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Flat Outputs in Terms of SISO Operator Compositions

W. Steven Gray'

Abstract— The goal of this paper is to use a flat coordinate
system to show that a flat output for a SISO flat system can
be written in terms of a certain composition of input-output
operators. The work is partially motivated by the author’s
recent work on computing the relative degree of interconnected
systems. First the general smooth case is considered, followed
by the control affine analytic case. The latter is more amenable
to computations in terms of Chen-Fliess series.

I. INTRODUCTION

The concept of differential flatness in control theory was
first introduced by Fliess, Lévine, Martin and Rouchon in
[4], [5]. It has been used widely in applications involving
trajectory tracking and motion planning (see [14] for a
survey). In the single-input, single-output (SISO) setting,
flatness is exactly equivalent to the solvability of the state
space linearizability problem [13]. That is, the existence of
an output for which the system has full relative degree.

As motivation for the problem considered here, consider
first a SISO linear system u — y with irreducible transfer
function

H(s) = Ka(s)
_lotbist by as T s
- a()+a13"'+"‘an718n71+8n

9

where K # 0 and with relative degree 1 < r < n. Define a
flat output y; via the transfer function

K

Hy(s) = @,

so that if H;(s) := 1/b(s) then
Hy(s) = H;(s)H(s) (D
and

H(s) = bon(S) +bisHy(s)+---
+bpp18" " H (s) + 8" Hp(s). (2)

Equation (1) states that the flat output y; can be written in
terms of a composition of two input-output systems, while
(2) indicates that the real output y can be written in terms
of the flat output and its first (n — r) derivatives.

To view the situation from a state space point of view,
first divide b(s) into a(s) so that a(s) = b(s)p(s) + r(s)
with (r(s),b(s)) being a coprime pair of polynomials

p(s)=po+pis+-+p_15 " +s"

n—r—2 r—1

T(S) =ro+mris+---+rp—r_28 + T7L—7'—15n7
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and deg(r(s)) < deg(b(s)). In which case,

) 1\
") p<s>> ’

K K
H(s) = p(s) + r(s) @ (

b(s

s

and thus, H (s) can be viewed as a feedback interconnection
with 1/p(s) in the forward path, r(s)/b(s) in the feed-
back path, and K scaling the input. Let (A41,b1,¢1) and
(Aa, ba, co) be minimal realizations of 1/p(s) and r(s)/b(s),
respectively. Then a realization of H (s) follows directly from
this feedback structure to be

. [ AL | —bies Kb, _
Z_|:b201 A, ]z—‘—{ 0 }u, z(0) = 2o

y:[cl‘O}z.

If both realizations are in controller canonical form, then this
realization is in the Byrnes-Isidori normal form

2’1 = Z9 (33)
22 = Z3 (Sb)
férfl = Zr (30)
Zr = PE+ Rn+ Ku (3d)
n=5§+Qn (3e)
Y=z, (3f)
where £ = [21 - 2], n = [2r41- - 2zu)s P = —[po - pr_1],
R=—[ro- Tn_r_1], S=en_r(n—r)ef(r), and
0 1 o .- 0
0 1 o .- 0
Q= : : : - :
0 0 o .- 1
_bO _bl _b2 _bnfrfl

(Here ¢;(j) € R7 has a one in the i-th position and zero
elsewhere. If j is understood then the notation is abbreviated
to e;.) It is immediate that the subsystem 7 = Q1 + e,—,y
with input y and output 7; has transfer function ef (sI —
Q) te, = 1/b(s). Thus, it is equivalent to H;(s) in the
cascade structure (1), implying that yy = n;. From (2) it is
clear that

y = boyyr + bly;l) 4ot bn_r_ly;n—r—l) " y;n—r)’

and thus, in light of the companion form of (), y can be
written in terms of the output function

Y= B(U) = [bO bl o bnfrfl 1]77
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In [12] the authors consider a nonlinear generalization of
this construction for a smooth flat SISO system

