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Abstract— The goal of this paper is to use a flat coordinate
system to show that a flat output for a SISO flat system can
be written in terms of a certain composition of input-output
operators. The work is partially motivated by the author’s
recent work on computing the relative degree of interconnected
systems. First the general smooth case is considered, followed
by the control affine analytic case. The latter is more amenable
to computations in terms of Chen-Fliess series.

I. INTRODUCTION

The concept of differential flatness in control theory was

first introduced by Fliess, Lévine, Martin and Rouchon in

[4], [5]. It has been used widely in applications involving

trajectory tracking and motion planning (see [14] for a

survey). In the single-input, single-output (SISO) setting,

flatness is exactly equivalent to the solvability of the state

space linearizability problem [13]. That is, the existence of

an output for which the system has full relative degree.

As motivation for the problem considered here, consider

first a SISO linear system u 7→ y with irreducible transfer

function

H(s) = K
b(s)

a(s)

= K
b0 + b1s+ · · ·+ bn−r−1s

n−r−1 + sn−r

a0 + a1s · · ·+ · · · an−1sn−1 + sn
,

where K 6= 0 and with relative degree 1 ≤ r < n. Define a

flat output yf via the transfer function

Hf (s) =
K

a(s)
,

so that if Hi(s) := 1/b(s) then

Hf (s) = Hi(s)H(s) (1)

and

H(s) = b0Hf (s) + b1sHf (s) + · · ·

+ bn−r−1s
n−r−1Hf (s) + sn−rHf (s). (2)

Equation (1) states that the flat output yf can be written in

terms of a composition of two input-output systems, while

(2) indicates that the real output y can be written in terms

of the flat output and its first (n− r) derivatives.

To view the situation from a state space point of view,

first divide b(s) into a(s) so that a(s) = b(s)p(s) + r(s)
with (r(s), b(s)) being a coprime pair of polynomials

p(s) = p0 + p1s+ · · ·+ pr−1s
r−1 + sr

r(s) = r0 + r1s+ · · ·+ rn−r−2s
n−r−2 + rn−r−1s

n−r−1
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and deg(r(s)) < deg(b(s)). In which case,

H(s) =
K

p(s) + r(s)
b(s)

=
K

p(s)

(

1 +
r(s)

b(s)

1

p(s)

)−1

,

and thus, H(s) can be viewed as a feedback interconnection

with 1/p(s) in the forward path, r(s)/b(s) in the feed-

back path, and K scaling the input. Let (A1, b1, c1) and

(A2, b2, c2) be minimal realizations of 1/p(s) and r(s)/b(s),
respectively. Then a realization of H(s) follows directly from

this feedback structure to be

ż =

[

A1 −b1c2
b2c1 A2

]

z +

[

Kb1
0

]

u, z(0) = z0

y =
[

c1 0
]

z.

If both realizations are in controller canonical form, then this

realization is in the Byrnes-Isidori normal form

ż1 = z2 (3a)

ż2 = z3 (3b)

...

żr−1 = zr (3c)

żr = Pξ +Rη +Ku (3d)

η̇ = Sξ +Qη (3e)

y = z1, (3f)

where ξ = [z1 · · · zr], η = [zr+1 · · · zn], P = −[p0 · · · pr−1],
R = −[r0 · · · rn−r−1], S = en−r(n− r)eT1 (r), and

Q =















0 1 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−b0 −b1 −b2 · · · −bn−r−1















.

(Here ei(j) ∈ R
j has a one in the i-th position and zero

elsewhere. If j is understood then the notation is abbreviated

to ei.) It is immediate that the subsystem η̇ = Qη + en−ry
with input y and output η1 has transfer function eT1 (sI −
Q)−1en = 1/b(s). Thus, it is equivalent to Hi(s) in the

cascade structure (1), implying that yf = η1. From (2) it is

clear that

y = b0yf + b1y
(1)
f + · · ·+ bn−r−1y

(n−r−1)
f + y

(n−r)
f ,

and thus, in light of the companion form of Q, y can be

written in terms of the output function

y = h̄(η) := [b0 b1 · · · bn−r−1 1]η.
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In [12] the authors consider a nonlinear generalization of

this construction for a smooth flat SISO system

ż(t) = f(z(t), u(t)), z(0) = z0 (4)

defined on a neighborhood W × U ⊆ R
n × R of (z0, u0).

