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Learning Task-Driven Control Policies
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Abstract—This paper presents a reinforcement learning ap-
proach to synthesizing task-driven control policies for robotic sys-
tems equipped with rich sensory modalities (e.g., vision or depth).
Standard reinforcement learning algorithms typically produce
policies that tightly couple control actions to the entirety of the
system’s state and rich sensor observations. As a consequence,
the resulting policies can often be sensitive to changes in task-
irrelevant portions of the state or observations (e.g., changing
background colors). In contrast, the approach we present here
learns to create a task-driven representation that is used to
compute control actions. Formally, this is achieved by deriving
a policy gradient-style algorithm that creates an information
bottleneck between the states and the task-driven representa-
tion; this constrains actions to only depend on task-relevant
information. We demonstrate our approach in a thorough set of
simulation results on multiple examples including a grasping task
that utilizes depth images and a ball-catching task that utilizes
RGB images. Comparisons with a standard policy gradient
approach demonstrate that the task-driven policies produced by
our algorithm are often significantly more robust to sensor noise
and task-irrelevant changes in the environment.

I. INTRODUCTION

The increasing availability of high-resolution sensors has
significantly contributed to the recent explosion of robotics ap-
plications. For example, high-precision cameras and LIDARs
now allow autonomous vehicles to perform tasks ranging from
navigating busy city streets to mapping mines and buildings.
By far the most common approach adopted by such systems is
to utilize as much sensor information as is available in order
to estimate the full state of these complex environments; the
resulting state estimates are then used by the robot to choose
control actions necessary to complete its task. However, this
ubiquitous approach does not distinguish between the task-
relevant and task-irrelevant portions of the system’s state.
The result is an unnecessarily tight coupling between sensor
observations and control actions that is often not robust
to noise or uncertainty in irrelevant portions of the state.
Moreover, these policies tend to have a large computational
burden. This computational requirement can manifest either
as a state estimator that needs to process large amounts of
data in real time, or as a policy learned from sampling a large
number of diverse operating environments. The goal of this
paper is to address these challenges by synthesizing control
policies that only depend on task-driven representations of
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Fig. 1. A depiction of our approach applied to the ball-catching problem
described in Section IV-B. Our policy implements an information bottleneck
that limits the amount of state information (in this case, the robot and ball
position and velocities) extracted from the sensor observations (RGB images)
to create a set of task-relevant variables (TRVs) on which the control action
(robot velocity) depends. The result is a policy that is more robust to image
noise and changes to the brick background texture.

the robot’s state. Doing so reduces the coupling between the
states and control actions, improves robustness, and reduces
computational requirements.

To illustrate the advantages of a task-driven policy, consider
a ball-catching example. An agent equipped with a high-
resolution camera is tasked with catching a ball (Figure 1).
Using its sensor, the agent can attempt to estimate the full
state of the system (e.g., ball velocity, ego-motion, wind speed,
etc.), feed this information into a physical model for the ball’s
flight, integrate the model to find where the ball will land,
and move to this location to catch it. This approach requires
estimating every parameter involved in the ball’s motion and
can easily be compromised when the ball is far away and
difficult to see or when there are visual artifacts such as glare.

Instead, extensive cognitive psychology experiments [11,
29, 36] have demonstrated that humans employ a task-driven
strategy known as the gaze heuristic to catch projectiles. This
strategy simply modulates the human’s speed in order to fix the
position of the ball in their visual field. This policy, which only
requires minimal sensor information and internal computation,
naturally drives the human to the ball’s landing position.
The gaze heuristic highlights that task-driven control policies
are often robust control policies that only depend on small
amounts of salient state information. Specifically, the heuristic
is naturally robust to distributional shifts in irrelevant portions
of the environment (e.g., the visual backdrop) while also being
adaptable to perturbations like a gust of wind altering the ball’s



course. Traditionally, task-driven policies have required hand-
engineering for each control problem. This process can be
difficult and time consuming. The goal of this paper is to
propose a reinforcement learning framework that automati-
cally synthesizes task-driven control policies for systems with
nonlinear dynamics and high-dimensional observations (e.g.,
RGB or depth images).

Statement of Contributions. The main technical contri-
bution of this paper is to formulate a reinforcement learning
algorithm that synthesizes task-driven control policies. This
synthesis is achieved by creating an information bottleneck
[44] that limits how much state information the policy is
allowed to use. We present a reinforcement learning algorithm
— referred to as task-driven policy gradient (TDPG) — that
leverages the recently-proposed mutual information neural
estimator [4] to tractably search for an effective task-driven
policy. Finally, we demonstrate that this formulation provides
the key advantage of a task-driven approach — robustness to
perturbations in task-irrelevant state and sensor variables. This
benefit is demonstrated in three examples featuring nonlinear
dynamics and high-dimensional sensor models: an adaption of
the lava problem from the literature on partially observable
Markov decision processes (POMDPs), ball catching using
RGB images, and grasping an object using depth images.