(t) = f(2(8),u(t), 2(0) = 20 )

defined on a neighborhood W x U C R™ x R of (zg, up).
In particular, it is shown using a normal form analogous to
(3) that for any output y = h(z) with relative degree r there
exists an output function h:V C R(™=7) 5 R and a flat
output y such that

y=nh (yfvy}”? . yﬁc—)) = h(n),
where 7; = y}zfl), i=1,2,...,n —r. When viewed as a
system of n — r differential equations, this can be seen as
a diffeomorphic representation of the internal dynamics of
(f, h,z0,up). The goal of this paper is to use this setting
to more fully develop the nonlinear cascade structure anal-
ogous to (1) that renders flat outputs. The work is partially
motivated by the recent results in [10], which show how to
compute the relative degree of interconnected systems. It also
provides some computation tools that will be useful here.
The organization of the paper is as follows. First the gen-
eral smooth case is considered, followed by the control affine
analytic case. The latter is more amenable to computations in
terms of Chen-Fliess series [3], [13], [15]. Then a collection
of specific examples is considered. The paper’s conclusions
are summarized in the final section.

II. SMOOTH SYSTEMS

First recall the following definition of relative degree for
a smooth system (4) with output y = h(z2).

Definition 1: [15, p. 417] The input-output map y = F[u]
with smooth realization (f, h, zo, ug) has relative degree r at
(z0,up) if on some neighborhood W x U of (2o, uo):

9
%L;h(z,u) =0, 1=0,1,...

0 /v
%th(ZQ, UO) 7é 0,

where L;h denotes the Lie derivative of h with respect to

f

,r—1

The following lemma is useful.

Lemma 1: Consider two input-output maps Fj and Fb
each with a smooth realization (f;, h;, 20, uio) on W; x U;
and having relative degree r; at (z;0,u;0) € W; x U;, where
i = 1,2. Then the composed system F o F, provided it is
well defined (i.e., hi(W7) C Uy with ugg := hi(z10)), has
relative degree r1 + ro at (2 := [21, 22,]7, u10).

Proof: Apply the definition of relative degree to a realization
(f,h, Zo,u10) of Fy o Fy, namely

fo=] i ] o=l
h(z) = ha(22),

where z := [2] 2217 and W := W7 x Ws. It follows directly
that on W x Uy

0 i+ .
%th(z,u)zo, 1=0,...,79—1

using the assumption that on Wa x hy(W7)

o _; ;
aiug f2h2(ZQ,UQ):O, ’LZO,...,’I‘Q—]..
Likewise, on W x U it follows that
0 iz
%L}?“h(z,u) =0, i=0,...,r —1
using the assumption that on W, x U;
O Lin ( )=0, i=0 1
— z1,u1) =0, 1 =0,...,79 — 1.
By L 2
Finally, it is clear that
9 rotT1 ]
%Lf h(Z(), UO)
a T r
= %Lf;hz(zzo’ hl(Zlo))au1 L' ha(z10,u10) # 0
as required. u

The main result of this section is given next.

Theorem 1: Consider an input-output map F : u — y
with smooth realization (f, h, zo,ug) on W x U and relative
degree 7 at (zp,ug) € W x U. If (f,20,up) is flat then
any flat output yy = hy(z) can be written in terms of a
composition y; = F; o F[u], where F; corresponds to the
input-output map for the internal dynamics of F' with well
defined relative degree n — - at some point (79, %(0)) in the
flat normal form coordinates (defined below). Furthermore,
the realization (f,hy,Zo,ug) of F; o F[u] has well defined
relative degree n at (2o, ug).

Proof: 1t was shown in [12, Theorem 7] by passing through

the flat coordinates z; = y;i_l), 1 = 1,2,...,n that there

exists a smooth diffeomorphism [¢7 7717 := ¢(z) which
transforms (f, h, 2o, up) into the flar normal form

&i=6& (5a)

§2=& (5b)

o1 =& (5¢)

fr Zp(fﬂ?vu) (Sd)

m =2 (5e)

2 =13 (56)

7.777,77"71 = Nn—r (Sg)