In particular, it is shown using a normal form analogous to

(3) that for any output y = h(z) with relative degree r there

exists an output function h̄ : V ⊆ R
(n−r) → R and a flat

output yf such that

y = h̄
(

yf , y
(1)
f , . . . , y

(n−r)
f

)

= h̄(η),

where ηi = y
(i−1)
f , i = 1, 2, . . . , n − r. When viewed as a

system of n − r differential equations, this can be seen as

a diffeomorphic representation of the internal dynamics of

(f, h, z0, u0). The goal of this paper is to use this setting

to more fully develop the nonlinear cascade structure anal-

ogous to (1) that renders flat outputs. The work is partially

motivated by the recent results in [10], which show how to

compute the relative degree of interconnected systems. It also

provides some computation tools that will be useful here.

The organization of the paper is as follows. First the gen-

eral smooth case is considered, followed by the control affine

analytic case. The latter is more amenable to computations in

terms of Chen-Fliess series [3], [13], [15]. Then a collection

of specific examples is considered. The paper’s conclusions

are summarized in the final section.

II. SMOOTH SYSTEMS

First recall the following definition of relative degree for

a smooth system (4) with output y = h(z).
Definition 1: [15, p. 417] The input-output map y = F [u]

with smooth realization (f, h, z0, u0) has relative degree r at

(z0, u0) if on some neighborhood W × U of (z0, u0):

∂

∂u
Li
fh(z, u) = 0, i = 0, 1, . . . , r − 1

∂

∂u
Lr
fh(z0, u0) 6= 0,

where Lfh denotes the Lie derivative of h with respect to

f .

The following lemma is useful.

Lemma 1: Consider two input-output maps F1 and F2

each with a smooth realization (fi, hi, zi0, ui0) on Wi × Ui

and having relative degree ri at (zi0, ui0) ∈Wi ×Ui, where

i = 1, 2. Then the composed system F2 ◦ F1, provided it is

well defined (i.e., h1(W1) ⊆ U2 with u20 := h1(z10)), has

relative degree r1 + r2 at (z̃ := [zT10 z
T
20]

T , u10).
Proof: Apply the definition of relative degree to a realization

(f̃ , h̃, z̃0, u10) of F2 ◦ F1, namely

f̃(z) =

[

f1(z1, u)
f2(z2, h1(z1))

]

, z(0) =

[

z10
z20

]

h̃(z) = h2(z2),

where z := [zT1 zT2 ]
T and W :=W1×W2. It follows directly

that on W × U1

∂

∂u
Li

f̃
h̃(z, u) = 0, i = 0, . . . , r2 − 1

using the assumption that on W2 × h1(W1)

∂

∂u2
Li
f2
h2(z2, u2) = 0, i = 0, . . . , r2 − 1.

Likewise, on W × U1 it follows that

∂

∂u
Lr2+i

f̃
h̃(z, u) = 0, i = 0, . . . , r1 − 1

using the assumption that on W1 × U1

∂

∂u1
Li
f1
h1(z1, u1) = 0, i = 0, . . . , r2 − 1.

Finally, it is clear that

∂

∂u
Lr2+r1

f̃
h̃(z0, u0)

=
∂

∂u2
Lr2
f2
h2(z20, h1(z10))

∂

∂u1
Lr1
f1
h1(z10, u10) 6= 0

as required.

The main result of this section is given next.