A. Related Work

State Estimation and Differentiable Filtering. Classical
approaches to controlling robotic systems typically involve
two distinct pipelines: one that uses the robot’s sensors to
estimate its state and another that uses this state estimate to
choose control actions. Such an architecture is motivated by
the separation principle [3] from (linear) control theory and
allows one to leverage powerful control-theoretic techniques
for robust estimation and control [9, 48]. A recent line of
work on differentiable filtering [16, 18, 20] has extended this
traditional pipeline to elegantly handle rich sensor observations
(e.g., images) by learning state estimators in an end-to-end
manner via deep learning. However, as the gaze heuristic
example from Section I demonstrates, full state representations
are often overly rich when viewed from the perspective of
the task at hand. This is particularly true in settings where
representing the full state requires capturing the state of the
robot’s environment. Instead, our goal is to learn minimalistic
task-driven representations that are sufficient for control. Such
representations can be highly compact as compared to full state
representations. Moreover, carefully-constructed task-driven
representations have the potential to be robust to sensor noise
and changes to irrelevant portions of the robot’s environment.
Intuitively, this is because uncertainty or noise in irrelevant
portions of the sensor observations are filtered out and thus
no longer corrupt the robot’s actions. We present a theoretical
result in Section II along with simulation experiments in
Section IV to support this intuition.

End-to-end Learning of Policies. Deep reinforcement
learning approaches have the ability to learn control policies in
an end-to-end manner [14, 15, 21, 26, 27, 40, 49]. Such end-
to-end approaches learn to create representations that are tuned
to the task at hand by exploiting statistical regularities in the

robot’s observations, dynamics, and environment. However,
these methods do not explicitly attempt to learn representations
that are task-driven (i.e., representations that filter out portions
of the sensor observations that are irrelevant to the task). As a
result, policies trained via standard deep RL techniques may
be sensitive to changes in irrelevant portions of the robot’s
environment (e.g., changes to the background color in a ball-
catching task). In contrast, the deep RL-based approach we
present seeks to explicitly learn task-driven representations
that filter out irrelevant factors. Our simulation results in
Section IV empirically demonstrate that our approach is robust
to such distributional shifts.

Information Bottlenecks. Originally developed in the in-
formation theory literature, information bottlenecks [44, 2,
25, 43] allow one to formalize the notion of a “minimal-
information representation” that is sufficient for a given task
(e.g., a prediction task in the context of supervised learning).
Given an input random variable X and a target random vari-
able Y, one seeks a representation X that forms a Markovian
structure X — X — Y. The representation is chosen to
minimize the mutual information between X and X while
still maintaining enough information to predict ¥ from X.
Recent work has sought to adapt this theory for synthesizing
task-driven representations for control [30, 1]. In [30], a
model-based approach for automatically synthesizing task-
driven representations via information bottlenecks is presented.
However, this approach is limited to settings with an explicit
model of the robot’s sensor and dynamics. This prevents the
approach from being applied to systems with rich sensing
modalities (e.g. RGB or depth images), for which one cannot
assume a model. In contrast, the approach we present here
learns to create a task-driven representation via reinforcement
learning and is directly applicable to settings with rich sensing.
In [1], the authors use information bottlenecks to define
minimal state representations for control tasks involving high-
dimensional sensor observations (this approach is also related
to the notion of actionable information [38, 39] in vision;
see [1] for a discussion). However, [1] does not present
concrete algorithms for learning task-driven representations.
In contrast, we present a policy gradient algorithm based on
mutual information neural estimation (MINE) [4]. Moreover,
we note that our definition of a task-driven policy differs
from that of [1]; the representations we learn seek to create
a bottleneck between sensor observations and control actions
as opposed to finding a minimal representation for predicting
costs.

Exploration in RL via Mutual Information Regular-
ization. The information bottleneck principle has also been
used to improve sample efficiency in RL by encouraging
exploration [12, 45]. More generally, there is a line of work on
endowing RL agents with intrinsic motivation by maximizing
the mutual information between the agent’s control actions
and states [24, 32, 33, 42, 46, 47]. Our focus instead is
on improving robustness and generalization of policies; the
information bottleneck-based approach we present is aimed
at learning task-driven representations for control. This is
achieved by minimizing the mutual information between the



agent’s states and learned task-relevant variables.

II. DEFINING TASK-DRIVEN POLICIES

In this section, we formalize our notion of a task-driven
control policy. Our definition is in terms of a reinforcement
learning problem whose solution produces a set of task-
relevant variables (TRVs) and a policy that depends only
on these variables. We begin by formulating the problem as
a finite-horizon partially-observable Markov decision process
(POMDP) [41]. The robot’s states, control actions, and sensor
observations at time ¢ € {0,...,7} are denoted by z; €
X¢, up € Uy, and y, € Yy respectively. The robot dynamics
and sensor model are denoted by the conditional distributions
p(xry1|e, uy) and s(y¢|z:) respectively. We do not assume
knowledge of either of these distributions. The functions
co(xo,ug), ..., cr—1(xr—1,upr—1) describe the cost at each
time step with a terminal cost specified by cr(zy,us) =
er(zr). Our goal is to find a policy 7 (us|y:) that solves

T
> ct] , ()
t=0

when run online in a test environment. Throughout this paper,
we use E[-] to denote the expectation; it is subscripted with a
distribution when necessary for clarity.