T.]n,r = Q(Tla 51), (Sh)

y=¢&, (51)

where 9q/0&1(no,y(0)) # 0, and y; = 0. Therefore,
the realization (¢, hq(n) = m,no,%0) of F; : y — m
has relative degree n — r at (70,y(0)). By assumption
(5) as a realization of F' : u +— y has relative degree
rat ([¢0 n3]", uo). Hence, from the structure of (5) and
Lemma 1, it is immediate that the realization (f,hy, Zo, uo)
of I; o F :uw yy has relative degree n at (Z0,u0). ]
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III. CONTROL AFFINE ANALYTIC SYSTEMS

In the case where f(z,u) in (4) is control affine, it is
not true in general that F; in Theorem 1 has a control affine
state space realization. So in this section, conditions are given
under which a flat output of a control affine analytic system

z = go(z) + g1(2)u, 2(0) = 20,

can be written in terms of the composition of two operators,
where each operator has a control affine analytic realization.
The analyticity ensures that for any analytic output y = h(z),
the corresponding input-output map u > y can be written in
terms of a convergent Chen-Fliess series or Fliess operator
[31, [13], [15]. In this setting, one can do explicit calculations
purely in an input-output setting.

Let X = {wo,21,...,2,m} be a set of noncommuting
letters with m € N. The set of all words having finite length,
X*, forms a monoid under catenation, where the identity
element is the empty word, (). The set of all words with
prefix n € X* is written as nX*. A formal power series
over X is any mapping ¢ : X* — R, where c evaluated at
n € X* is written as (c¢,n). It is customary to represent c¢
as the formal sum ¢ = EWGX*(C, n)n. A series ¢ is said to
be proper when (c, () # 0. The support of ¢ is defined as
supp(c) = {n € X* : (¢,n) # 0}.

Any ¢ € RY((X)) can be used as a generating series
to define a causal m-input, /-output operator, F,. First fix
p > 1 and ¢ty < t;. For a Lebesgue measurable function u; :
[to,t1] = R, let |ju;||, denote the usual L, function norm.
For any measurable vector-valued function  : [to, 1] — R™
define [|ull, = max{|u;l[, : 1 < i < m}. Let Ly'[to, 1]
denote the set of all such functions having finite ||-||, norm. A
closed ball of radius R at the origin of L [to, ] is written
as By (R)[to, t1]. Let Clto,t1] C Li'[to,t1] be the set of
continuous functions. For any n € X* define the iterated
integral E, : L{'[to,t1] — Clto,t1] inductively by first
setting Fy[u] = 1 and then letting

Erlﬁ[u](t,to):/ u; (7) Eglul(T, to) dr,

to

where z; € X, 7 € X*, and up = 1. The input-output map
associated with c is the Fliess operator

> (en) Eylul(t to).

nex*

Felul(t) =

If y = F.[u] has a control affine analytic realization (g, h, zo)
in local coordinates, then

(c;m) = L9i1 T Lgik h(zo0) (6)

for any word n = x;, ---x;, € X*. Furthermore, it is
shown in [11] that F, converges in a local sense and
constitutes a well defined mapping from B}*(R)l[to, to + T
into BY(S)[to, to + T for sufficiently small R, T > 0 and
p,q € [1,00] satisfying 1/p 4+ 1/q = 1.

The following definition describes the relative degree of
a generating series ¢ € R((X)) when X = {zg,z1}. It
is equivalent to the usual definition whenever F. has an

analytic realization (g, h, z9) [6], [7]. It employs the language
of linear words

L: {77 € X* n= xglxlxgoa ni,No Z 0}

In addition, the decomposition of ¢ € R({(X)) into its natural
and forced components is useful, i.e., ¢ = ¢y + cp, Where
en =Y sole,af)al and cp = c —cn.

Definition 2: [6] Given ¢ € R{({X)), let r > 1 be the
largest integer such that supp(cr) C 2§, ' X*. Then c has
relative degree r if the linear word z 'z; € supp(c),
otherwise it is not well defined.

It can be verified that ¢ has relative degree r if and only
if there exists some proper e € R((X)) with z; & supp(e)
such that

c=cy +cFp :cN—i—KxS*lxl—l—a:S*le @)

with K # 0.