Theorem 1: Consider an input-output map F : u 7→ y
with smooth realization (f, h, z0, u0) on W ×U and relative

degree r at (z0, u0) ∈ W × U . If (f, z0, u0) is flat then

any flat output yf = hf (z) can be written in terms of a

composition yf = Fi ◦ F [u], where Fi corresponds to the

input-output map for the internal dynamics of F with well

defined relative degree n− r at some point (η0, y(0)) in the

flat normal form coordinates (defined below). Furthermore,

the realization (f̃ , h̃f , z̃0, u0) of Fi ◦ F [u] has well defined

relative degree n at (z̃0, u0).
Proof: It was shown in [12, Theorem 7] by passing through

the flat coordinates z̄i = y
(i−1)
f , i = 1, 2, . . . , n that there

exists a smooth diffeomorphism [ξT ηT ]T := φ(z) which

transforms (f, h, z0, u0) into the flat normal form

ξ̇1 = ξ2 (5a)

ξ̇2 = ξ3 (5b)

...

ξ̇r−1 = ξr (5c)

ξ̇r = p(ξ, η, u) (5d)

η̇1 = η2 (5e)

η̇2 = η3 (5f)

...

η̇n−r−1 = ηn−r (5g)

η̇n−r = q(η, ξ1), (5h)

y = ξ1, (5i)

where ∂q/∂ξ1(η0, y(0)) 6= 0, and yf = η1. Therefore,

the realization (q, hq(η) := η1, η0, y0) of Fi : y 7→ η1
has relative degree n − r at (η0, y(0)). By assumption

(5) as a realization of F : u 7→ y has relative degree

r at ([ξT0 η
T
0 ]

T , u0). Hence, from the structure of (5) and

Lemma 1, it is immediate that the realization (f̃ , h̃f , z̃0, u0)
of Fi ◦ F : u 7→ yf has relative degree n at (z̃0, u0).
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III. CONTROL AFFINE ANALYTIC SYSTEMS

In the case where f(z, u) in (4) is control affine, it is

not true in general that Fi in Theorem 1 has a control affine

state space realization. So in this section, conditions are given

under which a flat output of a control affine analytic system

ż = g0(z) + g1(z)u, z(0) = z0,

can be written in terms of the composition of two operators,

where each operator has a control affine analytic realization.

The analyticity ensures that for any analytic output y = h(z),
the corresponding input-output map u 7→ y can be written in

terms of a convergent Chen-Fliess series or Fliess operator

[3], [13], [15]. In this setting, one can do explicit calculations

purely in an input-output setting.

Let X = {x0, x1, . . . , xm} be a set of noncommuting

letters with m ∈ N. The set of all words having finite length,

X∗, forms a monoid under catenation, where the identity

element is the empty word, ∅. The set of all words with

prefix η ∈ X∗ is written as ηX∗. A formal power series

over X is any mapping c : X∗ → R
ℓ, where c evaluated at

η ∈ X∗ is written as (c, η). It is customary to represent c
as the formal sum c =

∑

η∈X∗(c, η)η. A series c is said to

be proper when (c, ∅) 6= 0. The support of c is defined as

supp(c) = {η ∈ X∗ : (c, η) 6= 0}.

Any c ∈ R
ℓ〈〈X〉〉 can be used as a generating series

to define a causal m-input, ℓ-output operator, Fc. First fix

p ≥ 1 and t0 < t1. For a Lebesgue measurable function ui :
[t0, t1] → R, let ‖ui‖p denote the usual Lp function norm.

For any measurable vector-valued function u : [t0, t1] → R
m

define ‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m}. Let Lm
p [t0, t1]

denote the set of all such functions having finite ‖·‖p norm. A

closed ball of radius R at the origin of Lm
p [t0, t1] is written

as Bm
p (R)[t0, t1]. Let C[t0, t1] ⊂ Lm

1 [t0, t1] be the set of

continuous functions. For any η ∈ X∗ define the iterated

integral Eη : Lm
1 [t0, t1] → C[t0, t1] inductively by first

setting E∅[u] = 1 and then letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The input-output map

associated with c is the Fliess operator

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0).

If y = Fc[u] has a control affine analytic realization (g, h, z0)
in local coordinates, then

(c, η) = Lgi1
· · ·Lgik

h(z0) (6)

for any word η = xik · · ·xi1 ∈ X∗. Furthermore, it is

shown in [11] that Fc converges in a local sense and

constitutes a well defined mapping from Bm
p (R)[t0, t0 + T ]

into Bℓ
q(S)[t0, t0 + T ] for sufficiently small R, T > 0 and

p, q ∈ [1,∞] satisfying 1/p+ 1/q = 1.