To achieve our goal of learning a task-driven policy, we
choose the policy to have the recurrent structure illustrated
in Figure 1. We refer to 2y € X; as the task-relevant
variables (TRVs) and search for two conditional distributions:
q(Z¢|ZTe—1,yt), m(ue|Z:). The first specifies a (stochastic) map-
ping from the previous TRVs and the current observation to the
current TRVs. The second conditional distribution computes
the control actions given the current TRVs. These will be
parameterized by neural networks in the following sections.
The overall policy can thus be expressed as:

minimize E [¢(7)] = E
me(uelye)

7 (we|ye, Tr—1) Z/_ (g Z4) (T4 | Te—1, y¢) de.
t

Our goal is to learn TRVs that form a compressed represen-

tation of the state that is sufficient for the purpose of control.

To formalize this, we leverage the theory of information

bottlenecks [44] to limit how much information Z; contains

about x;. This is quantified using the mutual information

Ma; @] = D [pe (e, Te) | pe (1) e (2] 2

between the state x; and TRVs z; at each time step. Here,
D[||-] is the Kullback-Leibler (KL) divergence [8]. Intuitively,
minimizing the mutual information corresponds to learning
TRVs that are as independent of the state as possible. Thus,
the TRVs “filter out” irrelevant information from the state.
Thus, we would like to find a policy that solves:

q(Z|Te—1,yt)
7o (W |ZTe)

T
minimize J := SE [c¢(7)] + Zﬂ[xt; T4 3)
t=0

Here, 3 can be viewed as a Lagrange multiplier, and the above
problem can be interpreted as minimizing the total information

contained in Z; subject to an upper bound on the expected cost
over the time horizon.

In Section III, we develop a reinforcement learning algo-
rithm for tackling (3). We refer to the resulting policies as task-
driven policies. Note that the mutual information is invariant
under bijective transforms of the random variables for which
it is computed [4, 8]. As a result, the optimum value of J
remains unchanged for equivalent representations of the robot
and its environment.

Similar to the gaze heuristic (ref. Section I), we expect
that a task-driven policy as defined above will be a robust
policy. This benefit is conferred to our policy by minimizing
the mutual information between states and TRVs. Intuitively, a
policy is closer to being open-loop when less state information
is present in Z;. The more open-loop the policy is, the less it
is impacted by changes in the state or sensor distributions
between environments. In [30], this intuition is formalized
using the theory of risk metrics with the following theorem:

Theorem II.1. Define the entropic risk metric [37, Example

6.20]: )
ppled = 3 log {Ept exp(ﬂCt)] 4)

Let py(xy, Ty, ur) be any distribution satisfying:

BD[Be (e, Te, us)||pe(we, Tt ue)] 5)
< Dpe(@e, ) [|pe(@e) g (4]

Then, the online expected cost is bounded by a combination
of the entropic risk and mutual information:

T

By, le()] < 3 (o5 [e] + s 1)) (©)

The entropic risk is a functional that is similar to the
expectation, but also accounts for higher moments of the
distribution, e.g. its variance. The parameter 3 controls how
much the metric weights the expected cost versus the higher
moments, and limg_,¢ pglc;] = E[c¢;]. Optimizing pg can be
difficult because computing its gradient requires computing
q(Z;) at each time step. Therefore, we optimize J, a first-order
approximation of (6). In section Section IV, we demonstrate in
multiple examples that minimizing our objective J produces a
robust policy that generalizes beyond its training environment.

Finally, we remark that we can alternatively minimize
I[#; ye], instead of I[xs; Z:]. However, this is not consistent
with Theorem II.1. Moreover, as described in Section III, the
mutual information will be estimated empirically and in many
cases (see Section IV), the dimension of the observation space
is significantly larger than that of the state space. As a result,
estimating I[Z,; y;] is often more challenging.

III. LEARNING TASK-DRIVEN POLICIES

This section discusses finding a policy that approximately
solves (3) within a reinforcement learning (RL) framework.
If the mutual information term is removed from the objective
d, standard RL techniques such as policy gradient (PG) (e.g.
[34, 35]) would be sufficient. However, the mutual information



and its gradient are known to be difficult quantities to estimate.
A number of tractable upper and lower bounds have been
proposed recently to provide means for optimizing objectives
containing a mutual information term [31]. We elected to
use the recently-proposed mutual information neural estimator
(MINE) [4] due to its accuracy and ease of implementation.
We then derive a PG-style algorithm in Section III-B.

