 17:3952-3971
- 59. Traylor-Knowles N, Rose NH, Sheets EA, Palumbi SR. 2017. Early transcriptional
- responses during heat stress in the coral *Acropora hyacinthus*. Biol Bull 232:91–
- 655 100.

- 656 60. Fuess LE, C JHP, Weil E, Grinshpon RD, Mydlarz LD. 2017. Life or death: disease-
- tolerant coral species activate autophagy following immune challenge. Proc R Soc B
- 658 284:20170771.
- 659 61. Wenger Y, Buzgariu W, Reiter S, Galliot B. 2014. Injury-induced immune responses
- 660 in *Hydra*. Semin Immunol 26:277–294.
- 661 62. Woznica A, Gerdt JP, Hulett RE, Clardy J, King N. 2017. Mating in the closest living
- relatives of animals is induced by a bacterial chondroitinase. Cell 170:1175-
- 663 1183.e11.
- 63. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H,
- Remmert M, Söding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation
- of high-quality protein multiple sequence alignments using Clustal Omega. Mol
- 667 Syst Biol 7:539.

- 668 64. Jacobovitz MR, Rupp S, Voss PA, Gornik SG, Guse A. 2019. Dinoflagellate
- symbionts escape vomocytosis by host cell immune suppression.
- 670 bioRxiv https://doi.org/10.1101/864579.

672 Table 1. Functions of NF-κB in basal organisms.

Organism	Biological Function	Data Available	References
Aiptasia	Immunity	protein, transcriptomic, mRNA, DNA binding	22, 54, 55, 64
N. vectensis	Immunity (?) and Development	protein, transcriptomic, mRNA, DNA-binding	34, 36, 37, 42, 48, 52
Hydra	Immunity	transcriptomic,	30, 31
Corals	Immunity	Transcriptomic	18, 38, 57–60
Sponge	Immunity and Development	protein, transcriptomic, mRNA, DNA-binding	21, 27, 50, 51
Capsaspora	?	genomic	11
Choanoflagellates	?	transcriptomic	12

Figure Legends

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

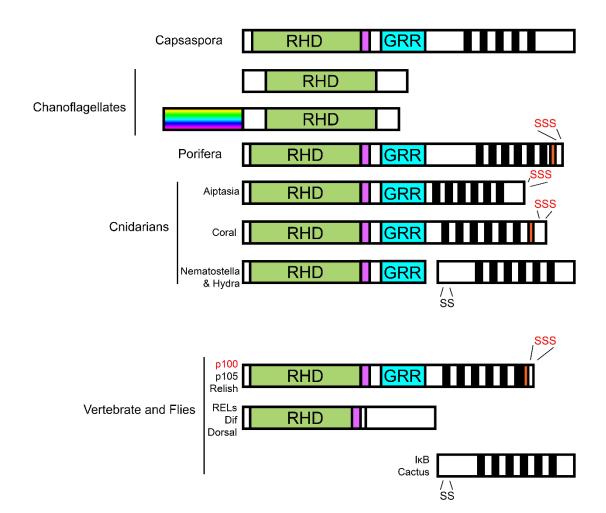
701

702

703

704

705


706

707

Figure 1. The structure of NF-kBs in organisms basal to Bilateria is most similar to human NF-kB proteins rather than Rel proteins. The basic domain structures of homologs to NF-kB in Capsaspora, choanoflagellates, poriferans (sponges), and cnidarians compared to the fly and vertebrate NF-κBs (p100/p105, Relish), Rels (RelA, RelB, c-Rel, Dif, Dorsal), and IkB (Cactus). Green, Rel Homology Domain (RHD); pink, Nuclear Localization Signal (NLS); blue, Glycine Rich Region (GRR); black bars, Ankryin repeats; red, Death Domain; SSS/SS, conserved serines important for phosphorylation and degradation of the protein (red SSS indicate homology to p100); and rainbow, N-terminal domains of choanoflagellates not typically seen in NF-κB proteins. Figure 2. Phylogenetic analysis places Choanoflagellate NF-κBs as an outgroup of vertebrate and fly NF-κBs. A Bayesian analysis of holozoan RHDs, including the recently identified choanoflagellate NF-κBs. MEME analysis was performed on each sequence to identify shared motifs. NF-κB proteins and Rel proteins cluster separately from each other, and choanoflagellate NF-κBs cluster as a single outgroup. Conserved motifs are highlighted, and two choanoflagellate specific sequences are shown in teal and yellow. Figure 3. The evolution of NF-κB. Prior to the rise of holozoan life, Ankyrin repeats (ANK, red) were present in bacteria and archaea. The appearance of an RHD-containing protein (green) likely led to RHD-only proteins that diversified in choanoflagellates and to an RHD-ANK fusion in an ancestor of Capsaspora. Metazoans retained the full-length