The following definition describes the relative degree of

a generating series c ∈ R〈〈X〉〉 when X = {x0, x1}. It

is equivalent to the usual definition whenever Fc has an

analytic realization (g, h, z0) [6], [7]. It employs the language

of linear words

L = {η ∈ X∗ : η = xn1

0 x1x
n0

0 , n1, n0 ≥ 0}.

In addition, the decomposition of c ∈ R〈〈X〉〉 into its natural

and forced components is useful, i.e., c = cN + cF , where

cN :=
∑

k≥0(c, x
k
0)x

k
0 and cF := c− cN .

Definition 2: [6] Given c ∈ R〈〈X〉〉, let r ≥ 1 be the

largest integer such that supp(cF ) ⊆ xr−1
0 X∗. Then c has

relative degree r if the linear word xr−1
0 x1 ∈ supp(c),

otherwise it is not well defined.

It can be verified that c has relative degree r if and only

if there exists some proper e ∈ R〈〈X〉〉 with x1 6∈ supp(e)
such that

c = cN + cF = cN +Kxr−1
0 x1 + xr−1

0 e (7)

with K 6= 0.

The cascade connection of two convergent Fliess operators

is known to always yield another operator in this class,

independent of whether any of these operators are realizable

[2], [8]. To compute the corresponding generating series,

first observe that under the catenation product R
ℓ〈〈X〉〉 is

an associative R-algebra. It also forms an associative and

commutative R-algebra under the shuffle product, which is

defined inductively on words by

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ),

where xi, xj ∈ X , η, ξ ∈ X∗ and with η ⊔⊔ ∅ = ∅ ⊔⊔ η =
η. The product is then extended linearly to formal power

series. If Fc and Fd are two Fliess operators with c, d ∈
R

ℓ〈〈X〉〉, then the input-output maps for the parallel sum and

parallel product connections are given by Fc + Fd = Fc+d

and FcFd = Fc ⊔⊔ d, respectively [3]. The cascade connection

Fc ◦ Fd, where c ∈ R
ℓ〈〈X〉〉 and d ∈ R

m〈〈X〉〉, yields the

Fliess operator Fc◦d. Here the composition product

c ◦ d =
∑

η∈X∗

(c, η)ψd(η)(1) (8)

is defined in terms of the continuous (in the ultrametric topol-

ogy) algebra homomorphism ψ mapping R〈〈X〉〉 to the set of

vector space endomorphisms on R〈〈X〉〉, End(R〈〈X〉〉). It

is uniquely determined by ψd(xiη) = ψd(xi)◦ψd(η), where

ψd(xi)(e) = x0(di ⊔⊔ e), e ∈ R〈〈X〉〉

for i = 0, 1, . . . ,m with di being the i-th component series

of d (d0 := 1). For the empty word, ψd(∅) is taken to be the

identity map on R〈〈X〉〉. It is known that the composition

product is associative and R-linear in its left argument. In

[10] it is shown that if c and d have relative degree rc and

rd, respectively, then c ◦ d. has relative degree rc + rd. Of

course, this fact is expected from Lemma 1 in the case where

both operators are realizable.

Now the main results of this section are developed.

Henceforth, it is assumed that X = {x0, x1}. The following

lemmas will be needed.

Lemma 2: Let c ∈ R〈〈X〉〉 be proper with relative degree

r. If Fc is convergent, and γ : R → R is real analytic on a
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neighborhood of the origin, then there exists a cγ ∈ R〈〈X〉〉
such that Fcγ = γ(Fc), and Fcγ is convergent. In addition,

cγ has relative degree r.