A. Mutual Information Neural Estimator (MINE)

The MINE is based on the Donsker-Varadhan (DV) vari-
ational representation of the KL divergence [13, Theorem
2.3.2]. For any two distributions P, @) defined on sample space
Q, the KL divergence between them can be expressed as:

DIP|Q] = sup dav = EpF —logEglexp(F). ()
F:Q—R

The supremum is taken over all functions F' such that
the two expectations are finite. Let EX denote the empirical
expectation computed with N i.i.d. samples from P. We can
estimate the KL divergence by replacing the function class
over which the supremum is taken by a family of neural
networks F’ parameterized by 6 € ©:

DN[P|Q] = :ug ENFY — log]Eg [exp (F9)]. (8
€

Jav
This approximation is a strongly consistent underestimate of
(7) (see [4]). In short, this means that through choice of
appropriate network structure and sample size, D"V [P||Q] can
approximate D[P||Q)] arbitrarily closely.
Since the mutual information is a KL divergence, we can
approximate (2) using the above KL approximation as:

IN[ae; 2] = DN [pe(@e, ) |pe(20)qe(30)] - ©))

This is the MINE. The algorithm for computing the MINE
estimate is presented in Algorithm 1. At a high-level, the
algorithm attempts to find neural network parameters 6 in
order to maximize J4, in (8) via stochastic gradient descent.
We use the notation E| [] to denote the expectation taken
using p;(x¢)q:(Z;). The expectation computed using the joint
distribution p;(x¢, Z+) is unsubscripted. These expectations are
approximated by sampling two minibatches of size B < N
uniformly from the training batch. The minibatches are de-

noted in Algorithm 1 by indicies ji,...,jp and my,...,mp
respectively. The gradient of Jg, is
. . EB [VyF? exp (F?
Velan = &7 [V¢) - FL Ve )] g

B[V exp (F9)]

This gradient, which is computed using the minibatches, is
used to update 6 with stochastic gradient descent (or a similar
optimizer like ADAM [22]). For additional details on training
the MINE, see [4].

B. Task-Driven Policy Gradient Algorithm

We now describe our procedure for leveraging MINE within
a policy gradient (PG) algorithm for tackling (3). As described
in Section II, the policy is parameterized by two neural
networks: a recurrent network q¢?(Z;|#;_1,v;) that outputs

Algorithm 1 Mutual Information Neural Estimator (MINE)

1: procedure TRAIN-MINE(E, {(z",2")}_,)
2 repeat
3: Sample joint minibatch: {(z7*, %)} .
4 Sample marginal minibatch: {z™*}2_,.
5 Compute EP [V F?] with {(270, %)} ,.
6: Compute _Bivert] {(zdv,3m)} B
' EF [V exp(F9)] ’ b=1"
7: Update 6 using minibatches and (10).
8: until Convergence of J4,,.
9: return 0

10: end procedure

the TRVs and a feedforward network 7% (u|Z;) that outputs
the actual control action. Here ¢ € ®,9 € U represent the
parameters for each network. In our implementation, both net-
works output the mean and diagonal covariance of multivariate
Gaussian distributions. During training, we assume access to
the states visited by the robot in order to compute the mutual
information. Online execution, however, only requires access
to the observations.

Computing the gradient of our objective (3) is difficult due
to the presence of the mutual information, so the MINE is
used to approximate this term.! This approximation allows us
to derive a learning algorithm similar to policy gradient. Using
the well-known identity

Vo (ug| @) = 79 (ue|3) Vg log 7% (ue|2,), (1)

the gradient of the expected cost with respect to 1) is given by

VyE[e(T)] = E

T
e(T) Z Vy log ¥ (uy jt)} . (12)

Repeating this process for ¢ yields an analogous formula with
q%(Z4|Z¢-1,y:) replacing 7% (ue|Z;):

VeE[c(T)] =E lC(T) Zv¢log q¢(ft|5ft—1,yt)] - (13)

t=0

Finally, it remains to calculate V4,1V [x; Z;]. Though it is
more tractable to optimize the MINE instead of the true mutual
information, computing the gradient of the MINE with respect
to the policy parameters is not entirely straightforward. The
complexity lies in the fact that the gradient of the MINE with
respect to these parameters depends on knowing or estimating
the marginal distributions p;(x;) and ¢;(Z;), both of which
depend on ¢ and . To approximate the MINE gradient we
fix 6 to the converged MINE parameters from Algorithm 1,
which yields:

IV[zy; ] = EN[FY] — log BY [exp(F?)]. (14)

'We note that, in order to employ the bound (6), we need to employ an
overestimate of I[x¢;Z¢]. In Section IV, we demonstrate that in practice,
minimizing the MINE is a practical approximation that produces robust
policies.



Since the neural networks used to parameterize the policy
produce Gaussian distributions, we can represent Z; as

T = p®(F—1,00) + A®(Ee—1, )er, € ~N(0,1). (15)

This is similar to the reparameterization trick for variational
autoencoders [23]. Here, 1u?, A? are computed using the mean
and covariance output from the network ¢®(&|%;_1, ). Since
the dynamics and sensor model are unknown, the approxima-
tions that x; and y, are independent of ¢ and z;,y;, 2, are
independent of 1) are made. With these fixed, the gradient of
(14) with respect to ¢ can be computed by storing €g, ..., €1
as a part of each rollout and backpropogating using (15).

The task-driven policy gradient (TDPG) algorithm is out-
lined in Algorithm 2. Our learning process involves train-
ing T — 1 MINE networks, whose parameters are denoted
0o, ...,07_1. For clarity in future sections, we refer to an
iteration of the outer optimization loop as a policy epoch and
an iteration of the optimization loop in Algorithm 1 as a MINE
epoch. During each policy epoch, we rollout N trajectories
using the current policy parameters ¢, 1. We then update each
set of MINE parameters using Algorithm 1. Once the MINE
networks converge, they are used to approximate J and opti-
mize the policy. This is repeated until the empirical estimate
of g, which is given by § = SEN [¢(m)] + 7o IV [ay; 7]
converges.