The cascade connection of two convergent Fliess operators
is known to always yield another operator in this class,
independent of whether any of these operators are realizable
[2], [8]. To compute the corresponding generating series,
first observe that under the catenation product R*((X)) is
an associative R-algebra. It also forms an associative and
commutative R-algebra under the shuffle product, which is
defined inductively on words by

(i) w (2;€) = i(n w (2;€)) + 25 ((zin) w E),

where z;,z; € X, n,§ € X* and with n w0 = 0wy =
7. The product is then extended linearly to formal power
series. If F, and Fy are two Fliess operators with ¢, d €
R*((X)), then the input-output maps for the parallel sum and
parallel product connections are given by F. + Fy = F.44
and F.F; = F. ., 4, respectively [3]. The cascade connection
F.o Fy, where ¢ € RY((X)) and d € R™((X)), yields the
Fliess operator F..4. Here the composition product

cod= > (c,;n)ta(n)(1) ®)

neEX™

is defined in terms of the continuous (in the ultrametric topol-
ogy) algebra homomorphism ¢ mapping R{(X)) to the set of
vector space endomorphisms on R({(X)), End(R{(X))). It
is uniquely determined by ¥4(z;n) = a(x;) o a(n), where

Ya(wi)(e) = zo(d; we), e € R((X))

for+ =0,1,...,m with d; being the ¢-th component series
of d (dy := 1). For the empty word, 1)4(() is taken to be the
identity map on R((X)). It is known that the composition
product is associative and R-linear in its left argument. In
[10] it is shown that if ¢ and d have relative degree r. and
rq, respectively, then c o d. has relative degree r. + rq4. Of
course, this fact is expected from Lemma 1 in the case where
both operators are realizable.

Now the main results of this section are developed.
Henceforth, it is assumed that X = {x¢, 21 }. The following
lemmas will be needed.

Lemma 2: Let ¢ € R((X)) be proper with relative degree
r. If F, is convergent, and 7 : R — R is real analytic on a
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neighborhood of the origin, then there exists a ¢, € R{(X))
such that I, = ~(F¢.), and F._ is convergent. In addition,
¢+ has relative degree r.

Proof: Letting y(z) = >~ 72" /k!, it follows directly by

substitution that

&0 Lk
C
ZWOCZZE T 9)
k=0

where ¢ * denotes the shuffle power of c. It was shown
in [9] using the properness of c¢ that ¢, is always well
defined (locally finite). In this same work it is also shown
that the convergence property of F. is preserved by (9). To
see that c, has relative degree r, it can be verified for £ > 1
that supp(c ™ k) C wgle* (see [10, Lemma 4]) and that
xy " ey & supp(c™¥). In which case, the claim follows
directly from the assumption that ¢ has relative degree r. B

Lemma 3: Let ¢ € R((X)) be nonproper with relative
degree r. If F, is convergent, and v : R — R is a polynomial,
then there exists a ¢, € R((X)) such that F. = ~(F.), and
F. is convergent. If 7'((c,0)) # O, then 07 has relative
degree r.

Proof: If deg(y) = N then clearly

N Cqu
CW—Z% il
k=0

Again, the convergence property of F,. was proved in [9].
The relative degree claim is more subtle than in the previous
lemma. It was shown in [10, Theorem 4.2] that if ¢ and
d have relative degree r then c..d has relative degree
r if and only if (cwd,xfta1) = (¢,0)(d,xf ‘o) +
(c,zy ) (d, 0) # 0. Therefore, since ¢ is nonproper and
has relative degree 7, ¢ ™ k has relative degree r for all £ > 1.
(Note this claim was not made in the proof of the previous
lemma.) In particular,

(Cm kﬂfg_lfl) =

k(c,0)* (e, zp ay) # 0.