Proof: Letting γ(z) =
∑

k≥0 γkz
k/k!, it follows directly by

substitution that

cγ = γ ◦ c :=
∞
∑

k=0

γk
c ⊔⊔ k

k!
, (9)

where c ⊔⊔ k denotes the shuffle power of c. It was shown

in [9] using the properness of c that cγ is always well

defined (locally finite). In this same work it is also shown

that the convergence property of Fc is preserved by (9). To

see that cγ has relative degree r, it can be verified for k > 1
that supp(c ⊔⊔ k) ⊆ xr−1

0 X∗ (see [10, Lemma 4]) and that

xr−1
0 x1 6∈ supp(c ⊔⊔ k). In which case, the claim follows

directly from the assumption that c has relative degree r.

Lemma 3: Let c ∈ R〈〈X〉〉 be nonproper with relative

degree r. If Fc is convergent, and γ : R → R is a polynomial,

then there exists a cγ ∈ R〈〈X〉〉 such that Fcγ = γ(Fc), and

Fcγ is convergent. If γ′((c, ∅)) 6= 0, then cγ has relative

degree r.

Proof: If deg(γ) = N then clearly

cγ =
N
∑

k=0

γk
c ⊔⊔ k

k!
.

Again, the convergence property of Fcγ was proved in [9].

The relative degree claim is more subtle than in the previous

lemma. It was shown in [10, Theorem 4.2] that if c and

d have relative degree r then c ⊔⊔ d has relative degree

r if and only if (c ⊔⊔ d, xr−1
0 x1) = (c, ∅)(d, xr−1

0 x1) +
(c, xr−1

0 x1)(d, ∅) 6= 0. Therefore, since c is nonproper and

has relative degree r, c ⊔⊔ k has relative degree r for all k ≥ 1.

(Note this claim was not made in the proof of the previous

lemma.) In particular,

(c ⊔⊔ k, xr−1
0 x1) = k(c, ∅)k−1(c, xr−1

0 x1) 6= 0.

In addition, it was shown in [10, Theorem 4.1] that if c and d
have relative degree r then c+d has relative degree r if and

only if (c + d, xr−1
0 x1) = (c, xr−1

0 x1) + (d, xr−1
0 x1) 6= 0.

Therefore, assuming N > 0 (otherwise γ′ = 0), cγ has

relative degree r if and only if

(cγ , x
r−1
0 x1) = (c, xr−1

0 x1)
N
∑

k=1

(c, ∅)k−1 γk
(k − 1)!

= (c, xr−1
0 x1)γ

′((c, ∅)) 6= 0,

which proves the final assertion.

Lemma 4: If c ∈ R〈〈X〉〉 has relative degree r > 1, and

y = Fc[u] is convergent, then there exists c′ ∈ R〈〈X〉〉
with relative degree r − 1 such that dy/dt = Fc′ [u] is also

convergent. If r = 1 then dy/dt corresponds to the relative

degree zero case.

Proof: It is immediate that

dy

dt
= Fx

−1

0
(c) + uFx

−1

1
(c),

where x−1
i (·) denotes the left-shift operator. If r > 1 then

directly x−1
1 (c) = 0, and c′ = x−1

0 (c) must have relative

degree r − 1. The convergence of Fc′ follows directly from

that of Fc [11]. If r = 1 then clearly dy/dt depends explicitly

on u, so the relative degree is defined to be zero.

Lemma 5: If y = F [u] has an analytic realization

(f, h, z0) with relative degree r at (z0, u0) then the aug-

mented realization

ż = f(z, w), z(0) = z0

ẇ = v, w(0) = u0

y = h(z)

is control affine and has relative degree r + 1 at [zT0 , u0]
T .

Proof: It is clear that the input-output map v 7→ y is

control affine. (See [17] for further applications of this type

of dynamic extension.) The relative degree claim follows

by a direct calculation showing that on a neighborhood of

[zT0 u0]
T :

Lg1L
i
g0
h(z, w) =

∂

∂w
Li
fh(z, w) = 0, i = 0, 1, . . . , r − 1

Lg1L
r
g0
h(z, w) =

∂

∂w
Lr
fh(z0, u0) 6= 0,

where

g0(z, w) =

[

f(z, w)
0

]

g1(z, w) =

[

0
1

]

. (10)

The main result of this section is given next.