Implementation Details. It remains to specify how to
select 3 in a principled manner. Returning to the perspective
described in Section II, we treat J as the Lagrangian for
minimizing the information shared between x; and Z; subject
to an upper bound on the maximum expected cost the policy
is allowed. Then, we sweep through a set of values for 3
and select the policy from the epoch with the lowest MINE
estimate that also satisfies the specified limit on the empirical
expected cost. This strategy produces the policy estimated to
have the least state information present in the TRVs while
satisfying our performance constraint.

It is likely that each MINE network is initialized to a poor
estimate of the mutual information. In order to improve the
initial estimate of the mutual information and its gradient,
additional MINE epochs are used during the first policy epoch.
In the following section, we will specify the number of
additional epochs used. Moreover, as discussed in [4], using
minibatches to estimate the MINE gradient in (10) leads to
a biased estimate of the gradient. Replacing the denominator
in (10) with the exponential moving average (EMA) of its
value compensates for this bias.? This technique is used in
some examples in the following section. We also limit the
policy networks to output Gaussian distributions with diagonal
covariances.

Finally, since we are solving a finite-horizon control prob-
lem, the mappings q®(&¢|%:_1,y:), ™ (us|Z¢) may optionally
chosen to be time varying, i.e. use separate values of ¢,
for each time step. With a rich enough network structure, this
should have no impact on the policy since the network can
always encode ¢ in Z;. In practice, we found that this increased

2The EMA is a filter defined on a sequence fo, ...
relationship f; = (1 — a)as + afi—1, fo = fo.

, ft by the recursive

Algorithm 2 Task-Driven Policy Gradient (TDPG)

1: repeat

2. Rollout batch of N trajectories: {(z*, #7, u) L} ,.

3 fort=0,....,7T—1do

4 6; +TRAIN-MINE(f;, {z?, 2)}N_ )
5: end for
6
7

Update ¢, using rollout batch and (12), (13), (15).
: until Convergence of J.

Wall
=
Lava
——

Fig. 2. An illustration of the Lava Problem described in Section IV-A. The
robot (a double integrator) needs to navigate to a target state without moving
so far right that the robot falls into the lava.

flexibility can help achieve a lower training cost in some cases
at the cost of more computation per epoch.

IV. EXAMPLES

In this section, we apply the algorithm described in Sec-
tion III to three problems: (i) a continuous state and action
version of the “Lava Problem” from the POMDP literature,
(i1) a vision-based ball-catching example, and (iii) a grasping
problem with depth-image observations. For each of these
problems, we present thorough simulation results demonstrat-
ing that the task-driven policy is robust to distributional shifts
in the sensor model and testing environment. We compare
our method against a policy with the same parameterization
as ours, but trained using a standard policy gradient method
in order to minimize the expected cost associated with the
problem. The source code for these examples is available here:
github.com/irom-lab/trc-nn

A. Lava Problem

The first problem we consider is a continuous state and
action version of the Lava problem (Figure 2) [5, 10, 19, 30],
which is a common example for evaluating robust solutions
to POMDPs. This scenario involves a robot navigating to a
goal location along a line segment between a wall and a
lava pit. The robot is modeled as a time-discretized double
integrator, i.e. its state z; = [d; vt]T evolves with dynamics
Tpp1 = [dy +ve vr + ut]T. Here d; is the displacement from
the wall (in meters) and v, is the robot’s velocity (in meters
per second). The goal is to navigate to the state g = [3 O]T
within a time horizon of T' = 5 steps. However, d; is limited to
the interval [0, 5)m. If the robot collides with the wall located
at d = 0, then its velocity is set to Om/s as well. If the robot’s
position exceeds d; = 5m, then the robot falls into hot lava,
where it is unable to move any further. At training time, the
robot is provided with a high-quality estimate of its state. This
is modeled by the choice y; ~ N(x,0%I), where o2 = 0.0001


https://github.com/irom-lab/trc-nn

Scenario Policy Gradient | Task-Driven PG
Mean Std. Mean Std.
Training 31.04 7.191 | 36.18 23.22
Sensor Noise 02 =1E-3 31.58 8.632 | 36.55 25.02
Sensor Noise 02 =1E-2 | 35.69 15.68 | 36.00 22.32
Sensor Noise 02 =1E-1 66.29 36.48 | 36.20 21.85
Sensor Noise 02 =1E0 172.40  88.08 | 37.39 25.60
TABLE I

PERFORMANCE OF PG AND TDPG POLICIES IN TRAINING AND TESTING
LAVA ENVIRONMENTS

and N denotes the Gaussian distribution. The cost function for
this problem is c¢(z¢,u) = ||z — g, for t =0,..., T -1
and cp = 100 ||z7 — gl|,. The robot is initialized with v; = 0
and d; uniformly distributed between 0 and 5 meters.