In addition, it was shown in [10, Theorem 4.1] that if ¢ and d
have relative degree r then c+ d has relative degree r if and
only if (¢ 4+ d,xf 'x1) = (c, 2y 'w1) + (d, xf  xy) # 0.
Therefore, assuming N > 0 (otherwise v = 0), ¢, has
relative degree r if and only if

N
(C’vagilxl) C 1’0 z_:l (Z) 1)
= (c,z5 " 21)7'((c,0)) #
which proves the final assertion. |

Lemma 4: If ¢ € R{(X)) has relative degree r > 1, and
y = F.[u] is convergent, then there exists ¢ € R{(X))
with relative degree r — 1 such that dy/dt = F./[u] is also
convergent. If » = 1 then dy/dt corresponds to the relative
degree zero case.
Proof: It is immediate that

dy
E = Fmo—l(c) + Ule—l(c),

where ;' (-) denotes the left-shift operator. If 7 > 1 then
directly #7'(c) = 0, and ¢ = x5"'(c) must have relative
degree r — 1. The convergence of F. follows directly from
that of F. [11]. If » = 1 then clearly dy/dt depends explicitly
on u, so the relative degree is defined to be zero. |

Lemma 5: If y = Flu] has an analytic realization
(f,h,20) with relative degree r at (zp,uo) then the aug-
mented realization

z = f(z,w), z(0) =2
w=wv, w(0)=ug

y = h(z)

is control affine and has relative degree r + 1 at [zd, ug]”.
Proof: 1t is clear that the input-output map v +— y is
control affine. (See [17] for further applications of this type
of dynamic extension.) The relative degree claim follows
by a direct calculation showing that on a neighborhood of

(25 o)™
i T '
Lg, Ly h(z,w) = %th(z7w) =0, i=0,1,...,r—1
0
Lgngoh(z,w) = a—wL’}h(zo,uo) #0,
where
Z,w 0
wiz)= | TG | o= V] a0
|
The main result of this section is given next.
Theorem 2: Consider an input-output map F, : u +— y

with ¢ € R((X)) and an analytic realization (g, h, zo) on W
with relative degree r at zp € W. Assume (g, 2o) is flat, and
let y; denote any flat output. Then the following hold:

1) If ¢ is nonproper, ¢ in (Sh) is separable in y, i.e.,
a(n.y) = qo(n) + q1(n)y(y), and v is a polynomial
such that 7/((c,0)) # 0, then y; = F,, o Fi._[u], where
F, corresponds to the input-output map of the internal
dynamics (qo, g1,70,he(n) = m) and has relative
degree m — r at 79. Furthermore, c; := c¢; o ¢, has
relative degree n.

2) If c is proper, and ¢ in (5h) is separable in y, then
ys = F, o F,._[u], where F., corresponds to the input-
output map of the internal dynamics (qo, g1, 10, hg) and
has relative degree n—r at 1o. Furthermore, ¢y := ¢;oc,
has relative degree n.

3) If ¢ has relative degree > 1, then yy = F o Fu[u],
where F,_ corresponds to the input-output map of the
extended internal dynamics (ge.0, ge.1, 18, y(0)]%, hy)
and has relative degree n —r + 1 at [nd’, y(0)]7, while
F.:ursy and ¢ = x;*(c) has relative degree 7 — 1.
Furthermore, ¢y := ¢, 0 ¢ has relative degree n.

Proof:

1) In the normal form coordinates (5), the input to the
internal dynamics enters linearly as ~(y), while y; =
ni. Therefore, y; = Fy,[1(y)] = Fo, [1(Ffu))] = Fo, o
F._[u]. Under the stated conditions, Lemma 3 applies,

8039



so the relative degree claims follows from this result
and Theorem 1.

2) The argument here is similar to that of the previous item
except Lemma 2 is applied.

3) This claim follows directly from Lemmas 4-5.

IV. EXAMPLES

The main results of the previous sections are illustrated
in this section by examples. The first example applies The-
orem 1. The remaining examples exercise all the cases in
Theorem 2.

Example 1: The normalized dynamics of a SISO isother-
mal continuous stirred tank reactor (CSTR) for the Van de
Vusse example are given by

(11a)
(11b)

: 2
Zr=—2z1—21+ (1 —21)u
22 — Z] — 22 — 22U,

where z; is the concentration of the i-th reactant [16]. The
output y = 2; has relative degree 1 at zgp = [22]T for i =
1,2. The system is flat since yy = 2z2/(1 — 21) has relative
degree 2 at zy. Taking, for example, y = z;, the change of
coordinates

gives normal form (5) with

q(22,y) = vyt
2, y—l .