Theorem 2: Consider an input-output map Fc : u 7→ y
with c ∈ R〈〈X〉〉 and an analytic realization (g, h, z0) on W
with relative degree r at z0 ∈W . Assume (g, z0) is flat, and

let yf denote any flat output. Then the following hold:

1) If c is nonproper, q in (5h) is separable in y, i.e.,

q(η, y) = q0(η) + q1(η)γ(y), and γ is a polynomial

such that γ′((c, ∅)) 6= 0, then yf = Fci ◦ Fcγ [u], where

Fci corresponds to the input-output map of the internal

dynamics (q0, q1, η0, hq(η) := η1) and has relative

degree n − r at η0. Furthermore, cf := ci ◦ cγ has

relative degree n.

2) If c is proper, and q in (5h) is separable in y, then

yf = Fci ◦ Fcγ [u], where Fci corresponds to the input-

output map of the internal dynamics (q0, q1, η0, hq) and

has relative degree n−r at η0. Furthermore, cf := ci◦cγ
has relative degree n.

3) If c has relative degree r > 1, then yf = Fce ◦ Fc′ [u],
where Fce corresponds to the input-output map of the

extended internal dynamics (qe,0, qe,1, [η
T
0 , y(0)]

T , hq)
and has relative degree n− r + 1 at [ηT0 , y(0)]

T , while

Fc′ : u 7→ y′ and c′ = x−1
0 (c) has relative degree r− 1.

Furthermore, cf := ce ◦ c
′ has relative degree n.

Proof:

1) In the normal form coordinates (5), the input to the

internal dynamics enters linearly as γ(y), while yf =
η1. Therefore, yf = Fci [γ(y)] = Fci [γ(Fc[u])] = Fci ◦
Fcγ [u]. Under the stated conditions, Lemma 3 applies,

8039



so the relative degree claims follows from this result

and Theorem 1.

2) The argument here is similar to that of the previous item

except Lemma 2 is applied.

3) This claim follows directly from Lemmas 4-5.

IV. EXAMPLES

The main results of the previous sections are illustrated

in this section by examples. The first example applies The-

orem 1. The remaining examples exercise all the cases in

Theorem 2.

Example 1: The normalized dynamics of a SISO isother-

mal continuous stirred tank reactor (CSTR) for the Van de

Vusse example are given by

ż1 = −z1 − z21 + (1− z1)u (11a)

ż2 = z1 − z2 − z2u, (11b)

where zi is the concentration of the i-th reactant [16]. The

output y = zi has relative degree 1 at z0 = [2 2]T for i =
1, 2. The system is flat since yf = z2/(1 − z1) has relative

degree 2 at z0. Taking, for example, y = z1, the change of

coordinates

z̄1 = z1

z̄2 =
z2

1− z1

gives normal form (5) with

q(z̄2, y) =
y2z̄2 − y + z̄2

y − 1
.

Even though (11) is control affine, q does not fit any of the

cases in Theorem 2. However, the nonaffine factorization in

Theorem 1 is still available. It is easily verified that yf =
z̄2 = Fi[y] with realization (q,−2, hq) has relative degree 1

at (z̄20, y0) = (−2, 2) so that the realization of Fi ◦ Fc has

relative degree 2 at ([zT0 z̄2]
T , u0) for any u0.

Example 2: A normalized three species Lotka-Volterra

system with an exogenous input u is

ż1 = z1 − z1z2

ż2 = −z2 + z1z2 − z2z3

ż3 = −z3 + z2z3 + u,

where zi denotes the biomass of the i-th species [1]. The

relative degree for output y = zi at z0 = [1 1 1]T is ri = 4−i,
i = 1, 2, 3. So, in particular, the output y = z1 is flat. For

the nonflat output y = z3 the coordinate transformation

z̄1 = z3

z̄2 = z1

z̄3 = z1 − z1z2,

puts the system into normal form (5) with q(z̄2, z̄3, y)
separable, specifically,

q0(z̄2, z̄3) =

[

z̄3

−z̄22 + z̄2z̄3 +
z̄2

3

z̄2

]