Training Summary. Both ¢%(%;|%;_1,y;) and 7% (u|;)
have two hidden layers with 64 units and use exponential linear
unit (ELU) nonlinearities [6]. We choose a two-dimensional
space X; of TRVs. In this example, we found the performance
of all learned policies improved when the parameters ¢ and
1) were allowed to be time-varying. The MINE networks used
in this example contain two hidden layers with 32 units each
and ELU nonlinearities. A batch of 500 rollouts is used for
each epoch, and a minibatch size of 50 is used for each MINE
epoch, and an EMA with a =5E-5 was used to compute the
MINE gradient. The learning rates in this problem are 8E-
4 for the policy networks and 5E-5 for the MINE network.
All policies were trained for 300 epochs, with a computation
time of about 10 seconds per epoch (about 50 minutes to-
tal for each policy). For this example, all computation was
carried out on an Intel 19-7940X. Policies were trained with
B € {2571,5071,7571,10071} and the upper limit on the
expected cost for selecting the policy was 40.

Policy Evaluation. We compare the resulting policy with
one trained to minimize only the expected cost using policy
gradient. The two policies are compared in Figure 3, and
the statistics of their performance in different environments
(i.e. different levels of sensor noise) are presented in Table L.
Due to the presence of low sensor noise in the training
environment, the PG policy finds it optimal to drive the
robot directly towards the goal state. Interestingly, the TDPG
algorithm finds a qualitatively different strategy. In particular,
TDPG recovers the robust open-loop behavior described in
[5, 10, 30]: regardless of initial position, the robot moves left
until it collides with the wall, then moves right to the goal
state. As the sensor noise o2 is increased, the performance

of the PG policy degrades rapidly. For example, if the sensor
reports the robot is to the left of the goal when it is really to
the right of the goal, it can fall in the lava. In contrast, the
TDPG is unaffected by the increased sensor noise.

B. Vision-Based Ball Catching

Next, we consider a ball-catching example inspired by the
gaze heuristic discussed in Section I (see Figure 1). We
formalize this problem by considering a ball confined to a
plane with = and y coordinates (b7, b?). The robot is confined
to the x-axis and must navigate to bf. The state of the
system in this example is given by x; = [dy b7 bY v¥ v¥]"
where d; represents the robot’s displacement along the -
axis, v represents the ball’s velocity along the z-axis, and vy
represents the ball’s velocity along the y-axis (i.e., the ball’s
vertical velocity). The dynamics are given by:

dt+1 o dt—l—Atut bg+1 o b;g-f—At’U’é/
bfoa] b+ At-uf ] (vl T v —At-g |’

bl

and v, = vy. Here, g = 9.81m/s? is gravity, and At = %58
is used to discretize the dynamics of the system in time. The
robot’s initial position is uniformly distributed over the interval
[—2,2]m. The ball is launched from b = 8m and b = 1m
with fixed initial velocities v = —4.5m/s and v§ = 7.85m/s.
These initial conditions are chosen such that the ball always
spends a fixed number of time steps above the z-axis. The
time horizon 7' = 25 is chosen such that 7" is the last time
step the ball remains above the z-axis. The cost function
that we are trying to minimize is c¢;(z¢,u:) = 0.01 ||ug,
fort =0,...,7 — 1 and cr(xr) = 100 ||dr — b%||,, which
encourages the robot to be very close to the ball when it lands
at the end of the time horizon. The sensor in this scenario
is a camera mounted above the robot. This camera provides
64 x 64 RGB images with values scaled between 0 and 1. We
also placed a wall with a red brick texture centered at 10m
along the x-axis. All simulations are carried out using PyBullet
[7]. A sample observation from the camera is presented in
Figure 1, and a video depicting both policies operating in
training and testing environments for this scenario is provided
in the supplementary material.

Training Summary. In this example, ¢%(|%;_1,y:) is
parameterized by a network with 2 convolutional layers with
6 output channels, kernel size of 4, and stride of length 2,
followed by two fully-connected layers using 32 units each.

N [0 TDPG 400 0 TDPG 0 TDPG =1 TDPG
§4OO 1 PG 1 PG 400 1 PG 400 O PG
&)
§200 200 200 200
&
b
00 100 200 0() 100 200 O0 100 200 00 100 200
Costs Costs Costs Costs
(a) 02 = 0.001 (b) 02 =0.01 (¢) 02 =0.1 do?=1

Fig. 3. These histograms compare our policy (TDPG) to the policy found by policy gradient (PG) in the Lava Problem described in Section IV-A by showing
the frequencies at which each policy incurs different costs. The sensor noise of the test environment is increased from left to right. As the noise increases, the
PG policy performance degrades, while the TDPG policy performance remains almost constant. This is because the TDPG algorithm found a task-relevant

open-loop policy that is robust to this kind of disturbance.