NF-κB fusion protein or in some cnidarians (e.g., Hydra and Nematostella) underwent gene splitting events to create separate RHD and ANK repeat proteins.

Fig. 1

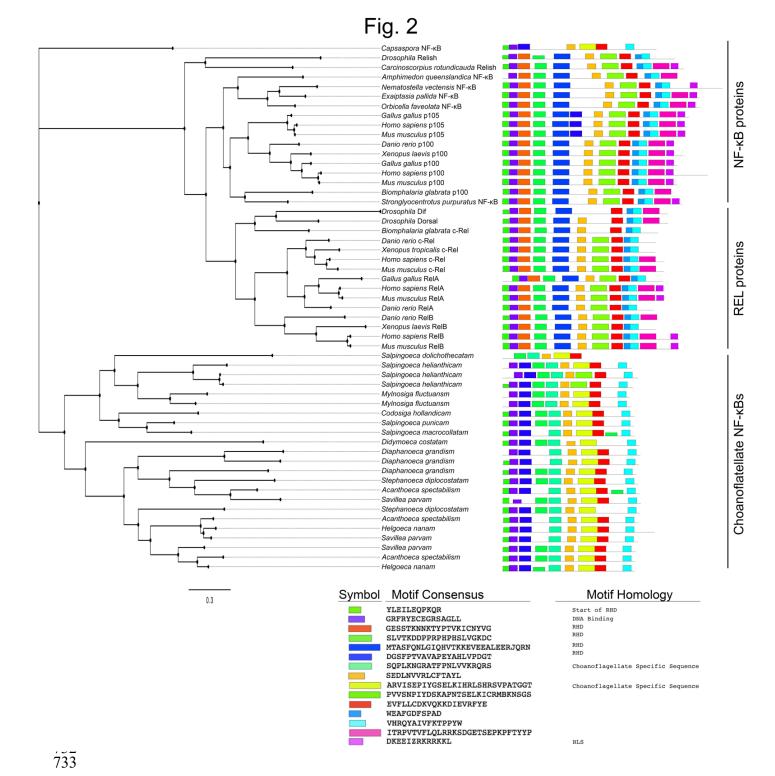
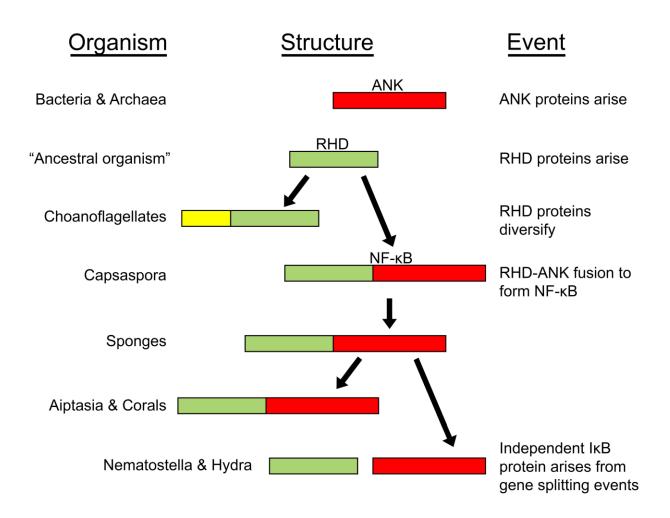



Fig. 3