,

q1(z̄2, z̄3) =

[

0
z̄2 − z̄3

]

,

and γ(y) = 1 + y. Furthermore, since (c, ∅) = h(z0) = 1 6=
0 and γ′(y) = 1 6= 0, case 1 of Theorem 2 applies. The

generating series for the given output and the flat output are,

respectively,

c = 1 + x1 − x20 + x30 − 2x20x1 − x0x1x0 + 4x40+

3x30x1 + 2x20x1x0 − 2x20x
2
1 + x0x1x

2
0 − x0x1x0x1−

19x50 + 10x40x1 + 6x30x1x0 + 6x30x
2
1 + 3x20x1x

2
0 + · · ·

cf = 1 + x20 − x30 + x20x1 + 2x40 − 2x30x1 − x20x1x0 − x50+

6x40x1 + 4x30x1x0 − 2x30x
2
1 + 2x20x1x

2
0 − x20x1x0x1−

17x60 − 9x50x1 − 8x40x1x0 + 10x40x
2
1 − 6x30x1x

2
0 + · · ·

The relative degrees rc = 1 and rcf = 3 are readily apparent

in light of (7). The generating series cγ = 1 + c, and from

the internal dynamics (q0, q1, [1 0]
T , hq)

ci = 1− x20 + x0x1 − x30 + x20x1 + x0x1x0 − x0x
2
1 + 3x40−

3x30x1 − x20x1x0 + x20x
2
1 − x0x

2
1x0 + x0x

3
1 + 14x50−

14x40x1 − 11x30x1x0 + 11x30x
2
1 − 7x20x1x

2
0 + · · ·

As expected, rcγ = 1 and rci = 2, and a direct application

of (8) gives cf = ci ◦ cγ .

Example 3: Consider system

ż1 = z1z3 + z1u

ż2 = −z21 + z2z3 + z2u

ż3 = (z1 − z2)
z3
z2
.

The output y = 1 − (z2/z1) has relative degree 2 at z0 =
[1 1 1]T , while the output y = z3 has relative degree 3 at z0.

The change of coordinates for the nonflat output

z̄1 = 1−
z2
z1

z̄2 = z1

z̄3 = z3

puts the system into normal form (5) with q(z̄3, y) separable,

where q0(z̄3) = −z̄3, q1(z̄3) = z̄3, and γ(y) = 1/(1 −
y) =

∑

k≥0 y
k. Since (c, ∅) = h(z0) = 0, the generating

series c is proper and case 2 of Theorem 2 applies. The

generating series for the given output and the flat output are,

respectively,

c = x0 + x20 + x0x1 + x30 + x20x1 + x0x1x0 + x0x
2
1+

2x40 + x30x1 + x20x1x0 + x20x
2
1 + x0x1x

2
0+

x0x1x0x1 + x0x
2
1x0 + x0x

3
1 + 8x50 + 3x40x1 + · · ·

cf = 1 + x20 + 3x30 + x20x1 + 16x40 + 5x30x1 + 3x20x1x0+

x20x
2
1 + 106x50 + 37x40x1 + 26x30x1x0 + 9x30x

2
1+

14x20x1x
2
0 + 5x20x1x0x1 + 3x20x

2
1x0 + x20x

3
1 + · · ·

Observe that rc = 2 and rcf = 3. The generating series

cγ =
∑

k≥0 c
⊔⊔ k and ci are found to be

cγ = 1 + x0 + 3x20 + x0x1 + 13x30 + 5x20x1 + 3x0x1x0+
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x0x
2
1 + 52x40 + 31x30x1 + 23x20x1x0 + 9x20x

2
1+

13x0x1x
2
0 + 5x0x1x0x1 + 3x0x

2
1x0 + x0x

3
1 + · · ·

ci = 1− x0 + x1 + x20 − x0x1 − x1x0 + x21 − x30+

x20x1 + x0x1x0 − x0x
2
1 + x1x

2
0 − x1x0x1 − x21x0+

x31 + x40 − x30x1 − x20x1x0 + x20x
2
1 − x0x1x

2
0 + · · ·

Here cγ has relative degree 2, and ci has relative degree 1.