An ELU nonlinearity is applied between convolutional layers.
After each fully-connected layer, tanh nonlinearities were
used instead of ELU nonlinearities to prevent the values of
Z; from growing unbounded. The dimension of X; is 8. The
network ¥ (u;|%;) contains a single linear layer. The MINE
networks used in this example contain two hidden layers with
64 units each and ELU nonlinearities. A batch of 200 rollouts
is used for each epoch, and a minibatch size of 20 is used to
train the MINE network. The learning rates in this problem
are 1E-3 for the policy networks and SE-5 for the MINE
network. When training the TDPG policy, it was initialized
with the PG solution and trained for 100 policy epochs. Each
policy epoch contained 100 MINE epochs with 100,000 MINE
epochs used on the first policy epoch, and an EMA with
o = SE-5 was used to compute the MINE gradient. Policies
with 8 = 1671,1871,...,407! were evaluated, with the
upper limit on the expected cost placed at 24. Rollouts were
computed on an 3.7GHz i7-8700K CPU while all optimization
was done using an Nvidia Titan Xp. Each policy epoch took
about 45 seconds to compute.

Policy Evaluation. We consider two kinds of testing envi-
ronments. All statistics for the test environments were com-
puted using 1000 rollouts. In the first group of examples,
we add random noise to each pixel; the noise is sampled
from N(0,0?), where o is varied between experiments. To
ensure that the observed image is a valid RGB image after
adding noise, we normalize the values to lie between 0 and
1. For each experiment, the mean cost and distance between
the robot and the ball on the z-axis is presented in Table II.
As the level of image noise increases, the performance of the
PG policy deteriorates dramatically while the TDPG policy’s
performance remains largely unchanged.

In the second set of experiments, we change the texture
of the backdrop (i.e. the wall in the background) for testing.
This change is not task-relevant to catching the ball as long
as the ball can be identified within the frame. Each texture is
presented in Figure 4. The TDPG policy outperforms the PG
policy in the seven testing environments except background 7.
This texture has a similar hue (red) to the training environment
texture allowing PG to perform well. The TDPG policy,
however, outperforms PG in environments whose textures
consist of hues that are different than the ones seen when
training. Together with the previous experiments, this result
suggests that the TDPG policy is more robust to observa-
tions that are qualitatively different in task-irrelevant ways
than those provided to the policy during training. A video
depicting the second set of experiments is available here:
www . youtube.com/watch?v=Mwv0OkkRveas

(a) Training (b) Test 1 (c) Test 2 (d) Test 3

Fig. 4.

Scenario Policy Gradient Task-Driven PG
Cost Dist. (m) Cost Dist. (m)

Training 8.702 0.085 18.577 0.184

Sensor Noise o = 0.10 19.12 0.189 19.48 0.193
Sensor Noise o = 0.15 46.68 0.464 20.12 0.199
Sensor Noise o = 0.20 | 124.63 1.244 21.59 0.214
Sensor Noise o = 0.25 | 187.53 1.874 27.11 0.274
Test Background 1 182.1 1.828 122.7 1.225
Test Background 2 214.3 2.141 79.90 0.797
Test Background 3 138.7 1.385 26.62 0.264
Test Background 4 95.38 0.952 28.11 0.279
Test Background 5 82.01 0.818 36.95 0.367
Test Background 6 208.5 2.083 166.4 0.166
Test Background 7 9.180 0.090 14.92 0.147

TABLE II

MEAN COST AND FINAL DISTANCE OF PG AND TDPG POLICIES IN
TRAINING AND TESTING BALL-CATCHING ENVIRONMENTS

2

(a) Franka Emika Panda

(b) Sensor Observation

Fig. 5. (a) A third-person perspective of the grasping scenario described
in Section IV-C using PyBullet. (b) An upscaled example of the 128 x 128
depth image forming the sensor observation for this scenario.

C. Grasping using a Depth Camera

In this final example, we consider the task of grasping and
lifting an object (a mug) from a table using a Franka Emika
Panda simulated with PyBullet (see Figure 5). This example
is particularly interesting for studying task-driven policies due
to the (approximate) radial symmetry of the mug about the
vertical axis. Intuitively, this symmetry renders the orientation
of the mug about the vertical axis largely irrelevant to the
task of grasping the mug. This is due to the fact that the robot
does not need to know the precise orientation of the mug; it
only needs to know enough about the orientation in order to
estimate if the handle will directly interfere with the gripper’s
location when the grasp is performed. A task-driven policy will
remain largely unaffected by changes in the mug’s orientation
and should therefore generalize to the full set of rotations.

In this grasping problem, the state of the system z; € R*
contains the position of the object and its rotation about the z-
axis (which is oriented normal to the table surface) in radians.
The control action u; € R* specifies the position and orienta-
tion of the end effector of the arm when the grasp occurs. After

(g) Test 6

(f) Test 5

(e) Test 4

(h) Test 7

Textures used as backdrops in different ball-catching environments as part of the example described in Section IV-B.


https://www.youtube.com/watch?v=Mwv0kkRveas

grasping, the arm attempts to move the end effector vertically.
A cost of 0 is awarded if the arm successfully lifts the object
more than 0.05 meters above the table and a cost of 1 is
assigned otherwise. The observation is a 128 x 128 depth
image. An example observation is included in Figure 5. The
initial state of the object is sampled uniformly from the set
[0.45 m, 0.55 m] x [~0.05 m,0.05 m] x {0 m} x [-F, T].