Even though (11) is control affine, ¢ does not fit any of the
cases in Theorem 2. However, the nonaffine factorization in
Theorem 1 is still available. It is easily verified that y; =
Zo = F;[y] with realization (g, —2, h,) has relative degree 1
at (Z20,v0) = (—2,2) so that the realization of F; o F, has
relative degree 2 at ([z Z]T, ug) for any wuy. 0

Example 2: A normalized three species Lotka-Volterra
system with an exogenous input w is
21 =21 — 1%
Zo = —z2 + 2122 — 2223
23 = —23 + 2223 + u,
where z; denotes the biomass of the ¢-th species [1]. The
relative degree for output y = z; at 2o = [1 1 1] is r; = 4—i,
i = 1,2,3. So, in particular, the output y = z; is flat. For
the nonflat output y = 23 the coordinate transformation
Z1 = 23
22 = Z1
Z3 = 21 — 21%2,
puts the system into normal form (5) with ¢(Za,Z3,v)
separable, specifically,

_ Z3
qo(22, 23) = 2 |

—2% + Z2Zs + 3

_ 0
q1(Z2, 23) = [ 5y — 73 ],

and y(y) = 1 + y. Furthermore, since (c,0)) = h(zp) =1 #
0 and +'(y) = 1 # 0, case 1 of Theorem 2 applies. The
generating series for the given output and the flat output are,
respectively,
_ 2 3 2 4
c=1+x1 —xf+ x5 — 22571 — Tox120 + 425+
Bxg;vl + 2x(2)x1:r0 — 2x§x? + xoxlxg — XgX1X0x1—
1925 + 10571 + 6237170 + 63307 + 30dz2d + - -
cp =1+ o2 — ad 4+ xley + 22) — 2adwy — 222y — 25+
6xgry + dapriro — 2050? + 20ke 2 — aleiwowy —
1728 — 92521 — Sxgriwo + 102527 — 6xdr 02 + - - -
The relative degrees r. = 1 and r., = 3 are readily apparent
in light of (7). The generating series ¢y, = 1 + ¢, and from
the internal dynamics (o, g1, [10]7, hy)
ci=1-— x% + xor1 — x(?; + x%xl + xox120 — a:ox% + 3303—
3xdxy — xiri2e 4+ vie? — xexive + Tt + 142y —
ldajry — 1adz zg + 1ade? — 7ozl 4+ - -
As expected, ., = 1 and 7., = 2, and a direct application
of (8) gives ¢y = ¢; 0 cy. 0O

Example 3: Consider system

Z21 = 2123 + z21u

. 2
Z9 = —2z1 + 2923 + 22U
. <3
zZ3 = (21 — ZQ)*.

2

The output y = 1 — (22/21) has relative degree 2 at zp =
[111)7, while the output y = z3 has relative degree 3 at 2.
The change of coordinates for the nonflat output

_ 22
2’1:1—*
21
22:,2’1
23 = 23

puts the system into normal form (5) with ¢(Zzs, y) separable,
where qO(ig) = —2Z3, ql(fg) = Z3, and ’y(y) = 1/(1 —
y) = >0 yF. Since (c,0) = h(z9) = 0, the generating
series ¢ is proper and case 2 of Theorem 2 applies. The
generating series for the given output and the flat output are,
respectively,
c=xg+ :cg + xox1 + x% + 33(2)951 + xox120 + xoa:%—i—
22y 4+ xiry + xar100 + T2 4+ ToT1TA+
ToT1Tox1 + xox%,ro + xox:f + ng + 3x3x1 + -
cp =1+ w2+ 38 + 222 4 1625 + bapry + 3xiriwe+
w222 4+ 106x) + 37xge; + 26252120 + 92hTI+
Vdade,xd + 5adrivoxy + 3xgaizo + xaat 4 - -
Observe that r. = 2 and r., = 3. The generating series
Cy =Y 150 ¢ ™ ¥ and ¢; are found to be