By direct computation it is found that cf = ci ◦ cγ .

Example 4: Consider Example 4.3.4 in [13] where

ż1 = z3 − z32
ż2 = −z2 − u

ż3 = z21 − z3 + u.

The output y = z1 has relative degree 2 at z0 = [1 1 1]T ,

while the outputs y = z2 and y = z3 both have relative

degree 1 at z0. The system is flat since the output y = z2+z3
has relative degree 3 at z0. For the y = z1 case, the change

of coordinates

z̄1 = z1

z̄2 = z3 − z32
z̄3 = z2 + z3

puts the system into normal form (5) with q(z̄3, y) separable,

namely, q0(z̄3) = −z̄3, q1(z̄3) = 1, and γ(y) = y2. Since

(c, ∅) = h(z0) = 1 6= 0 and γ′(1) = 2 6= 0, the factorization

in case 1 of Theorem 2 is available. The generating series

for the given output and the flat output are, respectively,

c = 1 + 3x20 + 4x0x1 − 9x30 − 10x20x1 − 6x0x1x0−

6x0x
2
1 + 33x40 + 36x30x1 + 18x20x1x0 + 18x20x

2
1+

12x0x1x
2
0 + 12x0x1x0x1 + 6x0x

2
1x0 + 6x0x

3
1 + · · ·

cf = 2− x0 + x20 + 5x30 + 8x20x1 − 23x40 − 28x30x1−

12x20x1x0 − 12x20x
2
1 + 143x50 + 172x40x1+

96x30x1x0 + 112x30x
2
1 + 48x20x1x

2
0 + · · ·

Observe that rc = 2 and rcf = 3. The generating series

cγ = c ⊔⊔ c and ci are found to be

cγ = 1 + 6x20 + 8x0x1 − 18x30 − 20x20x1 − 12x0x1x0−

12x0x
2
1 + 120x40 + 144x30x1 + 84x20x1x0 + 100x20x

2
1+

48x0x1x
2
0 + 56x0x1x0x1 + 12x0x

2
1x0 + 12x0x

3
1 − · · ·

ci = 2− 2x0 + x1 + 2x20 − x0x1 − 2x30 + x20x1 + 2x40−

x30x1 − 2x50 + x40x1 + 2x60 − x50x1 − 2x70 + x60x1 + · · ·

Again, as expected, cγ has relative degree 2, and ci has

relative degree 1, By direct computation it is verified that

cf = ci ◦ cγ .

Alternatively, since r > 1, the factorization in case 3 of

Theorem 2 is also available. Observe that from (6) and (10)

ce = 2− x0 + x20 + 2x0x1 − x30 − 2x20x1 + 2x0x
2
1 + x40+

2x30x1 − 2x20x
2
1 − x50 − 2x40x1 + 2x30x

2
1 + x60+

2x50x1 − 2x40x
2
1 − x70 − 2x60x1 + 2x50x

2
1 + x80 + · · ·

c′ = x−1
0 (c) = 3x0 + 4x1 − 9x20 − 10x0x1 − 6x1x0−

6x21 + 33x30 + 36x20x1 + 18x0x1x0 + 18x0x
2
1+

12x1x
2
0 + 12x1x0x1 + 6x21x0 + 6x31 − 105x40 − · · ·

Therefore, cf = ce ◦ c
′, where ce has relative degree 2, and

c′ has relative degree 1.

V. CONCLUSIONS

Using a flat coordinate system, it was shown that a flat

output for a SISO flat system can be written in terms of

a composition of two input-output operators having realiza-

tions with relative degrees summing to the relative degree of

the flat output. First the general smooth case was considered,

followed by the control affine analytic case. The latter was

subdivided into three commonly encountered cases, but this

list is likely not exhaustive. These factorizations could be

written in terms of Fliess operators. Each case presented was

illustrated by at least one example.
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