Training Summary. We parameterized the policy in the
following manner. The network ¢®(%|%;_1,y:) contains two
convolutional layers with 6 output channels. The first uses a
kernel size of 6 and the second uses a kernel size of 4; both
use a stride length of 2. The convolutional layers are followed
by two fully-connected layers of sizes 128 and 64. An ELU
linearity is used between convolutional layers and tanh non-
linearities are used after linear layers. The size of X; is 16. The
network 7(u;|Z;) contains two fully connected layers with 64
units each and an ELU nonlinearity between them. The output
of this network is then divided by 10 and added to a nominal
control action of [0.5,0,0.06, T]. This scaling and translation
is done to bias the policy to select grasping locations near the
object to speed up learning early in the optimization process.
Again, as in Section IV-B, we initialize the TDPG solution to
the PG solution at the start of training and learned policies
with values of 8 € {57%,1071,1571,2071} for 30 epochs.

In this example, the MINE proved particularly noisy and
took longer to converge. To combat this, we increased the
number of MINE epochs to 500,000 on the first policy epoch
with 100,000 MINE epochs used on following policy epochs.
To determine the value of the MINE, we applied an EMA with
parameter o = 0.9. No EMA was used for computing MINE
gradients. The epoch with the lowest filtered MINE estimate
with an expected cost below 0.15 was used for testing. Each
epoch took approximately 5 minutes to compute. Rollouts
were computed on an Intel 3.7GHz i7-8700K in parallel and
optimization was done on a Titan Xp.

Policy Evaluation. The test results for this example are
summarized in Table III. Again, all reported statistics are
computed using 1000 trials. In the first testing environment,
the set of angles the mug is placed at is expanded from
(=%, &) to [0, 27]. The expected cost (i.e., grasp failure rate)
of the PG policy increased twice as much as the TDPG
policy in these new testing environments. In the second testing
environment, the set of angles the object is placed at is
again [—7, 7], but the 2 and y values were sampled from
the larger set of [0.425 m, 0.575 m| x [—0.075 m,0.075 m)].
In this setting, both policies perform equally poorly. This
result supports our hypothesis that the rotation of the mug is
largely unimportant for the task of lifting the mug because the
TDPG policy was able to generalize to new mug angles, but
not to the task-relevant translational coordinates of the mug.
Meanwhile, the PG policy exhibits overfitting to task-irrelevant
state information and is impacted poorly by its changes.

V. DISCUSSION AND CONCLUSION

We presented a novel reinforcement learning algorithm for
computing task-driven control policies for systems equipped
with rich sensor observations (e.g., RGB or depth images).
The key idea behind our approach is to learn a task-relevant

Scenario Policy Gradient | Task-Driven PG
Mean Std. Mean Std.
Training 0.107  0.309 | 0.094 0.292
Increased Rotation 0.182 0.386 0.132 0.339
Increased Translation | 0.367 0.482 0.358 0.480
TABLE III

PERFORMANCE OF PG AND TDPG POLICIES IN TRAINING AND TESTING
GRASPING ENVIRONMENTS

representation that contains as little information as possible
about the state of the system while being sufficient for
achieving a low cost on the task at hand. Formally, this is
achieved by using an information bottleneck criterion that
minimizes the mutual information between the state of the
system and a set of task-relevant variables (TRVs) used for
computing control actions. We parameterize our policies using
neural networks and present a novel policy gradient algorithm
that leverages the recently-proposed mutual information neural
estimator (MINE) for optimizing our objective. We refer to the
resulting algorithm as task-driven policy gradient (TDPG).

We compare PG and TDPG policies in three experiments:
an adaption of the canonical lava problem to continuous state
spaces, a ball catching scenario inspired by the gaze heuristic
from cognitive psychology, and a depth image-based grasping
problem. In the lava example, the TDPG policy exploits the
nonlinear dynamics to find a minimal information (open-loop)
control policy that is robust to increased sensor noise. In
the ball-catching example, the TDPG is also more robust to
changes in the sensing model at test time than PG. These
changes include both random noise corrupting the images and
task-irrelevant structural changes, e.g. altering the textures in
the robot’s environment. Finally, in the grasping scenario, the
TDPG policy generalizes to rotated states of the object not
seen during training on which the PG policy struggles. To-
gether, these scenarios validate that our approach to designing
task-driven control policies produces robust policies that can
operate in environments unseen during training.

Future Work. There are a number of challenges and excit-
ing directions for further exploration. First, we have observed
that MINE often results in noisy estimates of the mutual
information and can take many epochs to converge. This
results in long training times for TDPG. We also employed an
approximation of the gradient of MINE with respect to policy
parameters (due to the challenges associated with estimating
state distributions at each time step, as described in Section
IIT). These observations motivate the exploration of other
methods for minimizing the mutual information, eg., Stein
variational gradient methods [17, 28]. Another direction for
future work is to adapt more advanced on-policy methods (e.g.,
proximal policy optimization (PPO) [35]) to work with our ap-
proach, and potentially explore off-policy methods. We expect
that these methods will be even more effective at learning task-
driven policies. Finally, an exciting direction for future work
is to explore the benefits that our approach affords in terms
of sim-to-real transfer. The simulation results in this paper
suggest that TDPG can be robust to task-irrelevant features
system perturbations. Exploring whether this translates to more
robust sim-to-real transfer is a promising future direction.
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