cy=1+m+ 31‘(2) + ror1 + 131‘8 + 51:3301 + 3xgx120+
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zozt + 52x4 + 3lajry + 23z3x120 + 95T+
13x0x1x(2) + dxorix0T) + 3x0xfx0 + zoxs + - -
C; zl—xo—i—xl—i—wg — Tox1 —xlxo—i—x? —mg—l—
x%ml + ToT1To — xox% + xlxg — 19X — xf:ﬂo—i—
xz{’ + xé - xgxl - x%xlxo + x%x% — xoxlx?) + -
Here c, has relative degree 2, and c¢; has relative degree 1.
By direct computation it is found that cy = ¢; o c,. 0
Example 4: Consider Example 4.3.4 in [13] where
2':1 = Z3 — Zg
22 = —Z2—U
i3 =22 — 23 +u.
The output y = 2; has relative degree 2 at zo = [111]7T,
while the outputs y = 2o and y = z3 both have relative
degree 1 at zg. The system is flat since the output y = 2o+ 23
has relative degree 3 at zy. For the y = 27 case, the change
of coordinates
21 =2
Z9 = Z3 — 23
23 = z2 + 23
puts the system into normal form (5) with ¢(Z3,y) separable,
namely, qo(Z3) = —Z3, q1(23) = 1, and ~(y) = y>. Since
(¢,0) = h(z9) =1# 0 and (1) = 2 # 0, the factorization
in case 1 of Theorem 2 is available. The generating series
for the given output and the flat output are, respectively,
c=1+3x3 + 4wor; — 923 — 10232, — 6207170~
6x0x? + 3325 + 36z5x) + 1823w 70 + 182323+
12x0:171x(2) + 12xpx12021 + Gsz%xo + 69:0111g + -
cf =2 —xo+ xf + 5rd + 8xfw — 2378 — 2833w, —
12233 w0 — 122327 + 14325 + 172252, +
96x3z 120 + 1122327 + 482321285 + - -
Observe that r. = 2 and r., = 3. The generating series
¢y = cwc and ¢; are found to be
¢y =1+ 633 + 8wowy — 18x) — 20232, — 12302120 —
12z} + 120z + 144azy + 8423120 + 1002327+
48:E0x1xg + 56xpr12071 + 12x0x§x0 + 12m0x? —
ci=2—2x9+ 21+ 2x(2) — xox1 — 2x8 + x%xl + 23:3—
o3y — 2x) + xgry + 228 — xdry — 2w) + afxy + -
Again, as expected, c¢, has relative degree 2, and c; has
relative degree 1, By direct computation it is verified that
Cf = C; O Cyy.

Alternatively, since r» > 1, the factorization in case 3 of
Theorem 2 is also available. Observe that from (6) and (10)
Ce =2 — o + 2+ 2x0m1 — T3 — 22321 + 2w02? + T+
2wy — 2akat — xf — 2xgwy + 2xdrt + ad+

5 4.2 7 6 5.2, .8
2xgr1 — 2T9%] — Ty — 2x0T1 + 23077 + T + -0

d = xal(c) = 3x9 + 4z — 91’(2) — 10xzpx1 — 6x120—
630% + 33:53 + 363:(2)x1 + 18xgx120 + 181‘0.%‘%4—
123313:(2) + 12212071 + Gx%mo + 63:‘;’ — 105333 —

Therefore, ¢y = ¢, o ¢/, where ¢, has relative degree 2, and
¢ has relative degree 1. 0

V. CONCLUSIONS

Using a flat coordinate system, it was shown that a flat
output for a SISO flat system can be written in terms of
a composition of two input-output operators having realiza-
tions with relative degrees summing to the relative degree of
the flat output. First the general smooth case was considered,
followed by the control affine analytic case. The latter was
subdivided into three commonly encountered cases, but this
list is likely not exhaustive. These factorizations could be
written in terms of Fliess operators. Each case presented was
illustrated by at least one example.
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